Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
093dc741
Commit
093dc741
authored
Aug 16, 2018
by
Keren Zhou
Committed by
Tianqi Chen
Aug 16, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[NNVM] Add ONNX upsample converter (#1591)
parent
11dd933f
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
66 additions
and
0 deletions
+66
-0
nnvm/python/nnvm/frontend/onnx.py
+19
-0
nnvm/tests/python/frontend/onnx/test_forward.py
+47
-0
No files found.
nnvm/python/nnvm/frontend/onnx.py
View file @
093dc741
...
...
@@ -406,6 +406,24 @@ def _fully_connected(opset):
return
_impl
class
Upsample
(
OnnxOpConverter
):
""" Operator converter for Upsample (nearest mode).
"""
@classmethod
def
_impl_v7
(
cls
,
inputs
,
attr
,
params
):
scales
=
attr
.
get
(
'scales'
)
assert
len
(
scales
)
==
4
and
scales
[
0
]
==
1.0
and
scales
[
1
]
==
1.0
and
scales
[
2
]
==
scales
[
3
]
mode
=
attr
.
get
(
'mode'
)
if
mode
==
b
'nearest'
:
method
=
"NEAREST_NEIGHBOR"
elif
mode
==
b
'linear'
:
method
=
"BILINEAR"
else
:
raise
ValueError
(
"Invalid ONNX upsample mode: {}"
.
format
(
mode
))
return
_sym
.
upsampling
(
inputs
[
0
],
scale
=
int
(
scales
[
-
1
]),
method
=
method
,
layout
=
'NCHW'
)
class
Shape
(
OnnxOpConverter
):
""" Operator converter for Shape.
"""
...
...
@@ -540,6 +558,7 @@ def _get_convert_map(opset):
# 'Crop'
# 'Embedding'
# 'Upsample'
'Upsample'
:
Upsample
.
get_converter
(
opset
),
'SpatialBN'
:
BatchNorm
.
get_converter
(
opset
),
# defs/generator
...
...
nnvm/tests/python/frontend/onnx/test_forward.py
View file @
093dc741
import
numpy
as
np
import
math
import
nnvm
import
topi
import
topi.testing
import
tvm
from
tvm.contrib
import
graph_runtime
from
nnvm.testing.config
import
ctx_list
...
...
@@ -380,6 +382,50 @@ def test_lrn():
verify_lrn
((
5
,
5
,
5
,
5
),
3
,
'float32'
)
verify_lrn
((
5
,
5
,
5
,
5
),
3
,
'float32'
,
alpha
=
0.0002
,
beta
=
0.5
,
bias
=
2.0
)
def
_test_upsample_nearest
():
scale
=
2
in_shape
=
(
1
,
1
,
3
,
3
)
out_shape
=
(
1
,
1
,
3
*
scale
,
3
*
scale
)
y
=
helper
.
make_node
(
"Upsample"
,
[
'in'
],
[
'out'
],
mode
=
'nearest'
,
scales
=
[
1.0
,
1.0
,
2.0
,
2.0
])
in_array
=
np
.
random
.
uniform
(
size
=
in_shape
)
.
astype
(
np
.
float32
)
out_array
=
topi
.
testing
.
upsampling_python
(
in_array
,
scale
,
"NCHW"
)
graph
=
helper
.
make_graph
([
y
],
'upsample_nearest_test'
,
inputs
=
[
helper
.
make_tensor_value_info
(
"in"
,
TensorProto
.
FLOAT
,
list
(
in_shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"out"
,
TensorProto
.
FLOAT
,
list
(
out_shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'upsample_nearest_test'
)
for
target
,
ctx
in
ctx_list
():
tvm_out
=
get_tvm_output
(
model
,
in_array
,
target
,
ctx
,
out_shape
,
'float32'
)
np
.
testing
.
assert_allclose
(
out_array
,
tvm_out
)
def
_test_upsample_bilinear
():
scale
=
2
in_shape
=
(
1
,
1
,
3
,
3
)
out_shape
=
(
1
,
1
,
3
*
scale
,
3
*
scale
)
y
=
helper
.
make_node
(
"Upsample"
,
[
'in'
],
[
'out'
],
mode
=
'linear'
,
scales
=
[
1.0
,
1.0
,
2.0
,
2.0
])
in_array
=
np
.
random
.
uniform
(
size
=
in_shape
)
.
astype
(
np
.
float32
)
out_array
=
topi
.
testing
.
bilinear_resize_python
(
in_array
,
(
3
*
scale
,
3
*
scale
),
"NCHW"
)
graph
=
helper
.
make_graph
([
y
],
'upsample_bilinear_test'
,
inputs
=
[
helper
.
make_tensor_value_info
(
"in"
,
TensorProto
.
FLOAT
,
list
(
in_shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"out"
,
TensorProto
.
FLOAT
,
list
(
out_shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'upsample_bilinear_test'
)
for
target
,
ctx
in
ctx_list
():
tvm_out
=
get_tvm_output
(
model
,
in_array
,
target
,
ctx
,
out_shape
,
'float32'
)
np
.
testing
.
assert_allclose
(
out_array
,
tvm_out
,
rtol
=
1e-5
,
atol
=
1e-5
)
def
test_upsample
():
_test_upsample_nearest
()
_test_upsample_bilinear
()
if
__name__
==
'__main__'
:
# verify_super_resolution_example()
...
...
@@ -398,3 +444,4 @@ if __name__ == '__main__':
test_matmul
()
test_gather
()
test_lrn
()
test_upsample
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment