Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
313bc9de
Commit
313bc9de
authored
Jul 19, 2019
by
Yong Wu
Committed by
Tianqi Chen
Jul 19, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[TOPI][RELAY] Add op Size (#3094)
parent
be260836
Show whitespace changes
Inline
Side-by-side
Showing
15 changed files
with
201 additions
and
4 deletions
+201
-4
docs/api/python/topi.rst
+2
-0
docs/langref/relay_op.rst
+2
-0
include/tvm/operation.h
+1
-1
include/tvm/relay/attrs/transform.h
+11
-0
python/tvm/api.py
+1
-1
python/tvm/relay/frontend/tensorflow.py
+1
-0
python/tvm/relay/op/contrib/_contrib.py
+4
-1
python/tvm/relay/op/contrib/contrib.py
+18
-0
src/relay/op/tensor/unary.cc
+49
-0
tests/python/frontend/tensorflow/test_forward.py
+17
-0
tests/python/relay/test_op_level10.py
+19
-0
topi/include/topi/transform.h
+23
-0
topi/python/topi/transform.py
+20
-1
topi/src/topi.cc
+5
-0
topi/tests/python/test_topi_transform.py
+28
-0
No files found.
docs/api/python/topi.rst
View file @
313bc9de
...
...
@@ -97,6 +97,7 @@ List of operators
topi.repeat
topi.tile
topi.shape
topi.ndarray_size
topi.layout_transform
topi.image.resize
topi.argsort
...
...
@@ -165,6 +166,7 @@ topi
.. autofunction:: topi.repeat
.. autofunction:: topi.tile
.. autofunction:: topi.shape
.. autofunction:: topi.ndarray_size
.. autofunction:: topi.layout_transform
.. autofunction:: topi.argsort
.. autofunction:: topi.topk
...
...
docs/langref/relay_op.rst
View file @
313bc9de
...
...
@@ -186,6 +186,7 @@ This level support backpropagation of broadcast operators. It is temporary.
tvm.relay.collapse_sum_like
tvm.relay.slice_like
tvm.relay.shape_of
tvm.relay.contrib.ndarray_size
tvm.relay.layout_transform
tvm.relay.device_copy
tvm.relay.annotation.on_device
...
...
@@ -320,6 +321,7 @@ Level 10 Definitions
.. autofunction:: tvm.relay.collapse_sum_like
.. autofunction:: tvm.relay.slice_like
.. autofunction:: tvm.relay.shape_of
.. autofunction:: tvm.relay.contrib.ndarray_size
.. autofunction:: tvm.relay.layout_transform
.. autofunction:: tvm.relay.device_copy
.. autofunction:: tvm.relay.annotation.on_device
...
...
include/tvm/operation.h
View file @
313bc9de
...
...
@@ -59,7 +59,7 @@ class OperationNode : public ir::FunctionBaseNode {
std
::
string
name
;
/*! \brief optional tag of the operation */
std
::
string
tag
;
/*! \brief add
t
itional attributes of the operation*/
/*! \brief additional attributes of the operation*/
Map
<
std
::
string
,
NodeRef
>
attrs
;
/*! \return name of the operation */
const
std
::
string
&
func_name
()
const
final
{
...
...
include/tvm/relay/attrs/transform.h
View file @
313bc9de
...
...
@@ -287,6 +287,17 @@ struct SequenceMaskAttrs : public tvm::AttrsNode<SequenceMaskAttrs> {
}
};
// struct SequenceMaskAttrs.
/*! \brief Attributes for ndarray_size operator */
struct
NdarraySizeAttrs
:
public
tvm
::
AttrsNode
<
NdarraySizeAttrs
>
{
DataType
dtype
;
TVM_DECLARE_ATTRS
(
NdarraySizeAttrs
,
"relay.attrs.NdarraySizeAttrs"
)
{
TVM_ATTR_FIELD
(
dtype
)
.
describe
(
"Target data type"
)
.
set_default
(
NullValue
<
DataType
>
());
}
};
}
// namespace relay
}
// namespace tvm
#endif // TVM_RELAY_ATTRS_TRANSFORM_H_
python/tvm/api.py
View file @
313bc9de
...
...
@@ -275,7 +275,7 @@ def compute(shape, fcompute, name="compute", tag="", attrs=None):
The name hint of the tensor
tag: str, optional
Additonal tag information about the compute.
Addit
i
onal tag information about the compute.
attrs: dict, optional
The additional auxiliary attributes about the compute.
...
...
python/tvm/relay/frontend/tensorflow.py
View file @
313bc9de
...
...
@@ -1383,6 +1383,7 @@ _convert_map = {
'Shape'
:
_shape
(),
'Sigmoid'
:
AttrCvt
(
'sigmoid'
),
'Sign'
:
AttrCvt
(
'sign'
),
'Size'
:
AttrCvt
(
'ndarray_size'
),
'Slice'
:
_slice
(),
'Softmax'
:
_softmax
(),
'Softplus'
:
_softplus
(),
...
...
python/tvm/relay/op/contrib/_contrib.py
View file @
313bc9de
...
...
@@ -20,7 +20,7 @@ from __future__ import absolute_import
import
topi
from
..
import
op
as
reg
from
..op
import
OpPattern
from
..op
import
schedule_injective
,
OpPattern
# adaptive_max_pool2d
...
...
@@ -41,3 +41,6 @@ def schedule_adaptive_avg_pool2d(_, outs, target):
return
topi
.
generic
.
schedule_adaptive_pool
(
outs
)
reg
.
register_pattern
(
"contrib.adaptive_avg_pool2d"
,
OpPattern
.
OUT_ELEMWISE_FUSABLE
)
# relay.contrib.ndarray_size
reg
.
register_schedule
(
"contrib.ndarray_size"
,
schedule_injective
)
python/tvm/relay/op/contrib/contrib.py
View file @
313bc9de
...
...
@@ -111,3 +111,21 @@ def adaptive_avg_pool2d(data,
"""
output_size
=
[]
or
output_size
return
_make
.
adaptive_avg_pool2d
(
data
,
output_size
,
layout
)
def
ndarray_size
(
data
,
dtype
=
"int32"
):
"""Get number of elements of input tensor.
Parameters
----------
data : tvm.relay.Expr
The input tensor.
dtype : str, optional
The target data type.
Returns
-------
result : tvm.relay.Expr
The number of elements of input tensor.
"""
return
_make
.
ndarray_size
(
data
,
dtype
)
src/relay/op/tensor/unary.cc
View file @
313bc9de
...
...
@@ -279,5 +279,54 @@ RELAY_REGISTER_OP("shape_of")
.
set_support_level
(
10
)
.
set_attr
<
FTVMCompute
>
(
"FTVMCompute"
,
ShapeOfCompute
);
TVM_REGISTER_NODE_TYPE
(
NdarraySizeAttrs
);
bool
NdarraySizeRel
(
const
Array
<
Type
>&
types
,
int
num_inputs
,
const
Attrs
&
attrs
,
const
TypeReporter
&
reporter
)
{
CHECK_EQ
(
num_inputs
,
1
);
auto
tt
=
types
[
0
].
as
<
TensorTypeNode
>
();
CHECK
(
tt
!=
nullptr
);
const
auto
*
param
=
attrs
.
as
<
NdarraySizeAttrs
>
();
CHECK
(
param
!=
nullptr
);
reporter
->
Assign
(
types
[
1
],
TensorTypeNode
::
make
({
1
},
param
->
dtype
));
return
true
;
}
Array
<
Tensor
>
NdarraySizeCompute
(
const
Attrs
&
attrs
,
const
Array
<
Tensor
>&
inputs
,
const
Type
&
out_type
,
const
Target
&
target
)
{
CHECK_EQ
(
inputs
.
size
(),
1
);
const
auto
*
param
=
attrs
.
as
<
NdarraySizeAttrs
>
();
CHECK
(
param
!=
nullptr
);
return
Array
<
Tensor
>
{
topi
::
ndarray_size
(
inputs
[
0
],
param
->
dtype
)};
}
TVM_REGISTER_API
(
"relay.op.contrib._make.ndarray_size"
)
.
set_body_typed
<
Expr
(
Expr
,
DataType
)
>
([](
Expr
data
,
DataType
dtype
)
{
auto
attrs
=
make_node
<
NdarraySizeAttrs
>
();
attrs
->
dtype
=
dtype
;
static
const
Op
&
op
=
Op
::
Get
(
"contrib.ndarray_size"
);
return
CallNode
::
make
(
op
,
{
data
},
Attrs
(
attrs
),
{});
});
RELAY_REGISTER_OP
(
"contrib.ndarray_size"
)
.
describe
(
R"code(Returns a tensor representing the number of elements of input tensor.
)code"
TVM_ADD_FILELINE
)
.
set_num_inputs
(
1
)
.
set_attrs_type_key
(
"relay.attrs.NdarraySizeAttrs"
)
.
add_argument
(
"data"
,
"Tensor"
,
"The input tensor."
)
.
add_type_rel
(
"NdarraySize"
,
NdarraySizeRel
)
.
set_attr
<
TOpIsStateful
>
(
"TOpIsStateful"
,
false
)
.
set_attr
<
TOpPattern
>
(
"TOpPattern"
,
kInjective
)
.
set_attr
<
FInferCorrectLayout
>
(
"FInferCorrectLayout"
,
ElemwiseArbitraryLayout
)
.
set_support_level
(
10
)
.
set_attr
<
FTVMCompute
>
(
"FTVMCompute"
,
NdarraySizeCompute
);
}
// namespace relay
}
// namespace tvm
tests/python/frontend/tensorflow/test_forward.py
View file @
313bc9de
...
...
@@ -1934,6 +1934,22 @@ def test_forward_mean():
check_mean
((
10
,
8
,
16
,
32
),
axis
=
(
1
,
2
),
keepdims
=
True
)
#######################################################################
# Size
# ----
def
test_forward_size
():
def
check_size
(
ishape
):
np_input
=
np
.
random
.
uniform
(
size
=
ishape
)
.
astype
(
np
.
float32
)
with
tf
.
Graph
()
.
as_default
():
input
=
tf
.
placeholder
(
shape
=
np_input
.
shape
,
dtype
=
np_input
.
dtype
,
name
=
'input'
)
tf
.
size
(
input
,
name
=
'size'
)
compare_tf_with_tvm
([
np_input
],
[
'input:0'
],
'size:0'
)
if
tf
.
__version__
<
LooseVersion
(
'1.1'
):
check_size
((
10
,
8
,
16
,
32
))
check_size
((
10
,))
check_size
(())
#######################################################################
# All, Max, Min
# -------------
def
test_forward_reduce_all
():
...
...
@@ -2087,6 +2103,7 @@ if __name__ == '__main__':
test_forward_depthtospace
()
test_forward_squeeze
()
test_forward_pack
()
test_forward_size
()
test_forward_broadcast_to
()
test_forward_fill
()
test_forward_crop
()
...
...
tests/python/relay/test_op_level10.py
View file @
313bc9de
...
...
@@ -215,6 +215,23 @@ def test_shape_of():
tvm
.
testing
.
assert_allclose
(
op_res
.
asnumpy
(),
np
.
array
(
shape
)
.
astype
(
'int32'
))
def
test_ndarray_size
():
def
verify_ndarray_size
(
shape
):
x
=
relay
.
var
(
"x"
,
shape
=
shape
)
func
=
relay
.
Function
([
x
],
relay
.
op
.
contrib
.
ndarray_size
(
x
))
func
=
run_infer_type
(
func
)
x_data
=
np
.
random
.
uniform
(
size
=
shape
)
.
astype
(
"float32"
)
ref_res
=
np
.
size
(
x_data
)
for
target
,
ctx
in
ctx_list
():
for
kind
in
[
"graph"
,
"debug"
]:
intrp
=
relay
.
create_executor
(
kind
,
ctx
=
ctx
,
target
=
target
)
op_res
=
intrp
.
evaluate
(
func
)(
x_data
)
tvm
.
testing
.
assert_allclose
(
op_res
.
asnumpy
(),
ref_res
)
verify_ndarray_size
((
2
,
3
,
5
))
verify_ndarray_size
((
2
,
3
,
5
,
7
))
def
verify_adaptive_pool2d
(
dshape
,
out_size
,
pool_type
,
layout
=
"NCHW"
,
dtype
=
"float32"
):
def
start_index
(
index
,
odim
,
idim
):
return
int
(
np
.
floor
(
index
*
idim
/
odim
))
...
...
@@ -288,3 +305,5 @@ if __name__ == "__main__":
test_batch_matmul
()
test_shape_of
()
test_sequence_mask
()
test_ndarray_size
()
topi/include/topi/transform.h
View file @
313bc9de
...
...
@@ -1223,5 +1223,28 @@ inline Tensor shape(const Tensor& src,
},
name
,
tag
);
}
/*!
* \brief Get the size of input tensor.
* \param src the input tensor.
* \param dtype the type of the elements in the tensor.
* \param name output tensor name.
* \param tag output tensor tag.
* \return Tensor of input shape.
*/
inline
Tensor
ndarray_size
(
const
Tensor
&
src
,
const
Type
&
dtype
,
const
std
::
string
&
name
=
"ndarray_size"
,
const
std
::
string
&
tag
=
kInjective
)
{
int
ndim
=
static_cast
<
int
>
(
src
->
shape
.
size
());
Array
<
Expr
>
out_ndarray_size
=
{
1
};
return
compute
(
out_ndarray_size
,
[
&
](
const
Array
<
Var
>&
indices
)
{
Expr
ret
=
1
;
for
(
int
i
=
0
;
i
<
ndim
;
++
i
)
{
ret
*=
src
->
shape
[
i
];
}
return
tvm
::
cast
(
dtype
,
ret
);
},
name
,
tag
);
}
}
// namespace topi
#endif // TOPI_TRANSFORM_H_
topi/python/topi/transform.py
View file @
313bc9de
...
...
@@ -425,7 +425,7 @@ def shape(array, dtype="int32"):
Parameters
----------
array : tvm.Tensor
The source ten
os
r.
The source ten
so
r.
dtype : str, optional
The target data type.
...
...
@@ -477,3 +477,22 @@ def sequence_mask(data, valid_length, mask_value=0, axis=0):
"only support data.ndim >= 2, received data.shape = {}"
.
format
(
data
.
shape
)
assert
axis
==
0
or
axis
==
1
,
"only support axis = 0, 1, received axis = {}"
.
format
(
axis
)
return
cpp
.
sequence_mask
(
data
,
valid_length
,
mask_value
,
axis
)
def
ndarray_size
(
array
,
dtype
=
"int32"
):
"""Get the number of elements of input array
Parameters
----------
array : tvm.Tensor
The source tensor.
dtype : str, optional
The target data type.
Returns
-------
result : tvm.Tensor
The resulting tensor.
"""
return
cpp
.
ndarray_size
(
array
,
dtype
)
topi/src/topi.cc
View file @
313bc9de
...
...
@@ -311,6 +311,11 @@ TVM_REGISTER_GLOBAL("topi.shape")
*
rv
=
shape
(
args
[
0
],
args
[
1
]);
});
TVM_REGISTER_GLOBAL
(
"topi.ndarray_size"
)
.
set_body
([](
TVMArgs
args
,
TVMRetValue
*
rv
)
{
*
rv
=
ndarray_size
(
args
[
0
],
args
[
1
]);
});
TVM_REGISTER_GLOBAL
(
"topi.split"
)
.
set_body
([](
TVMArgs
args
,
TVMRetValue
*
rv
)
{
if
(
args
[
1
].
type_code
()
==
kDLInt
||
args
[
1
].
type_code
()
==
kDLUInt
)
{
...
...
topi/tests/python/test_topi_transform.py
View file @
313bc9de
...
...
@@ -649,6 +649,33 @@ def test_sequence_mask():
for
backend
in
get_all_backend
():
check_device
(
backend
)
def
test_ndarray_size
():
in_shape
=
(
5
,
11
,
7
)
dtype
=
"int32"
A
=
tvm
.
placeholder
(
shape
=
in_shape
,
dtype
=
"float32"
,
name
=
"A"
)
B
=
topi
.
ndarray_size
(
A
,
dtype
)
input
=
np
.
random
.
uniform
(
size
=
in_shape
)
.
astype
(
A
.
dtype
)
output
=
np
.
asarray
(
np
.
size
(
input
))
.
astype
(
dtype
)
def
check_device
(
device
):
ctx
=
tvm
.
context
(
device
,
0
)
if
not
ctx
.
exist
:
print
(
"Skip because
%
s is not enabled"
%
device
)
return
tvm_input
=
tvm
.
nd
.
array
(
input
,
ctx
=
ctx
)
tvm_output
=
tvm
.
nd
.
empty
((
1
,),
ctx
=
ctx
,
dtype
=
B
.
dtype
)
print
(
"Running on target:
%
s"
%
device
)
with
tvm
.
target
.
create
(
device
):
s
=
topi
.
generic
.
schedule_injective
(
B
)
f
=
tvm
.
build
(
s
,
[
A
,
B
],
device
,
name
=
"ndarray_size"
)
f
(
tvm_input
,
tvm_output
)
tvm
.
testing
.
assert_allclose
(
tvm_output
.
asnumpy
(),
output
)
for
backend
in
get_all_backend
():
check_device
(
backend
)
if
__name__
==
"__main__"
:
test_strided_slice
()
test_concatenate
()
...
...
@@ -668,3 +695,4 @@ if __name__ == "__main__":
test_tile
()
test_shape
()
test_sequence_mask
()
test_ndarray_size
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment