Commit 2df3364b by Zhi Committed by Yizhi Liu

[RELAY][Frontend][TF] decompile tf control flow (#2830)

* decompile tf control flow

* Add docs

* remove import relay

* move tests under tensorflow frontend

* minor fix
parent 8ef35dc2
......@@ -270,16 +270,30 @@ class Interpreter :
return TupleValueNode::make(values);
}
Value VisitExpr_(const FunctionNode* func_node) final {
auto func = GetRef<Function>(func_node);
// TODO(@jroesch): this doesn't support mutual letrec.
Value MakeClosure(const Function& func, const Var& letrec_name = Var()) {
tvm::Map<Var, Value> captured_mod;
Array<Var> free_vars = FreeVars(func);
for (const auto& var : free_vars) {
// Evaluate the free var (which could be a function call) if it hasn't
// shown up in a letting binding that has invoked the function.
if (!letrec_name.defined() || letrec_name != var) {
captured_mod.Set(var, Eval(var));
}
}
// We must use mutation here to build a self referential closure.
auto closure = ClosureNode::make(captured_mod, func);
auto mut_closure =
static_cast<ClosureNode*>(const_cast<Node*>(closure.get()));
mut_closure->env.Set(letrec_name, closure);
return closure;
}
return ClosureNode::make(captured_mod, func);
Value VisitExpr_(const FunctionNode* func_node) final {
auto func = GetRef<Function>(func_node);
return MakeClosure(func);
}
Value InvokePrimitiveOp(Function func,
......@@ -438,10 +452,16 @@ class Interpreter :
}
}
Value VisitExpr_(const LetNode* op) final {
auto value = Eval(op->value);
this->extend(op->var, value);
return Eval(op->body);
Value VisitExpr_(const LetNode* let) final {
if (auto func = let->value.as<FunctionNode>()) {
auto clo = MakeClosure(GetRef<Function>(func), let->var);
this->extend(let->var, clo);
} else {
auto value = Eval(let->value);
this->extend(let->var, value);
}
return Eval(let->body);
}
Value VisitExpr_(const TupleGetItemNode* op) final {
......
"""Unit tests for converting TensorFlow control flow op to Relay."""
import tensorflow as tf
import numpy as np
from tvm import relay
from tvm.relay.frontend.tensorflow import from_tensorflow
def check_equal(graph, tf_out):
expr, params = from_tensorflow(graph.as_graph_def(add_shapes=True))
ex = relay.create_executor('debug')
relay_out = ex.evaluate(expr)(**params)
if isinstance(relay_out, relay.backend.interpreter.TensorValue):
np.testing.assert_allclose(tf_out, relay_out.asnumpy())
else:
if not isinstance(tf_out, list):
tf_out = [tf_out]
for x, y in zip(tf_out, [r.asnumpy() for r in relay_out]):
np.testing.assert_allclose(x, y)
def test_vanilla_loop():
graph = tf.Graph()
with graph.as_default():
i = tf.constant(0)
def c(i): return tf.less(i, 10)
def b(i): return tf.add(i, 1)
r = tf.while_loop(c, b, [i])
with tf.Session() as sess:
tf_out = sess.run(r)
check_equal(graph, tf_out)
def test_loop_2_vars():
graph = tf.Graph()
with graph.as_default():
i0 = tf.constant(0)
j0 = tf.ones([2, 2])
def c(i, j): return i < 10
def b(i, j): return [tf.add(i, 1), j]
i1, i2 = tf.while_loop(c, b, loop_vars=[i0, j0])
i1 += tf.constant(1337)
with tf.Session() as sess:
tf_out = sess.run(i1)
check_equal(graph, tf_out)
def test_loop_3_vars():
graph = tf.Graph()
with graph.as_default():
i0 = tf.constant(1)
j0 = tf.constant(2)
k0 = tf.constant(4)
def c(i, j, k): return i < 10
def b(i, j, k): return [i+1, j * k, k + i]
r = tf.while_loop(c, b, loop_vars=[i0, j0, k0])
with tf.Session() as sess:
tf_out = sess.run(r)
check_equal(graph, tf_out)
def test_loop_conditions():
graph = tf.Graph()
with graph.as_default():
i = tf.constant(1)
j = tf.constant(1)
k = tf.constant(5)
def c(i, j, k): return \
tf.equal(tf.not_equal(tf.less(i + j, 10),
tf.less(j * k, 100)),
tf.greater_equal(k, i + j))
def b(i, j, k): return [i+j, j+k, k+1]
r = tf.while_loop(c, b, loop_vars=[i, j, k])
with tf.Session() as sess:
tf_out = sess.run(r)
check_equal(graph, tf_out)
def test_loop_bodies():
graph = tf.Graph()
with graph.as_default():
def body(x):
a = tf.constant(np.array([[5, 6], [7, 8]]), dtype=tf.int32)
b = tf.constant(np.array([[1, 2], [3, 4]]), dtype=tf.int32)
c = a + b
return tf.nn.relu(x + c)
def condition(x):
return tf.reduce_sum(x) < 100
x = tf.constant(0, shape=[2, 2])
r = tf.while_loop(condition, body, [x])
with tf.Session() as sess:
tf_out = sess.run(r)
check_equal(graph, tf_out)
def test_nested_loop():
graph = tf.Graph()
with graph.as_default():
def body(x):
def nest_body(c):
return tf.multiply(c, 2)
def cd(c): return tf.less(c, 10)
c = tf.constant(2)
res = tf.while_loop(cd, nest_body, loop_vars=[c])
return tf.nn.relu(x + res)
def condition(x):
return tf.greater(x, 100)
x = tf.constant(3)
r = tf.while_loop(condition, body, loop_vars=[x])
with tf.Session() as sess:
tf_out = sess.run(r)
check_equal(graph, tf_out)
def test_vanilla_cond():
graph = tf.Graph()
with graph.as_default():
i = tf.constant(1)
j = tf.constant(4)
def f1():
return tf.multiply(1, 17)
def f2():
return tf.add(4, 23)
r = tf.cond(tf.less(i, j), f1, f2)
with tf.Session(graph=graph) as sess:
tf_out = sess.run(r)
check_equal(graph, tf_out)
def test_multiple_cond_vars():
graph = tf.Graph()
with graph.as_default():
x1 = tf.constant(7)
x2 = tf.constant(12)
z = tf.constant(20)
r = tf.cond(tf.less(tf.add(x1, x2), 10),
lambda: tf.add(10, 2), lambda: tf.square(5))
with tf.Session() as sess:
tf_out = sess.run(r)
check_equal(graph, tf_out)
def test_cond_fn_parameters():
graph = tf.Graph()
with graph.as_default():
def fn1(x, y):
return tf.multiply(5, 6)
def fn2(x, y):
return tf.add(3, 4)
i = tf.constant(1)
j = tf.constant(2)
k = tf.constant(3)
r = tf.cond(tf.less(i, j), lambda: fn1(i, k), lambda: fn2(j, k))
with tf.Session() as sess:
tf_out = sess.run(r, feed_dict={i: 1, j: 2, k: 3})
check_equal(graph, tf_out)
def test_nested_cond():
graph = tf.Graph()
with graph.as_default():
def fn1(a, b):
def nest_fn1():
return tf.add(1, 2)
def nest_fn2():
return tf.subtract(10, 5)
res = tf.cond(tf.less(1, 2), nest_fn1, nest_fn2)
return tf.multiply(tf.add(87, res), 10)
def fn2(a, b):
return tf.add(10, 10)
x = tf.constant(5)
y = tf.constant(6)
z = tf.constant(7)
pred = tf.less(x, y)
r = tf.cond(pred, lambda: fn1(x, y), lambda: fn2(y, z))
with tf.Session() as sess:
tf_out = sess.run(r, feed_dict={x: 1, y: 2, z: 3, pred: True})
check_equal(graph, tf_out)
def test_loop_in_cond():
graph = tf.Graph()
with graph.as_default():
def fn1(a, b):
i = tf.constant(0)
def cd(i): return tf.less(i, 10)
def bd(i): return tf.add(i, 1)
res = tf.while_loop(cd, bd, [i])
return tf.multiply(tf.add(20, res), 10)
def fn2(a, b):
return tf.add(10, 20)
x = tf.constant(7)
y = tf.constant(20)
z = tf.constant(10)
pred = tf.less(x, y)
r = tf.cond(pred, lambda: fn1(x, y), lambda: fn2(y, z))
with tf.Session() as sess:
tf_out = sess.run(r, feed_dict={x: 1, y: 2, z: 3, pred: True})
check_equal(graph, tf_out)
def test_cond_in_loop():
graph = tf.Graph()
with graph.as_default():
def body(x):
x = tf.constant(7)
z = tf.constant(20)
res = tf.cond(tf.less(x, 10), lambda: tf.add(
10, 20), lambda: tf.square(10))
return tf.multiply(res, x)
x = tf.constant(21)
def condition(x):
return tf.less(x, 100)
r = tf.while_loop(condition, body, loop_vars=[x])
with tf.Session() as sess:
tf_out = sess.run(r)
check_equal(graph, tf_out)
if __name__ == "__main__":
# tf.while_loop
test_vanilla_loop()
test_loop_2_vars()
test_loop_3_vars()
test_loop_conditions()
test_loop_bodies()
# tf.cond
test_vanilla_cond()
test_multiple_cond_vars()
test_cond_fn_parameters()
# nested cases
test_nested_loop()
test_nested_cond()
test_loop_in_cond()
test_cond_in_loop()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment