Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
147f3ad5
Commit
147f3ad5
authored
Oct 03, 2018
by
Yizhi Liu
Committed by
Tianqi Chen
Oct 03, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[Tutorial] tutorial for tensorize (#1774)
parent
e920c099
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
286 additions
and
0 deletions
+286
-0
tutorials/language/tensorize.py
+286
-0
No files found.
tutorials/language/tensorize.py
0 → 100644
View file @
147f3ad5
"""
Use Tensorize to Leverage Hardware Intrinsics
=============================================
**Author**: `Yizhi Liu <https://github.com/yzhliu>`_
This is an introduction material on how to perform tensorization in TVM.
By using schedule primitive :code:`tensorize`,
people can replace a unit of computation with the corresponding intrinsics,
making it easy to leverage handcrafted micro-kernels,
as well as extend TVM to support new hardware architectures.
The purpose of this tutorial is to show the functionality
and usage of tensorize instead of providing an efficient solution.
"""
from
__future__
import
absolute_import
,
print_function
import
tvm
import
numpy
as
np
######################################################################
# Define Matrix Multiplication
# ----------------------------
# Take matrix multiplication as our example.
# Matmul first multiply the corresponding elements between two matrix,
# then accumulate across a certain axis.
# The following lines describe the computation :code:`A * B^T` in TVM.
#
N
,
M
,
L
=
1024
,
512
,
64
A
=
tvm
.
placeholder
((
N
,
L
),
name
=
'A'
)
B
=
tvm
.
placeholder
((
M
,
L
),
name
=
'B'
)
k
=
tvm
.
reduce_axis
((
0
,
L
),
name
=
'k'
)
C
=
tvm
.
compute
((
N
,
M
),
lambda
i
,
j
:
tvm
.
sum
(
A
[
i
,
k
]
*
B
[
j
,
k
],
axis
=
k
),
name
=
'C'
)
s
=
tvm
.
create_schedule
(
C
.
op
)
print
(
tvm
.
lower
(
s
,
[
A
,
B
,
C
],
simple_mode
=
True
))
######################################################################
# Schedule the Matmul
# -------------------
# Now, suppose we have an accelerator that supports
# matrix-vector multiplication (GEMV) as a hardware primitive,
# which can take arbitrary size of reduce axis,
# but another axis needs to be no larger than 16.
# Thus we break down the matmul loops to make the innermost loops a (16x64) GEMV.
#
factor
=
16
x
,
y
=
C
.
op
.
axis
z
,
=
C
.
op
.
reduce_axis
yo
,
yi
=
s
[
C
]
.
split
(
y
,
factor
=
factor
)
s
[
C
]
.
reorder
(
x
,
yo
,
yi
,
z
)
print
(
tvm
.
lower
(
s
,
[
A
,
B
,
C
],
simple_mode
=
True
))
######################################################################
# As showed in the IR printed above,
# the inner loops :code:`j.inner` along with :code:`k` together form a computation of GEMV
# - within the inner most two loops, the index :code:`i` is fixed,
# the access to the matrix :code:`A` only varies by :code:`k`,
# which makes the access pattern of :code:`A` a "vector".
# In order to leverage our hypothetical hardware's GEMV instruction,
# we can tensorize over :code:`j.inner`.
#
# Define GEMV Tensorization Intrinsic
# -----------------------------------
# Before scheduling the tensorization, we need to first define the intrinsic function for GEMV.
# It includes two parts, the first is a compute definition of GEMV.
# TVM uses it to match the computing pattern in the original Matmul schedule.
# The second is to specify how to execute GEMV on the device,
# which is done in :code:`intrin_func` below.
#
def
intrin_gemv
(
m
,
l
):
a
=
tvm
.
placeholder
((
l
,),
name
=
'a'
)
b
=
tvm
.
placeholder
((
m
,
l
),
name
=
'b'
)
k
=
tvm
.
reduce_axis
((
0
,
l
),
name
=
'k'
)
c
=
tvm
.
compute
((
m
,),
lambda
i
:
tvm
.
sum
(
a
[
k
]
*
b
[
i
,
k
],
axis
=
k
),
name
=
'c'
)
Ab
=
tvm
.
decl_buffer
(
a
.
shape
,
a
.
dtype
,
name
=
"A"
,
offset_factor
=
1
,
strides
=
[
1
])
Bb
=
tvm
.
decl_buffer
(
b
.
shape
,
b
.
dtype
,
name
=
"B"
,
offset_factor
=
1
,
strides
=
[
tvm
.
var
(
"s1"
),
1
])
Cb
=
tvm
.
decl_buffer
(
c
.
shape
,
c
.
dtype
,
name
=
"C"
,
offset_factor
=
1
,
strides
=
[
1
])
def
intrin_func
(
ins
,
outs
):
ib
=
tvm
.
ir_builder
.
create
()
aa
,
bb
=
ins
cc
=
outs
[
0
]
ib
.
emit
(
tvm
.
call_extern
(
"int32"
,
"gemv_update"
,
cc
.
access_ptr
(
"w"
),
aa
.
access_ptr
(
"r"
),
bb
.
access_ptr
(
"r"
),
m
,
l
,
bb
.
strides
[
0
]))
return
ib
.
get
()
with
tvm
.
build_config
(
offset_factor
=
1
):
return
tvm
.
decl_tensor_intrin
(
c
.
op
,
intrin_func
,
binds
=
{
a
:
Ab
,
b
:
Bb
,
c
:
Cb
})
######################################################################
# Here :code:`tvm.decl_tensor_intrin` declares how to execute the computation :code:`c.op`.
# Our implementation simply takes the inputs and outputs,
# converts them to pointers and emit an external function call.
# Note that tensorization requires user to specify :code:`offset_factor`,
# with this information, TVM has knowledge of whether the data is aligned
# between the start address of the original data structure
# and the offset being passed to tensorize,
# so that it has chance to optimize with vectorized loading.
# We set the factor to 1 for simplification.
#
# Buffers are also declared for inputs and outputs, though this is not required,
# we benefit from the extra information provided by buffers. For example, we pass
# :code:`bb.strides[0]` as an argument to the external function :code:`gemv_update`.
# For now :code:`bb.strides[0] == l`,
# but later we will see how they can differ with more complicated schedules.
#
# Note that we use :code:`tvm.var("s1")` as the first stride dimension for :code:`B`.
# If the strides can be inferred
# - in this case, TVM knows tensor B is compact thus the strides are :code:`[L, 1]` -
# such placeholder can be put to let TVM automatically bind the inferred value for us.
#
gemv
=
intrin_gemv
(
factor
,
L
)
s
[
C
]
.
tensorize
(
yi
,
gemv
)
print
(
tvm
.
lower
(
s
,
[
A
,
B
,
C
],
simple_mode
=
True
))
######################################################################
# By tensorizing over :code:`yi`, the inner most two loops are
# now replaced by the intrinsic function we defined before.
# In order to build and run the module, let's define the external function :code:`gemv_update`,
# it is a naive implementation of GEMV, just for demonstration.
#
def
gemv_impl
():
cc_code
=
"""
extern "C" int gemv_update(float *cc, float *aa, float *bb, int m, int l, int stride) {
for (int i = 0; i < m; ++i) {
for (int j = 0; j < l; ++j) {
cc[i] += aa[j] * bb[i * stride + j];
}
}
return 0;
}
"""
from
tvm.contrib
import
util
,
clang
temp
=
util
.
tempdir
()
ll_path
=
temp
.
relpath
(
"temp.ll"
)
# Create LLVM ir from c source code
ll_code
=
clang
.
create_llvm
(
cc_code
,
output
=
ll_path
)
return
ll_code
######################################################################
# Now we leverage the pragma attribute :code:`import_llvm` to import llvm asm inline.
# The importing needs to happen before the tensorized GEMV being executed.
#
s
[
C
]
.
pragma
(
x
,
"import_llvm"
,
gemv_impl
())
func
=
tvm
.
build
(
s
,
[
A
,
B
,
C
],
target
=
"llvm"
,
name
=
"gemv"
)
from
topi.util
import
get_const_tuple
dtype
=
A
.
dtype
ctx
=
tvm
.
context
(
"cpu"
,
0
)
a
=
np
.
random
.
uniform
(
size
=
get_const_tuple
(
A
.
shape
))
.
astype
(
dtype
)
b
=
np
.
random
.
uniform
(
size
=
get_const_tuple
(
B
.
shape
))
.
astype
(
dtype
)
c
=
tvm
.
nd
.
array
(
np
.
zeros
(
get_const_tuple
(
C
.
shape
),
dtype
=
dtype
),
ctx
)
func
(
tvm
.
nd
.
array
(
a
,
ctx
),
tvm
.
nd
.
array
(
b
,
ctx
),
c
)
np
.
testing
.
assert_allclose
(
c
.
asnumpy
(),
np
.
dot
(
a
,
b
.
T
),
rtol
=
1e-3
)
######################################################################
# We compare the tensorize version with that :code:`numpy.dot` produces,
# ensure our implementation is correct.
#
# Reduce-update for Tensorize
# ------------------------------------
# Let's then move one step forward.
# Assume our accelerator could only multiply a vector by a square matrix,
# in which the vector size needs to be no larger than 16.
# Given such hardware constrain, now we need to split the reduce axis as following,
#
zo
,
zi
=
s
[
C
]
.
split
(
z
,
factor
=
factor
)
s
[
C
]
.
reorder
(
x
,
yo
,
zo
,
yi
,
zi
)
######################################################################
# However, since the tensorize intrinsic now only covers a part of the reduce axis,
# instead of using one "body" function, TVM requires a :code:`reduce_reset` function,
# which will be invoked before the reduce for-loop, and a :code:`reduce_update` function,
# which defines the "update" computing strategy.
#
def
gemv_impl
():
cc_code
=
"""
extern "C" int gemv_update(float *cc, float *aa, float *bb, int m, int l, int stride) {
for (int i = 0; i < m; ++i) {
for (int j = 0; j < l; ++j) {
cc[i] += aa[j] * bb[i * stride + j];
}
}
return 0;
}
extern "C" int gemv_reset(float *cc, int m) {
for (int i = 0; i < m; ++i) {
cc[i] = 0.0;
}
return 0;
}
"""
from
tvm.contrib
import
util
,
clang
temp
=
util
.
tempdir
()
ll_path
=
temp
.
relpath
(
"temp.ll"
)
# Create LLVM ir from c source code
ll_code
=
clang
.
create_llvm
(
cc_code
,
output
=
ll_path
)
return
ll_code
def
intrin_gemv
(
m
,
l
):
a
=
tvm
.
placeholder
((
l
,),
name
=
'a'
)
b
=
tvm
.
placeholder
((
m
,
l
),
name
=
'b'
)
k
=
tvm
.
reduce_axis
((
0
,
l
),
name
=
'k'
)
c
=
tvm
.
compute
((
m
,),
lambda
i
:
tvm
.
sum
(
a
[
k
]
*
b
[
i
,
k
],
axis
=
k
),
name
=
'c'
)
Ab
=
tvm
.
decl_buffer
(
a
.
shape
,
a
.
dtype
,
name
=
"A"
,
offset_factor
=
1
,
strides
=
[
1
])
Bb
=
tvm
.
decl_buffer
(
b
.
shape
,
b
.
dtype
,
name
=
"B"
,
offset_factor
=
1
,
strides
=
[
tvm
.
var
(
"s1"
),
1
])
Cb
=
tvm
.
decl_buffer
(
c
.
shape
,
c
.
dtype
,
name
=
"C"
,
offset_factor
=
1
,
strides
=
[
1
])
def
intrin_func
(
ins
,
outs
):
aa
,
bb
=
ins
cc
=
outs
[
0
]
def
_body
():
ib
=
tvm
.
ir_builder
.
create
()
ib
.
emit
(
tvm
.
call_extern
(
"int32"
,
"gemv_update"
,
cc
.
access_ptr
(
"w"
),
aa
.
access_ptr
(
"r"
),
bb
.
access_ptr
(
"r"
),
m
,
l
,
bb
.
strides
[
0
]))
return
ib
.
get
()
def
_reduce_reset
():
ib
=
tvm
.
ir_builder
.
create
()
ib
.
emit
(
tvm
.
call_extern
(
"int32"
,
"gemv_reset"
,
cc
.
access_ptr
(
"w"
),
m
))
return
ib
.
get
()
def
_reduce_update
():
return
_body
()
return
_body
(),
_reduce_reset
(),
_reduce_update
()
with
tvm
.
build_config
(
offset_factor
=
1
):
return
tvm
.
decl_tensor_intrin
(
c
.
op
,
intrin_func
,
binds
=
{
a
:
Ab
,
b
:
Bb
,
c
:
Cb
})
######################################################################
# Note that :code:`intrin_func` now returns a triplet:
# :code:`(body, reduce_reset, reduce_update)`.
# If tensorization includes all the reduce axes, function :code:`body()` will be invoked,
# otherwise :code:`reduce_reset()` and :code:`reduce_update()` together will be used.
# In our example :code:`body()` and :code:`reduce_update()`
# share the same implementation,
# while in other cases, hardware may have different instructions for these two functions.
# Moreover, we can see now :code:`bb.strides[0]` is different from :code:`l`
# due to the tiling.
#
# Tensorize for squared GEMV, build and check the results,
#
gemv
=
intrin_gemv
(
factor
,
factor
)
s
[
C
]
.
tensorize
(
yi
,
gemv
)
s
[
C
]
.
pragma
(
yo
,
"import_llvm"
,
gemv_impl
())
func
=
tvm
.
build
(
s
,
[
A
,
B
,
C
],
target
=
"llvm"
,
name
=
"gemv"
)
a
=
np
.
random
.
uniform
(
size
=
get_const_tuple
(
A
.
shape
))
.
astype
(
dtype
)
b
=
np
.
random
.
uniform
(
size
=
get_const_tuple
(
B
.
shape
))
.
astype
(
dtype
)
c
=
tvm
.
nd
.
array
(
np
.
zeros
(
get_const_tuple
(
C
.
shape
),
dtype
=
dtype
),
ctx
)
func
(
tvm
.
nd
.
array
(
a
,
ctx
),
tvm
.
nd
.
array
(
b
,
ctx
),
c
)
np
.
testing
.
assert_allclose
(
c
.
asnumpy
(),
np
.
dot
(
a
,
b
.
T
),
rtol
=
1e-3
)
######################################################################
# Summary
# -------
# This tutorial demonstrates the usage of tensorize intrinsic in TVM.
# Tensorize provides a way for users to get fully optimized schedule via micro-kernels.
# For example, INT8 quantization on Intel CPUs uses tensorization
# to invoke AVX instruction directly.
# It also enables TVM to compile to ASICs -
# checkout `VTA <https://docs.tvm.ai/vta/index.html>`_ for details.
# We also demonstrates how to use inline assembly importing,
# which helps users inject asm easily into the schedule.
#
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment