Commit 2548cedc by Tianqi Chen Committed by GitHub

[OP/LANG] Support Extern Call, more regression tests (#69)

* [OP/LANG] Support Extern Call, more regression tests

* [TEST] Include pylintrc
parent b19e01bf
ROOTDIR = $(CURDIR)
ifndef config
ifneq ("$(wildcard ./config.mk)","")
config ?= config.mk
......@@ -9,7 +11,7 @@ endif
include $(config)
# specify tensor path
.PHONY: clean all test doc
.PHONY: clean all test doc pylint cpplint lint
all: lib/libtvm.so lib/libtvm_runtime.so lib/libtvm.a
......@@ -99,8 +101,13 @@ $(LIB_HALIDE_IR): LIBHALIDEIR
LIBHALIDEIR:
+ cd HalideIR; make lib/libHalideIR.a ; cd $(ROOTDIR)
lint:
python2 dmlc-core/scripts/lint.py tvm all include src python
cpplint:
python2 dmlc-core/scripts/lint.py tvm cpp include src
pylint:
pylint python/tvm --rcfile=$(ROOTDIR)/tests/lint/pylintrc
lint: cpplint pylint
doc:
doxygen docs/Doxyfile
......
......@@ -98,6 +98,8 @@ constexpr const char* loop_scope = "loop_scope";
constexpr const char* scan_update_scope = "scan_update_scope";
/*! \brief Mark of scan init scope */
constexpr const char* scan_init_scope = "scan_init_scope";
/*! \brief extern operator scope */
constexpr const char* extern_op_scope = "extern_op_scope";
// Pipeline related attributes
/*! \brief channel read scope */
constexpr const char* channel_read_scope = "channel_read_scope";
......
......@@ -13,6 +13,7 @@
#include "./tensor.h"
#include "./schedule.h"
#include "./arithmetic.h"
#include "./buffer.h"
namespace tvm {
......@@ -307,6 +308,62 @@ class ScanOpNode : public OperationNode {
TVM_DECLARE_NODE_TYPE_INFO(ScanOpNode, OperationNode);
};
/*!
* \brief External computation that cannot be splitted.
*/
class ExternOpNode : public OperationNode {
public:
/*! \brief The input tensors */
Array<Tensor> inputs;
/*! \brief Symbolic placeholder representationinputs */
Array<Buffer> input_placeholders;
/*! \brief Symbolic placeholder representation of outputs */
Array<Buffer> output_placeholders;
/*! \brief the statement that generates the computation. */
Stmt body;
/*! \brief constructor */
ExternOpNode() {}
// override functions
int num_outputs() const final;
Array<IterVar> root_iter_vars() const final;
Type output_dtype(size_t i) const final;
Array<Expr> output_shape(size_t i) const final;
Array<Tensor> InputTensors() const final;
Operation ReplaceInputs(
const Operation& self,
const std::unordered_map<Tensor, Tensor>& rmap) const final;
void PropBoundToInputs(
const Operation& self,
const std::unordered_map<const Variable*, IntSet>& dom_map,
std::unordered_map<Tensor, TensorDom>* out_dom_map) const final;
void GatherBound(
const Operation& self,
const GraphContext& graph_ctx,
const std::unordered_map<Tensor, TensorDom>& tensor_dom,
std::unordered_map<IterVar, Range>* out_dom_map) const final;
Stmt BuildRealize(
const Operation& self,
const std::unordered_map<IterVar, Range>& realize_map,
const Stmt& body) const final;
Stmt BuildProvide(
const Stage& stage,
const std::unordered_map<IterVar, Range>& dom_map) const final;
void VisitAttrs(AttrVisitor* v) final {
v->Visit("name", &name);
v->Visit("inputs", &inputs);
v->Visit("body", &body);
}
static Operation make(std::string name,
Array<Tensor> inputs,
Array<Buffer> input_placeholders,
Array<Buffer> output_placeholders,
Stmt body);
static constexpr const char* _type_key = "ExternOp";
TVM_DECLARE_NODE_TYPE_INFO(ExternOpNode, OperationNode);
};
/*! \brief The compute function to specify the input source of a Tensor */
using FCompute = std::function<Expr (const Array<Var>& i)>;
......
# coding: utf-8
# pylint: disable=invalid-name, no-member
# pylint: disable=invalid-name
""" ctypes library of nnvm and helper functions """
from __future__ import absolute_import
......
# pylint: disable=invalid-name
"""Util to compile with C++ code"""
# pylint: disable=invalid-name
from __future__ import absolute_import as _abs
import sys
import subprocess
......
# pylint: disable=invalid-name, too-many-locals
# pylint: disable=invalid-name
"""Util to compile with NVCC"""
from __future__ import absolute_import as _abs
import os
......
# pylint: disable=protected-access, no-member, invalid-name
# pylint: disable=redefined-builtin, undefined-variable, unused-import
"""Functions defined in TVM."""
# pylint: disable=invalid-name,unused-import,redefined-builtin
from __future__ import absolute_import as _abs
from numbers import Integral as _Integral
......@@ -162,8 +161,8 @@ def scan(init, update, state_placeholder, name="scan"):
Returns
-------
tensor: tensor.Tensor
The created tensor
tensor: Tensor or list of Tensors
The created tensor or tuple of tensors it it contains multiple outputs.
Example
-------
......@@ -187,7 +186,77 @@ def scan(init, update, state_placeholder, name="scan"):
axis = _IterVar((init[0].shape[0], update[0].shape[0]), "%s.idx" % name, 3)
op = _api_internal._ScanOp(name, axis, init, update, state_placeholder)
res = [op.output(i) for i in range(len(update))]
return (res[0] if len(res) == 1 else res)
return res[0] if len(res) == 1 else res
def extern(shape, inputs, fcompute,
name="extern", dtype=None):
"""Compute several tensor via extern function.
Parameters
----------
shape: Shape tuple or list of shapes.
The shape of the outputs.
inputs: list of Tensor
The inputs
fcompute: lambda function of inputs, outputs-> stmt
Specifies the IR statement to do the computation.
name: str, optional
The name hint of the tensor
dtype: str or list of str, optional
The data types of outputs,
by default dtype will be same as inputs.
Returns
-------
tensor: Tensor or list of Tensors
The created tensor or tuple of tensors it it contains multiple outputs.
"""
if isinstance(shape[0], _expr.Expr):
shape = [shape]
input_placeholders = []
output_placeholders = []
types = set()
for t in inputs:
if not isinstance(t, _tensor.Tensor):
raise ValueError("expect inputs to be tensor")
input_placeholders.append(
Buffer(t.shape, t.dtype, t.op.name))
types.add(t.dtype)
if dtype is None:
if len(types) != 1:
raise ValueError("Cannot infer output type, please provide dtype argument")
infered_type = types.pop()
dtype = [infered_type for _ in shape]
for shp, dt in zip(shape, dtype):
output_placeholders.append(Buffer(shp, dt, name))
body = fcompute(input_placeholders, output_placeholders)
if isinstance(body, _expr.Expr):
body = _make.Evaluate(body)
op = _api_internal._ExternOp(
name, inputs, input_placeholders, output_placeholders, body)
res = [op.output(i) for i in range(len(output_placeholders))]
return res[0] if len(res) == 1 else res
def call_packed(*args):
"""Build expression by call an external packed function
Parameters
----------
args : list
Positional arguments.
"""
args = convert(args)
return _make.Call(
int32, "tvm_call_packed", args, 4, None, 0)
def Buffer(shape, dtype=None,
......
# pylint: disable=protected-access, no-member
"""Arithmetic data structure and utility"""
from __future__ import absolute_import as _abs
......
......@@ -3,7 +3,6 @@
Eventually some of these pipelines will be moved to C++.
But the first pipeline will be kept in python for ease of change and evolving.
"""
# pylint: disable=invalid-name, no-member, too-many-locals, too-many-arguments
from . import api
from . import tensor
......
# pylint: disable=protected-access, no-member
"""Collection structure in the high level DSL."""
from __future__ import absolute_import as _abs
from ._ctypes._node import NodeBase, register_node
......
# pylint: disable=protected-access, no-member, missing-docstring
"""Expression class"""
# pylint: disable=missing-docstring
from __future__ import absolute_import as _abs
from ._ctypes._node import NodeBase, register_node
from . import make as _make
......
"""Runtime module related stuffs"""
# pylint: disable=unused-import, invalid-name, undefined-variable
from __future__ import absolute_import as _abs
from ._ctypes._function import ModuleBase, _init_module_module
......
......@@ -2,7 +2,7 @@
This is a simplified runtime API for quick testing and proptyping.
"""
# pylint: disable=unused-import, invalid-name
# pylint: disable=invalid-name,unused-import
from __future__ import absolute_import as _abs
import numpy as _np
......
# pylint: disable=protected-access, no-member
"""Collection structure in the high level DSL."""
from __future__ import absolute_import as _abs
from ._ctypes._node import NodeBase, register_node
......
# pylint: disable=protected-access, no-member, missing-docstring
"""Statement classes"""
from __future__ import absolute_import as _abs
from ._ctypes._node import NodeBase, register_node
......
# pylint: disable=protected-access, no-member, invalid-name
"""Tensor related abstractions"""
from __future__ import absolute_import as _abs
from ._ctypes._node import NodeBase, SliceBase, register_node, convert_to_node
......@@ -90,3 +89,8 @@ class ComputeOp(Operation):
class ScanOp(Operation):
"""Scan operation."""
pass
@register_node
class ExternOp(Operation):
"""Extern operation."""
pass
......@@ -183,6 +183,15 @@ TVM_REGISTER_API(_ScanOp)
args[4]);
});
TVM_REGISTER_API(_ExternOp)
.set_body([](TVMArgs args, TVMRetValue* ret) {
*ret = ExternOpNode::make(args[0],
args[1],
args[2],
args[3],
args[4]);
});
TVM_REGISTER_API(_OpGetOutput)
.set_body([](TVMArgs args, TVMRetValue* ret) {
*ret = args[0].operator Operation().output(
......
......@@ -1236,6 +1236,7 @@ void CodeGenLLVM::VisitStmt_(const Allocate* op) {
buf = builder_->CreatePointerCast(buf, LLVMType(op->type)->getPointerTo());
CHECK(!var_map_.count(op->buffer_var.get()));
var_map_[op->buffer_var.get()] = buf;
this->VisitStmt(op->body);
}
void CodeGenLLVM::VisitStmt_(const AttrStmt* op) {
......
......@@ -8,9 +8,8 @@
#include <tvm/ir.h>
#include <tvm/ir_visitor.h>
#include <tvm/ir_pass.h>
#include <tvm/ir_mutator.h>
#include <unordered_set>
#include "./make_loop.h"
#include "./op_util.h"
namespace tvm {
......@@ -101,40 +100,12 @@ Array<Tensor> ComputeOpNode::InputTensors() const {
return ret;
}
// replacer to replace tensors
class TensorReplacer : public ir::IRMutator {
public:
explicit TensorReplacer(const std::unordered_map<Tensor, Tensor>& vmap)
: vmap_(vmap) {}
Expr Mutate_(const ir::Call* op, const Expr& e) {
if (op->call_type == ir::Call::Halide) {
Tensor t = Operation(op->func.node_).output(op->value_index);
auto it = vmap_.find(t);
if (it != vmap_.end()) {
Expr ret = ir::Call::make(
op->type, it->second->op->name, op->args,
op->call_type, it->second->op, it->second->value_index);
found = true;
return IRMutator::Mutate_(ret.as<ir::Call>(), ret);
}
}
return IRMutator::Mutate_(op, e);
}
// whether it is found.
bool found{false};
private:
const std::unordered_map<Tensor, Tensor>& vmap_;
};
Operation ComputeOpNode::ReplaceInputs(
const Operation& self,
const std::unordered_map<Tensor, Tensor>& rmap) const {
CHECK_EQ(self.operator->(), this);
TensorReplacer repl(rmap);
Expr new_body = repl.Mutate(this->body);
if (repl.found) {
Expr new_body = op::ReplaceTensor(this->body, rmap);
if (!new_body.same_as(this->body)) {
return ComputeOpNode::make(name, axis, new_body);
} else {
return self;
......
/*!
* Copyright (c) 2017 by Contributors
* \brief External computation rule.
* \file extern_op.cc
*/
#include <tvm/operation.h>
#include <tvm/arithmetic.h>
#include <tvm/ir.h>
#include <unordered_set>
#include "./op_util.h"
namespace tvm {
using namespace ir;
// ExternOpNode
TVM_STATIC_IR_FUNCTOR(IRPrinter, vtable)
.set_dispatch<ExternOpNode>([](const ExternOpNode *op, IRPrinter *p) {
p->stream << "extern(" << op->name << ", " << op << ")";
});
TVM_REGISTER_NODE_TYPE(ExternOpNode);
int ExternOpNode::num_outputs() const {
return static_cast<int>(output_placeholders.size());
}
Array<IterVar> ExternOpNode::root_iter_vars() const {
return {};
}
Type ExternOpNode::output_dtype(size_t i) const {
return output_placeholders[i]->dtype;
}
Array<Expr> ExternOpNode::output_shape(size_t i) const {
return output_placeholders[i]->shape;
}
Operation ExternOpNode::make(std::string name,
Array<Tensor> inputs,
Array<Buffer> input_placeholders,
Array<Buffer> output_placeholders,
Stmt body) {
auto n = std::make_shared<ExternOpNode>();
n->name = name;
CHECK_EQ(inputs.size(), input_placeholders.size());
for (size_t i = 0; i < inputs.size(); ++i) {
CHECK_EQ(inputs[i]->dtype, input_placeholders[i]->dtype);
CHECK(inputs[i]->shape.same_as(input_placeholders[i]->shape));
CHECK_EQ(input_placeholders[i]->strides.size(), 0U);
}
n->inputs = inputs;
n->input_placeholders = input_placeholders;
n->output_placeholders = output_placeholders;
n->body = body;
return Operation(n);
}
Array<Tensor> ExternOpNode::InputTensors() const {
return inputs;
}
Operation ExternOpNode::ReplaceInputs(
const Operation& self,
const std::unordered_map<Tensor, Tensor>& rmap) const {
CHECK_EQ(self.operator->(), this);
auto n = std::make_shared<ExternOpNode>(*this);
n->body = op::ReplaceTensor(this->body, rmap);
for (size_t i = 0; i < n->inputs.size(); ++i) {
Tensor t = n->inputs[i];
if (rmap.count(t)) {
n->inputs.Set(i, rmap.at(t));
}
}
if (body.same_as(n->body) &&
inputs.same_as(n->inputs)) {
return self;
} else {
return Operation(n);
}
}
void ExternOpNode::PropBoundToInputs(
const Operation& self,
const std::unordered_map<const Variable*, IntSet>& dom_map,
std::unordered_map<Tensor, TensorDom>* out_dom_map) const {
for (Tensor t : this->inputs) {
auto it = out_dom_map->find(t);
if (it == out_dom_map->end()) continue;
TensorDom& dom = it->second;
for (size_t i = 0; i < t->shape.size(); ++i) {
dom.data[i].emplace_back(IntSet::range(
Range::make_with_min_extent(
make_const(t->shape[i].type(), 0), t->shape[i])));
}
}
}
void ExternOpNode::GatherBound(
const Operation& self,
const GraphContext& graph_ctx,
const std::unordered_map<Tensor, TensorDom>& tensor_dom,
std::unordered_map<IterVar, Range>* out_dom_map) const {
}
Stmt ExternOpNode::BuildRealize(
const Operation& self,
const std::unordered_map<IterVar, Range>& realize_map,
const Stmt& body) const {
CHECK_EQ(self.operator->(), this);
Stmt realize_body = body;
for (int k = 0; k < num_outputs(); ++k) {
Tensor t = self.output(k);
Halide::Internal::Region bounds;
for (size_t i = 0; i < t->shape.size(); ++i) {
bounds.push_back(
Range::make_with_min_extent(
make_const(t->shape[i].type(), 0), t->shape[i]));
}
realize_body = ir::Realize::make(
t->op, t->value_index, t->dtype,
bounds, const_true(), realize_body);
}
return realize_body;
}
Stmt ExternOpNode::BuildProvide(
const Stage& stage,
const std::unordered_map<IterVar, Range>& dom_map) const {
CHECK_EQ(stage->op.operator->(), this);
return AttrStmt::make(
stage->op, ir::attr::extern_op_scope,
StringImm::make(name), body);
}
} // namespace tvm
/*!
* Copyright (c) 2017 by Contributors
* \brief Utility to make loop nest.
* \file make_loop.cc
* \file op_util.cc
*/
#include <tvm/ir.h>
#include <tvm/ir_pass.h>
#include <tvm/operation.h>
#include "./make_loop.h"
#include <tvm/ir_mutator.h>
#include "./op_util.h"
#include "../arithmetic/compute_expr.h"
namespace tvm {
......@@ -231,5 +232,45 @@ std::vector<Stmt> MakeBoundCheck(
return nest;
}
// replacer to replace tensors
class TensorReplacer : public ir::IRMutator {
public:
explicit TensorReplacer(const std::unordered_map<Tensor, Tensor>& vmap)
: vmap_(vmap) {}
Expr Mutate_(const ir::Call* op, const Expr& e) {
if (op->call_type == ir::Call::Halide) {
Tensor t = Operation(op->func.node_).output(op->value_index);
auto it = vmap_.find(t);
if (it != vmap_.end()) {
Expr ret = ir::Call::make(
op->type, it->second->op->name, op->args,
op->call_type, it->second->op, it->second->value_index);
found = true;
return IRMutator::Mutate_(ret.as<ir::Call>(), ret);
}
}
return IRMutator::Mutate_(op, e);
}
// whether it is found.
bool found{false};
private:
const std::unordered_map<Tensor, Tensor>& vmap_;
};
Stmt ReplaceTensor(Stmt stmt,
const std::unordered_map<Tensor, Tensor>& replace) {
TensorReplacer repl(replace);
Stmt ret = repl.Mutate(stmt);
return repl.found ? ret : stmt;
}
Expr ReplaceTensor(Expr expr,
const std::unordered_map<Tensor, Tensor>& replace) {
TensorReplacer repl(replace);
Expr ret = repl.Mutate(expr);
return repl.found ? ret : expr;
}
} // namespace op
} // namespace tvm
/*!
* Copyright (c) 2017 by Contributors
* \file make_loop.h
* \brief Utility to make loop nest from schedule stage info.
* \file op_util.h
* \brief Common utility used in operator construction.
*/
#ifndef TVM_OP_MAKE_LOOP_H_
#define TVM_OP_MAKE_LOOP_H_
#ifndef TVM_OP_OP_UTIL_H_
#define TVM_OP_OP_UTIL_H_
#include <tvm/expr.h>
#include <tvm/schedule.h>
......@@ -50,6 +50,22 @@ MakeBoundCheck(const Stage& stage,
bool skip_ivar_domain,
const std::unordered_set<IterVar>& skip_iter,
const std::unordered_map<IterVar, Expr>& value_map);
/*!
* \brief Replace the tensor reference in stmt by the replace map.
* \param stmt The statement to be processed.
* \param replace The replacement rule.
*/
Stmt ReplaceTensor(Stmt stmt,
const std::unordered_map<Tensor, Tensor>& replace);
/*!
* \brief Replace the tensor reference in expr by the replace map.
* \param expr The expression to be processed.
* \param replace The replacement rule.
*/
Expr ReplaceTensor(Expr expr,
const std::unordered_map<Tensor, Tensor>& replace);
} // namespace op
} // namespace tvm
#endif // TVM_OP_MAKE_LOOP_H_
#endif // TVM_OP_OP_UTIL_H_
......@@ -6,7 +6,7 @@
#include <tvm/operation.h>
#include <tvm/ir.h>
#include <tvm/ir_pass.h>
#include "./make_loop.h"
#include "./op_util.h"
#include "../schedule/graph.h"
namespace tvm {
......
......@@ -89,7 +89,7 @@ class AllocateLifter : public IRMutator {
};
Stmt LiftAllocate(Stmt stmt) {
return AllocateLifter().Mutate(stmt);
return AllocateLifter().Lift(stmt);
}
} // namespace ir
......
......@@ -3,8 +3,11 @@
* \file storage_flatten.cc
*/
#include <tvm/ir.h>
#include <tvm/expr.h>
#include <tvm/ir_mutator.h>
#include <tvm/ir_pass.h>
#include <tvm/buffer.h>
#include <tvm/operation.h>
#include <unordered_map>
#include "../runtime/thread_storage_scope.h"
......@@ -25,6 +28,16 @@ class StorageFlattener : public IRMutator {
buf_map_[TensorKey{kv.first->op, kv.first->value_index}] = e;
}
}
Stmt Mutate_(const Store* op, const Stmt& s) final {
Stmt stmt = IRMutator::Mutate_(op, s);
op = stmt.as<Store>();
auto it = extern_buf_remap_.find(op->buffer_var.get());
if (it != extern_buf_remap_.end()) {
return Store::make(it->second, op->value, op->index);
} else {
return stmt;
}
}
Stmt Mutate_(const AttrStmt* op, const Stmt& s) final {
if (op->type_key == attr::realize_scope) {
......@@ -37,6 +50,8 @@ class StorageFlattener : public IRMutator {
Stmt stmt = IRMutator::Mutate_(op, s);
curr_thread_scope_.pop_back();
return stmt;
} else if (op->type_key == attr::extern_op_scope) {
return HandleExternOp(op);
}
return IRMutator::Mutate_(op, s);
}
......@@ -95,6 +110,26 @@ class StorageFlattener : public IRMutator {
}
}
Expr Mutate_(const Load* op, const Expr& e) final {
Expr expr = IRMutator::Mutate_(op, e);
op = expr.as<Load>();
auto it = extern_buf_remap_.find(op->buffer_var.get());
if (it != extern_buf_remap_.end()) {
return Load::make(op->type, it->second, op->index);
} else {
return expr;
}
}
Expr Mutate_(const Variable* op, const Expr& e) final {
auto it = extern_buf_remap_.find(op);
if (it != extern_buf_remap_.end()) {
return it->second;
} else {
return e;
}
}
Expr Mutate_(const Call* op, const Expr& olde) final {
Expr expr = IRMutator::Mutate_(op, olde);
op = expr.as<Call>();
......@@ -113,6 +148,28 @@ class StorageFlattener : public IRMutator {
}
private:
Stmt HandleExternOp(const AttrStmt* op) {
const ExternOpNode* ext_op = op->node.as<ExternOpNode>();
CHECK(ext_op);
Operation func(op->node.node_);
CHECK_EQ(extern_buf_remap_.size(), 0U);
for (size_t i = 0; i < ext_op->output_placeholders.size(); ++i) {
TensorKey key{func, static_cast<int>(i)};
CHECK(buf_map_.count(key));
extern_buf_remap_[ext_op->output_placeholders[i]->data.get()] =
buf_map_.at(key).buffer->data;
}
for (size_t i = 0; i < ext_op->inputs.size(); ++i) {
TensorKey key{ext_op->inputs[i]->op, ext_op->inputs[i]->value_index};
CHECK(buf_map_.count(key));
extern_buf_remap_[ext_op->input_placeholders[i]->data.get()] =
buf_map_.at(key).buffer->data;
}
Stmt ret = Mutate(op->body);
extern_buf_remap_.clear();
return ret;
}
// The buffer entry in the flatten map
struct BufferEntry {
// the buffer of storage
......@@ -139,6 +196,7 @@ class StorageFlattener : public IRMutator {
}
};
// The buffer assignment map
std::unordered_map<const Variable*, Var> extern_buf_remap_;
std::unordered_map<TensorKey, BufferEntry> buf_map_;
std::unordered_map<const Node*, std::string> storage_scope_;
// The current thread scope.
......
import tvm
import numpy as np
def test_add_pipeline():
nn = 1024
n = tvm.convert(nn)
A = tvm.placeholder((n,), name='A')
def extern_generator(ins, outs):
"""Manually write the IR for the extern function, add pipeline"""
i = tvm.Var('i')
stmt = tvm.make.For(
i, 0, n, 0, 0,
tvm.make.Store(outs[0].data,
tvm.make.Load(A.dtype, ins[0].data, i) +
1, i))
return stmt
C = tvm.extern(A.shape, [A], extern_generator, name='C')
s = tvm.Schedule(C.op)
def check_llvm():
if not tvm.codegen.enabled("llvm"):
return
# build and invoke the kernel.
f = tvm.build(s, [A, C], "llvm")
ctx = tvm.cpu(0)
# launch the kernel.
n = nn
a = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), ctx)
c = tvm.nd.array(np.zeros(n, dtype=C.dtype), ctx)
f(a, c)
np.testing.assert_allclose(
c.asnumpy(), a.asnumpy() + 1)
check_llvm()
if __name__ == "__main__":
test_add_pipeline()
......@@ -8,10 +8,7 @@ def test_llvm_add_pipeline():
B = tvm.placeholder((n,), name='B')
C = tvm.compute(A.shape, lambda *i: A(*i) + B(*i), name='C')
s = tvm.Schedule(C.op)
print(s[C])
print("a?")
xo, xi = s[C].split(C.op.axis[0], factor=4)
print("a?")
s[C].parallel(xo)
s[C].vectorize(xi)
def check_llvm():
......@@ -83,12 +80,31 @@ def test_llvm_madd_pipeline():
check_llvm(4, 0, 1)
check_llvm(4, 0, 3)
def test_llvm_temp_space():
nn = 1024
n = tvm.convert(nn)
A = tvm.placeholder((n,), name='A')
B = tvm.compute(A.shape, lambda i: A(i) + 1, name='B')
C = tvm.compute(A.shape, lambda i: B(i) + 1, name='C')
s = tvm.Schedule(C.op)
def check_llvm():
if not tvm.codegen.enabled("llvm"):
return
# build and invoke the kernel.
f = tvm.build(s, [A, C], "llvm")
ctx = tvm.cpu(0)
# launch the kernel.
n = nn
a = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), ctx)
c = tvm.nd.array(np.zeros(n, dtype=C.dtype), ctx)
f(a, c)
np.testing.assert_allclose(
c.asnumpy(), a.asnumpy() + 1 + 1)
check_llvm()
if __name__ == "__main__":
print("a")
test_llvm_add_pipeline()
print("a")
test_llvm_flip_pipeline()
print("a")
test_llvm_madd_pipeline()
test_llvm_temp_space()
import tvm
import numpy as np
def tvm_call_packed(*args):
args = tvm.convert(args)
return tvm.make.Call("int32", "tvm_call_packed", args, 4, None, 0)
def run_jit(fapi, check):
for target in ["llvm", "stackvm"]:
if not tvm.codegen.enabled(target):
......@@ -24,7 +19,7 @@ def test_stack_vm_basic():
n = tvm.Var('n')
Ab = tvm.Buffer((n, ), tvm.float32)
stmt = tvm.make.Evaluate(tvm_call_packed("tvm_call_back_get_shape", Ab.shape[0]))
stmt = tvm.make.Evaluate(tvm.call_packed("tvm_call_back_get_shape", Ab.shape[0]))
fapi = tvm.ir_pass.MakeAPI(stmt, "print_shape", [Ab], 0)
run_jit(fapi, lambda f: f(a))
......@@ -46,7 +41,7 @@ def test_stack_vm_loop():
tvm.make.Store(Ab.data,
tvm.make.Load(dtype, Ab.data, i) + 1,
i + 1),
tvm.make.Evaluate(tvm_call_packed("tvm_stack_vm_print", i))))
tvm.make.Evaluate(tvm.call_packed("tvm_stack_vm_print", i))))
fapi = tvm.ir_pass.MakeAPI(stmt, "ramp", [Ab], 0)
a = tvm.nd.array(np.zeros(10, dtype=dtype))
def check(f):
......
......@@ -80,6 +80,30 @@ def test_scan_multi_out():
zz = tvm.load_json(json_str)
assert isinstance(zz, tvm.tensor.ScanOp)
def test_extern():
m = tvm.Var('m')
A = tvm.placeholder((m,), name='A')
def extern_func(ins, outs):
assert(isinstance(ins[0], tvm.schedule.Buffer))
return tvm.call_packed("myadd", ins[0].data, outs[0].data, m)
B = tvm.extern((m,), [A], extern_func)
assert(tuple(B.shape) == (m,))
def test_extern_multi_out():
m = tvm.Var('m')
A = tvm.placeholder((m,), name='A')
B = tvm.compute((m,), lambda i: A[i] * 10)
def extern_func(ins, outs):
assert(isinstance(ins[0], tvm.schedule.Buffer))
return tvm.call_packed(
"myadd", ins[0].data, outs[0].data, outs[1].data, m)
res = tvm.extern([A.shape, A.shape], [A, B], extern_func)
assert(len(res) == 2)
assert(res[1].value_index == 1)
if __name__ == "__main__":
test_conv1d()
......@@ -88,3 +112,5 @@ if __name__ == "__main__":
test_tensor_reduce()
test_tensor_scan()
test_scan_multi_out()
test_extern()
test_extern_multi_out()
......@@ -2,7 +2,10 @@
if [ ${TASK} == "lint" ] || [ ${TASK} == "all_test" ]; then
if [ ! ${TRAVIS_OS_NAME} == "osx" ]; then
make lint || exit -1
echo "Check codestyle of c++ code..."
make cpplint || exit -1
echo "Check codestyle of python code..."
make pylint || exit -1
echo "Check documentations of c++ code..."
make doc 2>log.txt
(cat log.txt| grep -v ENABLE_PREPROCESSING |grep -v "unsupported tag") > logclean.txt
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment