Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
28499304
Commit
28499304
authored
Nov 20, 2018
by
Siju
Committed by
Tianqi Chen
Nov 20, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[RELAY]Slice_like support (#2014)
parent
401ffe13
Show whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
255 additions
and
2 deletions
+255
-2
docs/langref/relay_op.rst
+2
-1
include/tvm/relay/attrs/transform.h
+13
-0
python/tvm/relay/op/_transform.py
+5
-1
python/tvm/relay/op/transform.py
+26
-0
src/relay/op/tensor/transform.cc
+147
-0
tests/python/relay/test_op_level10.py
+62
-0
No files found.
docs/langref/relay_op.rst
View file @
28499304
...
@@ -143,6 +143,7 @@ This level support backpropagation of broadcast operators. It is temporary.
...
@@ -143,6 +143,7 @@ This level support backpropagation of broadcast operators. It is temporary.
tvm.relay.broadcast_to_like
tvm.relay.broadcast_to_like
tvm.relay.collapse_sum_like
tvm.relay.collapse_sum_like
tvm.relay.slice_like
Level 1 Definitions
Level 1 Definitions
...
@@ -231,7 +232,6 @@ Level 4 Definitions
...
@@ -231,7 +232,6 @@ Level 4 Definitions
.. autofunction:: tvm.relay.strided_slice
.. autofunction:: tvm.relay.strided_slice
Level 5 Definitions
Level 5 Definitions
-------------------
-------------------
.. autofunction:: tvm.relay.image.resize
.. autofunction:: tvm.relay.image.resize
...
@@ -241,3 +241,4 @@ Level 10 Definitions
...
@@ -241,3 +241,4 @@ Level 10 Definitions
--------------------
--------------------
.. autofunction:: tvm.relay.broadcast_to_like
.. autofunction:: tvm.relay.broadcast_to_like
.. autofunction:: tvm.relay.collapse_sum_like
.. autofunction:: tvm.relay.collapse_sum_like
.. autofunction:: tvm.relay.slice_like
include/tvm/relay/attrs/transform.h
View file @
28499304
...
@@ -138,6 +138,19 @@ struct StridedSliceAttrs : public tvm::AttrsNode<StridedSliceAttrs> {
...
@@ -138,6 +138,19 @@ struct StridedSliceAttrs : public tvm::AttrsNode<StridedSliceAttrs> {
.
describe
(
"Stride values of the slice"
);
.
describe
(
"Stride values of the slice"
);
}
}
};
};
struct
SliceLikeAttrs
:
public
tvm
::
AttrsNode
<
SliceLikeAttrs
>
{
Array
<
Integer
>
axes
;
TVM_DECLARE_ATTRS
(
SliceLikeAttrs
,
"relay.attrs.SliceLikeAttrs"
)
{
TVM_ATTR_FIELD
(
axes
)
.
describe
(
"List of axes on which input data will be sliced according to the "
"corresponding size of the second input. By default will slice "
"on all axes. Negative axes mean counting in reverse."
);
}
};
}
// namespace relay
}
// namespace relay
}
// namespace tvm
}
// namespace tvm
#endif // TVM_RELAY_ATTRS_TRANSFORM_H_
#endif // TVM_RELAY_ATTRS_TRANSFORM_H_
python/tvm/relay/op/_transform.py
View file @
28499304
...
@@ -2,7 +2,11 @@
...
@@ -2,7 +2,11 @@
"""Backend compiler related feature registration"""
"""Backend compiler related feature registration"""
from
__future__
import
absolute_import
from
__future__
import
absolute_import
from
.
import
op
as
_reg
from
.
import
op
as
_reg
from
.op
import
schedule_injective
from
.op
import
schedule_injective
,
OpPattern
# strided_slice
# strided_slice
_reg
.
register_schedule
(
"strided_slice"
,
schedule_injective
)
_reg
.
register_schedule
(
"strided_slice"
,
schedule_injective
)
# slice_like
_reg
.
register_schedule
(
"slice_like"
,
schedule_injective
)
_reg
.
register_pattern
(
"slice_like"
,
OpPattern
.
INJECTIVE
)
python/tvm/relay/op/transform.py
View file @
28499304
...
@@ -361,3 +361,29 @@ def strided_slice(data, begin, end, strides=None):
...
@@ -361,3 +361,29 @@ def strided_slice(data, begin, end, strides=None):
"""
"""
strides
=
strides
or
[]
strides
=
strides
or
[]
return
_make
.
strided_slice
(
data
,
list
(
begin
),
list
(
end
),
list
(
strides
))
return
_make
.
strided_slice
(
data
,
list
(
begin
),
list
(
end
),
list
(
strides
))
def
slice_like
(
data
,
shape_like
,
axes
=
None
):
"""Slice the first input with respect to the second input.
For an input array with shape ``(d1, d2, ..., dk)``, `slice_like` operation slices the
the input array corresponding size of second array. By default will slice on all axes.
Parameters
----------
data : tvm.relay.Expr
The source array.
shape_like : tvm.relay.Expr
The new shape.
axes : Optional[Tuple[int]]
List of axes on which input data will be sliced according to the corresponding size of
the second input. By default will slice on all axes. Negative axes mean counting in reverse.
Returns
-------
result : relay.Expr
The computed result.
"""
return
_make
.
slice_like
(
data
,
shape_like
,
axes
)
src/relay/op/tensor/transform.cc
View file @
28499304
...
@@ -1153,5 +1153,152 @@ the entries indicate where along axis the array is split.
...
@@ -1153,5 +1153,152 @@ the entries indicate where along axis the array is split.
.
set_support_level
(
3
)
.
set_support_level
(
3
)
.
add_type_rel
(
"Split"
,
SplitRel
);
.
add_type_rel
(
"Split"
,
SplitRel
);
TVM_REGISTER_NODE_TYPE
(
SliceLikeAttrs
);
/*!
* \brief SliceLikeRel User defined type constraint function.
* \param num_inputs Number of input types in the args.
* \param attrs The additional attributes of the operator.
* \param reporter The reporter to report solution to.
* \return False if the relation has not been resolved, it might be resolved later.
* True if this relation has been resolved.
*/
bool
SliceLikeRel
(
const
Array
<
Type
>&
types
,
int
num_inputs
,
const
Attrs
&
attrs
,
const
TypeReporter
&
reporter
)
{
CHECK_EQ
(
types
.
size
(),
3
);
const
auto
*
data
=
types
[
0
].
as
<
TensorTypeNode
>
();
if
(
data
==
nullptr
)
{
return
false
;
}
const
auto
*
target
=
types
[
1
].
as
<
TensorTypeNode
>
();
if
(
target
==
nullptr
)
{
return
false
;
}
const
auto
param
=
attrs
.
as
<
SliceLikeAttrs
>
();
CHECK
(
param
!=
nullptr
);
const
Array
<
IndexExpr
>
dshape
=
data
->
shape
;
const
Array
<
IndexExpr
>
target_shape
=
target
->
shape
;
std
::
vector
<
IndexExpr
>&&
oshape
=
AsVector
(
dshape
);
if
(
!
param
->
axes
.
defined
())
{
for
(
size_t
i
=
0
;
i
<
dshape
.
size
();
++
i
)
{
if
(
i
<
target_shape
.
size
())
{
oshape
[
i
]
=
target_shape
[
i
];
CHECK
(
reporter
->
Assert
(
oshape
[
i
]
<=
dshape
[
i
]))
<<
"End index of axis "
<<
i
<<
" exceeds input shape: "
<<
oshape
[
i
]
<<
" vs "
<<
dshape
[
i
];
}
}
}
else
{
CHECK
(
param
->
axes
.
size
()
!=
0
)
<<
"Axes cannot be empty."
;
for
(
Integer
val
:
param
->
axes
)
{
int
axis
=
val
->
value
;
if
(
axis
<
0
)
{
axis
+=
dshape
.
size
();
}
CHECK
(
axis
<
static_cast
<
int
>
(
target_shape
.
size
()))
<<
"Axis "
<<
axis
<<
" exceeds dimension "
<<
target_shape
.
size
()
<<
" of target_shape."
;
oshape
[
axis
]
=
target_shape
[
axis
];
CHECK
(
reporter
->
Assert
(
oshape
[
axis
]
<=
dshape
[
axis
]))
<<
"End index of axis "
<<
axis
<<
" exceeds input shape: "
<<
oshape
[
axis
]
<<
" vs "
<<
dshape
[
axis
];
}
}
reporter
->
Assign
(
types
[
2
],
TensorTypeNode
::
make
(
oshape
,
data
->
dtype
));
return
true
;
}
Expr
MakeSliceLike
(
Expr
data
,
Expr
shape_like
,
Array
<
Integer
>
axes
)
{
auto
attrs
=
make_node
<
SliceLikeAttrs
>
();
attrs
->
axes
=
std
::
move
(
axes
);
static
const
Op
&
op
=
Op
::
Get
(
"slice_like"
);
return
CallNode
::
make
(
op
,
{
data
,
shape_like
},
Attrs
(
attrs
),
{});
}
// Adapter function to make int array.
Array
<
Integer
>
GetIntArray
(
Array
<
IndexExpr
>
arr
)
{
for
(
size_t
i
=
0
;
i
<
arr
.
size
();
++
i
)
{
CHECK
(
!
arr
[
i
].
defined
()
||
arr
[
i
].
as
<
IntImm
>
())
<<
"Expect an int array"
;
}
return
Array
<
Integer
>
(
arr
.
node_
);
}
template
<
typename
AttrType
>
Array
<
Tensor
>
SliceLikeCompute
(
const
Attrs
&
attrs
,
const
Array
<
Tensor
>&
inputs
,
const
Type
&
out_type
,
const
Target
&
target
)
{
const
auto
*
param
=
attrs
.
as
<
AttrType
>
();
CHECK
(
param
!=
nullptr
);
Array
<
IndexExpr
>
src_shape
=
inputs
[
0
]
->
shape
;
Array
<
IndexExpr
>
target_shape
=
inputs
[
1
]
->
shape
;
Array
<
IndexExpr
>
begin_idx
,
end_idx
,
strides
;
for
(
size_t
i
=
0
;
i
<
src_shape
.
size
();
++
i
)
{
begin_idx
.
push_back
(
0
);
strides
.
push_back
(
1
);
}
end_idx
=
Array
<
IndexExpr
>
(
src_shape
);
if
(
!
param
->
axes
.
defined
())
{
for
(
size_t
i
=
0
;
i
<
src_shape
.
size
();
++
i
)
{
if
(
i
<
target_shape
.
size
())
{
end_idx
.
Set
(
i
,
target_shape
[
i
]);
CHECK_LE
(
topi
::
GetConstInt
(
end_idx
[
i
]),
topi
::
GetConstInt
(
src_shape
[
i
]))
<<
"End index of axis "
<<
i
<<
" exceeds input shape: "
<<
topi
::
GetConstInt
(
end_idx
[
i
])
<<
" vs "
<<
topi
::
GetConstInt
(
src_shape
[
i
]);
}
}
}
else
{
for
(
int
axis
:
param
->
axes
)
{
if
(
axis
<
0
)
{
axis
=
static_cast
<
int
>
(
src_shape
.
size
())
+
axis
;
}
end_idx
.
Set
(
axis
,
target_shape
[
axis
]);
CHECK_LE
(
topi
::
GetConstInt
(
end_idx
[
axis
]),
topi
::
GetConstInt
(
src_shape
[
axis
]))
<<
"End index of axis "
<<
axis
<<
" exceeds input shape: "
<<
topi
::
GetConstInt
(
end_idx
[
axis
])
<<
" vs "
<<
topi
::
GetConstInt
(
src_shape
[
axis
]);
}
}
return
Array
<
Tensor
>
{
topi
::
strided_slice
(
inputs
[
0
],
GetIntArray
(
begin_idx
),
GetIntArray
(
end_idx
),
GetIntArray
(
strides
))
};
}
TVM_REGISTER_API
(
"relay.op._make.slice_like"
)
.
set_body
([](
const
TVMArgs
&
args
,
TVMRetValue
*
rv
)
{
runtime
::
detail
::
unpack_call
<
Expr
,
3
>
(
MakeSliceLike
,
args
,
rv
);
});
RELAY_REGISTER_OP
(
"slice_like"
)
.
describe
(
R"code(Slice the first input respect to the second input.
)code"
TVM_ADD_FILELINE
)
.
set_attrs_type_key
(
"relay.attrs.SlicelikeAttrs"
)
.
set_num_inputs
(
2
)
.
add_argument
(
"data"
,
"Tensor"
,
"The input tensor."
)
.
add_argument
(
"shape_like"
,
"Tensor"
,
"Shape tensor."
)
.
set_support_level
(
10
)
.
add_type_rel
(
"SliceLike"
,
SliceLikeRel
)
.
set_attr
<
FTVMCompute
>
(
"FTVMCompute"
,
SliceLikeCompute
<
SliceLikeAttrs
>
);
}
// namespace relay
}
// namespace relay
}
// namespace tvm
}
// namespace tvm
tests/python/relay/test_op_level10.py
View file @
28499304
""" Support level10 operator test cases.
""" Support level10 operator test cases.
"""
"""
import
numpy
as
np
import
tvm
import
tvm
from
tvm
import
relay
from
tvm
import
relay
from
tvm.relay.testing
import
ctx_list
def
test_collapse_sum_like
():
def
test_collapse_sum_like
():
x
=
relay
.
Var
(
"x"
,
relay
.
ty
.
TensorType
((
3
,
4
,
5
,
6
),
"int8"
))
x
=
relay
.
Var
(
"x"
,
relay
.
ty
.
TensorType
((
3
,
4
,
5
,
6
),
"int8"
))
...
@@ -18,6 +20,66 @@ def test_broadcast_to_like():
...
@@ -18,6 +20,66 @@ def test_broadcast_to_like():
zz
=
relay
.
ir_pass
.
infer_type
(
z
)
zz
=
relay
.
ir_pass
.
infer_type
(
z
)
assert
zz
.
checked_type
==
relay
.
ty
.
TensorType
((
3
,
4
,
5
,
6
),
"int8"
)
assert
zz
.
checked_type
==
relay
.
ty
.
TensorType
((
3
,
4
,
5
,
6
),
"int8"
)
def
np_slice_like
(
np_data
,
np_shape_like
,
axis
=
None
):
begin_idx
=
[
0
for
_
in
np_data
.
shape
]
end_idx
=
list
(
np_data
.
shape
)
if
axis
:
for
i
in
axis
:
if
i
<
0
:
i
=
len
(
np_data
.
shape
)
+
i
end_idx
[
i
]
=
np_shape_like
.
shape
[
i
]
else
:
for
i
in
range
(
len
(
np_data
.
shape
)):
if
i
<
len
(
np_shape_like
.
shape
):
end_idx
[
i
]
=
np_shape_like
.
shape
[
i
]
slice_idx
=
[]
for
b
,
e
in
zip
(
begin_idx
,
end_idx
):
slice_idx
.
append
(
slice
(
b
,
e
))
np_result
=
np_data
[
tuple
(
slice_idx
)]
return
np_result
def
verify_slice_like
(
data
,
slice_like
,
axes
,
output
,
dtype
=
"float32"
):
x
=
relay
.
var
(
"data"
,
relay
.
TensorType
(
data
,
dtype
))
y
=
relay
.
var
(
"slice_like"
,
relay
.
TensorType
(
slice_like
,
dtype
))
z
=
relay
.
slice_like
(
x
,
y
,
axes
)
zz
=
relay
.
ir_pass
.
infer_type
(
z
)
if
axes
:
assert
"axes"
in
z
.
astext
()
assert
zz
.
checked_type
==
relay
.
ty
.
TensorType
(
output
,
dtype
)
if
all
(
isinstance
(
v
,
int
)
==
0
for
v
in
data
)
or
\
all
(
isinstance
(
v
,
int
)
==
0
for
v
in
slice_like
):
return
func
=
relay
.
Function
([
x
,
y
],
z
)
x_data
=
np
.
random
.
uniform
(
size
=
data
)
.
astype
(
dtype
)
y_data
=
np
.
random
.
uniform
(
size
=
slice_like
)
.
astype
(
dtype
)
ref_res
=
np_slice_like
(
x_data
,
y_data
,
axes
)
for
target
,
ctx
in
ctx_list
():
for
kind
in
[
"graph"
,
"debug"
]:
intrp
=
relay
.
create_executor
(
kind
,
ctx
=
ctx
,
target
=
target
)
op_res
=
intrp
.
evaluate
(
func
)(
x_data
,
y_data
)
tvm
.
testing
.
assert_allclose
(
op_res
.
asnumpy
(),
ref_res
,
rtol
=
1e-5
)
def
test_slice_like
():
d1
,
d2
,
d3
,
d4
=
tvm
.
var
(
"d1"
),
tvm
.
var
(
"d2"
),
tvm
.
var
(
"d3"
),
tvm
.
var
(
"d4"
)
verify_slice_like
(
data
=
(
d1
,
d2
,
d3
),
slice_like
=
(
1
,
2
,
3
),
axes
=
None
,
output
=
(
1
,
2
,
3
))
verify_slice_like
(
data
=
(
1
,
2
,
3
),
slice_like
=
(
d1
,
d2
,
d3
),
axes
=
None
,
output
=
(
d1
,
d2
,
d3
))
verify_slice_like
(
data
=
(
d2
,
d3
,
d4
),
slice_like
=
(
d1
,
d2
,
d3
),
axes
=
(
1
,
2
),
output
=
(
d2
,
d2
,
d3
))
verify_slice_like
(
data
=
(
3
,
4
,
5
),
slice_like
=
(
1
,
2
,
3
),
axes
=
None
,
output
=
(
1
,
2
,
3
))
verify_slice_like
(
data
=
(
3
,
4
,
5
),
slice_like
=
(
1
,
2
),
axes
=
None
,
output
=
(
1
,
2
,
5
))
verify_slice_like
(
data
=
(
3
,
4
,
5
),
slice_like
=
(
1
,
2
,
3
),
axes
=
(
1
,
2
),
output
=
(
3
,
2
,
3
))
verify_slice_like
(
data
=
(
3
,
4
,
5
),
slice_like
=
(
1
,
2
,
3
),
axes
=
(
-
1
,
-
3
),
output
=
(
1
,
4
,
3
))
verify_slice_like
(
data
=
(
1
,
3
,
224
,
224
),
slice_like
=
(
1
,
3
,
112
,
112
),
axes
=
(
2
,
3
),
output
=
(
1
,
3
,
112
,
112
))
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
test_collapse_sum_like
()
test_collapse_sum_like
()
test_broadcast_to_like
()
test_broadcast_to_like
()
test_slice_like
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment