Unverified Commit 1acad98e by MORITA Kazutaka Committed by GitHub

[RUNTIME][CONTRIB] CoreML Runtime (#5283)

* [RUNTIME][CONTRIB] CoreML Runtime

* fix lint

* fix CI

* use xcrun to compile coreml model
parent b8c23d66
...@@ -69,6 +69,7 @@ tvm_option(USE_ANTLR "Build with ANTLR for Relay parsing" OFF) ...@@ -69,6 +69,7 @@ tvm_option(USE_ANTLR "Build with ANTLR for Relay parsing" OFF)
tvm_option(USE_CPP_RPC "Build CPP RPC" OFF) tvm_option(USE_CPP_RPC "Build CPP RPC" OFF)
tvm_option(USE_TFLITE "Build with tflite support" OFF) tvm_option(USE_TFLITE "Build with tflite support" OFF)
tvm_option(USE_TENSORFLOW_PATH "TensorFlow root path when use TFLite" none) tvm_option(USE_TENSORFLOW_PATH "TensorFlow root path when use TFLite" none)
tvm_option(USE_COREML "Build with coreml support" OFF)
if(USE_CPP_RPC AND UNIX) if(USE_CPP_RPC AND UNIX)
message(FATAL_ERROR "USE_CPP_RPC is only supported with WIN32. Use the Makefile for non-Windows.") message(FATAL_ERROR "USE_CPP_RPC is only supported with WIN32. Use the Makefile for non-Windows.")
...@@ -301,6 +302,7 @@ include(cmake/modules/contrib/NNPack.cmake) ...@@ -301,6 +302,7 @@ include(cmake/modules/contrib/NNPack.cmake)
include(cmake/modules/contrib/HybridDump.cmake) include(cmake/modules/contrib/HybridDump.cmake)
include(cmake/modules/contrib/TFLite.cmake) include(cmake/modules/contrib/TFLite.cmake)
include(cmake/modules/contrib/TF_TVMDSOOP.cmake) include(cmake/modules/contrib/TF_TVMDSOOP.cmake)
include(cmake/modules/contrib/CoreML.cmake)
if(NOT MSVC) if(NOT MSVC)
include(CheckCXXCompilerFlag) include(CheckCXXCompilerFlag)
......
...@@ -249,7 +249,7 @@ ...@@ -249,7 +249,7 @@
); );
runOnlyForDeploymentPostprocessing = 0; runOnlyForDeploymentPostprocessing = 0;
shellPath = /bin/sh; shellPath = /bin/sh;
shellScript = "libpath=${CONFIGURATION_BUILD_DIR}/${CONTENTS_FOLDER_PATH}/Frameworks/tvm\nmkdir -p ${libpath}\nrm -rf ${libpath}/*\n \nif [ -f ${SRCROOT}/rpc_config.txt ]; then\n head -n 1 ${SRCROOT}/rpc_config.txt > ${libpath}/rpc_config.txt\n tail -n +2 ${SRCROOT}/rpc_config.txt | xargs -J % cp % ${libpath}\nfi\n\n"; shellScript = "libpath=${CONFIGURATION_BUILD_DIR}/${CONTENTS_FOLDER_PATH}/Frameworks/tvm\nmkdir -p ${libpath}\nrm -rf ${libpath}/*\n \nif [ -f ${SRCROOT}/rpc_config.txt ]; then\n head -n 1 ${SRCROOT}/rpc_config.txt > ${libpath}/rpc_config.txt\n tail -n +2 ${SRCROOT}/rpc_config.txt | xargs -J % cp -r % ${libpath}\nfi\n\n";
}; };
/* End PBXShellScriptBuildPhase section */ /* End PBXShellScriptBuildPhase section */
......
...@@ -46,6 +46,8 @@ ...@@ -46,6 +46,8 @@
// Metal // Metal
#include "../../../src/runtime/metal/metal_module.mm" #include "../../../src/runtime/metal/metal_module.mm"
#include "../../../src/runtime/metal/metal_device_api.mm" #include "../../../src/runtime/metal/metal_device_api.mm"
// CoreML
#include "../../../src/runtime/contrib/coreml/coreml_runtime.mm"
namespace dmlc { namespace dmlc {
// Override logging mechanism // Override logging mechanism
......
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
if(USE_COREML)
message(STATUS "Build with contrib.coreml")
find_library(FOUNDATION_LIB Foundation)
find_library(COREML_LIB Coreml)
file(GLOB COREML_CONTRIB_SRC src/runtime/contrib/coreml/*.mm)
list(APPEND TVM_RUNTIME_LINKER_LIBS ${FOUNDATION_LIB} ${COREML_LIB})
list(APPEND RUNTIME_SRCS ${COREML_CONTRIB_SRC})
endif(USE_COREML)
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""CoreML runtime that load and run coreml models."""
import tvm._ffi
from ..rpc import base as rpc_base
def create(compiled_model_path, output_names, ctx):
"""Create a runtime executor module given a coreml model and context.
Parameters
----------
compiled_model_path : str
The path of the compiled model to be deployed.
output_names : list of str
The output names of the model.
ctx : TVMContext
The context to deploy the module. It can be local or remote when there
is only one TVMContext.
Returns
-------
coreml_runtime : CoreMLModule
Runtime coreml module that can be used to execute the coreml model.
"""
device_type = ctx.device_type
runtime_func = "tvm.coreml_runtime.create"
if device_type >= rpc_base.RPC_SESS_MASK:
fcreate = ctx._rpc_sess.get_function(runtime_func)
else:
fcreate = tvm._ffi.get_global_func(runtime_func)
return CoreMLModule(fcreate(compiled_model_path, ctx, *output_names))
class CoreMLModule(object):
"""Wrapper runtime module.
This is a thin wrapper of the underlying TVM module.
you can also directly call set_input, run, and get_output
of underlying module functions
Parameters
----------
module : Module
The internal tvm module that holds the actual coreml functions.
Attributes
----------
module : Module
The internal tvm module that holds the actual coreml functions.
"""
def __init__(self, module):
self.module = module
self.invoke = module["invoke"]
self.set_input = module["set_input"]
self.get_output = module["get_output"]
self.get_num_outputs = module["get_num_outputs"]
...@@ -170,6 +170,17 @@ def compile_metal(code, path_target=None, sdk="macosx"): ...@@ -170,6 +170,17 @@ def compile_metal(code, path_target=None, sdk="macosx"):
return libbin return libbin
def compile_coreml(model, out_dir="."):
"""Compile coreml model and return the compiled model path.
"""
mlmodel_path = os.path.join(out_dir, "tmp.mlmodel")
model.save(mlmodel_path)
xcrun(["coremlcompiler", "compile", mlmodel_path, out_dir])
return os.path.join(out_dir, "tmp.mlmodelc")
class XCodeRPCServer(object): class XCodeRPCServer(object):
"""Wrapper for RPC server """Wrapper for RPC server
......
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \brief CoreML runtime that can run coreml model
* containing only tvm PackedFunc.
* \file coreml_runtime.h
*/
#ifndef TVM_RUNTIME_CONTRIB_COREML_COREML_RUNTIME_H_
#define TVM_RUNTIME_CONTRIB_COREML_COREML_RUNTIME_H_
#import <Foundation/Foundation.h>
#import <CoreML/CoreML.h>
#include <dlpack/dlpack.h>
#include <tvm/runtime/ndarray.h>
#include <tvm/runtime/packed_func.h>
#include <vector>
#include <string>
#include <memory>
namespace tvm {
namespace runtime {
/*!
* \brief CoreML runtime.
*
* This runtime can be accessed in various language via
* TVM runtime PackedFunc API.
*/
class CoreMLRuntime : public ModuleNode {
public:
/*!
* \brief Get member function to front-end.
* \param name The name of the function.
* \param sptr_to_self The pointer to the module node.
* \return The corresponding member function.
*/
virtual PackedFunc GetFunction(const std::string& name,
const ObjectPtr<Object>& sptr_to_self);
/*!
* \return The type key of the executor.
*/
const char* type_key() const {
return "CoreMLRuntime";
}
/*!
* \brief Invoke the coreml prediction.
*/
void Invoke();
/*!
* \brief Initialize the coreml runtime with coreml model and context.
* \param model_path The compiled model path.
* \param ctx The context where the coreml model will be executed on.
* \param output_names The output names of the model.
*/
void Init(const std::string& model_path,
TVMContext ctx,
const std::vector<NSString *>& output_names);
/*!
* \brief set input to the model.
* \param key The input name.
* \param data_in The input data.
*/
void SetInput(const std::string& key, DLTensor* data_in);
/*!
* \brief Return NDArray for given output index.
* \param index The output index.
*
* \return NDArray corresponding to given output node index.
*/
NDArray GetOutput(int index) const;
/*!
* \brief Return the number of outputs
*
* \return The number of outputs
*/
int GetNumOutputs() const;
// CoreML model
MLModel *model_;
// CoreML model input dictionary
NSMutableDictionary<NSString *, id> *input_dict_;
// CoreML model output
id<MLFeatureProvider> output_;
// List of output names
std::vector<NSString *> output_names_;
// TVM context
TVMContext ctx_;
};
} // namespace runtime
} // namespace tvm
#endif // TVM_RUNTIME_CONTRIB_COREML_COREML_RUNTIME_H_
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file coreml_runtime.cc
*/
#include <tvm/runtime/registry.h>
#include "coreml_runtime.h"
namespace tvm {
namespace runtime {
MLModel *load_coreml_model(const std::string& model_path) {
NSBundle* bundle = [NSBundle mainBundle];
NSString* base = [bundle privateFrameworksPath];
NSString* fname = [NSString stringWithUTF8String:("tvm/" + model_path).c_str()];
NSString* assetPath = [base stringByAppendingPathComponent: fname];
if (![[NSFileManager defaultManager] fileExistsAtPath:assetPath]) {
assetPath = [NSString stringWithCString: model_path.c_str() encoding:NSUTF8StringEncoding];
}
NSURL *url = [NSURL fileURLWithPath:assetPath];
MLModel *model = [MLModel modelWithContentsOfURL:url error:nil];
if (model == nil) {
NSLog(@"modelc %@ not found", url);
}
return model;
}
void CoreMLRuntime::Init(const std::string& model_path,
TVMContext ctx,
const std::vector<NSString *>& output_names) {
model_ = load_coreml_model(model_path);
ctx_ = ctx;
input_dict_ = [NSMutableDictionary dictionary];
output_names_ = output_names;
}
void CoreMLRuntime::Invoke() {
id<MLFeatureProvider> input = [[MLDictionaryFeatureProvider alloc] initWithDictionary:input_dict_ error:nil];
output_ = [model_ predictionFromFeatures:input error:nil];
}
void CoreMLRuntime::SetInput(const std::string& key, DLTensor* data_in) {
int64_t size = 1;
NSMutableArray *shape = [[NSMutableArray alloc] init];
for (int64_t i = 0; i < data_in->ndim; ++i) {
size *= data_in->shape[i];
[shape addObject:[NSNumber numberWithInteger:data_in->shape[i]]];
}
DataType dtype(data_in->dtype);
MLMultiArrayDataType dataType;
if (dtype == DataType::Float(64)) {
dataType = MLMultiArrayDataTypeDouble;
size *= sizeof(double);
} else if (dtype == DataType::Float(32)) {
dataType = MLMultiArrayDataTypeFloat32;
size *= sizeof(float);
} else {
LOG(FATAL) << "unsupported data type " << dtype;
return;
}
MLMultiArray *dest = [[MLMultiArray alloc] initWithShape:shape
dataType:dataType error:nil];
CHECK(data_in->strides == NULL);
memcpy(dest.dataPointer, data_in->data, size);
NSString *nsKey = [NSString stringWithUTF8String:key.c_str()];
[input_dict_ setObject:dest forKey:nsKey];
}
NDArray CoreMLRuntime::GetOutput(int index) const {
NSString *name = output_names_[index];
MLModelDescription *model_desc = model_.modelDescription;
MLFeatureDescription *output_desc = model_desc.outputDescriptionsByName[name];
MLMultiArrayConstraint *data_desc = output_desc.multiArrayConstraint;
std::vector<int64_t> shape;
int64_t size = 1;
for (int64_t i = 0; i < data_desc.shape.count; ++i) {
int n = data_desc.shape[i].intValue;
size *= n;
shape.push_back(n);
}
DataType dtype;
if (data_desc.dataType == MLMultiArrayDataTypeDouble) {
dtype = DataType::Float(64);
size *= sizeof(double);
} else if (data_desc.dataType == MLMultiArrayDataTypeFloat32) {
dtype = DataType::Float(32);
size *= sizeof(float);
} else {
LOG(FATAL) << "unexpected data type " << data_desc.dataType;
}
MLMultiArray *src = [output_ featureValueForName:name].multiArrayValue;
NDArray ret = NDArray::Empty(shape, dtype, ctx_);
ret.CopyFromBytes(src.dataPointer, size);
return ret;
}
int CoreMLRuntime::GetNumOutputs() const {
return output_names_.size();
}
PackedFunc CoreMLRuntime::GetFunction(
const std::string& name,
const ObjectPtr<Object>& sptr_to_self) {
// Return member functions during query.
if (name == "invoke") {
return PackedFunc([sptr_to_self, this](TVMArgs args, TVMRetValue* rv) {
this->Invoke();
});
} else if (name == "set_input") {
return PackedFunc([sptr_to_self, this](TVMArgs args, TVMRetValue* rv) {
const auto& input_name = args[0].operator std::string();
this->SetInput(input_name, args[1]);
});
} else if (name == "get_output") {
return PackedFunc([sptr_to_self, this](TVMArgs args, TVMRetValue* rv) {
*rv = this->GetOutput(args[0]);
});
} else if (name == "get_num_outputs") {
return PackedFunc([sptr_to_self, this](TVMArgs args, TVMRetValue* rv) {
*rv = this->GetNumOutputs();
});
} else {
return PackedFunc();
}
}
Module CoreMLRuntimeCreate(const std::string& model_path,
TVMContext ctx,
const std::vector<NSString *>& output_names) {
auto exec = make_object<CoreMLRuntime>();
exec->Init(model_path, ctx, output_names);
return Module(exec);
}
TVM_REGISTER_GLOBAL("tvm.coreml_runtime.create")
.set_body([](TVMArgs args, TVMRetValue* rv) {
std::vector<NSString *> output_names;
for (size_t i = 2; i < args.size(); i++) {
const std::string& name = args[i];
output_names.push_back([NSString stringWithUTF8String:name.c_str()]);
}
*rv = CoreMLRuntimeCreate(args[0], args[1], output_names);
});
} // namespace runtime
} // namespace tvm
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import tvm
from tvm import te
import numpy as np
from tvm import rpc
from tvm.contrib import util, xcode, coreml_runtime
import os
proxy_host = os.environ.get("TVM_IOS_RPC_PROXY_HOST", "localhost")
proxy_port = os.environ.get("TVM_IOS_RPC_PROXY_PORT", 9090)
destination = os.environ.get("TVM_IOS_RPC_DESTINATION", "")
key = "iphone"
def skipped_test_coreml_runtime():
import coremltools
from coremltools.models.neural_network import NeuralNetworkBuilder
def create_coreml_model():
shape = (2,)
alpha = 2
inputs = [
('input0', coremltools.models.datatypes.Array(*shape)),
('input1', coremltools.models.datatypes.Array(*shape))
]
outputs = [
('output0', coremltools.models.datatypes.Array(*shape)),
('output1', coremltools.models.datatypes.Array(*shape)),
]
builder = NeuralNetworkBuilder(inputs, outputs)
builder.add_elementwise(name='Add',
input_names=['input0', 'input1'],
output_name='output0',
mode='ADD')
builder.add_elementwise(name='Mul',
alpha=alpha,
input_names=['input0'],
output_name='output1',
mode='MULTIPLY')
return coremltools.models.MLModel(builder.spec)
def verify(coreml_model, compiled_model_path, ctx):
coreml_model = create_coreml_model()
out_spec = coreml_model.output_description._fd_spec
out_names = [spec.name for spec in out_spec]
# inference via coremltools
inputs = {}
for in_spec in coreml_model.input_description._fd_spec:
name = in_spec.name
shape = in_spec.type.multiArrayType.shape
inputs[name] = np.random.random_sample(shape)
coreml_outputs = [coreml_model.predict(inputs)[name] for name in out_names]
# inference via tvm coreml runtime
runtime = coreml_runtime.create(compiled_model_path, out_names, ctx)
for name in inputs:
runtime.set_input(name, tvm.nd.array(inputs[name], ctx))
runtime.invoke()
tvm_outputs = [runtime.get_output(i).asnumpy() for i in range(runtime.get_num_outputs())]
for c_out, t_out in zip(coreml_outputs, tvm_outputs):
np.testing.assert_almost_equal(c_out, t_out, 3)
def check_remote(coreml_model):
temp = util.tempdir()
compiled_model = xcode.compile_coreml(coreml_model, out_dir=temp.temp_dir)
xcode.popen_test_rpc(proxy_host, proxy_port, key, destination=destination,
libs=[compiled_model])
compiled_model = os.path.basename(compiled_model)
remote = rpc.connect(proxy_host, proxy_port, key=key)
ctx = remote.cpu(0)
verify(coreml_model, compiled_model, ctx)
def check_local(coreml_model):
temp = util.tempdir()
compiled_model = xcode.compile_coreml(coreml_model, out_dir=temp.temp_dir)
ctx = tvm.cpu(0)
verify(coreml_model, compiled_model, ctx)
coreml_model = create_coreml_model()
check_remote(coreml_model)
check_local(coreml_model)
if __name__ == "__main__":
# skipped_test_coreml_runtime()
pass
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment