Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
2fafa935
Commit
2fafa935
authored
Nov 25, 2016
by
tqchen
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add Operation class
parent
adf4bfef
Show whitespace changes
Inline
Side-by-side
Showing
12 changed files
with
252 additions
and
92 deletions
+252
-92
include/tvm/ir_pass.h
+1
-0
include/tvm/operation.h
+77
-0
include/tvm/tensor.h
+61
-42
python/tvm/function.py
+34
-12
src/c_api/c_api_ir.cc
+0
-1
src/c_api/c_api_lang.cc
+8
-0
src/lang/operation.cc
+55
-0
src/lang/tensor.cc
+5
-25
src/pass/ssa.cc
+0
-1
tests/cpp/tensor_test.cc
+1
-1
tests/python/test_schedule.py
+3
-3
tests/python/test_tensor.py
+7
-7
No files found.
include/tvm/ir_pass.h
View file @
2fafa935
...
...
@@ -8,6 +8,7 @@
#include <tvm/ir_node.h>
#include <unordered_map>
#include <vector>
#include "./expr.h"
namespace
tvm
{
...
...
include/tvm/operation.h
0 → 100644
View file @
2fafa935
/*!
* Copyright (c) 2016 by Contributors
* \file operation.h
* \brief Operation node can generate one or multiple Tensors
*/
#ifndef TVM_OPERATION_H_
#define TVM_OPERATION_H_
#include <string>
#include "./expr.h"
#include "./domain.h"
namespace
tvm
{
// internal node container for Operation
class
OperationNode
;
/*! \brief Split over input domain */
class
Operation
:
public
NodeRef
{
public
:
/*! \brief default constructor */
Operation
()
{}
explicit
Operation
(
std
::
shared_ptr
<
Node
>
n
)
:
NodeRef
(
n
)
{}
/*!
* \brief access the internal node container
* \return the pointer to the internal node container
*/
inline
const
OperationNode
*
operator
->
()
const
;
};
/*!
* \brief base class of operation node.
*/
class
OperationNode
:
public
Node
{
public
:
/*! \brief The domain of iteration of this op. */
Domain
domain
;
/*! \brief optional name of the operation */
std
::
string
name
;
/*! \brief index iteration variables on the domain of operation. */
Array
<
Var
>
iter_var
;
};
/*!
* \brief A Compute op that compute a tensor over certain range.
*/
class
ComputeOpNode
:
public
OperationNode
{
public
:
/*! \brief the compute expression */
Expr
body
;
/*! \brief constructor */
ComputeOpNode
()
{}
const
char
*
type_key
()
const
final
{
return
"ComputeOp"
;
}
void
VisitAttrs
(
AttrVisitor
*
v
)
final
{
v
->
Visit
(
"domain"
,
&
domain
);
v
->
Visit
(
"name"
,
&
name
);
v
->
Visit
(
"iter_var"
,
&
iter_var
);
v
->
Visit
(
"body"
,
&
body
);
}
static
Operation
make
(
Domain
domain
,
std
::
string
name
,
Array
<
Var
>
iter_var
,
Expr
body
);
};
// Implementations of inline functions
inline
const
OperationNode
*
Operation
::
operator
->
()
const
{
return
static_cast
<
const
OperationNode
*>
(
node_
.
get
());
}
}
// namespace tvm
#endif // TVM_OPERATION_H_
include/tvm/tensor.h
View file @
2fafa935
...
...
@@ -14,29 +14,13 @@
#include "./base.h"
#include "./expr.h"
#include "./operation.h"
namespace
tvm
{
// Internal node container of Tensor
class
TensorNode
;
/*! \brief The compute function to specify the input source of a Tensor */
using
FCompute
=
std
::
function
<
Expr
(
const
Array
<
Var
>&
i
)
>
;
// converters from other functions into fcompute
inline
FCompute
GetFCompute
(
std
::
function
<
Expr
(
Var
x
)
>
f
)
{
return
[
f
]
(
const
Array
<
Var
>&
i
)
{
return
f
(
i
[
0
]);
};
}
inline
FCompute
GetFCompute
(
std
::
function
<
Expr
(
Var
,
Var
)
>
f
)
{
return
[
f
]
(
const
Array
<
Var
>&
i
)
{
return
f
(
i
[
0
],
i
[
1
]);
};
}
inline
FCompute
GetFCompute
(
std
::
function
<
Expr
(
Var
,
Var
,
Var
)
>
f
)
{
return
[
f
]
(
const
Array
<
Var
>&
i
)
{
return
f
(
i
[
0
],
i
[
1
],
i
[
2
]);
};
}
inline
FCompute
GetFCompute
(
std
::
function
<
Expr
(
Var
,
Var
,
Var
,
Var
)
>
f
)
{
return
[
f
]
(
const
Array
<
Var
>&
i
)
{
return
f
(
i
[
0
],
i
[
1
],
i
[
2
],
i
[
3
]);
};
}
using
Halide
::
IR
::
FunctionRef
;
/*!
...
...
@@ -58,22 +42,6 @@ class Tensor : public FunctionRef {
std
::
string
name
=
"tensor"
,
Type
dtype
=
Float
(
32
));
/*!
* \brief constructor of intermediate result.
* \param shape Shape of the tensor.
* \param fcompute The compute function to create the tensor.
* \param name The optional name of the tensor.
*/
Tensor
(
Array
<
Expr
>
shape
,
FCompute
fcompute
,
std
::
string
name
=
"tensor"
);
// same constructor, specialized for different fcompute function
Tensor
(
Array
<
Expr
>
shape
,
std
::
function
<
Expr
(
Var
)
>
f
,
std
::
string
name
=
"tensor"
)
:
Tensor
(
shape
,
GetFCompute
(
f
),
name
)
{}
Tensor
(
Array
<
Expr
>
shape
,
std
::
function
<
Expr
(
Var
,
Var
)
>
f
,
std
::
string
name
=
"tensor"
)
:
Tensor
(
shape
,
GetFCompute
(
f
),
name
)
{}
Tensor
(
Array
<
Expr
>
shape
,
std
::
function
<
Expr
(
Var
,
Var
,
Var
)
>
f
,
std
::
string
name
=
"tensor"
)
:
Tensor
(
shape
,
GetFCompute
(
f
),
name
)
{}
Tensor
(
Array
<
Expr
>
shape
,
std
::
function
<
Expr
(
Var
,
Var
,
Var
,
Var
)
>
f
,
std
::
string
name
=
"tensor"
)
:
Tensor
(
shape
,
GetFCompute
(
f
),
name
)
{}
/*!
* \brief access the internal node container
* \return the pointer to the internal node container
*/
...
...
@@ -100,6 +68,58 @@ class Tensor : public FunctionRef {
friend
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
Tensor
&
t
);
};
/*! \brief The compute function to specify the input source of a Tensor */
using
FCompute
=
std
::
function
<
Expr
(
const
Array
<
Var
>&
i
)
>
;
// converters from other functions into fcompute
inline
FCompute
GetFCompute
(
std
::
function
<
Expr
(
Var
x
)
>
f
)
{
return
[
f
]
(
const
Array
<
Var
>&
i
)
{
return
f
(
i
[
0
]);
};
}
inline
FCompute
GetFCompute
(
std
::
function
<
Expr
(
Var
,
Var
)
>
f
)
{
return
[
f
]
(
const
Array
<
Var
>&
i
)
{
return
f
(
i
[
0
],
i
[
1
]);
};
}
inline
FCompute
GetFCompute
(
std
::
function
<
Expr
(
Var
,
Var
,
Var
)
>
f
)
{
return
[
f
]
(
const
Array
<
Var
>&
i
)
{
return
f
(
i
[
0
],
i
[
1
],
i
[
2
]);
};
}
inline
FCompute
GetFCompute
(
std
::
function
<
Expr
(
Var
,
Var
,
Var
,
Var
)
>
f
)
{
return
[
f
]
(
const
Array
<
Var
>&
i
)
{
return
f
(
i
[
0
],
i
[
1
],
i
[
2
],
i
[
3
]);
};
}
/*!
* \brief Construct a new tensor by computing over shape,
* using the computation rule: result_tensor[axis] = fcompute(axis)
* \param shape Shape of the tensor.
* \param fcompute The compute function to create the tensor.
* \param name The optional name of the tensor.
*/
Tensor
Compute
(
Array
<
Expr
>
shape
,
FCompute
fcompute
,
std
::
string
name
=
"tensor"
);
// same as compute, specialized for different fcompute function
inline
Tensor
Compute
(
Array
<
Expr
>
shape
,
std
::
function
<
Expr
(
Var
)
>
f
,
std
::
string
name
=
"tensor"
)
{
FCompute
fc
=
[
f
]
(
const
Array
<
Var
>&
i
)
{
return
f
(
i
[
0
]);
};
return
Compute
(
shape
,
fc
,
name
);
}
inline
Tensor
Compute
(
Array
<
Expr
>
shape
,
std
::
function
<
Expr
(
Var
,
Var
)
>
f
,
std
::
string
name
=
"tensor"
)
{
FCompute
fc
=
[
f
]
(
const
Array
<
Var
>&
i
)
{
return
f
(
i
[
0
],
i
[
1
]);
};
return
Compute
(
shape
,
fc
,
name
);
}
inline
Tensor
Compute
(
Array
<
Expr
>
shape
,
std
::
function
<
Expr
(
Var
,
Var
,
Var
)
>
f
,
std
::
string
name
=
"tensor"
)
{
FCompute
fc
=
[
f
]
(
const
Array
<
Var
>&
i
)
{
return
f
(
i
[
0
],
i
[
1
],
i
[
2
]);
};
return
Compute
(
shape
,
fc
,
name
);
}
inline
Tensor
Compute
(
Array
<
Expr
>
shape
,
std
::
function
<
Expr
(
Var
,
Var
,
Var
,
Var
)
>
f
,
std
::
string
name
=
"tensor"
)
{
FCompute
fc
=
[
f
]
(
const
Array
<
Var
>&
i
)
{
return
f
(
i
[
0
],
i
[
1
],
i
[
2
],
i
[
3
]);
};
return
Compute
(
shape
,
fc
,
name
);
}
/*! \brief Node to represent a tensor */
class
TensorNode
:
public
FunctionBaseNode
{
public
:
...
...
@@ -109,10 +129,10 @@ class TensorNode : public FunctionBaseNode {
std
::
string
name
;
/*! \brief data type in the content of the tensor */
Type
dtype
;
/*! \brief
The index representing each dimension, used by source expression.
*/
Array
<
Var
>
dim_var
;
/*! \brief
source express
ion */
Expr
source
;
/*! \brief
the source operation, can be None
*/
Operation
source_op
;
/*! \brief
the output index from source operat
ion */
int
source_index
{
0
}
;
/*! \brief constructor */
TensorNode
()
{}
const
char
*
type_key
()
const
final
{
...
...
@@ -122,8 +142,8 @@ class TensorNode : public FunctionBaseNode {
v
->
Visit
(
"shape"
,
&
shape
);
v
->
Visit
(
"name"
,
&
name
);
v
->
Visit
(
"dtype"
,
&
dtype
);
v
->
Visit
(
"
dim_var"
,
&
dim_var
);
v
->
Visit
(
"source
"
,
&
source
);
v
->
Visit
(
"
source_op"
,
&
source_op
);
v
->
Visit
(
"source
_index"
,
&
source_index
);
}
const
std
::
string
&
func_name
()
const
final
{
return
name
;
...
...
@@ -134,8 +154,8 @@ class TensorNode : public FunctionBaseNode {
static
Tensor
make
(
Array
<
Expr
>
shape
,
std
::
string
name
,
Type
dtype
,
Array
<
Var
>
dim_var
,
Expr
source
);
Operation
source_op
,
int
source_index
);
};
// implementations
...
...
@@ -150,7 +170,6 @@ inline size_t Tensor::ndim() const {
inline
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
Tensor
&
t
)
{
// NOLINT(*)
os
<<
"Tensor(shape="
<<
t
->
shape
<<
", source="
<<
t
->
source
<<
", name="
<<
t
->
name
<<
')'
;
return
os
;
}
...
...
python/tvm/function.py
View file @
2fafa935
...
...
@@ -44,20 +44,44 @@ def convert(value):
return
value
def
Tensor
(
shape
,
fcompute
=
None
,
dtype
=
None
,
name
=
"TensorObj"
):
"""Construct a
tensor object in dataflow
.
def
placeholder
(
shape
,
dtype
=
None
,
name
=
"TensorObj"
):
"""Construct a
n empty tensor object
.
Parameters
----------
shape: Tuple of Expr
The shape of the tensor
dtype: str, optional
The data type of the tensor
name: str, optional
The name hint of the tensor
Returns
-------
tensor: tensor.Tensor
The created tensor
"""
dtype
=
float32
if
dtype
is
None
else
dtype
return
_function_internal
.
_Tensor
(
shape
,
name
,
dtype
,
None
,
0
)
def
compute
(
shape
,
fcompute
,
name
=
"TensorCompute"
):
"""Construct a new tensor by computing over the shape domain.
The compute rule is result[axis] = fcompute(axis)
Parameters
----------
shape: Tuple of Expr
The shape of the tensor
fcompute: lambda function of *indices-> value
Specifies the input source expression
dtype: str, optional
The data type of the tensor, must specify when fcompute is not specified.
name: str, optional
The name hint of the tensor
...
...
@@ -68,14 +92,12 @@ def Tensor(shape, fcompute=None, dtype=None, name="TensorObj"):
"""
ndim
=
len
(
shape
)
dim_var
=
[
Var
(
"dim_var
%
d"
%
i
)
for
i
in
range
(
ndim
)]
if
fcompute
:
source
=
fcompute
(
*
dim_var
)
return
_function_internal
.
_Tensor
(
shape
,
name
,
source
.
dtype
,
dim_var
,
source
)
else
:
dtype
=
float32
if
dtype
is
None
else
dtype
body
=
fcompute
(
*
dim_var
)
dom
=
[
Range
(
0
,
x
)
for
x
in
shape
]
op_node
=
_function_internal
.
_ComputeOp
(
dom
,
name
,
dim_var
,
body
)
return
_function_internal
.
_Tensor
(
shape
,
name
,
dtype
,
None
,
None
)
shape
,
name
,
body
.
dtype
,
op_node
,
0
)
def
RDomain
(
dom
):
...
...
src/c_api/c_api_ir.cc
View file @
2fafa935
...
...
@@ -58,7 +58,6 @@ TVM_REGISTER_API(_make_Allocate)
TVM_REGISTER_API
(
_make_LetStmt
)
.
set_body
([](
const
ArgStack
&
args
,
RetValue
*
ret
)
{
if
(
args
.
size
()
==
3
)
{
*
ret
=
LetStmt
::
make
(
args
.
at
(
0
),
args
.
at
(
1
),
...
...
src/c_api/c_api_lang.cc
View file @
2fafa935
...
...
@@ -88,6 +88,14 @@ TVM_REGISTER_API(_Tensor)
args
.
at
(
4
));
});
TVM_REGISTER_API
(
_ComputeOp
)
.
set_body
([](
const
ArgStack
&
args
,
RetValue
*
ret
)
{
*
ret
=
ComputeOpNode
::
make
(
args
.
at
(
0
),
args
.
at
(
1
),
args
.
at
(
2
),
args
.
at
(
3
));
});
TVM_REGISTER_API
(
_RDomain
)
.
set_body
([](
const
ArgStack
&
args
,
RetValue
*
ret
)
{
*
ret
=
RDomain
(
args
.
at
(
0
).
operator
Domain
());
...
...
src/lang/operation.cc
0 → 100644
View file @
2fafa935
/*!
* Copyright (c) 2016 by Contributors
* \file operation.cc
*/
#include <tvm/operation.h>
#include <tvm/tensor.h>
#include <memory>
namespace
tvm
{
Tensor
Compute
(
Array
<
Expr
>
shape
,
FCompute
fcompute
,
std
::
string
name
)
{
auto
node
=
std
::
make_shared
<
TensorNode
>
();
auto
op_node
=
std
::
make_shared
<
ComputeOpNode
>
();
node
->
name
=
name
;
node
->
shape
=
shape
;
// compute dimension.
size_t
ndim
=
node
->
shape
.
size
();
std
::
vector
<
Var
>
dim_index
;
for
(
size_t
i
=
0
;
i
<
ndim
;
++
i
)
{
std
::
ostringstream
os
;
os
<<
"dim_var"
<<
i
;
dim_index
.
push_back
(
Var
(
os
.
str
()));
}
std
::
vector
<
Range
>
dom
;
for
(
size_t
i
=
0
;
i
<
ndim
;
++
i
)
{
dom
.
push_back
(
Range
(
0
,
shape
[
i
]));
}
op_node
->
iter_var
=
Array
<
Var
>
(
dim_index
);
op_node
->
domain
=
Domain
(
dom
);
op_node
->
body
=
fcompute
(
op_node
->
iter_var
);
op_node
->
name
=
name
;
node
->
dtype
=
op_node
->
body
.
type
();
node
->
source_op
=
Operation
(
op_node
);
node
->
source_index
=
0
;
return
Tensor
(
node
);
}
Operation
ComputeOpNode
::
make
(
Domain
domain
,
std
::
string
name
,
Array
<
Var
>
iter_var
,
Expr
body
)
{
auto
n
=
std
::
make_shared
<
ComputeOpNode
>
();
n
->
domain
=
domain
;
n
->
name
=
name
;
n
->
iter_var
=
iter_var
;
n
->
body
=
body
;
return
Operation
(
n
);
}
TVM_REGISTER_NODE_TYPE
(
ComputeOpNode
);
}
// namespace tvm
src/lang/tensor.cc
View file @
2fafa935
...
...
@@ -16,23 +16,6 @@ Tensor::Tensor(Array<Expr> shape, std::string name, Type dtype) {
node_
=
std
::
move
(
node
);
}
Tensor
::
Tensor
(
Array
<
Expr
>
shape
,
FCompute
fcompute
,
std
::
string
name
)
{
auto
node
=
std
::
make_shared
<
TensorNode
>
();
node
->
name
=
std
::
move
(
name
);
node
->
shape
=
std
::
move
(
shape
);
size_t
ndim
=
node
->
shape
.
size
();
std
::
vector
<
Var
>
dim_index
;
for
(
size_t
i
=
0
;
i
<
ndim
;
++
i
)
{
std
::
ostringstream
os
;
os
<<
"dim_index"
<<
i
;
dim_index
.
push_back
(
Var
(
os
.
str
()));
}
node
->
dim_var
=
Array
<
Var
>
(
dim_index
);
node
->
source
=
fcompute
(
node
->
dim_var
);
node
->
dtype
=
node
->
source
.
type
();
node_
=
std
::
move
(
node
);
}
Expr
Tensor
::
operator
()(
Array
<
Expr
>
indices
)
const
{
using
Halide
::
Internal
::
Call
;
CHECK_EQ
(
ndim
(),
indices
.
size
())
...
...
@@ -42,21 +25,18 @@ Expr Tensor::operator()(Array<Expr> indices) const {
(
*
this
)
->
dtype
,
(
*
this
)
->
name
,
indices
,
Call
::
Halide
,
*
this
);
}
Tensor
TensorNode
::
make
(
Array
<
Expr
>
shape
,
std
::
string
name
,
Type
dtype
,
Array
<
Var
>
dim_var
,
Expr
source
)
{
Operation
source_op
,
int
source_index
)
{
auto
n
=
std
::
make_shared
<
TensorNode
>
();
if
(
source
.
defined
())
{
CHECK_EQ
(
source
.
type
(),
dtype
);
CHECK_EQ
(
dim_var
.
size
(),
shape
.
size
());
}
n
->
shape
=
shape
;
n
->
name
=
name
;
n
->
dtype
=
dtype
;
n
->
dim_var
=
dim_var
;
n
->
source
=
source
;
n
->
source_op
=
source_op
;
n
->
source
_index
=
source_index
;
return
Tensor
(
n
);
}
...
...
src/pass/ssa.cc
View file @
2fafa935
...
...
@@ -121,7 +121,6 @@ class IRConvertSSA : public IRMutator {
}
else
{
Expr
e
=
IRMutator
::
Mutate
(
expr
);
return
e
;
}
}
...
...
tests/cpp/tensor_test.cc
View file @
2fafa935
...
...
@@ -9,7 +9,7 @@ TEST(Tensor, Basic) {
Tensor
A
({
m
,
l
},
"A"
);
Tensor
B
({
n
,
l
},
"B"
);
auto
C
=
Tensor
({
m
,
n
},
[
&
](
Var
i
,
Var
j
)
{
auto
C
=
Compute
({
m
,
n
},
[
&
](
Var
i
,
Var
j
)
{
return
A
(
i
,
j
)
*
B
(
j
,
i
);
},
"C"
);
}
...
...
tests/python/test_schedule.py
View file @
2fafa935
...
...
@@ -4,9 +4,9 @@ def test_schedule_create():
m
=
tvm
.
Var
(
'm'
)
n
=
tvm
.
Var
(
'n'
)
l
=
tvm
.
Var
(
'l'
)
A
=
tvm
.
Tenso
r
((
m
,
l
),
name
=
'A'
)
B
=
tvm
.
Tenso
r
((
n
,
l
),
name
=
'B'
)
T
=
tvm
.
Tensor
((
m
,
n
,
l
),
lambda
i
,
j
,
k
:
A
(
i
,
k
)
*
B
(
j
,
k
))
A
=
tvm
.
placeholde
r
((
m
,
l
),
name
=
'A'
)
B
=
tvm
.
placeholde
r
((
n
,
l
),
name
=
'B'
)
T
=
tvm
.
compute
((
m
,
n
,
l
),
lambda
i
,
j
,
k
:
A
(
i
,
k
)
*
B
(
j
,
k
))
sch
=
tvm
.
Schedule
(
T
,
scope
=
"shared"
)
tk1
=
tvm
.
Split
(
0
,
10
)
...
...
tests/python/test_tensor.py
View file @
2fafa935
...
...
@@ -4,9 +4,9 @@ def test_tensor():
m
=
tvm
.
Var
(
'm'
)
n
=
tvm
.
Var
(
'n'
)
l
=
tvm
.
Var
(
'l'
)
A
=
tvm
.
Tenso
r
((
m
,
l
),
name
=
'A'
)
B
=
tvm
.
Tenso
r
((
n
,
l
),
name
=
'B'
)
T
=
tvm
.
Tensor
((
m
,
n
,
l
),
lambda
i
,
j
,
k
:
A
(
i
,
k
)
*
B
(
j
,
k
))
A
=
tvm
.
placeholde
r
((
m
,
l
),
name
=
'A'
)
B
=
tvm
.
placeholde
r
((
n
,
l
),
name
=
'B'
)
T
=
tvm
.
compute
((
m
,
n
,
l
),
lambda
i
,
j
,
k
:
A
(
i
,
k
)
*
B
(
j
,
k
))
print
(
T
.
source
)
assert
(
tuple
(
T
.
shape
)
==
(
m
,
n
,
l
))
...
...
@@ -16,11 +16,11 @@ def test_tensor_reduce():
m
=
tvm
.
Var
(
'm'
)
n
=
tvm
.
Var
(
'n'
)
l
=
tvm
.
Var
(
'l'
)
A
=
tvm
.
Tenso
r
((
m
,
l
),
name
=
'A'
)
B
=
tvm
.
Tenso
r
((
n
,
l
),
name
=
'B'
)
T
=
tvm
.
Tensor
((
m
,
n
,
l
),
lambda
i
,
j
,
k
:
A
(
i
,
k
)
*
B
(
j
,
k
))
A
=
tvm
.
placeholde
r
((
m
,
l
),
name
=
'A'
)
B
=
tvm
.
placeholde
r
((
n
,
l
),
name
=
'B'
)
T
=
tvm
.
compute
((
m
,
n
,
l
),
lambda
i
,
j
,
k
:
A
(
i
,
k
)
*
B
(
j
,
k
))
rd
=
tvm
.
RDomain
(
tvm
.
Range
(
A
.
shape
[
1
]))
C
=
tvm
.
Tensor
((
m
,
n
),
lambda
i
,
j
:
tvm
.
sum
(
T
(
i
,
j
,
rd
.
index
[
0
]),
rdom
=
rd
))
C
=
tvm
.
compute
((
m
,
n
),
lambda
i
,
j
:
tvm
.
sum
(
T
(
i
,
j
,
rd
.
index
[
0
]),
rdom
=
rd
))
print
(
C
.
source
)
if
__name__
==
"__main__"
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment