Unverified Commit 0cfdecda by Yao Wang Committed by GitHub

Fix intel conv2d auto tune (#5200)

* Fix x86 conv2d and depthwise conv2d auto tuning

* Fix depthwise conv2d infer layout

* Use random data instead of empty data for autotvm

* Fix pylint

* Keep empty array for now for autotvm
parent b41f4e55
......@@ -185,6 +185,18 @@ def conv2d_NCHWc(cfg, data, kernel, strides, padding, dilation, layout, out_layo
# Pack data if raw 4-D data is provided.
# This can only happen when autotuning.
if len(data.shape) == 4:
if autotvm.GLOBAL_SCOPE.in_tuning:
# Directly use modified data layout placeholder.
dshape = (n, in_channel // cfg["tile_ic"].size[-1],
ih, iw, cfg["tile_ic"].size[-1])
data = tvm.te.placeholder(dshape, data.dtype, name="data")
kshape = (num_filter // cfg["tile_oc"].size[-1],
in_channel // cfg["tile_ic"].size[-1],
kernel_height, kernel_width,
cfg["tile_ic"].size[-1],
cfg["tile_oc"].size[-1])
kernel = tvm.te.placeholder(kshape, kernel.dtype, name="kernel")
else:
data, kernel = _pack_data(cfg, data, kernel)
return nn.conv2d_NCHWc(data,
......
......@@ -19,7 +19,6 @@
from __future__ import absolute_import as _abs
import tvm
from tvm import te
from tvm import autotvm
from tvm.autotvm.task.space import SplitEntity, OtherOptionEntity
from ..nn.pad import pad
......@@ -69,17 +68,12 @@ def _schedule_conv_NCHWc(s, cfg, data_vec, kernel_vec, conv_out, last):
if isinstance(s[data_vec].op, tvm.te.ComputeOp) \
and "pad" in data_vec.op.tag:
batch, ic_chunk, ih, iw, ic_block = s[data_vec].op.axis
s[data_vec].vectorize(ic_block)
parallel_axis = s[data_vec].fuse(batch, ic_chunk, ih)
s[data_vec].parallel(parallel_axis)
data_vec = data_vec.op.input_tensors[0]
if autotvm.GLOBAL_SCOPE.in_tuning:
# only in autotuning, input data of conv2d_NCHWc will be 4-D.
# skip this part during tuning to make records accurate.
# this part will be folded during Relay fold_constant pass.
s[data_vec].pragma(s[data_vec].op.axis[0], "debug_skip_region")
s[kernel_vec].pragma(s[kernel_vec].op.axis[0], "debug_skip_region")
elif isinstance(kernel_vec.op, tvm.te.ComputeOp) and \
if isinstance(kernel_vec.op, tvm.te.ComputeOp) and \
kernel_vec.name == 'kernel_vec':
# data and kernel are not pre-computed, schedule layout transform here.
# this should only be used by x86 conv2d_nchw, which is for
......
......@@ -17,7 +17,6 @@
# pylint: disable=invalid-name,unused-variable,unused-argument,invalid-name
"""Conv2D schedule on for Intel CPU"""
import tvm
from tvm import autotvm
from tvm.autotvm.task.space import SplitEntity, OtherOptionEntity
from ..generic import conv2d as conv2d_generic
......@@ -91,17 +90,12 @@ def _schedule_conv_NCHWc(s, cfg, data_vec, kernel_vec, conv_out, last):
if isinstance(s[data_vec].op, tvm.te.ComputeOp) \
and "pad" in data_vec.op.tag:
batch, ic_chunk, ih, iw, ic_block = s[data_vec].op.axis
s[data_vec].vectorize(ic_block)
parallel_axis = s[data_vec].fuse(batch, ic_chunk, ih)
s[data_vec].parallel(parallel_axis)
data_vec = data_vec.op.input_tensors[0]
if autotvm.GLOBAL_SCOPE.in_tuning:
# only in autotuning, input data of conv2d_NCHWc will be 4-D.
# skip this part during tuning to make records accurate.
# this part will be folded during Relay fold_constant pass.
s[data_vec].pragma(s[data_vec].op.axis[0], "debug_skip_region")
s[kernel_vec].pragma(s[kernel_vec].op.axis[0], "debug_skip_region")
elif isinstance(kernel_vec.op, tvm.te.ComputeOp) and \
if isinstance(kernel_vec.op, tvm.te.ComputeOp) and \
kernel_vec.name == 'kernel_vec':
# data and kernel are not pre-computed, schedule layout transform here.
# this should only be used by x86 conv2d_nchw, which is for
......
......@@ -43,7 +43,6 @@ def _fallback_schedule(cfg, wkl):
HPAD, WPAD = wkl.hpad, wkl.wpad
HSTR, WSTR = wkl.hstride, wkl.wstride
out_height = (wkl.height + 2 * HPAD - wkl.hkernel) // HSTR + 1
out_width = (wkl.width + 2 * WPAD - wkl.wkernel) // WSTR + 1
oc_bn = 1
......@@ -148,6 +147,17 @@ def depthwise_conv2d_NCHWc(cfg, data, kernel, strides, padding, dilation,
# Pack data if raw 4-D data is provided.
# This can only happen when autotuning.
if len(data.shape) == 4:
if autotvm.GLOBAL_SCOPE.in_tuning:
# Directly use modified data layout placeholder.
in_channel_block = cfg["tile_ic"].size[-1]
in_channel_chunk = in_channel // in_channel_block
out_channel_block = cfg["tile_oc"].size[-1]
out_channel_chunk = out_channel // out_channel_block
dshape = (batch, in_channel_chunk, in_height, in_width, in_channel_block)
data = tvm.te.placeholder(dshape, data.dtype, name="data")
kshape = (out_channel_chunk, 1, filter_height, filter_width, 1, out_channel_block)
kernel = tvm.te.placeholder(kshape, kernel.dtype, name="kernel")
else:
data, kernel = _pack_data(cfg, data, kernel)
_, _, _, _, in_channel_block = get_const_tuple(data.shape)
out_channel_chunk, _, _, _, _, out_channel_block \
......@@ -207,16 +217,9 @@ def _schedule_depthwise_conv2d_NCHWc_impl(s, cfg, data_vec, kernel_vec, conv_out
if isinstance(s[data_vec].op, tvm.te.ComputeOp) \
and "pad" in data_vec.op.tag:
batch, ic_chunk, ih, iw, ic_block = s[data_vec].op.axis
s[data_vec].vectorize(ic_block)
parallel_axis = s[data_vec].fuse(batch, ic_chunk, ih)
s[data_vec].parallel(parallel_axis)
data_vec = data_vec.op.input_tensors[0]
if autotvm.GLOBAL_SCOPE.in_tuning:
# only in autotuning, input data of conv2d_NCHWc will be 4-D.
# skip this part during tuning to make recrods accurate.
# this part will be folded during Relay fold_constant pass.
s[data_vec].pragma(s[data_vec].op.axis[0], "debug_skip_region")
s[kernel_vec].pragma(s[kernel_vec].op.axis[0], "debug_skip_region")
C, O = conv_out, output
CC = s.cache_write(C, 'global')
......@@ -264,12 +267,12 @@ def _schedule_depthwise_conv2d_NCHWc_impl(s, cfg, data_vec, kernel_vec, conv_out
@depthwise_conv2d_infer_layout.register("cpu")
def _depthwise_conv2d_infer_layout(workload, cfg):
_, data, kernel, strides, padding, dilation, dtype = workload
_, data, kernel, strides, padding, dilation, _, _, dtype = workload
batch_size, in_channel, in_height, in_width = data[1]
filter_channel, channel_multiplier, k_height, k_width = kernel[1]
out_channel = filter_channel * channel_multiplier
out_height = (in_height + 2 * padding[0] - k_height) // strides[0] + 1
out_width = (in_width + 2 * padding[1] - k_width) // strides[1] + 1
out_height = (in_height + padding[0] + padding[2] - k_height) // strides[0] + 1
out_width = (in_width + padding[1] + padding[3] - k_width) // strides[1] + 1
tile_ic, tile_oc = cfg["tile_ic"].size[-1], cfg["tile_oc"].size[-1]
in_shape = (batch_size, in_channel // tile_ic, in_height, in_width, tile_ic)
in_layout = "NCHW%dc" % tile_ic
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment