Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
2a4b175d
Commit
2a4b175d
authored
Mar 01, 2019
by
MORITA Kazutaka
Committed by
Tianqi Chen
Feb 28, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[DOC] MXNet frontend tutorial (#2688)
parent
464d6195
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
120 additions
and
0 deletions
+120
-0
tutorials/frontend/from_mxnet.py
+120
-0
No files found.
tutorials/frontend/from_mxnet.py
0 → 100644
View file @
2a4b175d
"""
.. _tutorial-from-mxnet:
Compile MXNet Models
====================
**Author**: `Joshua Z. Zhang <https://zhreshold.github.io/>`_,
\
`Kazutaka Morita <https://github.com/kazum>`_
This article is an introductory tutorial to deploy mxnet models with Relay.
For us to begin with, mxnet module is required to be installed.
A quick solution is
.. code-block:: bash
pip install mxnet --user
or please refer to offical installation guide.
https://mxnet.incubator.apache.org/versions/master/install/index.html
"""
# some standard imports
import
mxnet
as
mx
import
tvm
import
tvm.relay
as
relay
import
numpy
as
np
######################################################################
# Download Resnet18 model from Gluon Model Zoo
# ---------------------------------------------
# In this section, we download a pretrained imagenet model and classify an image.
from
mxnet.gluon.model_zoo.vision
import
get_model
from
mxnet.gluon.utils
import
download
from
PIL
import
Image
from
matplotlib
import
pyplot
as
plt
block
=
get_model
(
'resnet18_v1'
,
pretrained
=
True
)
img_name
=
'cat.png'
synset_url
=
''
.
join
([
'https://gist.githubusercontent.com/zhreshold/'
,
'4d0b62f3d01426887599d4f7ede23ee5/raw/'
,
'596b27d23537e5a1b5751d2b0481ef172f58b539/'
,
'imagenet1000_clsid_to_human.txt'
])
synset_name
=
'synset.txt'
download
(
'https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true'
,
img_name
)
download
(
synset_url
,
synset_name
)
with
open
(
synset_name
)
as
f
:
synset
=
eval
(
f
.
read
())
image
=
Image
.
open
(
img_name
)
.
resize
((
224
,
224
))
plt
.
imshow
(
image
)
plt
.
show
()
def
transform_image
(
image
):
image
=
np
.
array
(
image
)
-
np
.
array
([
123.
,
117.
,
104.
])
image
/=
np
.
array
([
58.395
,
57.12
,
57.375
])
image
=
image
.
transpose
((
2
,
0
,
1
))
image
=
image
[
np
.
newaxis
,
:]
return
image
x
=
transform_image
(
image
)
print
(
'x'
,
x
.
shape
)
######################################################################
# Compile the Graph
# -----------------
# Now we would like to port the Gluon model to a portable computational graph.
# It's as easy as several lines.
# We support MXNet static graph(symbol) and HybridBlock in mxnet.gluon
shape_dict
=
{
'data'
:
x
.
shape
}
func
,
params
=
relay
.
frontend
.
from_mxnet
(
block
,
shape_dict
)
## we want a probability so add a softmax operator
func
=
relay
.
Function
(
func
.
params
,
relay
.
nn
.
softmax
(
func
.
body
),
None
,
func
.
type_params
,
func
.
attrs
)
######################################################################
# now compile the graph
target
=
'cuda'
with
relay
.
build_config
(
opt_level
=
3
):
graph
,
lib
,
params
=
relay
.
build
(
func
,
target
,
params
=
params
)
######################################################################
# Execute the portable graph on TVM
# ---------------------------------
# Now, we would like to reproduce the same forward computation using TVM.
from
tvm.contrib
import
graph_runtime
ctx
=
tvm
.
gpu
(
0
)
dtype
=
'float32'
m
=
graph_runtime
.
create
(
graph
,
lib
,
ctx
)
# set inputs
m
.
set_input
(
'data'
,
tvm
.
nd
.
array
(
x
.
astype
(
dtype
)))
m
.
set_input
(
**
params
)
# execute
m
.
run
()
# get outputs
tvm_output
=
m
.
get_output
(
0
)
top1
=
np
.
argmax
(
tvm_output
.
asnumpy
()[
0
])
print
(
'TVM prediction top-1:'
,
top1
,
synset
[
top1
])
######################################################################
# Use MXNet symbol with pretrained weights
# ----------------------------------------
# MXNet often use `arg_params` and `aux_params` to store network parameters
# separately, here we show how to use these weights with existing API
def
block2symbol
(
block
):
data
=
mx
.
sym
.
Variable
(
'data'
)
sym
=
block
(
data
)
args
=
{}
auxs
=
{}
for
k
,
v
in
block
.
collect_params
()
.
items
():
args
[
k
]
=
mx
.
nd
.
array
(
v
.
data
()
.
asnumpy
())
return
sym
,
args
,
auxs
mx_sym
,
args
,
auxs
=
block2symbol
(
block
)
# usually we would save/load it as checkpoint
mx
.
model
.
save_checkpoint
(
'resnet18_v1'
,
0
,
mx_sym
,
args
,
auxs
)
# there are 'resnet18_v1-0000.params' and 'resnet18_v1-symbol.json' on disk
######################################################################
# for a normal mxnet model, we start from here
mx_sym
,
args
,
auxs
=
mx
.
model
.
load_checkpoint
(
'resnet18_v1'
,
0
)
# now we use the same API to get Relay computation graph
relay_func
,
relay_params
=
relay
.
frontend
.
from_mxnet
(
mx_sym
,
shape_dict
,
arg_params
=
args
,
aux_params
=
auxs
)
# repeat the same steps to run this model using TVM
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment