Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
2fa0eca1
Commit
2fa0eca1
authored
Jul 05, 2018
by
Siva
Committed by
Tianqi Chen
Jul 04, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[NNVM][ONNX] Slice, Floor, Ceil, Clip and MatMul support for frontend #1297 (#1371)
parent
3d010ed5
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
150 additions
and
8 deletions
+150
-8
nnvm/python/nnvm/frontend/onnx.py
+47
-6
nnvm/tests/python/frontend/onnx/test_forward.py
+103
-2
No files found.
nnvm/python/nnvm/frontend/onnx.py
View file @
2fa0eca1
...
...
@@ -446,6 +446,47 @@ class Unsqueeze(OnnxOpConverter):
inputs
[
0
]
=
_sym
.
expand_dims
(
inputs
[
0
],
axis
=
axes
,
num_newaxis
=
1
)
return
inputs
[
0
]
class
Slice
(
OnnxOpConverter
):
""" Operator converter for Slice.
"""
@classmethod
def
_impl_v1
(
cls
,
inputs
,
attr
,
params
):
if
isinstance
(
attr
[
'starts'
],
int
):
attr
[
'starts'
]
=
(
attr
[
'starts'
],)
attr
[
'ends'
]
=
(
attr
[
'ends'
],)
try
:
# Update the starts and ends according to axes if required.
if
isinstance
(
attr
[
'axes'
],
int
):
attr
[
'axes'
]
=
(
attr
[
'axes'
],)
if
(
max
(
attr
[
'axes'
])
+
1
)
!=
len
(
attr
[
'axes'
]):
new_axes
=
[]
new_starts
=
[]
new_ends
=
[]
pop_index
=
0
for
i
in
range
(
max
(
attr
[
'axes'
])
+
1
):
if
i
in
attr
[
'axes'
]:
new_axes
.
append
(
i
)
new_starts
.
append
(
attr
[
'starts'
][
pop_index
])
new_ends
.
append
(
attr
[
'ends'
][
pop_index
])
pop_index
+=
1
else
:
new_axes
.
append
(
i
)
new_starts
.
append
(
0
)
new_ends
.
append
(
np
.
iinfo
(
np
.
int32
)
.
max
)
attr
[
'axes'
]
=
new_axes
attr
[
'starts'
]
=
new_starts
attr
[
'ends'
]
=
new_ends
except
KeyError
:
pass
return
AttrCvt
(
op_name
=
'strided_slice'
,
transforms
=
{
'starts'
:
'begin'
,
'ends'
:
'end'
},
ignores
=
[
'axes'
])(
inputs
,
attr
)
# compatible operators that do NOT require any conversion.
_identity_list
=
[]
...
...
@@ -477,7 +518,7 @@ def _get_convert_map(opset):
'SpatialBN'
:
BatchNorm
.
get_converter
(
opset
),
# defs/generator
# 'Constant'
# 'Constant'
# Implemented
# 'RandomUniform'
# 'RandomNormal'
# 'RandomUniformLike'
...
...
@@ -493,8 +534,8 @@ def _get_convert_map(opset):
'Neg'
:
Renamer
(
'negative'
),
'Abs'
:
Absolute
.
get_converter
(
opset
),
'Reciprocal'
:
Reciprocal
.
get_converter
(
opset
),
# 'Floor'
# 'Ceil'
'Floor'
:
Renamer
(
'floor'
),
'Ceil'
:
Renamer
(
'ceil'
),
'Sqrt'
:
Renamer
(
'sqrt'
),
'Relu'
:
Renamer
(
'relu'
),
'LeakyRelu'
:
Renamer
(
'leaky_relu'
),
...
...
@@ -511,7 +552,7 @@ def _get_convert_map(opset):
# 'Min' : this is the elemwise minimum
'Sum'
:
Sum
.
get_converter
(
opset
),
# 'Mean'
# 'Clip'
'Clip'
:
AttrCvt
(
'clip'
,
transforms
=
{
'min'
:
'a_min'
,
'max'
:
'a_max'
}),
# softmax default axis is different in onnx
'Softmax'
:
AttrCvt
(
'softmax'
,
{
'axis'
:
(
'axis'
,
1
)}),
'LogSoftmax'
:
AttrCvt
(
'log_softmax'
,
{
'axis'
:
(
'axis'
,
1
)}),
...
...
@@ -519,7 +560,7 @@ def _get_convert_map(opset):
'Softsign'
:
Softsign
.
get_converter
(
opset
),
'SoftPlus'
:
SoftPlus
.
get_converter
(
opset
),
'Gemm'
:
Gemm
.
get_converter
(
opset
),
# 'MatMul' batch stacked dot operation
'MatMul'
:
Renamer
(
'matmul'
),
# defs/nn
'AveragePool'
:
AveragePool
.
get_converter
(
opset
),
...
...
@@ -550,7 +591,7 @@ def _get_convert_map(opset):
'Reshape'
:
Reshape
.
get_converter
(
opset
),
'Concat'
:
Renamer
(
'concatenate'
),
'Split'
:
AttrCvt
(
'split'
,
{
'split'
:
'indices_or_sections'
}),
# 'Slice'
'Slice'
:
Slice
.
get_converter
(
opset
),
'Transpose'
:
AttrCvt
(
'transpose'
,
{
'perm'
:
'axes'
}),
# 'Gather'
'Squeeze'
:
Renamer
(
'squeeze'
),
...
...
nnvm/tests/python/frontend/onnx/test_forward.py
View file @
2fa0eca1
...
...
@@ -23,14 +23,15 @@ def get_tvm_output(model, x, target, ctx, out_shape, dtype='float32'):
return
out
.
asnumpy
()
def
verify_onnx_forward_impl
(
graph_file
,
data_shape
,
out_shape
):
def
get_caffe2_output
(
model
,
x
,
dtype
=
'float32'
):
import
caffe2.python.onnx.backend
def
get_caffe2_output
(
model
,
x
,
dtype
=
'float32'
):
prepared_backend
=
caffe2
.
python
.
onnx
.
backend
.
prepare
(
model
)
W
=
{
model
.
graph
.
input
[
0
]
.
name
:
x
.
astype
(
dtype
)}
c2_out
=
prepared_backend
.
run
(
W
)[
0
]
return
c2_out
def
verify_onnx_forward_impl
(
graph_file
,
data_shape
,
out_shape
):
dtype
=
'float32'
x
=
np
.
random
.
uniform
(
size
=
data_shape
)
model
=
onnx
.
load
(
graph_file
)
...
...
@@ -144,6 +145,101 @@ def test_unsqueeze():
np
.
testing
.
assert_allclose
(
out_shape
,
tvm_out
.
shape
)
def
_test_slice_iteration
(
indata
,
outdata
,
starts
,
ends
,
axes
=
None
):
if
axes
:
y
=
helper
.
make_node
(
"Slice"
,
[
'in'
],
[
'out'
],
axes
=
axes
,
starts
=
starts
,
ends
=
ends
)
else
:
y
=
helper
.
make_node
(
"Slice"
,
[
'in'
],
[
'out'
],
starts
=
starts
,
ends
=
ends
)
graph
=
helper
.
make_graph
([
y
],
'slice_test'
,
inputs
=
[
helper
.
make_tensor_value_info
(
"in"
,
TensorProto
.
FLOAT
,
list
(
indata
.
shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"out"
,
TensorProto
.
FLOAT
,
list
(
outdata
.
shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'slice_test'
)
for
target
,
ctx
in
ctx_list
():
tvm_out
=
get_tvm_output
(
model
,
indata
,
target
,
ctx
,
outdata
.
shape
,
'float32'
)
np
.
testing
.
assert_allclose
(
outdata
,
tvm_out
)
def
test_slice
():
x
=
np
.
random
.
randn
(
20
,
10
,
5
)
.
astype
(
np
.
float32
)
_test_slice_iteration
(
x
,
x
[
0
:
3
,
0
:
10
],
(
0
,
0
),
(
3
,
10
),
(
0
,
1
))
_test_slice_iteration
(
x
,
x
[:,
:,
3
:
4
],
(
0
,
0
,
3
),
(
20
,
10
,
4
))
_test_slice_iteration
(
x
,
x
[:,
1
:
1000
],
(
1
),
(
1000
),
(
1
))
_test_slice_iteration
(
x
,
x
[:,
0
:
-
1
],
(
0
),
(
-
1
),
(
1
))
def
_test_onnx_op_elementwise
(
inshape
,
outfunc
,
npargs
,
dtype
,
opname
,
kwargs
):
indata
=
np
.
random
.
uniform
(
size
=
(
2
,
4
,
5
,
6
))
.
astype
(
dtype
)
outdata
=
outfunc
(
indata
,
**
npargs
)
y
=
helper
.
make_node
(
opname
,
[
'in'
],
[
'out'
],
**
kwargs
)
graph
=
helper
.
make_graph
([
y
],
opname
+
'_test'
,
inputs
=
[
helper
.
make_tensor_value_info
(
"in"
,
TensorProto
.
FLOAT
,
list
(
indata
.
shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"out"
,
TensorProto
.
FLOAT
,
list
(
outdata
.
shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
opname
+
'_test'
)
for
target
,
ctx
in
ctx_list
():
tvm_out
=
get_tvm_output
(
model
,
indata
,
target
,
ctx
,
outdata
.
shape
,
dtype
)
np
.
testing
.
assert_allclose
(
outdata
,
tvm_out
)
def
test_floor
():
_test_onnx_op_elementwise
((
2
,
4
,
5
,
6
),
np
.
floor
,
{},
'float32'
,
'Floor'
,
{})
def
test_ceil
():
_test_onnx_op_elementwise
((
2
,
4
,
5
,
6
),
np
.
ceil
,
{},
'float32'
,
'Ceil'
,
{})
def
test_clip
():
_test_onnx_op_elementwise
((
2
,
4
,
5
,
6
),
np
.
clip
,
{
'a_min'
:
-
1.0
,
'a_max'
:
1.0
},
'float32'
,
'Clip'
,
{
'min'
:
-
1.0
,
'max'
:
1.0
})
def
test_matmul
():
a_shape
=
(
4
,
3
)
b_shape
=
(
3
,
4
)
out_shape
=
(
4
,
4
)
a_array
=
np
.
random
.
uniform
(
size
=
a_shape
)
.
astype
(
'float32'
)
b_array
=
np
.
random
.
uniform
(
size
=
b_shape
)
.
astype
(
'float32'
)
mul_node
=
helper
.
make_node
(
"MatMul"
,
[
"a"
,
"b"
],
[
"out"
])
graph
=
helper
.
make_graph
([
mul_node
],
"matmul_test"
,
inputs
=
[
helper
.
make_tensor_value_info
(
"a"
,
TensorProto
.
FLOAT
,
list
(
a_shape
)),
helper
.
make_tensor_value_info
(
"b"
,
TensorProto
.
FLOAT
,
list
(
b_shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"out"
,
TensorProto
.
FLOAT
,
list
(
out_shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'matmul_test'
)
for
target
,
ctx
in
ctx_list
():
new_sym
,
params
=
nnvm
.
frontend
.
from_onnx
(
model
)
input_name
=
model
.
graph
.
input
[
0
]
.
name
input_name1
=
model
.
graph
.
input
[
1
]
.
name
shape_dict
=
{
input_name
:
a_array
.
shape
,
input_name1
:
b_array
.
shape
}
dtype_dict
=
{
input_name
:
'float32'
,
input_name1
:
'float32'
}
graph
,
lib
,
params
=
nnvm
.
compiler
.
build
(
new_sym
,
target
,
shape_dict
,
dtype_dict
,
params
=
params
)
m
=
graph_runtime
.
create
(
graph
,
lib
,
ctx
)
# set inputs
m
.
set_input
(
input_name
,
tvm
.
nd
.
array
(
a_array
.
astype
(
'float32'
)))
m
.
set_input
(
input_name1
,
tvm
.
nd
.
array
(
b_array
.
astype
(
'float32'
)))
m
.
set_input
(
**
params
)
m
.
run
()
# get outputs
tvm_out
=
m
.
get_output
(
0
,
tvm
.
nd
.
empty
(
out_shape
,
'float32'
))
np
.
testing
.
assert_allclose
(
np
.
matmul
(
a_array
,
b_array
),
tvm_out
.
asnumpy
(),
rtol
=
1e-5
,
atol
=
1e-5
)
if
__name__
==
'__main__'
:
# verify_super_resolution_example()
# verify_squeezenet1_1()
...
...
@@ -153,3 +249,8 @@ if __name__ == '__main__':
test_reshape_like
()
test_squeeze
()
test_unsqueeze
()
test_slice
()
test_floor
()
test_ceil
()
test_clip
()
test_matmul
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment