Commit 0d4870cc by Animesh Jain Committed by Zhi

[QNN] Convolution 2D Implementation. (#3580)

Rebasing. Empty commit.

Clang-format styling.
parent df7cc5db
......@@ -211,6 +211,7 @@ This level supports dialect operators.
:nosignatures:
tvm.relay.qnn.op.requantize
tvm.relay.qnn.op.conv2d
Level 1 Definitions
......@@ -357,3 +358,4 @@ Level 10 Definitions
Level 11 Definitions
--------------------
.. autofunction:: tvm.relay.qnn.op.requantize
.. autofunction:: tvm.relay.qnn.op.conv2d
......@@ -125,6 +125,68 @@ struct QnnConcatenateAttrs : public tvm::AttrsNode<QnnConcatenateAttrs> {
}
}; // struct QnnConcatenateAttrs
/*! \brief Attribute for QNN Conv2d operator */
struct QnnConv2DAttrs : public tvm::AttrsNode<QnnConv2DAttrs> {
// Traditional conv2d attributes.
Array<IndexExpr> strides;
Array<IndexExpr> padding;
Array<IndexExpr> dilation;
int groups;
IndexExpr channels;
Array<IndexExpr> kernel_size;
std::string data_layout;
std::string kernel_layout;
std::string out_layout;
DataType out_dtype;
// Quantization related attributes.
int32_t input_zero_point;
int32_t kernel_zero_point;
TVM_DECLARE_ATTRS(QnnConv2DAttrs, "relay.attrs.QnnConv2DAttrs") {
TVM_ATTR_FIELD(strides).set_default(Array<IndexExpr>({1, 1}))
.describe("Specifies the strides of the convolution.");
TVM_ATTR_FIELD(padding).set_default(Array<IndexExpr>({0, 0}))
.describe("If padding is non-zero, then the input is implicitly zero-padded"
"on both sides for padding number of points");
TVM_ATTR_FIELD(dilation).set_default(Array<IndexExpr>({1, 1}))
.describe("Specifies the dilation rate to use for dilated convolution.");
TVM_ATTR_FIELD(groups).set_default(1)
.describe("Controls the connections between inputs and outputs."
"At groups=1, all inputs are convolved to all outputs."
"At groups=2, the operation becomes equivalent to having two convolution"
"layers side by side, each seeing half the input channels, and producing"
"half the output channels, and both subsequently concatenated.");
TVM_ATTR_FIELD(channels)
.describe("The number of output channels in the convolution."
" If it is not set, inferred by shape of the weight.")
.set_default(NullValue<IndexExpr>());
TVM_ATTR_FIELD(kernel_size)
.describe("Specifies the dimensions of the convolution window.")
.set_default(NullValue<Array<IndexExpr> >());
TVM_ATTR_FIELD(data_layout).set_default("NCHW")
.describe("Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc."
"'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
"dimensions respectively. Convolution is applied on the 'H' and"
"'W' dimensions.");
TVM_ATTR_FIELD(kernel_layout).set_default("OIHW")
.describe("Dimension ordering of weight. Can be 'OIHW', 'OIHW16o16i', etc."
"'O', 'I', 'H', 'W' stands for num_filter, input_channel, height, and width"
"dimensions respectively.");
TVM_ATTR_FIELD(out_layout).set_default("")
.describe("Dimension ordering of output. Can be 'NCHW', 'NHWC', etc."
"'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
"dimensions respectively. Default to be same as input layout.");
TVM_ATTR_FIELD(out_dtype)
.set_default(NullValue<DataType>())
.describe("Output data type, set to explicit type under mixed precision setting");
TVM_ATTR_FIELD(input_zero_point)
.describe("The zero point of the input tensor.");
TVM_ATTR_FIELD(kernel_zero_point)
.describe("The zero point of the kernel tensor.");
}
};
} // namespace qnn
} // namespace relay
} // namespace tvm
......
......@@ -183,3 +183,83 @@ def concatenate(data,
output_scale,
output_zero_point,
axis)
def conv2d(data,
kernel,
input_zero_point,
kernel_zero_point,
strides=(1, 1),
padding=(0, 0),
dilation=(1, 1),
groups=1,
channels=None,
kernel_size=None,
data_layout="NCHW",
kernel_layout="OIHW",
out_layout="",
out_dtype="int32"):
r"""Quantized 2D convolution.
This operator convolves quantized data with quantized kernel. The scale of
the output quantized tensor is the product of the kernel_scale and
input_scale of the input quantized tensors. The zero point of the output
quantized tensor is 0. By default, the dtype of output is int32. Please also
refer to Requantize operator to understand how to scale back the int32
output to (u)int8.
Parameters
----------
data : tvm.relay.Expr
The input data to the operator.
kernel : tvm.relay.Expr
The kernel expressions.
input_zero_point: int
The zero point of the data distribution.
kernel_zero_point: int
The zero point of the quantized_kernel distribution.
strides : tuple of int, optional
The strides of convolution.
padding : tuple of int, optional
The padding of convolution on both sides of inputs before convolution.
dilation : tuple of int, optional
Specifies the dilation rate to be used for dilated convolution.
groups : int, optional
Number of groups for grouped convolution.
channels : int, optional
Number of output channels of this convolution.
kernel_size : tuple of int, optional
The spatial of the convolution kernel.
data_layout : str, optional
Layout of the input.
kernel_layout : str, optional
Layout of the kernel.
out_layout : str, optional
Layout of the output, by default, out_layout is the same as data_layout
out_dtype : str, optional
Specifies the output data type for mixed precision conv2d.
Returns
-------
result : tvm.relay.Expr
The computed result.
"""
return _make.conv2d(data, kernel,
input_zero_point, kernel_zero_point,
strides, padding, dilation,
groups, channels, kernel_size,
data_layout, kernel_layout, out_layout, out_dtype)
......@@ -415,6 +415,71 @@ static inline Expr Full(Expr fill_value,
return CallNode::make(op, {fill_value}, Attrs(attrs), {});
}
static inline Expr Conv2D(Expr data, Expr weight, Array<IndexExpr> strides,
Array<IndexExpr> padding, Array<IndexExpr> dilation, int groups,
IndexExpr channels, Array<IndexExpr> kernel_size, std::string data_layout,
std::string kernel_layout, std::string out_layout, DataType out_dtype) {
auto attrs = make_node<Conv2DAttrs>();
attrs->strides = std::move(strides);
attrs->padding = std::move(padding);
attrs->dilation = std::move(dilation);
attrs->groups = groups;
attrs->channels = std::move(channels);
attrs->kernel_size = std::move(kernel_size);
attrs->data_layout = std::move(data_layout);
attrs->kernel_layout = std::move(kernel_layout);
attrs->out_layout = std::move(out_layout);
attrs->out_dtype = std::move(out_dtype);
static const Op& op = Op::Get("nn.conv2d");
return CallNode::make(op, {data, weight}, Attrs(attrs), {});
}
static inline Expr Sum(Expr data, Array<Integer> axis, bool keepdims, bool exclude) {
auto attrs = make_node<ReduceAttrs>();
attrs->axis = std::move(axis);
attrs->keepdims = keepdims;
attrs->exclude = exclude;
static const Op& op = Op::Get("sum");
return CallNode::make(op, {data}, Attrs(attrs), {});
}
static inline Expr Reshape(Expr data, Array<Integer> newshape) {
auto attrs = make_node<ReshapeAttrs>();
attrs->newshape = std::move(newshape);
attrs->reverse = false;
static const Op& op = Op::Get("reshape");
return CallNode::make(op, {data}, Attrs(attrs), {});
}
static inline Expr AvgPool2D(Expr data, Array<IndexExpr> pool_size, Array<IndexExpr> strides,
Array<IndexExpr> padding, std::string layout, bool ceil_mode,
bool count_include_pad) {
auto attrs = make_node<AvgPool2DAttrs>();
attrs->pool_size = std::move(pool_size);
attrs->strides = std::move(strides);
attrs->padding = std::move(padding);
attrs->layout = std::move(layout);
attrs->ceil_mode = ceil_mode;
attrs->count_include_pad = count_include_pad;
static const Op& op = Op::Get("nn.avg_pool2d");
return CallNode::make(op, {data}, Attrs(attrs), {});
}
static inline Expr Pad(Expr data, Array<Array<IndexExpr>> pad_width, double pad_value) {
auto attrs = make_node<PadAttrs>();
attrs->pad_value = pad_value;
attrs->pad_width = std::move(pad_width);
static const Op& op = Op::Get("nn.pad");
return CallNode::make(op, {data}, Attrs(attrs), {});
}
static inline Expr Tile(Expr data, Array<Integer> reps) {
auto attrs = make_node<TileAttrs>();
attrs->reps = reps;
static const Op& op = Op::Get("tile");
return CallNode::make(op, {data}, Attrs(attrs), {});
}
Expr MakeConcatenate(Expr data, int axis);
Expr MakeStridedSlice(Expr data, Array<Integer> begin, Array<Integer> end, Array<Integer> strides);
......
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* Copyright (c) 2019 by Contributors
* \file src/relay/qnn/op/convolution.cc
* \brief Property def of qnn convolution operator.
*/
#include <tvm/data_layout.h>
#include <tvm/ir_pass.h>
#include <tvm/relay/analysis.h>
#include <tvm/relay/base.h>
#include <tvm/relay/op.h>
#include <tvm/relay/qnn/attrs.h>
#include <tvm/relay/transform.h>
#include "../../op/nn/convolution.h"
#include "../../pass/pattern_util.h"
#include "../util.h"
namespace tvm {
namespace relay {
namespace qnn {
// relay.op.qnn.conv2d
TVM_REGISTER_NODE_TYPE(QnnConv2DAttrs);
// Workload - batch_size, in_channels, out_channels, kernel_h, kernel_w
using WorkloadType = std::tuple<int, int, int, int, int>;
/*
* \brief Get the conv parameters like batch_size, kernel_height etc.
* \param ref_call The original callnode.
* \param param The qnn conv2d attributes.
* \return A tuple of workload.
*/
WorkloadType GetWorkload(const Array<tvm::relay::Type>& arg_types, const QnnConv2DAttrs* param) {
// Get conv parameters.
auto get_shape = [](const Type& type) {
auto input_tt = type.as<TensorTypeNode>();
CHECK(input_tt != nullptr) << "Type information missing."
<< " Please run infer_type pass.";
return input_tt->shape;
};
const auto in_shape = get_shape(arg_types[0]);
int batch_size, in_channels;
if (param->data_layout == "NCHW") {
batch_size = get_const_int(in_shape[0]);
in_channels = get_const_int(in_shape[1]);
} else if (param->data_layout == "NHWC") {
batch_size = get_const_int(in_shape[0]);
in_channels = get_const_int(in_shape[3]);
} else {
LOG(FATAL) << "qnn.conv2d does not support " << param->data_layout << " layout";
}
const auto kernel_shape = get_shape(arg_types[1]);
int out_channels, kernel_h, kernel_w;
if (param->kernel_layout == "OIHW") {
out_channels = get_const_int(kernel_shape[0]);
kernel_h = get_const_int(kernel_shape[2]);
kernel_w = get_const_int(kernel_shape[3]);
} else if (param->kernel_layout == "HWIO") {
kernel_h = get_const_int(kernel_shape[0]);
kernel_w = get_const_int(kernel_shape[1]);
out_channels = get_const_int(kernel_shape[3]);
} else if (param->kernel_layout == "HWOI") {
kernel_h = get_const_int(kernel_shape[0]);
kernel_w = get_const_int(kernel_shape[1]);
out_channels = get_const_int(kernel_shape[2]);
} else {
LOG(FATAL) << "qnn.conv2d does not support " << param->kernel_layout << " layout";
}
return std::make_tuple(batch_size, in_channels, out_channels, kernel_h, kernel_w);
}
/*
* \brief Fallback to simpler lowering for dilation or depthwise conv.
* \param data The input expr.
* \param weight The weight expr.
* \param zp_data The data zero point expr.
* \param zp_kernel The kernel zero point expr.
* \param param The qnn conv2d attributes.
* \return The fallback lowered sequence of Relay expr.
* \note In case of dilation, normal lowering would require a dilated pool.
* Since, we don't have dilated pool, we fallback to a simpler sequence of
* Relay operations. This will potentially lead to performance degradation
* as the convolution is called on int32 tensors instead of int8 tensors.
*/
Expr Conv2DFallBack(const Expr& data, const Expr& weight, const Expr& zp_data,
const Expr& zp_kernel, const QnnConv2DAttrs* param) {
auto shifted_data = data;
if (param->input_zero_point != 0) {
shifted_data = Subtract(Cast(data, Int(32)), zp_data);
}
auto shifted_kernel = weight;
if (param->kernel_zero_point != 0) {
shifted_kernel = Subtract(Cast(weight, Int(32)), zp_kernel);
}
return Conv2D(shifted_data, shifted_kernel, param->strides, param->padding, param->dilation,
param->groups, param->channels, param->kernel_size, param->data_layout,
param->kernel_layout, param->out_layout, param->out_dtype);
}
/*
* \brief Pad the input data.
* \param data The input expr.
* \return The padded input expr.
* \note For quantized convolution, the input has to be padded with zero point
* instead of zero. This might lead to performance degradation as pad
* cannot be fused with conv in Relay. In case we see performance
* degradation, we can change the conv2D API to accept a pad_const value.
*/
Expr Conv2DPadInput(const Expr& data, const QnnConv2DAttrs* param) {
// 1) Pad the input data
auto padded_data = data;
auto pad_h_value = get_const_int(param->padding[0]);
auto pad_w_value = get_const_int(param->padding[1]);
if (pad_h_value != 0 || pad_w_value != 0) {
Array<IndexExpr> pad_n({0, 0});
Array<IndexExpr> pad_c({0, 0});
Array<IndexExpr> pad_h({param->padding[0], param->padding[0]});
Array<IndexExpr> pad_w({param->padding[1], param->padding[1]});
Array<Array<IndexExpr>> pad_width;
if (param->data_layout == "NCHW") {
pad_width = {pad_n, pad_c, pad_h, pad_w};
} else if (param->data_layout == "NHWC") {
pad_width = {pad_n, pad_h, pad_w, pad_c};
} else {
LOG(FATAL) << "qnn.conv2d does not support " << param->data_layout << " layout";
}
padded_data = Pad(data, pad_width, param->input_zero_point);
}
return padded_data;
}
/*
* \brief Calculates the first term in the qnn.conv2d lowering sequence.
* \param data The input expr.
* \param weight The weight expr.
* \param param The qnn conv2d attributes.
* \return The sequence of Relay operatos for term1.
* \note The term1 is
* Sigma(c,r,s) QW(k, c, r, s) * QA(n, c, h + r, w + s)
* This is just conv2d on int tensors.
*/
Expr Conv2DFirstTerm(const Expr& padded_data, const Expr& weight, const QnnConv2DAttrs* param) {
// Lowering for Term 1
Array<IndexExpr> padding({0, 0});
return Conv2D(padded_data, weight, param->strides, padding, param->dilation, param->groups,
param->channels, param->kernel_size, param->data_layout, param->kernel_layout,
param->out_layout, param->out_dtype);
}
/*
* \brief Calculates the second term in the qnn.conv2d lowering sequence.
* \param padded_data The padded data expr.
* \param zp_kernel The kernel zero point expr.
* \param param The qnn conv2d attributes.
* \param kernel_h The height of kernel.
* \param kernel_w The width of kernel.
* \return The sequence of Relay operatos for term2.
* \note The term2 looks like this
*
* Sigma(c,r,s) zp_w * QA(n, c, h + r, w + s)
*
* Second term is not directly represetable by one Relay operator.
* However, deeper analysis shows that we can reduce r,s using avg_pool2d,
* followed by a reduce on the C axis. Using avg_pool2d also gives an
* opportunity to reuse alter_op_layout infrastructure.
*/
Expr Conv2DSecondTerm(const Expr& padded_data, const Expr& zp_kernel, const QnnConv2DAttrs* param,
int kernel_h, int kernel_w, int out_channels) {
auto casted_t2 = Cast(padded_data, Int(32));
// We can reduce the H and W axis by using avg_pool2d. However, avg_pool2d averages the sum.
// Since, this is integer division (floor), we can first multiply the data by the pool_size and
// then perform avg_pool2d. Reversing this causes inaccuracy due to floor division.
auto scaled_hw_t2 = Multiply(casted_t2, MakeConstantScalar(Int(32), kernel_h * kernel_w));
Array<IndexExpr> padding({0, 0});
// If the pool_size is 1x1, we don't need avg_pool2d.
auto reduced_hw_t2 = scaled_hw_t2;
if (kernel_h * kernel_w != 1) {
reduced_hw_t2 =
AvgPool2D(scaled_hw_t2, param->kernel_size, param->strides, padding, param->data_layout,
false, // ceil_mode
false); // count_include_pad
}
// Reduce the C dimension. Find the dimension.
Array<Integer> axes_t2;
if (param->data_layout == "NCHW") {
axes_t2 = {1};
} else if (param->data_layout == "NHWC") {
axes_t2 = {3};
} else {
LOG(FATAL) << "qnn.conv2d does not support " << param->data_layout << " layout";
}
// Keep dims true to retain 4D tensor
auto reduced_t2 = Sum(reduced_hw_t2, axes_t2, true, false);
auto multiplied_t2 = reduced_t2;
if (param->kernel_zero_point != 1) {
multiplied_t2 = Multiply(zp_kernel, reduced_t2);
}
// Replicate to go back to NHWC/NCHW. This is not necessarily needed, but it fails AlterOpLayout.
// We can remove this once AlterOpLayout refactoring completes -
// https://github.com/dmlc/tvm/issues/3670
Array<Integer> reps;
if (param->data_layout == "NCHW") {
reps = {1, out_channels, 1, 1};
} else if (param->data_layout == "NHWC") {
reps = {1, 1, 1, out_channels};
} else {
LOG(FATAL) << "qnn.conv2d does not support " << param->data_layout << " layout";
}
return Tile(multiplied_t2, reps);
}
/*
* \brief Calculates the third term in the qnn.conv2d lowering sequence.
* \param weight The weight expr.
* \param zp_data The data zero point expr.
* \param param The qnn conv2d attributes.
* \param batch_size The batch size.
* \param out_channels The number of output channels.
* \return The sequence of Relay operatos for term3.
* \note The term3 looks like this
*
* Sigma(c,r,s) zp_a * QW(k, c, r, s)
*
* This can be achieved by calling reduce on c, r and s axis, resulting in
* a 1D tensor. The tensor is then reshaped to conform to NHWC/NCHW
* format.
*/
Expr Conv2DThirdTerm(const Expr& weight, const Expr& zp_data, const QnnConv2DAttrs* param,
int batch_size, int out_channels) {
// Find which dimensions are C, R, S.
Array<Integer> axes_t3;
if (param->kernel_layout == "OIHW") {
// For OIHW kernel layout, IHW are reduce axis
axes_t3 = {1, 2, 3};
} else if (param->kernel_layout == "HWIO") {
axes_t3 = {0, 1, 2};
} else if (param->kernel_layout == "HWOI") {
axes_t3 = {0, 1, 3};
} else {
LOG(FATAL) << "qnn.conv2d does not support " << param->kernel_layout << " layout";
}
auto reduced_t3 = Sum(Cast(weight, Int(32)), axes_t3, false, false);
// Find the newshape depending on NCHW/NHWC layout.
Array<Integer> newshape;
if (param->data_layout == "NCHW") {
newshape = {batch_size, out_channels, 1, 1};
} else if (param->data_layout == "NHWC") {
newshape = {batch_size, 1, 1, out_channels};
} else {
LOG(FATAL) << "qnn.conv2d does not support " << param->data_layout << " layout";
}
auto reshaped_t3 = Reshape(reduced_t3, newshape);
if (param->input_zero_point == 1) {
return reshaped_t3;
}
return Multiply(zp_data, reshaped_t3);
}
/*
* \brief Calculates the fourth term in the qnn.conv2d lowering sequence.
* \param param The qnn conv2d attributes.
* \param batch_size The batch size.
* \param in_channels The number of input channels.
* \param kernel_h The height of kernel.
* \param kernel_w The width of kernel.
* \return The sequence of Relay operatos for term4.
* \note The term4 looks like this
*
* Sigma(c,r,s) zp_a * zp_w
*
*/
Expr Conv2DFourthTerm(const QnnConv2DAttrs* param, int batch_size, int in_channels, int kernel_h,
int kernel_w) {
int scalar_term4 =
param->input_zero_point * param->kernel_zero_point * in_channels * kernel_h * kernel_w;
return MakeConstantScalar(Int(32), scalar_term4);
}
/*
* \brief Combines different terms of qnn conv2d lowering.
* \param term1 The term1 of qnn conv2d lowering.
* \param term2 The term2 of qnn conv2d lowering.
* \param term3 The term3 of qnn conv2d lowering.
* \param term4 The term4 of qnn conv2d lowering.
* \param param The qnn conv2d attributes.
* \return The combined sequence of relay operations.
* \note The combined operation looks like this
*
* Sigma(c,r,s) QW(k, c, r, s) * QA(n, c, h + r, w + s) // Term1
* - Sigma(c,r,s) zp_w * QA(n, c, h + r, w + s) // Term2
* - Sigma(c,r,s) zp_a * QW(k, c, r, s) // Term3
* + Sigma(c,r,s) zp_a * zp_w // Term4
*
*/
Expr Conv2DCombineTerms(const Expr& term1, const Expr& term2, const Expr& term3, const Expr& term4,
const QnnConv2DAttrs* param) {
if (param->input_zero_point == 0 && param->kernel_zero_point == 0) {
// term 2, 3 and 4 become zero.
return term1;
} else if (param->input_zero_point == 0 && param->kernel_zero_point != 0) {
// term 3 and term 4 become zero.
return Subtract(term1, term2);
} else if (param->input_zero_point != 0 && param->kernel_zero_point == 0) {
// term 2 and term 4 become zero.
return Subtract(term1, term3);
} else {
auto data_term = Subtract(term1, term2);
// Putting constant terms together, so that constant folding can fold it.
auto const_term = Subtract(term4, term3);
return Add(data_term, const_term);
}
}
/*
* \brief Forward rewrite the qnn conv2d op.
* \param attrs The QNN conv2d attrs.
* \param new_args The new mutated args to the call node.
* \param arg_types The types of input and output.
* \return The sequence of Relay ops for qnn cov2d op.
* \node Lowering of the qnn.conv2d operator
* A quantized tensor is represented in following manner
* A = scale_a x (QA - zp_A)
* where QA is quantized tensor, scale_a and zp_A are quantizations
* params.
*
* Quantized convlution convolves two quantized tensors and returns a
* quantized tensor of default dtype of int32, with scale equaling to the
* product of scales of input tensors, and a zero point of zero.
*
* For symmetric quantization, the zp_* for all tensors is 0. So, the
* lowering of qnn.conv2d is
*
* QA(n, ic, oh + r, ow + s) (conv) QW(oc, ic, r, s)
*
* For asymmetric computation, we can perform similar unrolling. We can
* find more details at
* https://discuss.tvm.ai/t/tf-lite-quantized-conv2d-operator-conversion/2651/8?u=janimesh
* The computation gets unrolled into following 4 terms
*
* Sigma(c,r,s) QW(k, c, r, s) * QA(n, c, h + r, w + s) // Term1
* - Sigma(c,r,s) zp_w * QA(n, c, h + r, w + s) // Term2
* - Sigma(c,r,s) zp_a * QW(k, c, r, s) // Term3
* + Sigma(c,r,s) zp_a * zp_w // Term4
*
* Term3 and Term4 can be computed at compile time.
*
* Key points to notice:
* 1) Padding is done explicitly because the input has to be padded with
* zero point. This might leave some performance opportunity at the
* table. Can be avoided by modifying conv2d API to accept the
* pad_const_value.
* 2) Second term is not directly represetable by one Relay operator.
* However, deeper analysis shows that we can reduce r,s using
* avg_pool2d, followed by a reduce on the C axis. Using avg_pool2d also
* gives an opportunity to reuse alter_op_layout infrastructure.
* 3) For dilated conv, in current lowering, we need dilated pool. So as
* a workaround, we fall back to simpler lowering using int32 conv if
* the conv is dilated. We fallback also in case of depthwise conv.
*
* The whole process can be broken down into following steps
* * Assertion checks for exisiting support, fallback if necessary
* * Pad the input.
* * Get Term1.
* * Get Term2.
* * Get Term3.
* * Get Term4.
* * Combine the terms.
*/
Expr QnnConv2DCanonicalize(const Attrs& attrs, const Array<Expr>& new_args,
const Array<tvm::relay::Type>& arg_types) {
CHECK_EQ(new_args.size(), 2);
Expr data = new_args[0];
Expr weight = new_args[1];
const auto* param = attrs.as<QnnConv2DAttrs>();
CHECK(param != nullptr);
// Assertion checks for exisiing support.
CHECK_EQ(param->padding.size(), 2) << "qnn.conv2d only supports 2D padding";
CHECK(param->data_layout == "NCHW" || param->data_layout == "NHWC")
<< "qnn.conv2d supports only NCHW/NHWC input data layout.";
CHECK(param->kernel_layout == "OIHW" || param->kernel_layout == "HWIO" ||
param->kernel_layout == "HWOI")
<< "qnn.conv2d supports only OIHW/HWIO/HWOI kernel data layout.";
int batch_size, in_channels, out_channels, kernel_h, kernel_w;
std::tie(batch_size, in_channels, out_channels, kernel_h, kernel_w) =
GetWorkload(arg_types, param);
auto zp_data = MakeConstantScalar(Int(32), param->input_zero_point);
auto zp_kernel = MakeConstantScalar(Int(32), param->kernel_zero_point);
// Fallback to int32 conv if there is dilation or depthwise conv2d
CHECK_EQ(param->dilation.size(), 2) << "qnn.conv2d only supports 2D dilation";
auto dilation_h = get_const_int(param->dilation[0]);
auto dilation_w = get_const_int(param->dilation[1]);
if (dilation_h != 1 || dilation_w != 1 || param->groups != 1) {
return Conv2DFallBack(data, weight, zp_data, zp_kernel, param);
}
auto padded_data = Conv2DPadInput(data, param);
auto term1 = Conv2DFirstTerm(padded_data, weight, param);
auto term2 = Conv2DSecondTerm(padded_data, zp_kernel, param, kernel_h, kernel_w, out_channels);
auto term3 = Conv2DThirdTerm(weight, zp_data, param, batch_size, out_channels);
auto term4 = Conv2DFourthTerm(param, batch_size, in_channels, kernel_h, kernel_w);
return Conv2DCombineTerms(term1, term2, term3, term4, param);
}
// Positional relay function to create quantized conv2d operator
// used by frontend FFI.
Expr MakeQnnConv2D(Expr data, Expr weight, int32_t input_zero_point, int32_t kernel_zero_point,
Array<IndexExpr> strides, Array<IndexExpr> padding, Array<IndexExpr> dilation,
int groups, IndexExpr channels, Array<IndexExpr> kernel_size,
std::string data_layout, std::string kernel_layout, std::string out_layout,
DataType out_dtype) {
auto attrs = make_node<QnnConv2DAttrs>();
attrs->strides = std::move(strides);
attrs->padding = std::move(padding);
attrs->dilation = std::move(dilation);
attrs->groups = groups;
attrs->channels = std::move(channels);
attrs->kernel_size = std::move(kernel_size);
attrs->data_layout = std::move(data_layout);
attrs->kernel_layout = std::move(kernel_layout);
attrs->out_layout = std::move(out_layout);
attrs->out_dtype = std::move(out_dtype);
attrs->input_zero_point = std::move(input_zero_point);
attrs->kernel_zero_point = std::move(kernel_zero_point);
static const Op& op = Op::Get("qnn.conv2d");
return CallNode::make(op, {data, weight}, Attrs(attrs), {});
}
RELAY_REGISTER_OP("qnn.conv2d")
.describe(R"code(2D quantized convolution layer.
This operator convolves quantized weight with quantized data. The scale of the
output quantized tensor is the product of the weight_scale and input_scale of
the input quantized tensors. The zero point of the output quantized tensor is
0. By default, the dtype of output is int32. Please also refer to Requantize
operator to understand how to scale back the int32 output to (u)int8.
- **data**: This depends on the `layout` parameter. Input is 4D array of shape
(batch_size, in_channels, height, width) if `layout` is `NCHW`.
- **weight**: (channels, in_channels, kernel_size[0], kernel_size[1])
- **out**: This depends on the `layout` parameter. Output is 4D array of shape
(batch_size, channels, out_height, out_width) if `layout` is `NCHW`.
)code" TVM_ADD_FILELINE)
.set_attrs_type_key("relay.attrs.QnnConv2DAttrs")
.set_num_inputs(2)
.add_argument("data", "Tensor", "The quantized input data tensor.")
.add_argument("weight", "Tensor", "The quantized weight tensor.")
.set_support_level(11)
.add_type_rel("QnnConv2D", Conv2DRel<QnnConv2DAttrs>)
.set_attr<FTVMLegalize>("FTVMQnnCanonicalize", QnnConv2DCanonicalize);
TVM_REGISTER_API("relay.qnn.op._make.conv2d").set_body_typed(MakeQnnConv2D);
} // namespace qnn
} // namespace relay
} // namespace tvm
......@@ -86,6 +86,12 @@ static inline Expr Requantize(const Expr& data, const Array<IndexExpr>& input_sh
return RequantizeLower(data, attrs.operator->(), input_shape, out_dtype);
}
static inline int64_t get_const_int(const tvm::Expr& x) {
auto* value_ptr = as_const_int(x);
CHECK(value_ptr) << "Expr is not a constant int";
return value_ptr[0];
}
} // namespace qnn
} // namespace relay
} // namespace tvm
......
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import tvm
import numpy as np
from tvm import relay
from tvm.relay import transform
from tvm.relay.testing import create_workload
from tvm.relay.testing import run_infer_type
from tvm.contrib import graph_runtime
def get_ref_func(data,
kernel,
input_zero_point,
kernel_zero_point,
kernel_size,
padding,
strides,
dilation,
data_layout,
kernel_layout,
out_dtype):
casted_data = relay.op.cast(data, "int32")
casted_kernel = relay.op.cast(kernel, "int32")
shifted_data = relay.op.subtract(casted_data,
relay.const(input_zero_point, "int32"))
shifted_kernel = relay.op.subtract(casted_kernel,
relay.const(kernel_zero_point, "int32"))
func = relay.op.nn.conv2d(shifted_data,
shifted_kernel,
padding=padding,
strides=strides,
dilation=dilation,
kernel_size=kernel_size,
out_dtype=out_dtype,
data_layout=data_layout,
kernel_layout=kernel_layout)
func = relay.Function(relay.analysis.free_vars(func), func)
return func
def get_qnn_func(data,
kernel,
input_zero_point,
kernel_zero_point,
kernel_size,
padding,
strides,
dilation,
data_layout,
kernel_layout,
out_dtype):
func = relay.qnn.op.conv2d(
data, kernel,
input_zero_point=input_zero_point,
kernel_zero_point=kernel_zero_point,
kernel_size=kernel_size,
strides=strides,
dilation=dilation,
padding=padding,
out_dtype=out_dtype,
data_layout=data_layout,
kernel_layout=kernel_layout)
mod = relay.Function(relay.analysis.free_vars(func), func)
mod = relay.Module.from_expr(mod)
mod = relay.qnn.transform.CanonicalizeOps()(mod)
return mod
def get_funcs(data_shape,
data_dtype,
kernel_shape,
kernel_dtype,
input_zero_point,
kernel_zero_point,
kernel_size,
padding,
strides,
dilation,
data_layout,
kernel_layout,
out_dtype):
data = relay.var("data", shape=data_shape,
dtype=data_dtype)
kernel = relay.var("kernel", shape=kernel_shape,
dtype=kernel_dtype)
ref_func = get_ref_func(data,
kernel,
input_zero_point,
kernel_zero_point,
kernel_size,
padding,
strides,
dilation,
data_layout,
kernel_layout,
out_dtype)
ref_func = run_infer_type(ref_func)
qnn_func = get_qnn_func(data,
kernel,
input_zero_point,
kernel_zero_point,
kernel_size,
padding,
strides,
dilation,
data_layout,
kernel_layout,
out_dtype)
return (ref_func, qnn_func)
def verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape,
kernel_dtype):
def get_inputs(data_shape, data_dtype, kernel_shape, kernel_dtype):
# Keeping inputs multiple of 4 because of a bug in Average Pool2d
# https://discuss.tvm.ai/t/pool2d-gives-bad-output-for-integer-inputs/3377
low = -128
high = 127
if data_dtype == "uint8":
low = 0
high = 255
golden_data = np.random.random_integers(low=low, high=high,
size=data_shape).astype(data_dtype)
low = -128
high = 127
if kernel_dtype == "uint8":
low = 0
high = 255
golden_weight = np.random.random_integers(low=low, high=high,
size=kernel_shape).astype(kernel_dtype)
return (golden_data, golden_weight)
def get_output(func, golden_inputs):
with relay.build_config(opt_level=2):
golden_data, golden_weight = golden_inputs
params = {'kernel': golden_weight}
graph, lib, params = relay.build(func, "llvm", params=params)
mod = graph_runtime.create(graph, lib, ctx=tvm.cpu(0))
mod.set_input("data", golden_data)
mod.set_input(**params)
mod.run()
res = mod.get_output(0).asnumpy()
return res
golden_inputs = get_inputs(data_shape, data_dtype,
kernel_shape, kernel_dtype)
golden_output = get_output(ref_func, golden_inputs)
qnn_output = get_output(qnn_func, golden_inputs)
np.testing.assert_equal(qnn_output, golden_output)
def no_zero_point_test():
# uint8 input
data_shape = (2, 1, 2, 4)
data_dtype = 'uint8'
kernel_shape = (3, 1, 2, 2)
kernel_dtype = 'uint8'
ref_func, qnn_func = get_funcs(data_shape=data_shape,
data_dtype=data_dtype,
kernel_shape=kernel_shape,
kernel_dtype=kernel_dtype,
input_zero_point=0,
kernel_zero_point=0,
kernel_size=(2, 2),
padding=(0, 0),
strides=(1, 1),
dilation=(1, 1),
data_layout="NCHW",
kernel_layout="OIHW",
out_dtype="int32")
verify(ref_func, qnn_func, data_shape, data_dtype,
kernel_shape, kernel_dtype)
# int8 input
data_shape = (2, 1, 2, 4)
data_dtype = 'int8'
kernel_shape = (3, 1, 2, 2)
kernel_dtype = 'int8'
ref_func, qnn_func = get_funcs(data_shape=data_shape,
data_dtype=data_dtype,
kernel_shape=kernel_shape,
kernel_dtype=kernel_dtype,
input_zero_point=0,
kernel_zero_point=0,
kernel_size=(2, 2),
padding=(0, 0),
strides=(1, 1),
dilation=(1, 1),
data_layout="NCHW",
kernel_layout="OIHW",
out_dtype="int32")
verify(ref_func, qnn_func, data_shape, data_dtype,
kernel_shape, kernel_dtype)
def kernel_zero_point_test():
# uint8 input
data_shape = (2, 4, 2, 4)
data_dtype = 'uint8'
kernel_shape = (3, 4, 2, 2)
kernel_dtype = 'uint8'
ref_func, qnn_func = get_funcs(data_shape=data_shape,
data_dtype=data_dtype,
kernel_shape=kernel_shape,
kernel_dtype=kernel_dtype,
input_zero_point=0,
kernel_zero_point=1,
kernel_size=(2, 2),
padding=(0, 0),
strides=(1, 1),
dilation=(1, 1),
data_layout="NCHW",
kernel_layout="OIHW",
out_dtype="int32")
verify(ref_func, qnn_func, data_shape, data_dtype,
kernel_shape, kernel_dtype)
# int8 input
data_shape = (2, 1, 2, 4)
data_dtype = 'int8'
kernel_shape = (3, 1, 2, 2)
kernel_dtype = 'int8'
ref_func, qnn_func = get_funcs(data_shape=data_shape,
data_dtype=data_dtype,
kernel_shape=kernel_shape,
kernel_dtype=kernel_dtype,
input_zero_point=0,
kernel_zero_point=5,
kernel_size=(2, 2),
padding=(0, 0),
strides=(1, 1),
dilation=(1, 1),
data_layout="NCHW",
kernel_layout="OIHW",
out_dtype="int32")
verify(ref_func, qnn_func, data_shape, data_dtype,
kernel_shape, kernel_dtype)
def input_zero_point_test():
# uint8 input
data_shape = (2, 4, 2, 4)
data_dtype = 'uint8'
kernel_shape = (3, 4, 2, 2)
kernel_dtype = 'uint8'
ref_func, qnn_func = get_funcs(data_shape=data_shape,
data_dtype=data_dtype,
kernel_shape=kernel_shape,
kernel_dtype=kernel_dtype,
input_zero_point=5,
kernel_zero_point=0,
kernel_size=(2, 2),
padding=(0, 0),
strides=(1, 1),
dilation=(1, 1),
data_layout="NCHW",
kernel_layout="OIHW",
out_dtype="int32")
verify(ref_func, qnn_func, data_shape, data_dtype,
kernel_shape, kernel_dtype)
# int8 input
data_shape = (2, 4, 2, 4)
data_dtype = 'int8'
kernel_shape = (3, 4, 2, 2)
kernel_dtype = 'int8'
ref_func, qnn_func = get_funcs(data_shape=data_shape,
data_dtype=data_dtype,
kernel_shape=kernel_shape,
kernel_dtype=kernel_dtype,
input_zero_point=5,
kernel_zero_point=0,
kernel_size=(2, 2),
padding=(0, 0),
strides=(1, 1),
dilation=(1, 1),
data_layout="NCHW",
kernel_layout="OIHW",
out_dtype="int32")
verify(ref_func, qnn_func, data_shape, data_dtype,
kernel_shape, kernel_dtype)
def both_zero_point_test():
# uint8 input
data_shape = (2, 4, 2, 4)
data_dtype = 'uint8'
kernel_shape = (3, 4, 2, 2)
kernel_dtype = 'uint8'
ref_func, qnn_func = get_funcs(data_shape=data_shape,
data_dtype=data_dtype,
kernel_shape=kernel_shape,
kernel_dtype=kernel_dtype,
input_zero_point=5,
kernel_zero_point=3,
kernel_size=(2, 2),
padding=(0, 0),
strides=(1, 1),
dilation=(1, 1),
data_layout="NCHW",
kernel_layout="OIHW",
out_dtype="int32")
verify(ref_func, qnn_func, data_shape, data_dtype,
kernel_shape, kernel_dtype)
# int8 input
data_shape = (2, 4, 2, 4)
data_dtype = 'int8'
kernel_shape = (3, 4, 2, 2)
kernel_dtype = 'int8'
ref_func, qnn_func = get_funcs(data_shape=data_shape,
data_dtype=data_dtype,
kernel_shape=kernel_shape,
kernel_dtype=kernel_dtype,
input_zero_point=5,
kernel_zero_point=3,
kernel_size=(2, 2),
padding=(0, 0),
strides=(1, 1),
dilation=(1, 1),
data_layout="NCHW",
kernel_layout="OIHW",
out_dtype="int32")
verify(ref_func, qnn_func, data_shape, data_dtype,
kernel_shape, kernel_dtype)
def layout_test():
# uint8 input
data_shape = (2, 2, 4, 4) # NHWC
data_dtype = 'uint8'
kernel_shape = (2, 2, 4, 3) # HWIO
kernel_dtype = 'uint8'
ref_func, qnn_func = get_funcs(data_shape=data_shape,
data_dtype=data_dtype,
kernel_shape=kernel_shape,
kernel_dtype=kernel_dtype,
input_zero_point=5,
kernel_zero_point=3,
kernel_size=(2, 2),
padding=(0, 0),
strides=(1, 1),
dilation=(1, 1),
data_layout="NHWC",
kernel_layout="HWIO",
out_dtype="int32")
verify(ref_func, qnn_func, data_shape, data_dtype,
kernel_shape, kernel_dtype)
# NHWC and HWIO layout. Used in depthwise conv.
data_shape = (2, 2, 4, 1) # NHWC
data_dtype = 'uint8'
kernel_shape = (2, 2, 1, 1) # HWOI
kernel_dtype = 'uint8'
ref_func, qnn_func = get_funcs(data_shape=data_shape,
data_dtype=data_dtype,
kernel_shape=kernel_shape,
kernel_dtype=kernel_dtype,
input_zero_point=5,
kernel_zero_point=3,
kernel_size=(2, 2),
padding=(0, 0),
strides=(1, 1),
dilation=(1, 1),
data_layout="NHWC",
kernel_layout="HWOI",
out_dtype="int32")
verify(ref_func, qnn_func, data_shape, data_dtype,
kernel_shape, kernel_dtype)
def padding_test():
# uint8 input
data_shape = (1, 4, 2, 2)
data_dtype = 'uint8'
kernel_shape = (3, 4, 2, 2)
kernel_dtype = 'uint8'
ref_func, qnn_func = get_funcs(data_shape=data_shape,
data_dtype=data_dtype,
kernel_shape=kernel_shape,
kernel_dtype=kernel_dtype,
input_zero_point=8,
kernel_zero_point=5,
kernel_size=(2, 2),
padding=(1, 1),
strides=(1, 1),
dilation=(1, 1),
data_layout="NCHW",
kernel_layout="OIHW",
out_dtype="int32")
verify(ref_func, qnn_func, data_shape, data_dtype,
kernel_shape, kernel_dtype)
# Try different layout
data_shape = (2, 2, 4, 4) # NHWC
data_dtype = 'uint8'
kernel_shape = (2, 2, 4, 3) # HWIO
kernel_dtype = 'uint8'
ref_func, qnn_func = get_funcs(data_shape=data_shape,
data_dtype=data_dtype,
kernel_shape=kernel_shape,
kernel_dtype=kernel_dtype,
input_zero_point=8,
kernel_zero_point=3,
kernel_size=(2, 2),
padding=(1, 1),
strides=(1, 1),
dilation=(1, 1),
data_layout="NHWC",
kernel_layout="HWIO",
out_dtype="int32")
verify(ref_func, qnn_func, data_shape, data_dtype,
kernel_shape, kernel_dtype)
def dilation_test():
# uint8 input
data_shape = (2, 4, 4, 4)
data_dtype = 'uint8'
kernel_shape = (3, 4, 2, 2)
kernel_dtype = 'uint8'
ref_func, qnn_func = get_funcs(data_shape=data_shape,
data_dtype=data_dtype,
kernel_shape=kernel_shape,
kernel_dtype=kernel_dtype,
input_zero_point=5,
kernel_zero_point=3,
kernel_size=(2, 2),
padding=(0, 0),
strides=(1, 1),
dilation=(2, 2),
data_layout="NCHW",
kernel_layout="OIHW",
out_dtype="int32")
verify(ref_func, qnn_func, data_shape, data_dtype,
kernel_shape, kernel_dtype)
def const_folding_test():
data_shape = (2, 4, 2, 4)
data_dtype = 'uint8'
kernel_shape = (3, 4, 2, 2)
kernel_dtype = 'uint8'
golden_weight = np.random.random_integers(low=0, high=255,
size=kernel_shape).astype(kernel_dtype)
data = relay.var("data", shape=data_shape,
dtype=data_dtype)
kernel = relay.const(golden_weight)
qnn_func = get_qnn_func(data,
kernel,
input_zero_point=8,
kernel_zero_point=3,
kernel_size=(2, 2),
padding=(0, 0),
strides=(1, 1),
dilation=(1, 1),
data_layout="NCHW",
kernel_layout="OIHW",
out_dtype="int32")
folded_mod = transform.FoldConstant()(qnn_func)
folded_func = folded_mod["main"]
assert "reshape" not in folded_func.astext()
def kernel_size_1x1_test():
# uint8 input
data_shape = (2, 4, 2, 4)
data_dtype = 'uint8'
kernel_shape = (3, 4, 1, 1)
kernel_dtype = 'uint8'
ref_func, qnn_func = get_funcs(data_shape=data_shape,
data_dtype=data_dtype,
kernel_shape=kernel_shape,
kernel_dtype=kernel_dtype,
input_zero_point=5,
kernel_zero_point=3,
kernel_size=(1, 1),
padding=(0, 0),
strides=(1, 1),
dilation=(1, 1),
data_layout="NCHW",
kernel_layout="OIHW",
out_dtype="int32")
assert 'avg_pool2d' not in qnn_func.astext()
verify(ref_func, qnn_func, data_shape, data_dtype,
kernel_shape, kernel_dtype)
def tflite_large_irregular_test():
# uint8 input
data_shape = (1, 1024, 1, 1)
data_dtype = 'uint8'
kernel_shape = (1001, 1024, 1, 1)
kernel_dtype = 'uint8'
ref_func, qnn_func = get_funcs(data_shape=data_shape,
data_dtype=data_dtype,
kernel_shape=kernel_shape,
kernel_dtype=kernel_dtype,
input_zero_point=127,
kernel_zero_point=127,
kernel_size=(1, 1),
padding=(0, 0),
strides=(1, 1),
dilation=(1, 1),
data_layout="NCHW",
kernel_layout="OIHW",
out_dtype="int32")
golden_data = np.full(data_shape, 127).astype('uint8')
golden_weight = np.full(kernel_shape, 127).astype('uint8')
with relay.build_config(opt_level=2):
params = {'kernel': golden_weight}
graph, lib, params = relay.build(qnn_func, "llvm", params=params)
mod = graph_runtime.create(graph, lib, ctx=tvm.cpu(0))
mod.set_input("data", golden_data)
mod.set_input(**params)
mod.run()
qnn_output = mod.get_output(0).asnumpy()
golden_output = np.full((1, 1001, 1, 1), 0).astype('uint8')
np.testing.assert_equal(qnn_output, golden_output)
def tflite_output_multiplier_greater_than_one():
# uint8 input
data_shape = (2, 1, 2, 4)
data_dtype = 'uint8'
kernel_shape = (3, 1, 2, 2)
kernel_dtype = 'uint8'
ref_func, qnn_func = get_funcs(data_shape=data_shape,
data_dtype=data_dtype,
kernel_shape=kernel_shape,
kernel_dtype=kernel_dtype,
input_zero_point=128,
kernel_zero_point=128,
kernel_size=(2, 2),
padding=(0, 0),
strides=(2, 2),
dilation=(1, 1),
data_layout="NCHW",
kernel_layout="OIHW",
out_dtype="int32")
golden_data = 128 + np.array((1, 1, 1, 1,
2, 2, 2, 2,
1, 2, 3, 4,
1, 2, 3, 4)).reshape(data_shape).astype('uint8')
golden_weight = 128 + np.array((1, 2, 3, 4,
-1, 1, -1, 1,
-1, -1, 1, 1)).reshape(kernel_shape)
golden_weight = golden_weight.astype('uint8')
with relay.build_config(opt_level=2):
params = {'kernel': golden_weight}
graph, lib, params = relay.build(qnn_func, "llvm", params=params)
mod = graph_runtime.create(graph, lib, ctx=tvm.cpu(0))
mod.set_input("data", golden_data)
mod.set_input(**params)
mod.run()
qnn_output = mod.get_output(0).asnumpy()
golden_output = np.array((17, 17,
0, 0,
2, 2,
16, 36,
2, 2,
0, 0)).reshape(2, 3, 1, 2)
np.testing.assert_equal(qnn_output, golden_output)
def tflite_anistropic_strides():
# uint8 input
data_shape = (1, 1, 3, 6)
data_dtype = 'uint8'
kernel_shape = (1, 1, 2, 2)
kernel_dtype = 'uint8'
ref_func, qnn_func = get_funcs(data_shape=data_shape,
data_dtype=data_dtype,
kernel_shape=kernel_shape,
kernel_dtype=kernel_dtype,
input_zero_point=127,
kernel_zero_point=127,
kernel_size=(2, 2),
padding=(0, 0),
strides=(1, 3),
dilation=(1, 1),
data_layout="NCHW",
kernel_layout="OIHW",
out_dtype="int32")
golden_data = np.array((133, 131, 129, 125, 123, 121,
135, 133, 131, 123, 121, 119,
137, 135, 133, 121, 119, 117)).reshape(data_shape)
golden_data = golden_data.astype('uint8')
golden_weight = np.array((129, 131, 133, 135)).reshape(kernel_shape)
golden_weight = golden_weight.astype('uint8')
with relay.build_config(opt_level=2):
params = {'kernel': golden_weight}
graph, lib, params = relay.build(qnn_func, "llvm", params=params)
mod = graph_runtime.create(graph, lib, ctx=tvm.cpu(0))
mod.set_input("data", golden_data)
mod.set_input(**params)
mod.run()
qnn_output = mod.get_output(0).asnumpy()
golden_output = np.array((124, -92, 164, -132)).reshape(1, 1, 2, 2)
np.testing.assert_equal(qnn_output, golden_output)
if __name__ == "__main__":
no_zero_point_test()
input_zero_point_test()
kernel_zero_point_test()
both_zero_point_test()
layout_test()
padding_test()
dilation_test()
const_folding_test()
kernel_size_1x1_test()
tflite_large_irregular_test()
tflite_output_multiplier_greater_than_one()
tflite_anistropic_strides()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment