Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
0720ed67
Commit
0720ed67
authored
Jan 03, 2020
by
Animesh Jain
Committed by
Wuwei Lin
Jan 03, 2020
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
{QNN] Making scale/zero_points as expr instead of attrs. (#4611)
parent
2440c9ce
Hide whitespace changes
Inline
Side-by-side
Showing
27 changed files
with
756 additions
and
776 deletions
+756
-776
include/tvm/relay/qnn/attrs.h
+0
-176
python/tvm/relay/frontend/mxnet_qnn_op_utils.py
+8
-5
python/tvm/relay/frontend/tflite.py
+34
-16
python/tvm/relay/qnn/op/__init__.py
+0
-1
python/tvm/relay/qnn/op/legalizations.py
+21
-25
python/tvm/relay/qnn/op/qnn.py
+40
-36
python/tvm/relay/util.py
+16
-11
src/relay/pass/pattern_util.h
+1
-0
src/relay/qnn/op/add.cc
+15
-15
src/relay/qnn/op/concatenate.cc
+63
-27
src/relay/qnn/op/convolution.cc
+117
-88
src/relay/qnn/op/dense.cc
+51
-35
src/relay/qnn/op/dequantize.cc
+22
-25
src/relay/qnn/op/mul.cc
+21
-19
src/relay/qnn/op/op_common.h
+33
-13
src/relay/qnn/op/quantize.cc
+27
-25
src/relay/qnn/op/requantize.cc
+39
-23
src/relay/qnn/util.h
+22
-11
tests/python/relay/test_op_qnn_add.py
+36
-36
tests/python/relay/test_op_qnn_concatenate.py
+30
-20
tests/python/relay/test_op_qnn_conv2d.py
+14
-14
tests/python/relay/test_op_qnn_dense.py
+8
-8
tests/python/relay/test_op_qnn_dequantize.py
+45
-50
tests/python/relay/test_op_qnn_mul.py
+30
-30
tests/python/relay/test_op_qnn_quantize.py
+39
-43
tests/python/relay/test_op_qnn_requantize.py
+4
-4
tests/python/relay/test_pass_qnn_legalize.py
+20
-20
No files found.
include/tvm/relay/qnn/attrs.h
View file @
0720ed67
...
...
@@ -33,22 +33,10 @@ namespace qnn {
/*! \brief Attribute for requantize operator */
struct
RequantizeAttrs
:
public
tvm
::
AttrsNode
<
RequantizeAttrs
>
{
double
input_scale
;
int32_t
input_zero_point
;
double
output_scale
;
int32_t
output_zero_point
;
std
::
string
rounding
;
DataType
out_dtype
;
TVM_DECLARE_ATTRS
(
RequantizeAttrs
,
"relay.attrs.RequantizeAttrs"
)
{
TVM_ATTR_FIELD
(
input_scale
)
.
describe
(
"The scale of the input tensor."
);
TVM_ATTR_FIELD
(
input_zero_point
)
.
describe
(
"The zero point of the input tensor."
);
TVM_ATTR_FIELD
(
output_scale
)
.
describe
(
"The scale of the output tensor."
);
TVM_ATTR_FIELD
(
output_zero_point
)
.
describe
(
"The zero point of the output tensor."
);
TVM_ATTR_FIELD
(
rounding
).
set_default
(
"UPWARD"
)
.
describe
(
"Defines the rounding direction when the value is midway between"
"two representable values. There are two supported modes - UPWARD"
...
...
@@ -67,175 +55,11 @@ struct RequantizeAttrs : public tvm::AttrsNode<RequantizeAttrs> {
/*! \brief Attribute for quantize operator */
struct
QuantizeAttrs
:
public
tvm
::
AttrsNode
<
QuantizeAttrs
>
{
int32_t
output_zero_point
;
double
output_scale
;
DataType
out_dtype
;
TVM_DECLARE_ATTRS
(
QuantizeAttrs
,
"relay.attrs.QuantizeAttrs"
)
{
TVM_ATTR_FIELD
(
out_dtype
)
.
describe
(
"Output data type, can be one of [int8 or uint8]."
);
TVM_ATTR_FIELD
(
output_zero_point
)
.
describe
(
"The zero_point for the activation of this op."
);
TVM_ATTR_FIELD
(
output_scale
)
.
describe
(
"The scale for the activation of this op."
);
}
};
/*! \brief Attribute for dequantize operator */
struct
DequantizeAttrs
:
public
tvm
::
AttrsNode
<
DequantizeAttrs
>
{
int32_t
input_zero_point
;
double
input_scale
;
TVM_DECLARE_ATTRS
(
DequantizeAttrs
,
"relay.attrs.DequantizeAttrs"
)
{
TVM_ATTR_FIELD
(
input_zero_point
)
.
describe
(
"The zero_point for the input tensor of this op."
);
TVM_ATTR_FIELD
(
input_scale
)
.
describe
(
"The scale for the input tensor of this op."
);
}
};
/*! \brief Attributes used in QNN concatenate operator */
struct
QnnConcatenateAttrs
:
public
tvm
::
AttrsNode
<
QnnConcatenateAttrs
>
{
Array
<
tvm
::
Expr
>
input_scales
;
Array
<
tvm
::
Expr
>
input_zero_points
;
double
output_scale
;
int32_t
output_zero_point
;
int
axis
;
TVM_DECLARE_ATTRS
(
QnnConcatenateAttrs
,
"relay.attrs.QnnConcatenateAttrs"
)
{
TVM_ATTR_FIELD
(
input_scales
)
.
describe
(
"The list of scales of input quantized tensors."
);
TVM_ATTR_FIELD
(
input_zero_points
)
.
describe
(
"The list of zero points of input quantized tensors."
);
TVM_ATTR_FIELD
(
output_zero_point
)
.
describe
(
"The zero_point for the output tensor."
);
TVM_ATTR_FIELD
(
output_scale
)
.
describe
(
"The scale for the output tensor."
);
TVM_ATTR_FIELD
(
axis
)
.
describe
(
"The axis at which the input arrays are concatenated."
"Should lie in range `[-ndim, ndim)`."
)
.
set_default
(
0
);
}
};
// struct QnnConcatenateAttrs
/*! \brief Attribute for QNN Conv2d operator */
struct
QnnConv2DAttrs
:
public
tvm
::
AttrsNode
<
QnnConv2DAttrs
>
{
// Traditional conv2d attributes.
Array
<
IndexExpr
>
strides
;
Array
<
IndexExpr
>
padding
;
Array
<
IndexExpr
>
dilation
;
int
groups
;
IndexExpr
channels
;
Array
<
IndexExpr
>
kernel_size
;
std
::
string
data_layout
;
std
::
string
kernel_layout
;
std
::
string
out_layout
;
DataType
out_dtype
;
// Quantization related attributes.
int32_t
input_zero_point
;
int32_t
kernel_zero_point
;
// The input tensor scale and kernel tensor scales are stored
// for easy access to this information.
double
input_scale
;
double
kernel_scale
;
TVM_DECLARE_ATTRS
(
QnnConv2DAttrs
,
"relay.attrs.QnnConv2DAttrs"
)
{
TVM_ATTR_FIELD
(
strides
).
set_default
(
Array
<
IndexExpr
>
({
1
,
1
}))
.
describe
(
"Specifies the strides of the convolution."
);
TVM_ATTR_FIELD
(
padding
).
set_default
(
Array
<
IndexExpr
>
({
0
,
0
}))
.
describe
(
"If padding is non-zero, then the input is implicitly zero-padded"
"on both sides for padding number of points"
);
TVM_ATTR_FIELD
(
dilation
).
set_default
(
Array
<
IndexExpr
>
({
1
,
1
}))
.
describe
(
"Specifies the dilation rate to use for dilated convolution."
);
TVM_ATTR_FIELD
(
groups
).
set_default
(
1
)
.
describe
(
"Controls the connections between inputs and outputs."
"At groups=1, all inputs are convolved to all outputs."
"At groups=2, the operation becomes equivalent to having two convolution"
"layers side by side, each seeing half the input channels, and producing"
"half the output channels, and both subsequently concatenated."
);
TVM_ATTR_FIELD
(
channels
)
.
describe
(
"The number of output channels in the convolution."
" If it is not set, inferred by shape of the weight."
)
.
set_default
(
NullValue
<
IndexExpr
>
());
TVM_ATTR_FIELD
(
kernel_size
)
.
describe
(
"Specifies the dimensions of the convolution window."
)
.
set_default
(
NullValue
<
Array
<
IndexExpr
>
>
());
TVM_ATTR_FIELD
(
data_layout
).
set_default
(
"NCHW"
)
.
describe
(
"Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc."
"'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
"dimensions respectively. Convolution is applied on the 'H' and"
"'W' dimensions."
);
TVM_ATTR_FIELD
(
kernel_layout
).
set_default
(
"OIHW"
)
.
describe
(
"Dimension ordering of weight. Can be 'OIHW', 'OIHW16o16i', etc."
"'O', 'I', 'H', 'W' stands for num_filter, input_channel, height, and width"
"dimensions respectively."
);
TVM_ATTR_FIELD
(
out_layout
).
set_default
(
""
)
.
describe
(
"Dimension ordering of output. Can be 'NCHW', 'NHWC', etc."
"'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
"dimensions respectively. Default to be same as input layout."
);
TVM_ATTR_FIELD
(
out_dtype
)
.
set_default
(
NullValue
<
DataType
>
())
.
describe
(
"Output data type, set to explicit type under mixed precision setting"
);
TVM_ATTR_FIELD
(
input_zero_point
)
.
describe
(
"The zero point of the input tensor."
);
TVM_ATTR_FIELD
(
kernel_zero_point
)
.
describe
(
"The zero point of the kernel tensor."
);
TVM_ATTR_FIELD
(
input_scale
)
.
describe
(
"The quantization scale for the input tensor."
);
TVM_ATTR_FIELD
(
kernel_scale
)
.
describe
(
"The quantization scale for the weight tensor."
);
}
};
/*! \brief Attribute for QNN binary operator */
struct
QnnBinaryOpAttrs
:
public
tvm
::
AttrsNode
<
QnnBinaryOpAttrs
>
{
int32_t
lhs_zero_point
;
double
lhs_scale
;
int32_t
rhs_zero_point
;
double
rhs_scale
;
int32_t
output_zero_point
;
double
output_scale
;
TVM_DECLARE_ATTRS
(
QnnBinaryOpAttrs
,
"relay.attrs.QnnBinaryOpAttrs"
)
{
TVM_ATTR_FIELD
(
lhs_zero_point
)
.
describe
(
"The zero_point for the lhs input tensor of this op."
);
TVM_ATTR_FIELD
(
lhs_scale
)
.
describe
(
"The scale for the lhs input tensor of this op."
);
TVM_ATTR_FIELD
(
rhs_zero_point
)
.
describe
(
"The zero_point for the rhs input tensor of this op."
);
TVM_ATTR_FIELD
(
rhs_scale
)
.
describe
(
"The scale for the rhs input tensor of this op."
);
TVM_ATTR_FIELD
(
output_zero_point
)
.
describe
(
"The zero_point for the activation of this op."
);
TVM_ATTR_FIELD
(
output_scale
)
.
describe
(
"The scale for the activation of this op."
);
}
};
/*! \brief Attributes for qnn dense operator */
struct
QnnDenseAttrs
:
public
tvm
::
AttrsNode
<
QnnDenseAttrs
>
{
IndexExpr
units
;
DataType
out_dtype
;
// Quantization related attributes.
int32_t
input_zero_point
;
int32_t
kernel_zero_point
;
double
input_scale
;
double
kernel_scale
;
TVM_DECLARE_ATTRS
(
QnnDenseAttrs
,
"relay.attrs.QnnDenseAttrs"
)
{
TVM_ATTR_FIELD
(
units
)
.
describe
(
"Number of hidden units of the dense transformation."
);
TVM_ATTR_FIELD
(
out_dtype
)
.
describe
(
"Output data type, set to explicit type under mixed precision setting"
);
TVM_ATTR_FIELD
(
input_zero_point
)
.
describe
(
"The zero point of the input tensor."
);
TVM_ATTR_FIELD
(
kernel_zero_point
)
.
describe
(
"The zero point of the kernel tensor."
);
TVM_ATTR_FIELD
(
input_scale
)
.
describe
(
"The input tensor scale."
);
TVM_ATTR_FIELD
(
kernel_scale
)
.
describe
(
"The kernel tensor scale."
);
}
};
...
...
python/tvm/relay/frontend/mxnet_qnn_op_utils.py
View file @
0720ed67
...
...
@@ -20,6 +20,7 @@
"""
import
numpy
as
np
from
tvm
import
relay
from
tvm.relay.qnn.op.qnn
import
dequantize
zero_centered_uint8_quantized_range
=
np
.
float32
(
255
)
...
...
@@ -54,8 +55,8 @@ def _dequantize_zero_centered(data,
real_range
=
np
.
max
([
np
.
abs
(
np
.
float32
(
data_min
)),
np
.
abs
(
np
.
float32
(
data_max
))])
scale
=
np
.
divide
(
real_range
,
quantized_range
)
zero_point
=
0
scale
=
relay
.
const
(
np
.
divide
(
real_range
,
quantized_range
),
'float32'
)
zero_point
=
relay
.
const
(
0
,
'int32'
)
return
dequantize
(
data
,
scale
,
zero_point
)
...
...
@@ -186,9 +187,11 @@ def _dequantize_mxnet_min_max_uint8(data,
max_limit
=
np
.
float64
(
iinfo
.
max
)
imin_range
=
np
.
float64
(
imin_range
)
imax_range
=
np
.
float64
(
imax_range
)
scale
=
np
.
divide
((
imax_range
-
imin_range
),
(
max_limit
-
min_limit
))
zero_point
=
np
.
int
(
-
1
*
np
.
divide
(
imin_range
,
scale
))
scale_val
=
np
.
divide
((
imax_range
-
imin_range
),
(
max_limit
-
min_limit
))
zero_point_val
=
np
.
int
(
-
1
*
np
.
divide
(
imin_range
,
scale_val
))
scale
=
relay
.
const
(
scale_val
,
'float32'
)
zero_point
=
relay
.
const
(
zero_point_val
,
'int32'
)
return
dequantize
(
data
,
scale
,
zero_point
)
...
...
python/tvm/relay/frontend/tflite.py
View file @
0720ed67
...
...
@@ -20,11 +20,13 @@ from __future__ import absolute_import as _abs
import
math
import
numpy
as
np
import
tvm
from
tvm
import
relay
from
..
import
analysis
from
..
import
expr
as
_expr
from
..
import
module
as
_module
from
..
import
op
as
_op
from
..
import
qnn
as
_qnn
from
..util
import
get_scalar_from_constant
from
...
import
nd
as
_nd
from
.common
import
ExprTable
from
.common
import
infer_shape
as
_infer_shape
...
...
@@ -177,8 +179,8 @@ class OperatorConverter(object):
# Check that the scale and zero points are valid.
if
scale
!=
0
or
zero_point
!=
0
:
qnn_params
=
dict
()
qnn_params
[
'scale'
]
=
scale
qnn_params
[
'zero_point'
]
=
zero_point
qnn_params
[
'scale'
]
=
relay
.
const
(
scale
,
'float32'
)
qnn_params
[
'zero_point'
]
=
relay
.
const
(
zero_point
,
'int32'
)
return_list
.
append
(
TensorWrapper
(
tensor_idx
,
tensor
,
buffer
,
qnn_params
))
return
return_list
...
...
@@ -225,8 +227,16 @@ class OperatorConverter(object):
.
format
(
str
(
tensor_type
)))
def
has_same_qnn_params
(
self
,
lhs_tensor
,
rhs_tensor
):
return
lhs_tensor
.
qnn_params
[
'scale'
]
==
rhs_tensor
.
qnn_params
[
'scale'
]
and
\
lhs_tensor
.
qnn_params
[
'zero_point'
]
==
rhs_tensor
.
qnn_params
[
'zero_point'
]
lhs_scale
=
lhs_tensor
.
qnn_params
[
'scale'
]
rhs_scale
=
rhs_tensor
.
qnn_params
[
'scale'
]
lhs_zero_point
=
lhs_tensor
.
qnn_params
[
'zero_point'
]
rhs_zero_point
=
rhs_tensor
.
qnn_params
[
'zero_point'
]
lhs_scale_value
=
get_scalar_from_constant
(
lhs_scale
)
rhs_scale_value
=
get_scalar_from_constant
(
rhs_scale
)
lhs_zero_point_value
=
get_scalar_from_constant
(
lhs_zero_point
)
rhs_zero_point_value
=
get_scalar_from_constant
(
rhs_zero_point
)
return
lhs_scale_value
==
rhs_scale_value
and
\
lhs_zero_point_value
==
rhs_zero_point_value
def
is_quantized
(
self
,
op
):
"""Check if an input tensor is quantized."""
...
...
@@ -750,13 +760,11 @@ class OperatorConverter(object):
weight_expr
=
self
.
exp_tab
.
new_const
(
weight_value
,
dtype
=
weight_tensor_type_str
)
if
input_tensor
.
qnn_params
:
input_scale
=
input_tensor
.
qnn_params
[
'scale'
]
kernel_scale
=
weight_tensor
.
qnn_params
[
'scale'
]
out
=
_qnn
.
op
.
dense
(
in_expr
,
weight_expr
,
input_zero_point
=
input_tensor
.
qnn_params
[
'zero_point'
],
kernel_zero_point
=
weight_tensor
.
qnn_params
[
'zero_point'
],
input_scale
=
input_
scale
,
kernel_scale
=
kernel_scale
,
input_scale
=
input_
tensor
.
qnn_params
[
'scale'
]
,
kernel_scale
=
weight_tensor
.
qnn_params
[
'scale'
]
,
out_dtype
=
'int32'
)
else
:
out
=
_op
.
nn
.
dense
(
in_expr
,
weight_expr
)
...
...
@@ -783,11 +791,16 @@ class OperatorConverter(object):
# Finally if the dense is quantized. Add a requantize at the end.
if
output_tensor
.
qnn_params
:
input_scale
=
input_tensor
.
qnn_params
[
'scale'
]
*
weight_tensor
.
qnn_params
[
'scale'
]
input_zero_point
=
0
data_scale
=
input_tensor
.
qnn_params
[
'scale'
]
weight_scale
=
weight_tensor
.
qnn_params
[
'scale'
]
data_scale_val
=
get_scalar_from_constant
(
data_scale
)
weight_scale_val
=
get_scalar_from_constant
(
weight_scale
)
new_input_scale_val
=
data_scale_val
*
weight_scale_val
new_input_scale
=
relay
.
const
(
new_input_scale_val
,
'float32'
)
new_input_zero_point
=
relay
.
const
(
0
,
'int32'
)
out
=
_qnn
.
op
.
requantize
(
out
,
input_scale
=
input_scale
,
input_zero_point
=
input_zero_point
,
input_scale
=
new_
input_scale
,
input_zero_point
=
new_
input_zero_point
,
output_scale
=
output_tensor
.
qnn_params
[
'scale'
],
output_zero_point
=
output_tensor
.
qnn_params
[
'zero_point'
],
out_dtype
=
output_tensor_type_str
)
...
...
@@ -989,11 +1002,16 @@ class OperatorConverter(object):
# Finally if the conv is quantized. Add a requantize at the end.
if
output_tensor
.
qnn_params
:
input_scale
=
input_tensor
.
qnn_params
[
'scale'
]
*
weight_tensor
.
qnn_params
[
'scale'
]
input_zero_point
=
0
data_scale
=
input_tensor
.
qnn_params
[
'scale'
]
weight_scale
=
weight_tensor
.
qnn_params
[
'scale'
]
data_scale_val
=
get_scalar_from_constant
(
data_scale
)
weight_scale_val
=
get_scalar_from_constant
(
weight_scale
)
new_input_scale_val
=
data_scale_val
*
weight_scale_val
new_input_scale
=
relay
.
const
(
new_input_scale_val
,
'float32'
)
new_input_zero_point
=
relay
.
const
(
0
,
'int32'
)
out
=
_qnn
.
op
.
requantize
(
out
,
input_scale
=
input_scale
,
input_zero_point
=
input_zero_point
,
input_scale
=
new_
input_scale
,
input_zero_point
=
new_
input_zero_point
,
output_scale
=
output_tensor
.
qnn_params
[
'scale'
],
output_zero_point
=
output_tensor
.
qnn_params
[
'zero_point'
],
out_dtype
=
output_tensor_type_str
)
...
...
python/tvm/relay/qnn/op/__init__.py
View file @
0720ed67
...
...
@@ -20,4 +20,3 @@ from __future__ import absolute_import as _abs
from
.qnn
import
*
from
.op
import
register_qnn_legalize
from
.
import
legalizations
from
.
import
op_attrs
python/tvm/relay/qnn/op/legalizations.py
View file @
0720ed67
...
...
@@ -21,6 +21,7 @@ from __future__ import absolute_import
import
tvm
from
tvm
import
relay
from
..
import
op
as
reg
from
...util
import
get_scalar_from_constant
#################################################
# Register the functions for different operators.
...
...
@@ -76,20 +77,13 @@ def helper_no_fast_int8_hw_legalization(attrs, inputs, types, relay_op):
"""
# Collect the input exprs.
data
,
kernel
=
inputs
input_zp
=
attrs
[
'input_zero_point'
]
kernel_zp
=
attrs
[
'kernel_zero_point'
]
data
,
kernel
,
input_zero_point
,
kernel_zero_point
,
_
,
_
=
inputs
shift_data
=
relay
.
subtract
(
relay
.
cast
(
data
,
dtype
=
'int16'
),
relay
.
c
onst
(
input_zp
,
'int16'
))
relay
.
c
ast
(
input_zero_point
,
'int16'
))
shift_kernel
=
relay
.
subtract
(
relay
.
cast
(
kernel
,
dtype
=
'int16'
),
relay
.
c
onst
(
kernel_zp
,
'int16'
))
relay
.
c
ast
(
kernel_zero_point
,
'int16'
))
new_attrs
=
{
k
:
attrs
[
k
]
for
k
in
attrs
.
keys
()}
del
new_attrs
[
'kernel_zero_point'
]
del
new_attrs
[
'input_zero_point'
]
del
new_attrs
[
'input_scale'
]
del
new_attrs
[
'kernel_scale'
]
return
relay_op
(
shift_data
,
shift_kernel
,
**
new_attrs
)
# Helper function to change dtypes to uint8 x int8. Intel VNNI instructions prefer this setting.
...
...
@@ -136,36 +130,36 @@ def helper_change_dtypes_to_uint8_int8(attrs, inputs, types, relay_op):
data_modified
=
relay
.
cast
(
data
,
'int32'
)
data_modified
=
relay
.
add
(
data_modified
,
relay
.
const
(
shift
,
'int32'
))
data_modified
=
relay
.
cast
(
data_modified
,
out_dtype
)
return
(
data_modified
,
zero_point
+
shift
)
zero_point_val
=
get_scalar_from_constant
(
zero_point
)
zero_point_modified
=
relay
.
const
(
zero_point_val
+
shift
,
'int32'
)
return
(
data_modified
,
zero_point_modified
)
# Collect the dtypes.
data_dtype
=
types
[
0
]
.
dtype
kernel_dtype
=
types
[
1
]
.
dtype
# Collect the input exprs.
data
,
kernel
=
inputs
data
,
kernel
,
input_zero_point
,
kernel_zero_point
,
input_scale
,
kernel_scale
=
inputs
# VNNI supports u8 x i8 fast conv/MM. Don't do anything if it is already satisfied.
if
data_dtype
==
'uint8'
and
kernel_dtype
==
'int8'
:
return
None
# Shift input if necessary.
input_zp
=
attrs
[
'input_zero_point'
]
if
data_dtype
==
'int8'
:
# Compute (QA + 128) and (zp_a + 128)
data
,
input_z
p
=
_shift
(
data
,
input_zp
,
'uint8'
)
data
,
input_z
ero_point
=
_shift
(
data
,
input_zero_point
,
'uint8'
)
# Shift kernel if necessary.
kernel_zp
=
attrs
[
'kernel_zero_point'
]
if
kernel_dtype
==
'uint8'
:
# Compute (QA - 128) and (zp_a - 128)
kernel
,
kernel_z
p
=
_shift
(
kernel
,
kernel_zp
,
'int8'
)
kernel
,
kernel_z
ero_point
=
_shift
(
kernel
,
kernel_zero_point
,
'int8'
)
# Call qnn.conv2d with modified inputs and zero points.
new_attrs
=
{
k
:
attrs
[
k
]
for
k
in
attrs
.
keys
()}
new_attrs
[
'input_zero_point'
]
=
input_zp
new_attrs
[
'kernel_zero_point'
]
=
kernel_zp
return
relay_op
(
data
,
kernel
,
**
new_attrs
)
return
relay_op
(
data
,
kernel
,
input_zero_point
,
kernel_zero_point
,
input_scale
,
kernel_scale
,
**
new_attrs
)
# Helper function to change dtypes to be same. ARM dotprod instructions prefer this setting.
def
helper_change_dtypes_to_be_same
(
attrs
,
inputs
,
types
,
relay_op
):
...
...
@@ -199,7 +193,9 @@ def helper_change_dtypes_to_be_same(attrs, inputs, types, relay_op):
data_modified
=
relay
.
cast
(
data
,
'int32'
)
data_modified
=
relay
.
add
(
data_modified
,
relay
.
const
(
shift
,
'int32'
))
data_modified
=
relay
.
cast
(
data_modified
,
out_dtype
)
return
(
data_modified
,
zero_point
+
shift
)
zero_point_val
=
get_scalar_from_constant
(
zero_point
)
zero_point_modified
=
relay
.
const
(
zero_point_val
+
shift
,
'int32'
)
return
(
data_modified
,
zero_point_modified
)
# Collect the dtypes.
data_dtype
=
types
[
0
]
.
dtype
...
...
@@ -209,18 +205,18 @@ def helper_change_dtypes_to_be_same(attrs, inputs, types, relay_op):
return
None
# Collect the input exprs.
data
,
kernel
=
inputs
data
,
kernel
,
input_zero_point
,
kernel_zero_point
,
input_scale
,
kernel_scale
=
inputs
assert
'int8'
in
data_dtype
and
'int8'
in
kernel_dtype
,
\
"Qnn Conv2D/Dense only accepts uint8 or int8 inputs"
# Shift input if necessary.
input_zp
=
attrs
[
'input_zero_point'
]
data
,
input_zp
=
_shift
(
data
,
input_zp
,
kernel_dtype
)
data
,
input_zero_point
=
_shift
(
data
,
input_zero_point
,
kernel_dtype
)
new_attrs
=
{
k
:
attrs
[
k
]
for
k
in
attrs
.
keys
()}
new_attrs
[
'input_zero_point'
]
=
input_zp
return
relay_op
(
data
,
kernel
,
**
new_attrs
)
return
relay_op
(
data
,
kernel
,
input_zero_point
,
kernel_zero_point
,
input_scale
,
kernel_scale
,
**
new_attrs
)
def
is_fast_int8_on_intel
():
""" Checks whether the hardware has support for fast Int8 arithmetic operations. """
...
...
python/tvm/relay/qnn/op/qnn.py
View file @
0720ed67
...
...
@@ -18,7 +18,6 @@
"""QNN dialect operators."""
from
__future__
import
absolute_import
as
_abs
from
tvm.expr
import
FloatImm
,
IntImm
from
tvm.relay.expr
import
Tuple
from
.
import
_make
...
...
@@ -42,16 +41,16 @@ def requantize(data,
data : tvm.relay.Expr
The input data to the operator.
input_scale:
float
input_scale:
tvm.relay.Expr
The quantization scale for the input tensor.
input_zero_point:
int
input_zero_point:
tvm.relay.Expr
The zero point of the input tensor.
output_scale:
float
output_scale:
tvm.relay.Expr
The quantization scale for the output tensor.
output_zero_point:
int
output_zero_point:
tvm.relay.Expr
The zero point of the output tensor.
rounding : string, optional
...
...
@@ -92,9 +91,9 @@ def quantize(data,
----------
data : tvm.relay.Expr
The input tensor to be quantized. Can be of type float32.
output_zero_point :
int
output_zero_point :
tvm.relay.Expr
The output zero_point.
output_scale :
float
output_scale :
tvm.relay.Expr
The output scale.
out_dtype : str, optional
The data type of the input tensor. Can be [int8, uint8]
...
...
@@ -122,9 +121,9 @@ def dequantize(data,
----------
data : tvm.relay.Expr
The input tensor to be dequantized. Can be of type [int8, uint8].
input_zero_point :
int
input_zero_point :
tvm.relay.Expr
The output zero_point.
input_scale :
float
input_scale :
tvm.relay.Expr
The output scale.
Returns
-------
...
...
@@ -150,16 +149,16 @@ def concatenate(data,
data : Union(List[relay.Expr], Tuple[relay.Expr])
The list of quantized tensors.
input_scales : List[
float32
]
input_scales : List[
relay.Expr
]
The list of scales of input quantized tensors.
input_zero_points : List[
int32
]
input_zero_points : List[
relay.Expr
]
The list of zero points of input quantized tensors.
output_scale :
float32
output_scale :
relay.Expr
The scale of the output quantized tensor.
output_zero_point :
int32
output_zero_point :
relay.Expr
The zero point of the output quantized tensor.
axis : int
...
...
@@ -176,10 +175,12 @@ def concatenate(data,
raise
ValueError
(
"relay.concatenate requires data to be non-empty."
)
if
not
isinstance
(
axis
,
int
):
raise
ValueError
(
"For now, we only support integer axis"
)
input_scales
=
list
(
input_scales
)
input_zero_points
=
list
(
input_zero_points
)
return
_make
.
concatenate
(
Tuple
(
data
),
[
FloatImm
(
"float64"
,
x
)
for
x
in
input_scales
]
,
[
IntImm
(
"int32"
,
x
)
for
x
in
input_zero_points
]
,
Tuple
(
input_scales
)
,
Tuple
(
input_zero_points
)
,
output_scale
,
output_zero_point
,
axis
)
...
...
@@ -218,22 +219,22 @@ def conv2d(data,
kernel : tvm.relay.Expr
The kernel expressions.
input_zero_point:
int
input_zero_point:
tvm.relay.Expr
The zero point of the data distribution.
input_scale: float
kernel_zero_point: tvm.relay.Expr
The zero point of the quantized_kernel distribution.
input_scale: tvm.relay.Expr
The scale for the input tensor. The scale for the input tensor is
stored purely for convenience here. See more commentary below.
kernel_scale:
float
kernel_scale:
tvm.relay.Expr
The scale for the weight tensor. The scale for the weight tensor is
stored for access to this during relay. This information is not
needed in the pass pipeline after qnn.conv2d is lowered to the
sequence of steps as in nn.conv2d. See also input_scale in Requantize.
kernel_zero_point: int
The zero point of the quantized_kernel distribution.
strides : tuple of int, optional
The strides of convolution.
...
...
@@ -299,19 +300,22 @@ def add(lhs,
lhs_scale: float
The scale of the lhs quantized expr.
lhs_zero_point: int
lhs_scale: relay.Expr
The scale of the lhs quantized expr.
lhs_zero_point: relay.Expr
The zero point of lhs quantized expr.
rhs_scale:
float
rhs_scale:
relay.Expr
The scale of the rhs quantized expr.
rhs_zero_point:
int
rhs_zero_point:
relay.Expr
The zero point of rhs quantized expr.
output_scale:
float
output_scale:
relay.Expr
The scale of the output quantized expr.
output_zero_point:
int
output_zero_point:
relay.Expr
The zero point of output quantized expr.
Returns
...
...
@@ -347,13 +351,13 @@ def dense(data,
The quantized input data to the operator.
weight : tvm.relay.Expr
The quantized weight expressions.
input_zero_point:
int
input_zero_point:
tvm.relay.Expr
The input zero point.
kernel_zero_point:
int
kernel_zero_point:
tvm.relay.Expr
The kernel zero point.
input_scale:
float
input_scale:
tvm.relay.Expr
The scale for the input tensor.
kernel_scale:
float
kernel_scale:
tvm.relay.Expr
The scale for the weight tensor. The scale for the weight tensor is
stored for access to this during relay. This information is not
needed in the pass pipeline after qnn.conv2d is lowered to the
...
...
@@ -391,22 +395,22 @@ def mul(lhs, rhs, lhs_scale, lhs_zero_point, rhs_scale, rhs_zero_point,
rhs : relay.Expr
The right hand side quantized input data.
lhs_scale:
float
lhs_scale:
relay.Expr
The scale of the lhs quantized expr.
lhs_zero_point:
int
lhs_zero_point:
relay.Expr
The zero point of lhs quantized expr.
rhs_scale:
float
rhs_scale:
relay.Expr
The scale of the rhs quantized expr.
rhs_zero_point:
int
rhs_zero_point:
relay.Expr
The zero point of rhs quantized expr.
output_scale:
float
output_scale:
relay.Expr
The scale of the output quantized expr.
output_zero_point:
int
output_zero_point:
relay.Expr
The zero point of output quantized expr.
Returns
...
...
python/tvm/relay/
qnn/op/op_attrs
.py
→
python/tvm/relay/
util
.py
View file @
0720ed67
...
...
@@ -14,15 +14,20 @@
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""The attributes node used for QNN operators"""
# pylint: disable=wildcard-import, redefined-builtin, invalid-name
""" Utility functions that are used across many directories. """
from
__future__
import
absolute_import
import
numpy
as
np
from
.
import
expr
as
_expr
from
....attrs
import
Attrs
from
...base
import
register_relay_attr_node
@register_relay_attr_node
class
QnnConv2DAttrs
(
Attrs
):
"""Attributes for qnn.conv2d"""
@register_relay_attr_node
class
QnnDenseAttrs
(
Attrs
):
"""Attributes for qnn.dense"""
def
get_scalar_from_constant
(
expr
):
""" Returns scalar value from Relay constant scalar. """
assert
isinstance
(
expr
,
_expr
.
Constant
)
and
not
expr
.
data
.
shape
,
\
"Expr is not a constant scalar."
value
=
expr
.
data
.
asnumpy
()
if
value
.
dtype
==
np
.
dtype
(
np
.
int32
):
return
int
(
value
)
if
value
.
dtype
==
np
.
dtype
(
np
.
float32
):
return
float
(
value
)
assert
False
,
"Constant expr must be float32/int32"
return
None
# To suppress pylint
src/relay/pass/pattern_util.h
View file @
0720ed67
...
...
@@ -285,6 +285,7 @@ inline Expr Log(Expr e) {
template
<
typename
T
>
T
GetScalarFromConstant
(
Expr
expr
)
{
const
auto
*
n
=
expr
.
as
<
ConstantNode
>
();
CHECK
(
n
)
<<
"Expr must be a constant expr - "
<<
AsText
(
expr
,
false
);
CHECK
(
n
->
is_scalar
());
return
static_cast
<
T
*>
(
n
->
data
->
data
)[
0
];
}
...
...
src/relay/qnn/op/add.cc
View file @
0720ed67
...
...
@@ -42,20 +42,18 @@ namespace qnn {
Expr
QnnAddCanonicalize
(
const
Attrs
&
attrs
,
const
Array
<
Expr
>&
new_args
,
const
Array
<
tvm
::
relay
::
Type
>&
arg_types
)
{
// Get the attrs.
CHECK_EQ
(
new_args
.
size
(),
2
);
CHECK_EQ
(
new_args
.
size
(),
8
);
auto
&
lhs
=
new_args
[
0
];
auto
&
rhs
=
new_args
[
1
];
const
auto
*
binary_op_attrs
=
attrs
.
as
<
QnnBinaryOpAttrs
>
();
CHECK
(
binary_op_attrs
!=
nullptr
);
auto
lhs_scale
=
binary_op_attrs
->
lhs_scale
;
auto
lhs_zero_point
=
binary_op_attrs
->
lhs_zero_point
;
auto
rhs_scale
=
binary_op_attrs
->
rhs_scale
;
auto
rhs_zero_point
=
binary_op_attrs
->
rhs_zero_point
;
auto
output_scale
=
binary_op_attrs
->
output_scale
;
auto
output_zero_point
=
binary_op_attrs
->
output_zero_point
;
auto
&
lhs_scale
=
new_args
[
2
];
auto
&
lhs_zero_point
=
new_args
[
3
];
auto
&
rhs_scale
=
new_args
[
4
];
auto
&
rhs_zero_point
=
new_args
[
5
];
auto
&
output_scale
=
new_args
[
6
];
auto
&
output_zero_point
=
new_args
[
7
];
// Get the input dtype and shape.
CHECK_EQ
(
arg_types
.
size
(),
3
);
CHECK_EQ
(
arg_types
.
size
(),
9
);
auto
tensor_type
=
arg_types
[
0
].
as
<
TensorTypeNode
>
();
auto
input_dtype
=
tensor_type
->
dtype
;
auto
input_shape
=
tensor_type
->
shape
;
...
...
@@ -82,7 +80,8 @@ Expr QnnAddCanonicalize(const Attrs& attrs, const Array<Expr>& new_args,
// Requantize LHS if necessary.
auto
requantized_lhs
=
lhs
;
if
(
lhs_scale
!=
output_scale
||
lhs_zero_point
!=
output_zero_point
)
{
if
(
!
IsEqualScalar
(
lhs_scale
,
output_scale
)
||
!
IsEqualScalar
(
lhs_zero_point
,
output_zero_point
))
{
requantized_lhs
=
Requantize
(
lhs
,
input_shape
,
lhs_scale
,
lhs_zero_point
,
output_scale
,
output_zero_point
,
DataType
::
Int
(
32
));
}
else
{
...
...
@@ -91,7 +90,8 @@ Expr QnnAddCanonicalize(const Attrs& attrs, const Array<Expr>& new_args,
// Requantize RHS if necessary.
auto
requantized_rhs
=
rhs
;
if
(
rhs_scale
!=
output_scale
||
rhs_zero_point
!=
output_zero_point
)
{
if
(
!
IsEqualScalar
(
rhs_scale
,
output_scale
)
||
!
IsEqualScalar
(
rhs_zero_point
,
output_zero_point
))
{
requantized_rhs
=
Requantize
(
rhs
,
input_shape
,
rhs_scale
,
rhs_zero_point
,
output_scale
,
output_zero_point
,
DataType
::
Int
(
32
));
}
else
{
...
...
@@ -101,9 +101,9 @@ Expr QnnAddCanonicalize(const Attrs& attrs, const Array<Expr>& new_args,
auto
output
=
Add
(
requantized_lhs
,
requantized_rhs
);
// Subtract zero point.
if
(
output_zero_point
!=
0
)
{
auto
output_zp
=
MakeConstantScalar
(
DataType
::
Int
(
32
),
output_zero_point
);
output
=
Subtract
(
output
,
output_z
p
);
auto
zero_scalar
=
MakeConstantScalar
(
DataType
::
Int
(
32
),
0
);
if
(
!
IsEqualScalar
(
output_zero_point
,
zero_scalar
))
{
output
=
Subtract
(
output
,
output_z
ero_point
);
}
// Go back to lower precision.
...
...
src/relay/qnn/op/concatenate.cc
View file @
0720ed67
...
...
@@ -34,19 +34,48 @@ namespace tvm {
namespace
relay
{
namespace
qnn
{
TVM_REGISTER_NODE_TYPE
(
QnnConcatenateAttrs
);
Expr
MakeQnnConcatenate
(
Expr
data
,
Array
<
tvm
::
Expr
>
input_scales
,
Array
<
tvm
::
Expr
>
input_zero_points
,
double
output_scale
,
int32_t
output_zero_point
,
int
axis
)
{
auto
attrs
=
make_object
<
QnnConcatenateAttrs
>
();
attrs
->
input_scales
=
std
::
move
(
input_scales
);
attrs
->
input_zero_points
=
std
::
move
(
input_zero_points
);
attrs
->
output_scale
=
output_scale
;
attrs
->
output_zero_point
=
output_zero_point
;
bool
QnnConcatenateRel
(
const
Array
<
Type
>&
types
,
int
num_inputs
,
const
Attrs
&
attrs
,
const
TypeReporter
&
reporter
)
{
CHECK_EQ
(
types
.
size
(),
6
);
// Check the scale and zero point types
const
auto
*
input_scales_tuple
=
types
[
1
].
as
<
TupleTypeNode
>
();
if
(
input_scales_tuple
==
nullptr
)
{
throw
relay
::
Error
(
RELAY_ERROR
(
"qnn concatenate requires a tuple of scales as the second argument, found "
<<
PrettyPrint
(
types
[
1
])));
}
for
(
const
auto
&
input_scale
:
input_scales_tuple
->
fields
)
{
CHECK
(
IsScalarType
(
input_scale
,
DataType
::
Float
(
32
)));
// input_scales[idx]
}
const
auto
*
input_zero_points_tuple
=
types
[
2
].
as
<
TupleTypeNode
>
();
if
(
input_zero_points_tuple
==
nullptr
)
{
throw
relay
::
Error
(
RELAY_ERROR
(
"qnn concatenate requires a tuple of zero_points as the third argument, found "
<<
PrettyPrint
(
types
[
2
])));
}
for
(
const
auto
&
input_zero_point
:
input_zero_points_tuple
->
fields
)
{
CHECK
(
IsScalarType
(
input_zero_point
,
DataType
::
Int
(
32
)));
// input_zero_points[idx]
}
CHECK
(
IsScalarType
(
types
[
3
],
DataType
::
Float
(
32
)));
// output_scale
CHECK
(
IsScalarType
(
types
[
4
],
DataType
::
Int
(
32
)));
// output_zero_point
// Collect the input tensor and output tensor devoid of scale and zero points to reuse Relay
// Concatenate infer type function.
Array
<
Type
>
tensor_types
=
{
types
[
0
],
types
[
5
]};
return
ConcatenateRel
<
ConcatenateAttrs
>
(
tensor_types
,
2
,
attrs
,
reporter
);
}
Expr
MakeQnnConcatenate
(
Expr
data
,
Expr
input_scales
,
Expr
input_zero_points
,
Expr
output_scale
,
Expr
output_zero_point
,
int
axis
)
{
auto
attrs
=
make_object
<
ConcatenateAttrs
>
();
attrs
->
axis
=
axis
;
static
const
Op
&
op
=
Op
::
Get
(
"qnn.concatenate"
);
return
CallNode
::
make
(
op
,
{
data
},
Attrs
(
attrs
),
{});
return
CallNode
::
make
(
op
,
{
data
,
input_scales
,
input_zero_points
,
output_scale
,
output_zero_point
},
Attrs
(
attrs
),
{});
}
/*
...
...
@@ -59,14 +88,14 @@ Expr MakeQnnConcatenate(Expr data, Array<tvm::Expr> input_scales,
Expr
ConcatenateQnnCanonicalize
(
const
Attrs
&
attrs
,
const
Array
<
Expr
>&
new_args
,
const
Array
<
tvm
::
relay
::
Type
>&
arg_types
)
{
// Get the attrs.
CHECK_EQ
(
new_args
.
size
(),
1
);
CHECK_EQ
(
new_args
.
size
(),
5
);
auto
&
data
=
new_args
[
0
];
const
auto
*
concatenate_attrs
=
attrs
.
as
<
QnnConcatenateAttrs
>
();
auto
&
input_scales
=
new_args
[
1
];
auto
&
input_zero_points
=
new_args
[
2
];
auto
&
output_scale
=
new_args
[
3
];
auto
&
output_zero_point
=
new_args
[
4
];
const
auto
*
concatenate_attrs
=
attrs
.
as
<
ConcatenateAttrs
>
();
CHECK
(
concatenate_attrs
!=
nullptr
);
auto
input_scales
=
concatenate_attrs
->
input_scales
;
auto
input_zero_points
=
concatenate_attrs
->
input_zero_points
;
auto
output_scale
=
concatenate_attrs
->
output_scale
;
auto
output_zero_point
=
concatenate_attrs
->
output_zero_point
;
// Get the input dtype and shape.
CHECK_GE
(
arg_types
.
size
(),
1
);
...
...
@@ -83,21 +112,24 @@ Expr ConcatenateQnnCanonicalize(const Attrs& attrs, const Array<Expr>& new_args,
auto
tuple_data
=
data
.
as
<
TupleNode
>
();
CHECK
(
tuple_data
!=
nullptr
);
auto
tuple_input_scales
=
input_scales
.
as
<
TupleNode
>
();
CHECK
(
tuple_input_scales
!=
nullptr
);
auto
tuple_input_zero_points
=
input_zero_points
.
as
<
TupleNode
>
();
CHECK
(
tuple_input_zero_points
!=
nullptr
);
int
idx
=
0
;
Array
<
Expr
>
requantized_exprs
;
for
(
auto
quantized_expr
:
tuple_data
->
fields
)
{
// Get the input scale for the idx quantized input tensor.
auto
input_scale_expr
=
input_scales
[
idx
].
as
<
tvm
::
ir
::
FloatImm
>
();
CHECK
(
input_scale_expr
!=
nullptr
);
auto
input_scale
=
input_scale_expr
->
value
;
auto
input_scale
=
tuple_input_scales
->
fields
[
idx
];
// Get the zero point for the idx quantized input tensor.
auto
input_zero_point_expr
=
input_zero_points
[
idx
].
as
<
tvm
::
ir
::
IntImm
>
();
CHECK
(
input_zero_point_expr
!=
nullptr
);
auto
input_zero_point
=
input_zero_point_expr
->
value
;
auto
input_zero_point
=
tuple_input_zero_points
->
fields
[
idx
];
// Check if output and input qnn params are same. If not, requantize.
if
(
input_scale
!=
output_scale
||
input_zero_point
!=
output_zero_point
)
{
if
(
!
IsEqualScalar
(
input_scale
,
output_scale
)
||
!
IsEqualScalar
(
input_zero_point
,
output_zero_point
))
{
// Get the input shape and dtype.
auto
tensor_type
=
tuple_type
->
fields
[
idx
].
as
<
TensorTypeNode
>
();
auto
input_dtype
=
tensor_type
->
dtype
;
...
...
@@ -118,11 +150,15 @@ Expr ConcatenateQnnCanonicalize(const Attrs& attrs, const Array<Expr>& new_args,
RELAY_REGISTER_OP
(
"qnn.concatenate"
)
.
describe
(
R"code(Concatenate the quantized input tensors along the given axis.
)code"
TVM_ADD_FILELINE
)
.
set_attrs_type
<
Qnn
ConcatenateAttrs
>
()
.
set_num_inputs
(
1
)
.
set_attrs_type
<
ConcatenateAttrs
>
()
.
set_num_inputs
(
5
)
.
add_argument
(
"data"
,
"Tensor"
,
"The tensor to concatenate."
)
.
add_argument
(
"input_scales"
,
"Tensor"
,
"The quantization scales of the input tensors."
)
.
add_argument
(
"input_zero_points"
,
"Tensor"
,
"The quantization zero_points of the input tensors."
)
.
add_argument
(
"output_scale"
,
"Tensor"
,
"The quantization scale of the output tensor."
)
.
add_argument
(
"output_zero_point"
,
"Tensor"
,
"The quantization zero_point of the output tensor."
)
.
set_support_level
(
11
)
.
add_type_rel
(
"QnnConcatenate"
,
ConcatenateRel
<
QnnConcatenateAttrs
>
)
.
add_type_rel
(
"QnnConcatenate"
,
QnnConcatenateRel
)
.
set_attr
<
FTVMLegalize
>
(
"FTVMQnnCanonicalize"
,
ConcatenateQnnCanonicalize
);
TVM_REGISTER_API
(
"relay.qnn.op._make.concatenate"
)
...
...
src/relay/qnn/op/convolution.cc
View file @
0720ed67
...
...
@@ -36,16 +36,15 @@ namespace relay {
namespace
qnn
{
// relay.op.qnn.conv2d
TVM_REGISTER_NODE_TYPE
(
QnnConv2DAttrs
);
bool
QnnConv2DRel
(
const
Array
<
Type
>&
types
,
int
num_inputs
,
const
Attrs
&
attrs
,
const
TypeReporter
&
reporter
)
{
CHECK_EQ
(
types
.
size
(),
3
);
CHECK_EQ
(
types
.
size
(),
7
);
const
auto
*
data
=
types
[
0
].
as
<
TensorTypeNode
>
();
const
auto
*
weight
=
types
[
1
].
as
<
TensorTypeNode
>
();
if
(
data
==
nullptr
||
weight
==
nullptr
)
return
false
;
const
auto
*
param
=
attrs
.
as
<
Qnn
Conv2DAttrs
>
();
CHECK
(
param
!=
nullptr
)
<<
"
Qnn
Conv2DAttrs cannot be nullptr."
;
const
auto
*
param
=
attrs
.
as
<
Conv2DAttrs
>
();
CHECK
(
param
!=
nullptr
)
<<
"Conv2DAttrs cannot be nullptr."
;
CHECK
(
data
->
dtype
==
DataType
::
Int
(
8
)
||
data
->
dtype
==
DataType
::
UInt
(
8
))
<<
"Expected qnn conv2d type(int8, uint8) for input but was "
<<
data
->
dtype
;
CHECK
(
weight
->
dtype
==
DataType
::
Int
(
8
)
||
weight
->
dtype
==
DataType
::
UInt
(
8
))
...
...
@@ -53,10 +52,20 @@ bool QnnConv2DRel(const Array<Type>& types, int num_inputs, const Attrs& attrs,
CHECK
(
param
->
out_dtype
==
DataType
::
Int
(
16
)
||
param
->
out_dtype
==
DataType
::
Int
(
32
))
<<
"Expected qnn conv2d type(int32, int16) for output but was "
<<
param
->
out_dtype
;
CHECK
(
param
->
out_dtype
.
bits
()
>
0
)
<<
"Output dtype bits should be greater than 0."
;
return
Conv2DRel
<
QnnConv2DAttrs
>
(
types
,
num_inputs
,
attrs
,
reporter
);
// Check the types of scale and zero points.
CHECK
(
IsScalarType
(
types
[
2
],
DataType
::
Int
(
32
)));
// input_zero_point
CHECK
(
IsScalarType
(
types
[
3
],
DataType
::
Int
(
32
)));
// kernel_zero_point
CHECK
(
IsScalarType
(
types
[
4
],
DataType
::
Float
(
32
)));
// input_scale
CHECK
(
IsScalarType
(
types
[
5
],
DataType
::
Float
(
32
)));
// kernel_scale
// Collect the input tensor and output tensor devoid of scale and zero points to reuse Relay
// Conv2D infer type function.
Array
<
Type
>
tensor_types
=
{
types
[
0
],
types
[
1
],
types
[
6
]};
return
Conv2DRel
<
Conv2DAttrs
>
(
tensor_types
,
3
,
attrs
,
reporter
);
}
bool
is_depthwise
(
const
Qnn
Conv2DAttrs
*
param
)
{
bool
is_depthwise
(
const
Conv2DAttrs
*
param
)
{
return
param
->
channels
.
defined
()
&&
tvm
::
ir
::
Equal
(
param
->
channels
,
param
->
groups
)
&&
param
->
groups
!=
1
;
}
...
...
@@ -70,7 +79,7 @@ using WorkloadType = std::tuple<int, int, int, int, int, int>;
* \param param The qnn conv2d attributes.
* \return A tuple of workload.
*/
WorkloadType
GetWorkload
(
const
Array
<
tvm
::
relay
::
Type
>&
arg_types
,
const
Qnn
Conv2DAttrs
*
param
)
{
WorkloadType
GetWorkload
(
const
Array
<
tvm
::
relay
::
Type
>&
arg_types
,
const
Conv2DAttrs
*
param
)
{
// Get conv parameters.
const
auto
in_shape
=
get_shape
(
arg_types
[
0
]);
int
batch_size
,
in_channels
;
...
...
@@ -121,6 +130,8 @@ WorkloadType GetWorkload(const Array<tvm::relay::Type>& arg_types, const QnnConv
* \brief Fallback to simpler lowering for dilation or grouped conv.
* \param data The input expr.
* \param weight The weight expr.
* \param input_zero_point The input zero point expr.
* \param kernel_zero_point The kernel zero point expr.
* \param param The qnn conv2d attributes.
* \return The fallback lowered sequence of Relay expr.
* \note In case of dilation, normal lowering would require a dilated pool.
...
...
@@ -128,18 +139,20 @@ WorkloadType GetWorkload(const Array<tvm::relay::Type>& arg_types, const QnnConv
* Relay operations. This will potentially lead to performance degradation
* as the convolution is called on int32 tensors instead of int8 tensors.
*/
Expr
Conv2DFallBack
(
const
Expr
&
data
,
const
Expr
&
weight
,
const
QnnConv2DAttrs
*
param
)
{
Expr
Conv2DFallBack
(
const
Expr
&
data
,
const
Expr
&
weight
,
const
Expr
&
input_zero_point
,
const
Expr
&
kernel_zero_point
,
const
Conv2DAttrs
*
param
)
{
// Upcast the zero point to Int16.
auto
zp_data
=
MakeConstantScalar
(
DataType
::
Int
(
16
),
param
->
input_zero_point
);
auto
zp_kernel
=
MakeConstantScalar
(
DataType
::
Int
(
16
),
param
->
kernel_zero_point
);
auto
zp_data
=
Cast
(
input_zero_point
,
DataType
::
Int
(
16
)
);
auto
zp_kernel
=
Cast
(
kernel_zero_point
,
DataType
::
Int
(
16
)
);
auto
shifted_data
=
Cast
(
data
,
DataType
::
Int
(
16
));
if
(
param
->
input_zero_point
!=
0
)
{
auto
zero_scalar
=
MakeConstantScalar
(
DataType
::
Int
(
32
),
0
);
if
(
!
IsEqualScalar
(
input_zero_point
,
zero_scalar
))
{
shifted_data
=
Subtract
(
Cast
(
data
,
DataType
::
Int
(
16
)),
zp_data
);
}
auto
shifted_kernel
=
Cast
(
weight
,
DataType
::
Int
(
16
));
if
(
param
->
kernel_zero_point
!=
0
)
{
if
(
!
IsEqualScalar
(
kernel_zero_point
,
zero_scalar
)
)
{
shifted_kernel
=
Subtract
(
Cast
(
weight
,
DataType
::
Int
(
16
)),
zp_kernel
);
}
...
...
@@ -151,13 +164,14 @@ Expr Conv2DFallBack(const Expr& data, const Expr& weight, const QnnConv2DAttrs*
/*
* \brief Pad the input data.
* \param data The input expr.
* \param input_zero_point The input zero point expr.
* \return The padded input expr.
* \note For quantized convolution, the input has to be padded with zero point
* instead of zero. This might lead to performance degradation as pad
* cannot be fused with conv in Relay. In case we see performance
* degradation, we can change the conv2D API to accept a pad_const value.
*/
Expr
Conv2DPadInput
(
const
Expr
&
data
,
const
Qnn
Conv2DAttrs
*
param
)
{
Expr
Conv2DPadInput
(
const
Expr
&
data
,
const
Expr
&
input_zero_point
,
const
Conv2DAttrs
*
param
)
{
// 1) Pad the input data
auto
padded_data
=
data
;
auto
pad_h_value
=
get_const_int
(
param
->
padding
[
0
]);
...
...
@@ -176,7 +190,8 @@ Expr Conv2DPadInput(const Expr& data, const QnnConv2DAttrs* param) {
}
else
{
LOG
(
FATAL
)
<<
"qnn.conv2d does not support "
<<
param
->
data_layout
<<
" layout"
;
}
padded_data
=
Pad
(
data
,
pad_width
,
param
->
input_zero_point
,
"constant"
);
auto
pad_value
=
GetScalarFromConstant
<
int
>
(
input_zero_point
);
padded_data
=
Pad
(
data
,
pad_width
,
pad_value
,
"constant"
);
}
return
padded_data
;
}
...
...
@@ -184,6 +199,7 @@ Expr Conv2DPadInput(const Expr& data, const QnnConv2DAttrs* param) {
/*
* \brief Calculates the second term in the qnn.conv2d depthwise lowering sequence.
* \param padded_data The padded data expr.
* \param kernel_zero_point The kernel zero point expr.
* \param param The qnn conv2d attributes.
* \param kernel_h The height of kernel.
* \param kernel_w The width of kernel.
...
...
@@ -197,11 +213,9 @@ Expr Conv2DPadInput(const Expr& data, const QnnConv2DAttrs* param) {
* However, deeper analysis shows that we can reduce r,s using avg_pool2d,
* followed by repeat on the C axis by cm times.
*/
Expr
DepthwiseConv2DSecondTerm
(
const
Expr
&
padded_data
,
const
QnnConv2DAttrs
*
param
,
int
kernel_h
,
int
kernel_w
,
int
channel_multiplier
)
{
// Constant Expr for the kernel zero point.
auto
zp_kernel
=
MakeConstantScalar
(
DataType
::
Int
(
32
),
param
->
kernel_zero_point
);
Expr
DepthwiseConv2DSecondTerm
(
const
Expr
&
padded_data
,
const
Expr
&
kernel_zero_point
,
const
Conv2DAttrs
*
param
,
int
kernel_h
,
int
kernel_w
,
int
channel_multiplier
)
{
auto
casted_t2
=
Cast
(
padded_data
,
DataType
::
Int
(
32
));
// We can reduce the H and W axis by using avg_pool2d. However, avg_pool2d averages the sum.
...
...
@@ -210,8 +224,8 @@ Expr DepthwiseConv2DSecondTerm(const Expr& padded_data, const QnnConv2DAttrs* pa
// pool_size is 1x1, we don't need avg_pool2d.
auto
reduced_t2
=
casted_t2
;
if
(
kernel_h
*
kernel_w
!=
1
)
{
auto
scaled_hw_t2
=
Multiply
(
casted_t2
,
MakeConstantScalar
(
DataType
::
Int
(
32
),
kernel_h
*
kernel_w
));
auto
scaled_hw_t2
=
Multiply
(
casted_t2
,
MakeConstantScalar
(
DataType
::
Int
(
32
),
kernel_h
*
kernel_w
));
Array
<
IndexExpr
>
padding
({
0
,
0
});
reduced_t2
=
AvgPool2D
(
scaled_hw_t2
,
param
->
kernel_size
,
param
->
strides
,
padding
,
param
->
data_layout
,
...
...
@@ -220,8 +234,9 @@ Expr DepthwiseConv2DSecondTerm(const Expr& padded_data, const QnnConv2DAttrs* pa
}
auto
multiplied_t2
=
reduced_t2
;
if
(
param
->
kernel_zero_point
!=
1
)
{
multiplied_t2
=
Multiply
(
zp_kernel
,
reduced_t2
);
auto
one_scalar
=
MakeConstantScalar
(
DataType
::
Int
(
32
),
1
);
if
(
!
IsEqualScalar
(
kernel_zero_point
,
one_scalar
))
{
multiplied_t2
=
Multiply
(
kernel_zero_point
,
reduced_t2
);
}
// Reduce the C dimension. Find the dimension.
...
...
@@ -243,6 +258,7 @@ Expr DepthwiseConv2DSecondTerm(const Expr& padded_data, const QnnConv2DAttrs* pa
/*
* \brief Calculates the third term in the qnn.conv2d depthwise lowering sequence.
* \param weight The weight expr.
* \param input_zero_point The input zero point expr.
* \param param The qnn conv2d attributes.
* \param out_channels The number of output channels.
* \param channel_multiplier The channel/depth multiplier.
...
...
@@ -254,11 +270,8 @@ Expr DepthwiseConv2DSecondTerm(const Expr& padded_data, const QnnConv2DAttrs* pa
* This can be achieved by calling reduce on r and s axis. The tensor can be then reshaped to
* (1, oc, 1, 1) as (oc/m, oc%m) are just contiguous memory locations.
*/
Expr
DepthwiseConv2DThirdTerm
(
const
Expr
&
weight
,
const
QnnConv2DAttrs
*
param
,
int
out_channels
,
int
channel_multiplier
)
{
// Constant expr for input zero point.
auto
zp_data
=
MakeConstantScalar
(
DataType
::
Int
(
32
),
param
->
input_zero_point
);
Expr
DepthwiseConv2DThirdTerm
(
const
Expr
&
weight
,
const
Expr
&
input_zero_point
,
const
Conv2DAttrs
*
param
,
int
out_channels
,
int
channel_multiplier
)
{
// Find which dimensions are R, S.
Array
<
Integer
>
axes_t3
;
if
(
param
->
kernel_layout
==
"OIHW"
)
{
...
...
@@ -284,15 +297,17 @@ Expr DepthwiseConv2DThirdTerm(const Expr& weight, const QnnConv2DAttrs* param, i
}
auto
reshaped_t3
=
Reshape
(
reduced_t3
,
newshape
);
if
(
param
->
input_zero_point
==
1
)
{
auto
one_scalar
=
MakeConstantScalar
(
DataType
::
Int
(
32
),
1
);
if
(
IsEqualScalar
(
input_zero_point
,
one_scalar
))
{
return
reshaped_t3
;
}
return
Multiply
(
zp_data
,
reshaped_t3
);
return
Multiply
(
input_zero_point
,
reshaped_t3
);
}
/*
* \brief Calculates the fourth term in the qnn.conv2d depthwise lowering sequence.
* \param param The qnn conv2d attributes.
* \param input_zero_point_int The int value of input zero point.
* \param kernel_zero_point_int The int value of kernel zero point.
* \param kernel_h The height of kernel.
* \param kernel_w The width of kernel.
* \return The sequence of Relay operators for term4.
...
...
@@ -300,8 +315,9 @@ Expr DepthwiseConv2DThirdTerm(const Expr& weight, const QnnConv2DAttrs* param, i
*
* Sigma(r, s) zp_a * zp_w
*/
Expr
DepthwiseConv2DFourthTerm
(
const
QnnConv2DAttrs
*
param
,
int
kernel_h
,
int
kernel_w
)
{
int
scalar_term4
=
param
->
input_zero_point
*
param
->
kernel_zero_point
*
kernel_h
*
kernel_w
;
Expr
DepthwiseConv2DFourthTerm
(
int
input_zero_point_int
,
int
kernel_zero_point_int
,
int
kernel_h
,
int
kernel_w
)
{
int
scalar_term4
=
input_zero_point_int
*
kernel_zero_point_int
*
kernel_h
*
kernel_w
;
return
MakeConstantScalar
(
DataType
::
Int
(
32
),
scalar_term4
);
}
...
...
@@ -315,7 +331,7 @@ Expr DepthwiseConv2DFourthTerm(const QnnConv2DAttrs* param, int kernel_h, int ke
* Sigma(c,r,s) QW(k, c, r, s) * QA(n, c, h + r, w + s)
* This is just conv2d on int tensors.
*/
Expr
Conv2DFirstTerm
(
const
Expr
&
padded_data
,
const
Expr
&
weight
,
const
Qnn
Conv2DAttrs
*
param
)
{
Expr
Conv2DFirstTerm
(
const
Expr
&
padded_data
,
const
Expr
&
weight
,
const
Conv2DAttrs
*
param
)
{
// Lowering for Term 1
Array
<
IndexExpr
>
padding
({
0
,
0
});
return
Conv2D
(
padded_data
,
weight
,
param
->
strides
,
padding
,
param
->
dilation
,
param
->
groups
,
...
...
@@ -326,6 +342,7 @@ Expr Conv2DFirstTerm(const Expr& padded_data, const Expr& weight, const QnnConv2
/*
* \brief Calculates the second term in the qnn.conv2d lowering sequence.
* \param padded_data The padded data expr.
* \param kernel_zero_point The kernel zero point expr.
* \param param The qnn conv2d attributes.
* \param kernel_h The height of kernel.
* \param kernel_w The width of kernel.
...
...
@@ -339,11 +356,8 @@ Expr Conv2DFirstTerm(const Expr& padded_data, const Expr& weight, const QnnConv2
* followed by a reduce on the C axis. Using avg_pool2d also gives an
* opportunity to reuse alter_op_layout infrastructure.
*/
Expr
Conv2DSecondTerm
(
const
Expr
&
padded_data
,
const
QnnConv2DAttrs
*
param
,
int
kernel_h
,
int
kernel_w
,
int
out_channels
)
{
// Constant Expr for the kernel zero point.
auto
zp_kernel
=
MakeConstantScalar
(
DataType
::
Int
(
32
),
param
->
kernel_zero_point
);
Expr
Conv2DSecondTerm
(
const
Expr
&
padded_data
,
const
Expr
&
kernel_zero_point
,
const
Conv2DAttrs
*
param
,
int
kernel_h
,
int
kernel_w
,
int
out_channels
)
{
auto
casted_t2
=
Cast
(
padded_data
,
DataType
::
Int
(
32
));
// We can reduce the H and W axis by using avg_pool2d. However, avg_pool2d averages the sum.
...
...
@@ -366,20 +380,18 @@ Expr Conv2DSecondTerm(const Expr& padded_data, const QnnConv2DAttrs* param, int
// If the pool_size is 1x1, we don't need avg_pool2d.
auto
reduced_t2
=
reduced_c_t2
;
if
(
kernel_h
*
kernel_w
!=
1
)
{
reduced_c_t2
=
Multiply
(
reduced_c_t2
,
MakeConstantScalar
(
DataType
::
Int
(
32
),
kernel_h
*
kernel_w
));
reduced_c_t2
=
Multiply
(
reduced_c_t2
,
MakeConstantScalar
(
DataType
::
Int
(
32
),
kernel_h
*
kernel_w
));
reduced_t2
=
AvgPool2D
(
reduced_c_t2
,
param
->
kernel_size
,
param
->
strides
,
padding
,
param
->
data_layout
,
AvgPool2D
(
reduced_c_t2
,
param
->
kernel_size
,
param
->
strides
,
padding
,
param
->
data_layout
,
false
,
// ceil_mode
false
);
// count_include_pad
}
auto
multiplied_t2
=
reduced_t2
;
if
(
param
->
kernel_zero_point
!=
1
)
{
multiplied_t2
=
Multiply
(
zp_kernel
,
reduced_t2
);
auto
one_scalar
=
MakeConstantScalar
(
DataType
::
Int
(
32
),
1
);
if
(
!
IsEqualScalar
(
kernel_zero_point
,
one_scalar
))
{
multiplied_t2
=
Multiply
(
kernel_zero_point
,
reduced_t2
);
}
return
multiplied_t2
;
}
...
...
@@ -387,6 +399,7 @@ Expr Conv2DSecondTerm(const Expr& padded_data, const QnnConv2DAttrs* param, int
/*
* \brief Calculates the third term in the qnn.conv2d lowering sequence.
* \param weight The weight expr.
* \param input_zero_point The input zero point expr.
* \param param The qnn conv2d attributes.
* \param out_channels The number of output channels.
* \return The sequence of Relay operatos for term3.
...
...
@@ -398,10 +411,8 @@ Expr Conv2DSecondTerm(const Expr& padded_data, const QnnConv2DAttrs* param, int
* a 1D tensor. The tensor is then reshaped to conform to NHWC/NCHW
* format.
*/
Expr
Conv2DThirdTerm
(
const
Expr
&
weight
,
const
QnnConv2DAttrs
*
param
,
int
out_channels
)
{
// Constant expr for input zero point.
auto
zp_data
=
MakeConstantScalar
(
DataType
::
Int
(
32
),
param
->
input_zero_point
);
Expr
Conv2DThirdTerm
(
const
Expr
&
weight
,
const
Expr
&
input_zero_point
,
const
Conv2DAttrs
*
param
,
int
out_channels
)
{
// Find which dimensions are C, R, S.
Array
<
Integer
>
axes_t3
;
if
(
param
->
kernel_layout
==
"OIHW"
)
{
...
...
@@ -427,15 +438,17 @@ Expr Conv2DThirdTerm(const Expr& weight, const QnnConv2DAttrs* param, int out_ch
}
auto
reshaped_t3
=
Reshape
(
reduced_t3
,
newshape
);
if
(
param
->
input_zero_point
==
1
)
{
auto
one_scalar
=
MakeConstantScalar
(
DataType
::
Int
(
32
),
1
);
if
(
IsEqualScalar
(
input_zero_point
,
one_scalar
))
{
return
reshaped_t3
;
}
return
Multiply
(
zp_data
,
reshaped_t3
);
return
Multiply
(
input_zero_point
,
reshaped_t3
);
}
/*
* \brief Calculates the fourth term in the qnn.conv2d lowering sequence.
* \param param The qnn conv2d attributes.
* \param input_zero_point_int The int value of input zero point.
* \param kernel_zero_point_int The int value of kernel zero point.
* \param in_channels The number of input channels.
* \param kernel_h The height of kernel.
* \param kernel_w The width of kernel.
...
...
@@ -445,9 +458,10 @@ Expr Conv2DThirdTerm(const Expr& weight, const QnnConv2DAttrs* param, int out_ch
* Sigma(c,r,s) zp_a * zp_w
*
*/
Expr
Conv2DFourthTerm
(
const
QnnConv2DAttrs
*
param
,
int
in_channels
,
int
kernel_h
,
int
kernel_w
)
{
Expr
Conv2DFourthTerm
(
int
input_zero_point_int
,
int
kernel_zero_point_int
,
int
in_channels
,
int
kernel_h
,
int
kernel_w
)
{
int
scalar_term4
=
param
->
input_zero_point
*
param
->
kernel_zero_po
int
*
in_channels
*
kernel_h
*
kernel_w
;
input_zero_point_int
*
kernel_zero_point_
int
*
in_channels
*
kernel_h
*
kernel_w
;
return
MakeConstantScalar
(
DataType
::
Int
(
32
),
scalar_term4
);
}
...
...
@@ -457,6 +471,8 @@ Expr Conv2DFourthTerm(const QnnConv2DAttrs* param, int in_channels, int kernel_h
* \param term2 The term2 of qnn conv2d lowering.
* \param term3 The term3 of qnn conv2d lowering.
* \param term4 The term4 of qnn conv2d lowering.
* \param input_zero_point_int The int value of input zero point.
* \param kernel_zero_point_int The int value of kernel zero point.
* \param param The qnn conv2d attributes.
* \return The combined sequence of relay operations.
* \note The combined operation looks like this
...
...
@@ -468,14 +484,14 @@ Expr Conv2DFourthTerm(const QnnConv2DAttrs* param, int in_channels, int kernel_h
*
*/
Expr
Conv2DCombineTerms
(
const
Expr
&
term1
,
const
Expr
&
term2
,
const
Expr
&
term3
,
const
Expr
&
term4
,
const
QnnConv2DAttrs
*
param
)
{
if
(
param
->
input_zero_point
==
0
&&
param
->
kernel_zero_po
int
==
0
)
{
int
input_zero_point_int
,
int
kernel_zero_point_int
)
{
if
(
input_zero_point_int
==
0
&&
kernel_zero_point_
int
==
0
)
{
// term 2, 3 and 4 become zero.
return
term1
;
}
else
if
(
param
->
input_zero_point
==
0
&&
param
->
kernel_zero_po
int
!=
0
)
{
}
else
if
(
input_zero_point_int
==
0
&&
kernel_zero_point_
int
!=
0
)
{
// term 3 and term 4 become zero.
return
Subtract
(
term1
,
term2
);
}
else
if
(
param
->
input_zero_point
!=
0
&&
param
->
kernel_zero_po
int
==
0
)
{
}
else
if
(
input_zero_point_int
!=
0
&&
kernel_zero_point_
int
==
0
)
{
// term 2 and term 4 become zero.
return
Subtract
(
term1
,
term3
);
}
else
{
...
...
@@ -556,10 +572,12 @@ Expr Conv2DCombineTerms(const Expr& term1, const Expr& term2, const Expr& term3,
*/
Expr
QnnConv2DCanonicalize
(
const
Attrs
&
attrs
,
const
Array
<
Expr
>&
new_args
,
const
Array
<
tvm
::
relay
::
Type
>&
arg_types
)
{
CHECK_EQ
(
new_args
.
size
(),
2
);
CHECK_EQ
(
new_args
.
size
(),
6
);
Expr
data
=
new_args
[
0
];
Expr
weight
=
new_args
[
1
];
const
auto
*
param
=
attrs
.
as
<
QnnConv2DAttrs
>
();
Expr
input_zero_point
=
new_args
[
2
];
Expr
kernel_zero_point
=
new_args
[
3
];
const
auto
*
param
=
attrs
.
as
<
Conv2DAttrs
>
();
CHECK
(
param
!=
nullptr
);
// Assertion checks for exisiing support.
CHECK_EQ
(
param
->
padding
.
size
(),
2
)
<<
"qnn.conv2d only supports 2D padding"
;
...
...
@@ -573,41 +591,50 @@ Expr QnnConv2DCanonicalize(const Attrs& attrs, const Array<Expr>& new_args,
std
::
tie
(
batch_size
,
in_channels
,
out_channels
,
kernel_h
,
kernel_w
,
channel_multiplier
)
=
GetWorkload
(
arg_types
,
param
);
// Extract the integer zero points.
auto
input_zero_point_int
=
GetScalarFromConstant
<
int
>
(
input_zero_point
);
auto
kernel_zero_point_int
=
GetScalarFromConstant
<
int
>
(
kernel_zero_point
);
// Fallback to int32 conv if there is dilation or grouped conv2d
CHECK_EQ
(
param
->
dilation
.
size
(),
2
)
<<
"qnn.conv2d only supports 2D dilation"
;
auto
dilation_h
=
get_const_int
(
param
->
dilation
[
0
]);
auto
dilation_w
=
get_const_int
(
param
->
dilation
[
1
]);
if
(
dilation_h
!=
1
||
dilation_w
!=
1
||
(
param
->
groups
!=
1
&&
!
is_depthwise
(
param
)))
{
return
Conv2DFallBack
(
data
,
weight
,
param
);
return
Conv2DFallBack
(
data
,
weight
,
input_zero_point
,
kernel_zero_point
,
param
);
}
else
if
(
is_depthwise
(
param
))
{
CHECK_NE
(
channel_multiplier
,
-
1
);
auto
padded_data
=
Conv2DPadInput
(
data
,
param
);
auto
padded_data
=
Conv2DPadInput
(
data
,
input_zero_point
,
param
);
auto
term1
=
Conv2DFirstTerm
(
padded_data
,
weight
,
param
);
auto
term2
=
DepthwiseConv2DSecondTerm
(
padded_data
,
param
,
kernel_h
,
kernel_w
,
channel_multiplier
);
auto
term3
=
DepthwiseConv2DThirdTerm
(
weight
,
param
,
out_channels
,
channel_multiplier
);
auto
term4
=
DepthwiseConv2DFourthTerm
(
param
,
kernel_h
,
kernel_w
);
return
Conv2DCombineTerms
(
term1
,
term2
,
term3
,
term4
,
param
);
auto
term2
=
DepthwiseConv2DSecondTerm
(
padded_data
,
kernel_zero_point
,
param
,
kernel_h
,
kernel_w
,
channel_multiplier
);
auto
term3
=
DepthwiseConv2DThirdTerm
(
weight
,
input_zero_point
,
param
,
out_channels
,
channel_multiplier
);
auto
term4
=
DepthwiseConv2DFourthTerm
(
input_zero_point_int
,
kernel_zero_point_int
,
kernel_h
,
kernel_w
);
return
Conv2DCombineTerms
(
term1
,
term2
,
term3
,
term4
,
input_zero_point_int
,
kernel_zero_point_int
);
}
auto
padded_data
=
Conv2DPadInput
(
data
,
param
);
auto
padded_data
=
Conv2DPadInput
(
data
,
input_zero_point
,
param
);
auto
term1
=
Conv2DFirstTerm
(
padded_data
,
weight
,
param
);
auto
term2
=
Conv2DSecondTerm
(
padded_data
,
param
,
kernel_h
,
kernel_w
,
out_channels
);
auto
term3
=
Conv2DThirdTerm
(
weight
,
param
,
out_channels
);
auto
term4
=
Conv2DFourthTerm
(
param
,
in_channels
,
kernel_h
,
kernel_w
);
return
Conv2DCombineTerms
(
term1
,
term2
,
term3
,
term4
,
param
);
auto
term2
=
Conv2DSecondTerm
(
padded_data
,
kernel_zero_point
,
param
,
kernel_h
,
kernel_w
,
out_channels
);
auto
term3
=
Conv2DThirdTerm
(
weight
,
input_zero_point
,
param
,
out_channels
);
auto
term4
=
Conv2DFourthTerm
(
input_zero_point_int
,
kernel_zero_point_int
,
in_channels
,
kernel_h
,
kernel_w
);
return
Conv2DCombineTerms
(
term1
,
term2
,
term3
,
term4
,
input_zero_point_int
,
kernel_zero_point_int
);
}
// Positional relay function to create quantized conv2d operator
// used by frontend FFI.
Expr
MakeQnnConv2D
(
Expr
data
,
Expr
weight
,
int32_t
input_zero_point
,
int32_t
kernel_zero_point
,
double
input_scale
,
double
kernel_scale
,
Array
<
IndexExpr
>
strides
,
Array
<
IndexExpr
>
padding
,
Array
<
IndexExpr
>
dilation
,
int
groups
,
IndexExpr
channels
,
Array
<
IndexExpr
>
kernel_size
,
std
::
string
data_layout
,
std
::
string
kernel_layout
,
std
::
string
out_layout
,
DataType
out_dtype
)
{
auto
attrs
=
make_object
<
QnnConv2DAttrs
>
();
Expr
MakeQnnConv2D
(
Expr
data
,
Expr
weight
,
Expr
input_zero_point
,
Expr
kernel_zero_point
,
Expr
input_scale
,
Expr
kernel_scale
,
Array
<
IndexExpr
>
strides
,
Array
<
IndexExpr
>
padding
,
Array
<
IndexExpr
>
dilation
,
int
groups
,
IndexExpr
channels
,
Array
<
IndexExpr
>
kernel_size
,
std
::
string
data_layout
,
std
::
string
kernel_layout
,
std
::
string
out_layout
,
DataType
out_dtype
)
{
auto
attrs
=
make_object
<
Conv2DAttrs
>
();
attrs
->
strides
=
std
::
move
(
strides
);
attrs
->
padding
=
std
::
move
(
padding
);
attrs
->
dilation
=
std
::
move
(
dilation
);
...
...
@@ -618,12 +645,10 @@ Expr MakeQnnConv2D(Expr data, Expr weight, int32_t input_zero_point, int32_t ker
attrs
->
kernel_layout
=
std
::
move
(
kernel_layout
);
attrs
->
out_layout
=
std
::
move
(
out_layout
);
attrs
->
out_dtype
=
std
::
move
(
out_dtype
);
attrs
->
input_zero_point
=
std
::
move
(
input_zero_point
);
attrs
->
kernel_zero_point
=
std
::
move
(
kernel_zero_point
);
attrs
->
input_scale
=
std
::
move
(
input_scale
);
attrs
->
kernel_scale
=
std
::
move
(
kernel_scale
);
static
const
Op
&
op
=
Op
::
Get
(
"qnn.conv2d"
);
return
CallNode
::
make
(
op
,
{
data
,
weight
},
Attrs
(
attrs
),
{});
return
CallNode
::
make
(
op
,
{
data
,
weight
,
input_zero_point
,
kernel_zero_point
,
input_scale
,
kernel_scale
},
Attrs
(
attrs
),
{});
}
RELAY_REGISTER_OP
(
"qnn.conv2d"
)
...
...
@@ -639,10 +664,14 @@ operator to understand how to scale back the int32 output to (u)int8.
- **out**: This depends on the `layout` parameter. Output is 4D array of shape
(batch_size, channels, out_height, out_width) if `layout` is `NCHW`.
)code"
TVM_ADD_FILELINE
)
.
set_attrs_type
<
Qnn
Conv2DAttrs
>
()
.
set_num_inputs
(
2
)
.
set_attrs_type
<
Conv2DAttrs
>
()
.
set_num_inputs
(
6
)
.
add_argument
(
"data"
,
"Tensor"
,
"The quantized input data tensor."
)
.
add_argument
(
"weight"
,
"Tensor"
,
"The quantized weight tensor."
)
.
add_argument
(
"input_scale"
,
"Tensor"
,
"The quantization scale of the input tensor."
)
.
add_argument
(
"input_zero_point"
,
"Tensor"
,
"The quantization zero_point of the input tensor."
)
.
add_argument
(
"weight_scale"
,
"Tensor"
,
"The quantization scale of the weight tensor."
)
.
add_argument
(
"weight_zero_point"
,
"Tensor"
,
"The quantization zero_point of the weight tensor."
)
.
set_support_level
(
11
)
.
add_type_rel
(
"QnnConv2D"
,
QnnConv2DRel
)
.
set_attr
<
FTVMLegalize
>
(
"FTVMQnnCanonicalize"
,
QnnConv2DCanonicalize
);
...
...
src/relay/qnn/op/dense.cc
View file @
0720ed67
...
...
@@ -35,59 +35,67 @@ namespace relay {
namespace
qnn
{
// relay.op.qnn.dense
TVM_REGISTER_NODE_TYPE
(
QnnDenseAttrs
);
bool
QnnDenseRel
(
const
Array
<
Type
>&
types
,
int
num_inputs
,
const
Attrs
&
attrs
,
const
TypeReporter
&
reporter
)
{
CHECK_EQ
(
types
.
size
(),
3
);
CHECK_EQ
(
types
.
size
(),
7
);
const
auto
*
data
=
types
[
0
].
as
<
TensorTypeNode
>
();
const
auto
*
weight
=
types
[
1
].
as
<
TensorTypeNode
>
();
if
(
data
==
nullptr
||
weight
==
nullptr
)
return
false
;
const
auto
*
param
=
attrs
.
as
<
Qnn
DenseAttrs
>
();
CHECK
(
param
!=
nullptr
)
<<
"
Qnn
DenseAttrs cannot be nullptr."
;
const
auto
*
param
=
attrs
.
as
<
DenseAttrs
>
();
CHECK
(
param
!=
nullptr
)
<<
"DenseAttrs cannot be nullptr."
;
CHECK
(
data
->
dtype
==
DataType
::
Int
(
8
)
||
data
->
dtype
==
DataType
::
UInt
(
8
))
<<
"Expected quantized dense type(int8, uint8) for input but was "
<<
data
->
dtype
;
CHECK
(
weight
->
dtype
==
DataType
::
Int
(
8
)
||
weight
->
dtype
==
DataType
::
UInt
(
8
))
<<
"Expected quantized dense type(int8, uint8) for weight but was "
<<
weight
->
dtype
;
CHECK
(
param
->
out_dtype
==
DataType
::
Int
(
32
))
<<
"Expected quantized dense type(int32) for output but was "
<<
param
->
out_dtype
;
// Check the types of scale and zero points.
CHECK
(
IsScalarType
(
types
[
2
],
DataType
::
Int
(
32
)));
// input_zero_point
CHECK
(
IsScalarType
(
types
[
3
],
DataType
::
Int
(
32
)));
// kernel_zero_point
CHECK
(
IsScalarType
(
types
[
4
],
DataType
::
Float
(
32
)));
// input_scale
CHECK
(
IsScalarType
(
types
[
5
],
DataType
::
Float
(
32
)));
// kernel_scale
CHECK
(
param
->
out_dtype
.
bits
()
>
0
)
<<
"Output dtype bits should be greater than 0."
;
return
DenseRel
<
QnnDenseAttrs
>
(
types
,
num_inputs
,
attrs
,
reporter
);
// Collect the input tensor and output tensor devoid of scale and zero points to reuse Relay
// Dense infer type function.
Array
<
Type
>
tensor_types
=
{
types
[
0
],
types
[
1
],
types
[
6
]};
return
DenseRel
<
DenseAttrs
>
(
tensor_types
,
3
,
attrs
,
reporter
);
}
// Positional relay function to create quantized dense operator used by frontend FFI.
Expr
MakeQuantizedDense
(
Expr
data
,
Expr
weight
,
int32_t
input_zero_point
,
int32_t
kernel_zero_point
,
double
input_scale
,
double
kernel_scale
,
IndexExpr
units
,
DataType
out_dtype
)
{
auto
attrs
=
make_object
<
QnnDenseAttrs
>
();
Expr
MakeQuantizedDense
(
Expr
data
,
Expr
weight
,
Expr
input_zero_point
,
Expr
kernel_zero_point
,
Expr
input_scale
,
Expr
kernel_scale
,
IndexExpr
units
,
DataType
out_dtype
)
{
auto
attrs
=
make_object
<
DenseAttrs
>
();
attrs
->
units
=
std
::
move
(
units
);
attrs
->
out_dtype
=
out_dtype
;
attrs
->
input_zero_point
=
input_zero_point
;
attrs
->
kernel_zero_point
=
kernel_zero_point
;
attrs
->
input_scale
=
input_scale
;
attrs
->
kernel_scale
=
kernel_scale
;
static
const
Op
&
op
=
Op
::
Get
(
"qnn.dense"
);
return
CallNode
::
make
(
op
,
{
data
,
weight
},
Attrs
(
attrs
),
{});
return
CallNode
::
make
(
op
,
{
data
,
weight
,
input_zero_point
,
kernel_zero_point
,
input_scale
,
kernel_scale
},
Attrs
(
attrs
),
{});
}
Expr
DenseFirstTerm
(
const
Expr
&
quantized_data
,
const
Expr
&
quantized_kernel
,
const
Qnn
DenseAttrs
*
attrs
)
{
const
DenseAttrs
*
attrs
)
{
return
Dense
(
quantized_data
,
quantized_kernel
,
attrs
->
units
,
attrs
->
out_dtype
);
}
Expr
DenseSecondTerm
(
const
Expr
&
quantized_data
,
const
Expr
&
zp_kernel
)
{
Expr
DenseSecondTerm
(
const
Expr
&
quantized_data
,
const
Expr
&
kernel_zero_point
)
{
Array
<
Integer
>
axes
=
{
1
};
return
Multiply
(
zp_kernel
,
Sum
(
Cast
(
quantized_data
,
DataType
::
Int
(
32
)),
axes
,
true
,
false
));
return
Multiply
(
kernel_zero_point
,
Sum
(
Cast
(
quantized_data
,
DataType
::
Int
(
32
)),
axes
,
true
,
false
));
}
Expr
DenseThirdTerm
(
const
Expr
&
quantized_kernel
,
const
Expr
&
zp_data
)
{
Expr
DenseThirdTerm
(
const
Expr
&
quantized_kernel
,
const
Expr
&
input_zero_point
)
{
Array
<
Integer
>
axes
=
{
1
};
return
Multiply
(
zp_data
,
Sum
(
Cast
(
quantized_kernel
,
DataType
::
Int
(
32
)),
axes
,
false
,
false
));
return
Multiply
(
input_zero_point
,
Sum
(
Cast
(
quantized_kernel
,
DataType
::
Int
(
32
)),
axes
,
false
,
false
));
}
Expr
DenseFourthTerm
(
const
QnnDenseAttrs
*
attrs
,
int
reduction_dim_size
)
{
int32_t
scalar_term
=
attrs
->
input_zero_point
*
attrs
->
kernel_zero_po
int
*
reduction_dim_size
;
Expr
DenseFourthTerm
(
int
input_zero_point_int
,
int
kernel_zero_point_int
,
int
reduction_dim_size
)
{
int32_t
scalar_term
=
input_zero_point_int
*
kernel_zero_point_
int
*
reduction_dim_size
;
return
MakeConstantScalar
(
DataType
::
Int
(
32
),
scalar_term
);
}
...
...
@@ -125,31 +133,35 @@ Expr DenseFourthTerm(const QnnDenseAttrs* attrs, int reduction_dim_size) {
*/
Expr
QnnDenseCanonicalize
(
const
Attrs
&
attrs
,
const
Array
<
Expr
>&
new_args
,
const
Array
<
tvm
::
relay
::
Type
>&
arg_types
)
{
CHECK_EQ
(
new_args
.
size
(),
2
);
CHECK_EQ
(
new_args
.
size
(),
6
);
Expr
quantized_data
=
new_args
[
0
];
Expr
quantized_kernel
=
new_args
[
1
];
Expr
input_zero_point
=
new_args
[
2
];
Expr
kernel_zero_point
=
new_args
[
3
];
const
auto
in_shape
=
get_shape
(
arg_types
[
0
]);
const
int
reduction_dim_size
=
get_const_int
(
in_shape
[
1
]);
const
auto
*
qnn_dense_attrs
=
attrs
.
as
<
QnnDenseAttrs
>
();
auto
zp_kernel
=
MakeConstantScalar
(
DataType
::
Int
(
32
),
qnn_dense_attrs
->
kernel_zero_point
);
auto
zp_data
=
MakeConstantScalar
(
DataType
::
Int
(
32
),
qnn_dense_attrs
->
input_zero_point
);
const
auto
*
qnn_dense_attrs
=
attrs
.
as
<
DenseAttrs
>
();
// Extract the integer zero points.
auto
input_zero_point_int
=
GetScalarFromConstant
<
int
>
(
input_zero_point
);
auto
kernel_zero_point_int
=
GetScalarFromConstant
<
int
>
(
kernel_zero_point
);
// Get all the terms as described in the comments.
auto
term1
=
DenseFirstTerm
(
quantized_data
,
quantized_kernel
,
qnn_dense_attrs
);
auto
term2
=
DenseSecondTerm
(
quantized_data
,
zp_kernel
);
auto
term3
=
DenseThirdTerm
(
quantized_kernel
,
zp_data
);
auto
term4
=
DenseFourthTerm
(
qnn_dense_attrs
,
reduction_dim_size
);
auto
term2
=
DenseSecondTerm
(
quantized_data
,
kernel_zero_point
);
auto
term3
=
DenseThirdTerm
(
quantized_kernel
,
input_zero_point
);
auto
term4
=
DenseFourthTerm
(
input_zero_point_int
,
kernel_zero_point_int
,
reduction_dim_size
);
// Combine those 4 terms depending on the zero points to get the best lowering.
if
(
qnn_dense_attrs
->
input_zero_point
==
0
&&
qnn_dense_attrs
->
kernel_zero_po
int
==
0
)
{
if
(
input_zero_point_int
==
0
&&
kernel_zero_point_
int
==
0
)
{
// term 2, 3 and 4 become zero.
return
term1
;
}
else
if
(
qnn_dense_attrs
->
input_zero_point
==
0
&&
qnn_dense_attrs
->
kernel_zero_po
int
!=
0
)
{
}
else
if
(
input_zero_point_int
==
0
&&
kernel_zero_point_
int
!=
0
)
{
// term 3 and term 4 become zero.
return
Subtract
(
term1
,
term2
);
}
else
if
(
qnn_dense_attrs
->
input_zero_point
!=
0
&&
qnn_dense_attrs
->
kernel_zero_po
int
==
0
)
{
}
else
if
(
input_zero_point_int
!=
0
&&
kernel_zero_point_
int
==
0
)
{
// term 2 and term 4 become zero.
return
Subtract
(
term1
,
term3
);
}
else
{
...
...
@@ -166,12 +178,16 @@ RELAY_REGISTER_OP("qnn.dense")
- **weight**: quantized(int8, unit8) `(units, input_dim)`
- **out**: quantized(int32) `(x1, x2, ..., xn, units)`.
)code"
TVM_ADD_FILELINE
)
.
set_attrs_type
<
Qnn
DenseAttrs
>
()
.
set_num_inputs
(
2
)
.
set_attrs_type
<
DenseAttrs
>
()
.
set_num_inputs
(
6
)
.
add_argument
(
"data"
,
"quantized nD Tensor"
,
"Input data."
)
.
add_argument
(
"weight"
,
"quantized 2D Tensor"
,
"Weight matrix."
)
.
add_argument
(
"input_scale"
,
"Tensor"
,
"The quantization scale of the input tensor."
)
.
add_argument
(
"input_zero_point"
,
"Tensor"
,
"The quantization zero_point of the input tensor."
)
.
add_argument
(
"weight_scale"
,
"Tensor"
,
"The quantization scale of the weight tensor."
)
.
add_argument
(
"weight_zero_point"
,
"Tensor"
,
"The quantization zero_point of the weight tensor."
)
.
set_support_level
(
11
)
.
add_type_rel
(
"QDense"
,
DenseRel
<
QnnDenseAttrs
>
)
.
add_type_rel
(
"QDense"
,
QnnDenseRel
)
.
set_attr
<
FTVMLegalize
>
(
"FTVMQnnCanonicalize"
,
QnnDenseCanonicalize
);
TVM_REGISTER_API
(
"relay.qnn.op._make.dense"
)
...
...
src/relay/qnn/op/dequantize.cc
View file @
0720ed67
...
...
@@ -33,13 +33,11 @@ namespace tvm {
namespace
relay
{
namespace
qnn
{
TVM_REGISTER_NODE_TYPE
(
DequantizeAttrs
);
bool
DequantizeRel
(
const
Array
<
Type
>&
types
,
int
num_inputs
,
const
Attrs
&
attrs
,
const
TypeReporter
&
reporter
)
{
CHECK_EQ
(
types
.
size
(),
2
);
CHECK_EQ
(
types
.
size
(),
4
);
const
auto
*
data
=
types
[
0
].
as
<
TensorTypeNode
>
();
const
auto
input_dtype
=
data
->
dtype
;
CHECK
(
input_dtype
==
DataType
::
Int
(
8
)
||
...
...
@@ -47,42 +45,40 @@ bool DequantizeRel(const Array<Type>& types,
input_dtype
==
DataType
::
Int
(
32
))
<<
"Input type should be one of the quantized types [unit8, int8, int32] but was "
<<
input_dtype
;
// Check the types of scale and zero points.
CHECK
(
IsScalarType
(
types
[
1
],
DataType
::
Float
(
32
)));
// input_scale
CHECK
(
IsScalarType
(
types
[
2
],
DataType
::
Int
(
32
)));
// input_zero_point
const
Array
<
tvm
::
Expr
>
oshape
=
data
->
shape
;
// assign output type, output will always be float 32.
reporter
->
Assign
(
types
[
1
],
TensorTypeNode
::
make
(
oshape
,
DataType
::
Float
(
32
)));
reporter
->
Assign
(
types
[
3
],
TensorTypeNode
::
make
(
oshape
,
DataType
::
Float
(
32
)));
return
true
;
}
Expr
MakeDequantize
(
Expr
data
,
double
input_scale
,
int32_t
input_zero_point
)
{
auto
attrs
=
make_object
<
DequantizeAttrs
>
();
attrs
->
input_scale
=
input_scale
;
attrs
->
input_zero_point
=
input_zero_point
;
Expr
MakeDequantize
(
Expr
data
,
Expr
input_scale
,
Expr
input_zero_point
)
{
// real_value = scale * (quantized_value - zero_point)
// A more detailed explanation can be found here - https://github.com/google/gemmlowp/blob/master/doc/quantization.md
// A more detailed explanation can be found here -
// https://github.com/google/gemmlowp/blob/master/doc/quantization.md
static
const
Op
&
op
=
Op
::
Get
(
"qnn.dequantize"
);
return
CallNode
::
make
(
op
,
{
data
},
Attrs
(
attrs
),
{});
return
CallNode
::
make
(
op
,
{
data
,
input_scale
,
input_zero_point
},
Attrs
(
),
{});
}
Expr
DequantizeLower
(
const
Expr
&
input_tensor
,
const
DequantizeAttrs
*
attrs
)
{
const
auto
input_zero_point
=
MakeConstantScalar
(
DataType
::
Int
(
32
),
attrs
->
input_zero_point
);
const
auto
input_scale
=
MakeConstantScalar
(
DataType
::
Float
(
32
),
attrs
->
input_scale
);
Expr
DequantizeLower
(
const
Expr
&
input_tensor
,
const
Expr
&
input_scale
,
const
Expr
&
input_zero_point
)
{
auto
shift
=
Subtract
(
Cast
(
input_tensor
,
DataType
::
Int
(
32
)),
input_zero_point
);
auto
scaled_output
=
Multiply
(
Cast
(
shift
,
DataType
::
Float
(
32
)),
input_scale
);
return
scaled_output
;
}
Expr
DequantizeQnnCanonicalize
(
const
Attrs
&
attrs
,
const
Array
<
Expr
>&
new_args
,
Expr
DequantizeQnnCanonicalize
(
const
Attrs
&
attrs
,
const
Array
<
Expr
>&
new_args
,
const
Array
<
tvm
::
relay
::
Type
>&
types
)
{
CHECK_EQ
(
new_args
.
size
(),
1
);
CHECK_EQ
(
new_args
.
size
(),
3
);
auto
&
data
=
new_args
[
0
];
const
auto
*
dequantize_attrs
=
attrs
.
as
<
DequantizeAttrs
>
()
;
CHECK
(
dequantize_attrs
!=
nullptr
)
;
CHECK_EQ
(
types
.
size
(),
2
);
return
DequantizeLower
(
data
,
dequantize_attrs
);
auto
&
input_scale
=
new_args
[
1
]
;
auto
&
input_zero_point
=
new_args
[
2
]
;
CHECK_EQ
(
types
.
size
(),
4
);
return
DequantizeLower
(
data
,
input_scale
,
input_zero_point
);
}
RELAY_REGISTER_OP
(
"qnn.dequantize"
)
...
...
@@ -90,9 +86,10 @@ RELAY_REGISTER_OP("qnn.dequantize")
The input is always quantized (int8, uint8) and will be converted to float32 given input scale and zero_point.
- **data**: Quantized tensor of any shape to dequantize. The input data can be of floating point
)code"
TVM_ADD_FILELINE
)
.
set_attrs_type
<
DequantizeAttrs
>
()
.
set_num_inputs
(
1
)
.
set_num_inputs
(
3
)
.
add_argument
(
"data"
,
"Tensor"
,
"The tensor to dequantize."
)
.
add_argument
(
"input_scale"
,
"Tensor"
,
"The quantization scale of the input tensor."
)
.
add_argument
(
"input_zero_point"
,
"Tensor"
,
"The quantization zero_point of the input tensor."
)
.
set_support_level
(
11
)
.
add_type_rel
(
"Dequantize"
,
DequantizeRel
)
.
set_attr
<
FTVMLegalize
>
(
"FTVMQnnCanonicalize"
,
DequantizeQnnCanonicalize
);
...
...
src/relay/qnn/op/mul.cc
View file @
0720ed67
...
...
@@ -42,20 +42,18 @@ namespace qnn {
Expr
QnnMulCanonicalize
(
const
Attrs
&
attrs
,
const
Array
<
Expr
>&
new_args
,
const
Array
<
tvm
::
relay
::
Type
>&
arg_types
)
{
// Get the attrs.
CHECK_EQ
(
new_args
.
size
(),
2
);
CHECK_EQ
(
new_args
.
size
(),
8
);
auto
&
lhs
=
new_args
[
0
];
auto
&
rhs
=
new_args
[
1
];
const
auto
*
binary_op_attrs
=
attrs
.
as
<
QnnBinaryOpAttrs
>
();
CHECK
(
binary_op_attrs
!=
nullptr
);
auto
lhs_scale
=
binary_op_attrs
->
lhs_scale
;
auto
lhs_zero_point
=
binary_op_attrs
->
lhs_zero_point
;
auto
rhs_scale
=
binary_op_attrs
->
rhs_scale
;
auto
rhs_zero_point
=
binary_op_attrs
->
rhs_zero_point
;
auto
output_scale
=
binary_op_attrs
->
output_scale
;
auto
output_zero_point
=
binary_op_attrs
->
output_zero_point
;
auto
&
lhs_scale
=
new_args
[
2
];
auto
&
lhs_zero_point
=
new_args
[
3
];
auto
&
rhs_scale
=
new_args
[
4
];
auto
&
rhs_zero_point
=
new_args
[
5
];
auto
&
output_scale
=
new_args
[
6
];
auto
&
output_zero_point
=
new_args
[
7
];
// Get the input dtype and shape.
CHECK_EQ
(
arg_types
.
size
(),
3
);
CHECK_EQ
(
arg_types
.
size
(),
9
);
auto
tensor_type
=
arg_types
[
0
].
as
<
TensorTypeNode
>
();
auto
input_dtype
=
tensor_type
->
dtype
;
auto
input_shape
=
tensor_type
->
shape
;
...
...
@@ -75,24 +73,28 @@ Expr QnnMulCanonicalize(const Attrs& attrs, const Array<Expr>& new_args,
auto
lhs_shifted
=
Cast
(
lhs
,
DataType
::
Int
(
32
));
auto
rhs_shifted
=
Cast
(
rhs
,
DataType
::
Int
(
32
));
if
(
lhs_zero_point
!=
0
)
{
auto
lhs_zp
=
MakeConstantScalar
(
DataType
::
Int
(
32
),
lhs_zero_point
);
lhs_shifted
=
Subtract
(
lhs_shifted
,
lhs_z
p
);
auto
zero_scalar
=
MakeConstantScalar
(
DataType
::
Int
(
32
),
0
);
if
(
!
IsEqualScalar
(
lhs_zero_point
,
zero_scalar
))
{
lhs_shifted
=
Subtract
(
lhs_shifted
,
lhs_z
ero_point
);
}
if
(
rhs_zero_point
!=
0
)
{
auto
rhs_zp
=
MakeConstantScalar
(
DataType
::
Int
(
32
),
rhs_zero_point
);
rhs_shifted
=
Subtract
(
rhs_shifted
,
rhs_zp
);
if
(
!
IsEqualScalar
(
rhs_zero_point
,
zero_scalar
))
{
rhs_shifted
=
Subtract
(
rhs_shifted
,
rhs_zero_point
);
}
// Create a new tensor Q'
auto
output
=
Multiply
(
lhs_shifted
,
rhs_shifted
);
auto
scale_new
=
rhs_scale
*
lhs_scale
;
// Get the adjusted new scale and zero points.
float
lhs_scale_float
=
GetScalarFromConstant
<
float
>
(
lhs_scale
);
float
rhs_scale_float
=
GetScalarFromConstant
<
float
>
(
rhs_scale
);
float
new_scale_float
=
lhs_scale_float
*
rhs_scale_float
;
auto
new_input_scale
=
MakeConstantScalar
(
DataType
::
Float
(
32
),
new_scale_float
);
auto
new_input_zero_point
=
zero_scalar
;
// Requantize to get Q_c
output
=
Requantize
(
output
,
input_shape
,
scale_new
,
0
,
output_scale
,
output_zero_point
,
input_dtype
);
output
=
Requantize
(
output
,
input_shape
,
new_input_scale
,
new_input_zero_point
,
output_scale
,
output_zero_point
,
input_dtype
);
return
output
;
}
...
...
src/relay/qnn/op/op_common.h
View file @
0720ed67
...
...
@@ -35,6 +35,24 @@ namespace tvm {
namespace
relay
{
namespace
qnn
{
static
inline
bool
QnnBroadcastRel
(
const
Array
<
Type
>&
types
,
int
num_inputs
,
const
Attrs
&
attrs
,
const
TypeReporter
&
reporter
)
{
CHECK_EQ
(
types
.
size
(),
9
);
// Check the scale and zero point types
CHECK
(
IsScalarType
(
types
[
2
],
DataType
::
Float
(
32
)));
// lhs_scale
CHECK
(
IsScalarType
(
types
[
3
],
DataType
::
Int
(
32
)));
// lhs_zero_point
CHECK
(
IsScalarType
(
types
[
4
],
DataType
::
Float
(
32
)));
// rhs_scale
CHECK
(
IsScalarType
(
types
[
5
],
DataType
::
Int
(
32
)));
// rhs_zero_point
CHECK
(
IsScalarType
(
types
[
6
],
DataType
::
Float
(
32
)));
// output_scale
CHECK
(
IsScalarType
(
types
[
7
],
DataType
::
Int
(
32
)));
// output_zero_point
// Collect the input tensor and output tensor devoid of scale and zero points to reuse Relay
// BroadcastRel infer type function.
Array
<
Type
>
tensor_types
=
{
types
[
0
],
types
[
1
],
types
[
8
]};
return
BroadcastRel
(
tensor_types
,
3
,
attrs
,
reporter
);
}
/*! Quick helper macro
* - Expose a positional make function to construct the node.
* - Register op to the registry.
...
...
@@ -47,24 +65,26 @@ namespace qnn {
*/
#define QNN_REGISTER_BINARY_OP(OpName) \
TVM_REGISTER_API("relay.qnn.op._make." OpName) \
.set_body_typed<Expr(Expr, Expr, double, int32_t, double, int32_t, double, int32_t)>( \
[](Expr lhs, Expr rhs, double lhs_scale, int32_t lhs_zero_point, double rhs_scale, \
int32_t rhs_zero_point, double output_scale, int32_t output_zero_point) { \
auto attrs = make_object<QnnBinaryOpAttrs>(); \
attrs->lhs_scale = lhs_scale; \
attrs->lhs_zero_point = lhs_zero_point; \
attrs->rhs_scale = rhs_scale; \
attrs->rhs_zero_point = rhs_zero_point; \
attrs->output_scale = output_scale; \
attrs->output_zero_point = output_zero_point; \
.set_body_typed<Expr(Expr, Expr, Expr, Expr, Expr, Expr, Expr, Expr)>( \
[](Expr lhs, Expr rhs, Expr lhs_scale, Expr lhs_zero_point, Expr rhs_scale, \
Expr rhs_zero_point, Expr output_scale, Expr output_zero_point) { \
static const Op& op = Op::Get("qnn." OpName); \
return CallNode::make(op, {lhs, rhs}, Attrs(attrs), {}); \
return CallNode::make(op, {lhs, rhs, \
lhs_scale, lhs_zero_point, \
rhs_scale, rhs_zero_point, \
output_scale, output_zero_point}, Attrs(), {}); \
}); \
RELAY_REGISTER_OP("qnn." OpName) \
.set_num_inputs(
2
) \
.set_num_inputs(
8
) \
.add_argument("lhs", "Tensor", "The left hand side quantized tensor.") \
.add_argument("rhs", "Tensor", "The right hand side quantized tensor.") \
.add_type_rel("Broadcast", BroadcastRel)
.add_argument("lhs_scale", "Tensor", "The scale of the lhs tensor.") \
.add_argument("lhs_zero_point", "Tensor", "The zero_point of the lhs tensor.") \
.add_argument("rhs_scale", "Tensor", "The scale of the rhs tensor.") \
.add_argument("rhs_zero_point", "Tensor", "The zero_point of the rhs tensor.") \
.add_argument("output_scale", "Tensor", "The scale of the output tensor.") \
.add_argument("output_zero_point", "Tensor", "The zero_point of the output tensor.") \
.add_type_rel("QnnBroadcast", QnnBroadcastRel)
}
// namespace qnn
}
// namespace relay
...
...
src/relay/qnn/op/quantize.cc
View file @
0720ed67
...
...
@@ -39,61 +39,61 @@ bool QuantizeRel(const Array<Type>& types,
int
num_inputs
,
const
Attrs
&
attrs
,
const
TypeReporter
&
reporter
)
{
CHECK_EQ
(
types
.
size
(),
2
);
CHECK_EQ
(
types
.
size
(),
4
);
const
auto
*
data
=
types
[
0
].
as
<
TensorTypeNode
>
();
const
auto
input_dtype
=
data
->
dtype
;
CHECK
(
input_dtype
==
DataType
::
Float
(
32
))
<<
"Input type should be one of float32 but was "
<<
input_dtype
;
// Check the types of scale and zero points.
CHECK
(
IsScalarType
(
types
[
1
],
DataType
::
Float
(
32
)));
// output_scale
CHECK
(
IsScalarType
(
types
[
2
],
DataType
::
Int
(
32
)));
// output_zero_point
const
auto
*
quantize_attrs
=
attrs
.
as
<
QuantizeAttrs
>
();
const
Array
<
tvm
::
Expr
>
oshape
=
data
->
shape
;
const
DataType
out_dtype
=
quantize_attrs
->
out_dtype
;
CHECK
(
out_dtype
==
DataType
::
Int
(
8
)
||
out_dtype
==
DataType
::
UInt
(
8
)
||
CHECK
(
out_dtype
==
DataType
::
Int
(
8
)
||
out_dtype
==
DataType
::
UInt
(
8
)
||
out_dtype
==
DataType
::
Int
(
32
))
<<
"Output type should be one of [int8, unit8, int32] but was "
<<
out_dtype
;
<<
"Output type should be one of [int8, unit8, int32] but was "
<<
out_dtype
;
// assign output type
reporter
->
Assign
(
types
[
1
],
TensorTypeNode
::
make
(
oshape
,
out_dtype
));
reporter
->
Assign
(
types
[
3
],
TensorTypeNode
::
make
(
oshape
,
out_dtype
));
return
true
;
}
Expr
MakeQuantize
(
Expr
data
,
double
output_scale
,
int32_t
output_zero_point
,
DataType
out_dtype
)
{
Expr
MakeQuantize
(
Expr
data
,
Expr
output_scale
,
Expr
output_zero_point
,
DataType
out_dtype
)
{
auto
attrs
=
make_object
<
QuantizeAttrs
>
();
attrs
->
output_scale
=
output_scale
;
attrs
->
output_zero_point
=
output_zero_point
;
attrs
->
out_dtype
=
std
::
move
(
out_dtype
);
// result_quantized_value = result_zero_point + result_real_value / result_scale.
// A more detailed explanation can be found here - https://github.com/google/gemmlowp/blob/master/doc/quantization.md
// A more detailed explanation can be found here -
// https://github.com/google/gemmlowp/blob/master/doc/quantization.md
static
const
Op
&
op
=
Op
::
Get
(
"qnn.quantize"
);
return
CallNode
::
make
(
op
,
{
data
},
Attrs
(
attrs
),
{});
return
CallNode
::
make
(
op
,
{
data
,
output_scale
,
output_zero_point
},
Attrs
(
attrs
),
{});
}
Expr
QuantizeLower
(
const
Expr
&
input_tensor
,
const
QuantizeAttrs
*
attrs
)
{
Expr
QuantizeLower
(
const
Expr
&
input_tensor
,
const
Expr
&
output_scale
,
const
Expr
&
output_zero_point
,
const
QuantizeAttrs
*
attrs
)
{
const
auto
out_dtype
=
attrs
->
out_dtype
;
const
auto
output_zero_point
=
MakeConstantScalar
(
DataType
::
Float
(
32
),
attrs
->
output_zero_point
);
const
auto
scale
=
MakeConstantScalar
(
DataType
::
Float
(
32
),
attrs
->
output_scale
);
const
int32_t
min_val
=
GetQmin
(
out_dtype
);
const
int32_t
max_val
=
GetQmax
(
out_dtype
);
auto
scale_data
=
Divide
(
input_tensor
,
scale
);
auto
add_zero_point
=
Cast
(
Round
(
Add
(
scale_data
,
output_zero_point
)),
DataType
::
Int
(
32
));
auto
scale_data
=
Divide
(
input_tensor
,
output_scale
);
auto
add_zero_point
=
Cast
(
Round
(
Add
(
scale_data
,
Cast
(
output_zero_point
,
DataType
::
Float
(
32
)))),
DataType
::
Int
(
32
));
auto
clamped_output
=
Clip
(
add_zero_point
,
min_val
,
max_val
);
auto
clamp_out_dtype
=
Cast
(
clamped_output
,
out_dtype
);
return
clamp_out_dtype
;
}
Expr
QuantizeQnnCanonicalize
(
const
Attrs
&
attrs
,
const
Array
<
Expr
>&
new_args
,
Expr
QuantizeQnnCanonicalize
(
const
Attrs
&
attrs
,
const
Array
<
Expr
>&
new_args
,
const
Array
<
tvm
::
relay
::
Type
>&
types
)
{
CHECK_EQ
(
new_args
.
size
(),
1
);
CHECK_EQ
(
new_args
.
size
(),
3
);
auto
&
data
=
new_args
[
0
];
auto
&
output_scale
=
new_args
[
1
];
auto
&
output_zero_point
=
new_args
[
2
];
const
auto
*
quantize_attrs
=
attrs
.
as
<
QuantizeAttrs
>
();
CHECK
(
quantize_attrs
!=
nullptr
);
CHECK_EQ
(
types
.
size
(),
2
);
return
QuantizeLower
(
data
,
quantize_attrs
);
CHECK_EQ
(
types
.
size
(),
4
);
return
QuantizeLower
(
data
,
output_scale
,
output_zero_point
,
quantize_attrs
);
}
RELAY_REGISTER_OP
(
"qnn.quantize"
)
...
...
@@ -108,8 +108,10 @@ scale and zero point.
or quantized.
)code"
TVM_ADD_FILELINE
)
.
set_attrs_type
<
QuantizeAttrs
>
()
.
set_num_inputs
(
1
)
.
set_num_inputs
(
3
)
.
add_argument
(
"data"
,
"Tensor"
,
"The tensor to quantize."
)
.
add_argument
(
"output_scale"
,
"Tensor"
,
"The quantization scale of the output tensor."
)
.
add_argument
(
"output_zero_point"
,
"Tensor"
,
"The quantization zero_point of the output tensor."
)
.
set_support_level
(
11
)
.
add_type_rel
(
"Quantize"
,
QuantizeRel
)
.
set_attr
<
FTVMLegalize
>
(
"FTVMQnnCanonicalize"
,
QuantizeQnnCanonicalize
);
...
...
src/relay/qnn/op/requantize.cc
View file @
0720ed67
...
...
@@ -54,31 +54,35 @@ TVM_REGISTER_NODE_TYPE(RequantizeAttrs);
* 4) Add the output zero point.
* 5) Cast to the out_dtype.
*/
Expr
RequantizeLower
(
const
Expr
&
input_tensor
,
const
RequantizeAttrs
*
param
,
Expr
RequantizeLower
(
const
Expr
&
input_tensor
,
const
Expr
&
input_scale
,
const
Expr
&
input_zero_point
,
const
Expr
&
output_scale
,
const
Expr
&
output_zero_point
,
const
RequantizeAttrs
*
param
,
const
Array
<
IndexExpr
>&
input_shape
,
const
DataType
&
out_dtype
)
{
double
double_multiplier
=
param
->
input_scale
/
param
->
output_scale
;
float
input_scale_float
=
GetScalarFromConstant
<
float
>
(
input_scale
);
float
output_scale_float
=
GetScalarFromConstant
<
float
>
(
output_scale
);
double
double_multiplier
=
static_cast
<
double
>
(
input_scale_float
)
/
static_cast
<
double
>
(
output_scale_float
);
DataType
hp_dtype
=
DataType
::
Int
(
64
);
auto
tensor
=
Cast
(
input_tensor
,
hp_dtype
);
// 1) Subtract the input_zero_point
if
(
param
->
input_zero_point
!=
0
)
{
auto
input_zp
=
MakeConstantScalar
(
hp_dtype
,
param
->
input_zero_point
);
tensor
=
Subtract
(
tensor
,
input_zp
);
auto
zero_scalar
=
MakeConstantScalar
(
DataType
::
Int
(
32
),
0
);
if
(
!
IsEqualScalar
(
input_zero_point
,
zero_scalar
))
{
tensor
=
Subtract
(
tensor
,
Cast
(
input_zero_point
,
hp_dtype
)
);
}
// 2) If the input and output scales are same, we can skip the fixed point multiplication.
auto
scaled_int64_t
=
tensor
;
if
(
param
->
input_scale
!=
param
->
output_scale
)
{
if
(
!
IsEqualScalar
(
input_scale
,
output_scale
)
)
{
scaled_int64_t
=
FixedPointMultiply
(
scaled_int64_t
,
double_multiplier
,
input_shape
,
param
->
rounding
);
}
// 3) Add the output zero point.
auto
shifted_int64_t
=
scaled_int64_t
;
if
(
param
->
output_zero_point
!=
0
)
{
auto
output_zp
=
MakeConstantScalar
(
hp_dtype
,
param
->
output_zero_point
);
shifted_int64_t
=
Add
(
output_zp
,
scaled_int64_t
);
if
(
!
IsEqualScalar
(
output_zero_point
,
zero_scalar
))
{
shifted_int64_t
=
Add
(
Cast
(
output_zero_point
,
hp_dtype
),
scaled_int64_t
);
}
// 4) Clip to the out_dtype min/max.
...
...
@@ -103,13 +107,17 @@ Expr RequantizeLower(const Expr& input_tensor, const RequantizeAttrs* param,
*/
Expr
RequantizeQnnCanonicalize
(
const
Attrs
&
attrs
,
const
Array
<
Expr
>&
new_args
,
const
Array
<
tvm
::
relay
::
Type
>&
types
)
{
CHECK_EQ
(
new_args
.
size
(),
1
);
CHECK_EQ
(
new_args
.
size
(),
5
);
auto
&
quantized_data
=
new_args
[
0
];
auto
&
input_scale
=
new_args
[
1
];
auto
&
input_zero_point
=
new_args
[
2
];
auto
&
output_scale
=
new_args
[
3
];
auto
&
output_zero_point
=
new_args
[
4
];
const
auto
*
param
=
attrs
.
as
<
RequantizeAttrs
>
();
CHECK
(
param
!=
nullptr
);
// Find input shape.
CHECK_EQ
(
types
.
size
(),
2
);
CHECK_EQ
(
types
.
size
(),
6
);
auto
in_type
=
types
[
0
];
auto
in_tensor_type
=
in_type
.
as
<
TensorTypeNode
>
();
CHECK
(
in_tensor_type
!=
nullptr
)
<<
"Type information missing."
...
...
@@ -117,7 +125,7 @@ Expr RequantizeQnnCanonicalize(const Attrs& attrs, const Array<Expr>& new_args,
Array
<
IndexExpr
>
input_shape
=
in_tensor_type
->
shape
;
// Find the output dtype.
auto
out_type
=
types
[
1
];
auto
out_type
=
types
[
5
];
auto
out_tensor_type
=
out_type
.
as
<
TensorTypeNode
>
();
CHECK
(
out_tensor_type
!=
nullptr
)
<<
"Type information missing."
<<
" Please run infer_type pass."
;
...
...
@@ -127,7 +135,8 @@ Expr RequantizeQnnCanonicalize(const Attrs& attrs, const Array<Expr>& new_args,
CHECK
(
param
->
rounding
==
"UPWARD"
||
param
->
rounding
==
"TONEAREST"
)
<<
"QNN requantize supports two rounding modes - UPWARD and "
<<
"TONEAREST"
;
return
RequantizeLower
(
quantized_data
,
param
,
input_shape
,
out_dtype
);
return
RequantizeLower
(
quantized_data
,
input_scale
,
input_zero_point
,
output_scale
,
output_zero_point
,
param
,
input_shape
,
out_dtype
);
}
/*
...
...
@@ -140,7 +149,7 @@ Expr RequantizeQnnCanonicalize(const Attrs& attrs, const Array<Expr>& new_args,
*/
bool
RequantizeRel
(
const
Array
<
Type
>&
types
,
int
num_inputs
,
const
Attrs
&
attrs
,
const
TypeReporter
&
reporter
)
{
CHECK_EQ
(
types
.
size
(),
2
);
CHECK_EQ
(
types
.
size
(),
6
);
const
auto
*
data
=
types
[
0
].
as
<
TensorTypeNode
>
();
const
auto
in_dtype
=
data
->
dtype
;
CHECK
(
in_dtype
==
DataType
::
Int
(
8
)
||
...
...
@@ -148,6 +157,12 @@ bool RequantizeRel(const Array<Type>& types, int num_inputs, const Attrs& attrs,
in_dtype
==
DataType
::
Int
(
32
))
<<
"Input type should be one of [int8, uint8, int32] but was "
<<
in_dtype
;
// Check the types of scale and zero points.
CHECK
(
IsScalarType
(
types
[
1
],
DataType
::
Float
(
32
)));
// input_scale
CHECK
(
IsScalarType
(
types
[
2
],
DataType
::
Int
(
32
)));
// input_zero_point
CHECK
(
IsScalarType
(
types
[
3
],
DataType
::
Float
(
32
)));
// output_scale
CHECK
(
IsScalarType
(
types
[
4
],
DataType
::
Int
(
32
)));
// output_zero_point
const
Array
<
tvm
::
Expr
>
oshape
=
data
->
shape
;
// assign output type
const
RequantizeAttrs
*
param
=
attrs
.
as
<
RequantizeAttrs
>
();
...
...
@@ -156,23 +171,20 @@ bool RequantizeRel(const Array<Type>& types, int num_inputs, const Attrs& attrs,
out_dtype
==
DataType
::
UInt
(
8
)
||
out_dtype
==
DataType
::
Int
(
32
))
<<
"Output type should be one of [int8, uint8, int32] but was "
<<
out_dtype
;
reporter
->
Assign
(
types
[
1
],
TensorTypeNode
::
make
(
oshape
,
out_dtype
));
reporter
->
Assign
(
types
[
5
],
TensorTypeNode
::
make
(
oshape
,
out_dtype
));
return
true
;
}
// Positional relay function to create qnn requantize operator
// used by frontend FFI.
Expr
MakeRequantize
(
Expr
data
,
double
input_scale
,
int32_t
input_zero_point
,
double
output_scale
,
int32_t
output_zero_point
,
std
::
string
rounding
,
DataType
out_dtype
)
{
Expr
MakeRequantize
(
Expr
data
,
Expr
input_scale
,
Expr
input_zero_point
,
Expr
output_scale
,
Expr
output_zero_point
,
std
::
string
rounding
,
DataType
out_dtype
)
{
auto
attrs
=
make_object
<
RequantizeAttrs
>
();
attrs
->
input_scale
=
std
::
move
(
input_scale
);
attrs
->
input_zero_point
=
std
::
move
(
input_zero_point
);
attrs
->
output_scale
=
std
::
move
(
output_scale
);
attrs
->
output_zero_point
=
std
::
move
(
output_zero_point
);
attrs
->
rounding
=
std
::
move
(
rounding
);
attrs
->
out_dtype
=
std
::
move
(
out_dtype
);
static
const
Op
&
op
=
Op
::
Get
(
"qnn.requantize"
);
return
CallNode
::
make
(
op
,
{
data
},
Attrs
(
attrs
),
{});
return
CallNode
::
make
(
op
,
{
data
,
input_scale
,
input_zero_point
,
output_scale
,
output_zero_point
},
Attrs
(
attrs
),
{});
}
RELAY_REGISTER_OP
(
"qnn.requantize"
)
...
...
@@ -185,8 +197,12 @@ Q_output = zp_output + (scale_input)/(scale_output) * (Q_input - zp_input)
)code"
TVM_ADD_FILELINE
)
.
set_attrs_type
<
RequantizeAttrs
>
()
.
set_num_inputs
(
1
)
.
set_num_inputs
(
5
)
.
add_argument
(
"data"
,
"Tensor"
,
"The quantized input tensor."
)
.
add_argument
(
"input_scale"
,
"Tensor"
,
"The quantization scale of the input tensor."
)
.
add_argument
(
"input_zero_point"
,
"Tensor"
,
"The quantization zero_point of the input tensor."
)
.
add_argument
(
"output_scale"
,
"Tensor"
,
"The quantization scale of the output tensor."
)
.
add_argument
(
"output_zero_point"
,
"Tensor"
,
"The quantization zero_point of the output tensor."
)
.
set_support_level
(
11
)
.
add_type_rel
(
"Requantize"
,
RequantizeRel
)
.
set_attr
<
FTVMLegalize
>
(
"FTVMQnnCanonicalize"
,
RequantizeQnnCanonicalize
);
...
...
src/relay/qnn/util.h
View file @
0720ed67
...
...
@@ -77,21 +77,20 @@ static inline const int32_t GetQmax(const DataType& dtype) {
}
}
Expr
RequantizeLower
(
const
Expr
&
input_tensor
,
const
RequantizeAttrs
*
param
,
Expr
RequantizeLower
(
const
Expr
&
input_tensor
,
const
Expr
&
input_scale
,
const
Expr
&
input_zero_point
,
const
Expr
&
output_scale
,
const
Expr
&
output_zero_point
,
const
RequantizeAttrs
*
param
,
const
Array
<
IndexExpr
>&
input_shape
,
const
DataType
&
out_dtype
);
static
inline
Expr
Requantize
(
const
Expr
&
data
,
const
Array
<
IndexExpr
>&
input_shape
,
double
input_scale
,
int32_t
input_zero_point
,
double
output_scale
,
int32_t
output_zero_point
,
const
DataType
&
out_dtype
,
const
std
::
string
&
rounding
=
"UPWARD"
)
{
const
Expr
&
input_scale
,
const
Expr
&
input_zero_point
,
const
Expr
&
output_scale
,
const
Expr
&
output_zero_point
,
const
DataType
&
out_dtype
,
const
std
::
string
&
rounding
=
"UPWARD"
)
{
auto
attrs
=
make_object
<
RequantizeAttrs
>
();
attrs
->
input_scale
=
std
::
move
(
input_scale
);
attrs
->
input_zero_point
=
std
::
move
(
input_zero_point
);
attrs
->
output_scale
=
std
::
move
(
output_scale
);
attrs
->
output_zero_point
=
std
::
move
(
output_zero_point
);
attrs
->
rounding
=
std
::
move
(
rounding
);
attrs
->
out_dtype
=
std
::
move
(
out_dtype
);
return
RequantizeLower
(
data
,
attrs
.
operator
->
(),
input_shape
,
out_dtype
);
return
RequantizeLower
(
data
,
input_scale
,
input_zero_point
,
output_scale
,
output_zero_point
,
attrs
.
operator
->
(),
input_shape
,
out_dtype
);
}
static
inline
int64_t
get_const_int
(
const
tvm
::
Expr
&
x
)
{
...
...
@@ -122,10 +121,22 @@ static inline int64_t get_const_int(const tvm::Expr& x) {
* 2) Round the result.
* 3) Right shift the result
*/
Expr
FixedPointMultiply
(
Expr
tensor
,
double
multiplier
,
const
Array
<
IndexExpr
>&
input_shape
,
Expr
FixedPointMultiply
(
Expr
tensor
,
double
multiplier
,
const
Array
<
IndexExpr
>&
input_shape
,
const
std
::
string
&
rounding
);
/*
* \brief Checks whether an expr type is scalar of a given data type.
* \param expr_type The type of expr to be checked.
* \param dtype The expected dtype.
* \return True if the type is a scalar of given dtype
*/
static
inline
bool
IsScalarType
(
const
Type
&
expr_type
,
const
DataType
&
dtype
)
{
const
auto
*
scale
=
expr_type
.
as
<
TensorTypeNode
>
();
CHECK_EQ
(
scale
->
shape
.
size
(),
0
);
CHECK
(
scale
->
dtype
==
dtype
)
<<
"Expected "
<<
dtype
<<
" but got "
<<
scale
->
dtype
;
return
true
;
}
}
// namespace qnn
}
// namespace relay
}
// namespace tvm
...
...
tests/python/relay/test_op_qnn_add.py
View file @
0720ed67
...
...
@@ -27,12 +27,12 @@ def test_tflite_same_io_qnn_params():
x
=
relay
.
var
(
"x"
,
shape
=
(
1
,
4
),
dtype
=
data_dtype
)
y
=
relay
.
var
(
"y"
,
shape
=
(
1
,
4
),
dtype
=
data_dtype
)
z
=
relay
.
qnn
.
op
.
add
(
lhs
=
x
,
rhs
=
y
,
lhs_scale
=
0.00784314
,
lhs_zero_point
=
127
,
rhs_scale
=
0.00784314
,
rhs_zero_point
=
127
,
output_scale
=
0.00784314
,
output_zero_point
=
127
)
lhs_scale
=
relay
.
const
(
0.00784314
,
'float32'
)
,
lhs_zero_point
=
relay
.
const
(
127
,
'int32'
)
,
rhs_scale
=
relay
.
const
(
0.00784314
,
'float32'
)
,
rhs_zero_point
=
relay
.
const
(
127
,
'int32'
)
,
output_scale
=
relay
.
const
(
0.00784314
,
'float32'
)
,
output_zero_point
=
relay
.
const
(
127
,
'int32'
)
)
func
=
relay
.
Function
([
x
,
y
],
z
)
mod
=
relay
.
Module
.
from_expr
(
func
)
...
...
@@ -65,12 +65,12 @@ def test_tflite_different_io_qnn_params():
x
=
relay
.
var
(
"x"
,
shape
=
(
1
,
4
),
dtype
=
data_dtype
)
y
=
relay
.
var
(
"y"
,
shape
=
(
1
,
4
),
dtype
=
data_dtype
)
z
=
relay
.
qnn
.
op
.
add
(
lhs
=
x
,
rhs
=
y
,
lhs_scale
=
0.0156863
,
lhs_zero_point
=
127
,
rhs_scale
=
0.0117647
,
rhs_zero_point
=
85
,
output_scale
=
0.0235294
,
output_zero_point
=
128
)
lhs_scale
=
relay
.
const
(
0.0156863
,
'float32'
)
,
lhs_zero_point
=
relay
.
const
(
127
,
'int32'
)
,
rhs_scale
=
relay
.
const
(
0.0117647
,
'float32'
)
,
rhs_zero_point
=
relay
.
const
(
85
,
'int32'
)
,
output_scale
=
relay
.
const
(
0.0235294
,
'float32'
)
,
output_zero_point
=
relay
.
const
(
128
,
'int32'
)
)
func
=
relay
.
Function
([
x
,
y
],
z
)
mod
=
relay
.
Module
.
from_expr
(
func
)
...
...
@@ -103,12 +103,12 @@ def test_saturation():
x
=
relay
.
var
(
"x"
,
shape
=
(
1
,
4
),
dtype
=
data_dtype
)
y
=
relay
.
var
(
"y"
,
shape
=
(
1
,
4
),
dtype
=
data_dtype
)
z
=
relay
.
qnn
.
op
.
add
(
lhs
=
x
,
rhs
=
y
,
lhs_scale
=
0.125
,
lhs_zero_point
=
0
,
rhs_scale
=
0.125
,
rhs_zero_point
=
0
,
output_scale
=
0.125
,
output_zero_point
=
0
)
lhs_scale
=
relay
.
const
(
0.125
,
'float32'
)
,
lhs_zero_point
=
relay
.
const
(
0
,
'int32'
)
,
rhs_scale
=
relay
.
const
(
0.125
,
'float32'
)
,
rhs_zero_point
=
relay
.
const
(
0
,
'int32'
)
,
output_scale
=
relay
.
const
(
0.125
,
'float32'
)
,
output_zero_point
=
relay
.
const
(
0
,
'int32'
)
)
func
=
relay
.
Function
([
x
,
y
],
z
)
mod
=
relay
.
Module
.
from_expr
(
func
)
...
...
@@ -125,12 +125,12 @@ def test_saturation():
# Same params, different scale
z
=
relay
.
qnn
.
op
.
add
(
lhs
=
x
,
rhs
=
y
,
lhs_scale
=
0.125
,
lhs_zero_point
=
0
,
rhs_scale
=
0.125
,
rhs_zero_point
=
0
,
output_scale
=
0.25
,
output_zero_point
=
0
)
lhs_scale
=
relay
.
const
(
0.125
,
'float32'
)
,
lhs_zero_point
=
relay
.
const
(
0
,
'int32'
)
,
rhs_scale
=
relay
.
const
(
0.125
,
'float32'
)
,
rhs_zero_point
=
relay
.
const
(
0
,
'int32'
)
,
output_scale
=
relay
.
const
(
0.25
,
'float32'
)
,
output_zero_point
=
relay
.
const
(
0
,
'int32'
)
)
func
=
relay
.
Function
([
x
,
y
],
z
)
mod
=
relay
.
Module
.
from_expr
(
func
)
...
...
@@ -147,12 +147,12 @@ def test_saturation():
# Same io params, different output scale
z
=
relay
.
qnn
.
op
.
add
(
lhs
=
x
,
rhs
=
y
,
lhs_scale
=
0.125
,
lhs_zero_point
=
0
,
rhs_scale
=
0.125
,
rhs_zero_point
=
0
,
output_scale
=
0.25
,
output_zero_point
=
0
)
lhs_scale
=
relay
.
const
(
0.125
,
'float32'
)
,
lhs_zero_point
=
relay
.
const
(
0
,
'int32'
)
,
rhs_scale
=
relay
.
const
(
0.125
,
'float32'
)
,
rhs_zero_point
=
relay
.
const
(
0
,
'int32'
)
,
output_scale
=
relay
.
const
(
0.25
,
'float32'
)
,
output_zero_point
=
relay
.
const
(
0
,
'int32'
)
)
func
=
relay
.
Function
([
x
,
y
],
z
)
mod
=
relay
.
Module
.
from_expr
(
func
)
...
...
@@ -169,12 +169,12 @@ def test_saturation():
# All params different
z
=
relay
.
qnn
.
op
.
add
(
lhs
=
x
,
rhs
=
y
,
lhs_scale
=
0.5
,
lhs_zero_point
=
0
,
rhs_scale
=
0.25
,
rhs_zero_point
=
0
,
output_scale
=
0.125
,
output_zero_point
=
0
)
lhs_scale
=
relay
.
const
(
0.5
,
'float32'
)
,
lhs_zero_point
=
relay
.
const
(
0
,
'int32'
)
,
rhs_scale
=
relay
.
const
(
0.25
,
'float32'
)
,
rhs_zero_point
=
relay
.
const
(
0
,
'int32'
)
,
output_scale
=
relay
.
const
(
0.125
,
'float32'
)
,
output_zero_point
=
relay
.
const
(
0
,
'int32'
)
)
func
=
relay
.
Function
([
x
,
y
],
z
)
mod
=
relay
.
Module
.
from_expr
(
func
)
...
...
tests/python/relay/test_op_qnn_concatenate.py
View file @
0720ed67
...
...
@@ -26,16 +26,17 @@ def test_same_io_qnn_params():
axis
=
0
x_data
=
np
.
arange
(
-
32
,
32
,
1
)
.
reshape
(
1
,
64
)
.
astype
(
data_dtype
)
y_data
=
np
.
arange
(
-
64
,
64
,
2
)
.
reshape
(
1
,
64
)
.
astype
(
data_dtype
)
x_scale
=
(
62
+
64
)
/
(
np
.
power
(
2
,
32
)
-
1.0
)
y_scale
=
(
62
+
64
)
/
(
np
.
power
(
2
,
32
)
-
1.0
)
x_scale
=
relay
.
const
((
62
+
64
)
/
(
np
.
power
(
2
,
32
)
-
1.0
),
'float32'
)
y_scale
=
relay
.
const
((
62
+
64
)
/
(
np
.
power
(
2
,
32
)
-
1.0
),
'float32'
)
zero
=
relay
.
const
(
0
,
'int32'
)
x
=
relay
.
var
(
"x"
,
shape
=
(
1
,
64
),
dtype
=
data_dtype
)
y
=
relay
.
var
(
"y"
,
shape
=
(
1
,
64
),
dtype
=
data_dtype
)
z
=
relay
.
qnn
.
op
.
concatenate
((
x
,
y
),
input_scales
=
[
x_scale
,
y_scale
]
,
input_zero_points
=
[
0
,
0
]
,
input_scales
=
(
x_scale
,
y_scale
)
,
input_zero_points
=
(
zero
,
zero
)
,
output_scale
=
y_scale
,
output_zero_point
=
0
,
output_zero_point
=
zero
,
axis
=
axis
)
func
=
relay
.
Function
([
x
,
y
],
z
)
...
...
@@ -54,16 +55,19 @@ def test_different_io_qnn_params():
axis
=
0
x_data
=
np
.
arange
(
-
32
,
32
,
1
)
.
reshape
(
1
,
64
)
.
astype
(
data_dtype
)
y_data
=
np
.
arange
(
-
64
,
64
,
2
)
.
reshape
(
1
,
64
)
.
astype
(
data_dtype
)
x_scale
=
(
62
+
64
)
/
(
np
.
power
(
2
,
32
)
-
1.0
)
y_scale
=
(
62
+
64
)
/
(
np
.
power
(
2
,
32
)
-
1.0
)
x_scale
=
relay
.
const
((
62
+
64
)
/
(
np
.
power
(
2
,
32
)
-
1.0
),
'float32'
)
y_scale
=
relay
.
const
((
62
+
64
)
/
(
np
.
power
(
2
,
32
)
-
1.0
),
'float32'
)
x_zero_point
=
relay
.
const
(
3
,
'int32'
)
y_zero_point
=
relay
.
const
(
4
,
'int32'
)
x
=
relay
.
var
(
"x"
,
shape
=
(
1
,
64
),
dtype
=
data_dtype
)
y
=
relay
.
var
(
"y"
,
shape
=
(
1
,
64
),
dtype
=
data_dtype
)
z
=
relay
.
qnn
.
op
.
concatenate
((
x
,
y
),
input_scales
=
[
x_scale
,
y_scale
]
,
input_zero_points
=
[
3
,
4
]
,
input_scales
=
(
x_scale
,
y_scale
)
,
input_zero_points
=
(
x_zero_point
,
y_zero_point
)
,
output_scale
=
y_scale
,
output_zero_point
=
1
,
output_zero_point
=
relay
.
const
(
1
,
'int32'
)
,
axis
=
axis
)
func
=
relay
.
Function
([
x
,
y
],
z
)
...
...
@@ -82,16 +86,19 @@ def test_few_same_io_qnn_params():
axis
=
0
x_data
=
np
.
arange
(
-
32
,
32
,
1
)
.
reshape
(
1
,
64
)
.
astype
(
data_dtype
)
y_data
=
np
.
arange
(
-
64
,
64
,
2
)
.
reshape
(
1
,
64
)
.
astype
(
data_dtype
)
x_scale
=
(
62
+
64
)
/
(
np
.
power
(
2
,
32
)
-
1.0
)
y_scale
=
(
62
+
64
)
/
(
np
.
power
(
2
,
32
)
-
1.0
)
x_scale
=
relay
.
const
((
62
+
64
)
/
(
np
.
power
(
2
,
32
)
-
1.0
),
'float32'
)
y_scale
=
relay
.
const
((
62
+
64
)
/
(
np
.
power
(
2
,
32
)
-
1.0
),
'float32'
)
x_zero_point
=
relay
.
const
(
0
,
'int32'
)
y_zero_point
=
relay
.
const
(
1
,
'int32'
)
x
=
relay
.
var
(
"x"
,
shape
=
(
1
,
64
),
dtype
=
data_dtype
)
y
=
relay
.
var
(
"y"
,
shape
=
(
1
,
64
),
dtype
=
data_dtype
)
z
=
relay
.
qnn
.
op
.
concatenate
((
x
,
y
),
input_scales
=
[
x_scale
,
y_scale
]
,
input_zero_points
=
[
0
,
1
]
,
input_scales
=
(
x_scale
,
y_scale
)
,
input_zero_points
=
(
x_zero_point
,
y_zero_point
)
,
output_scale
=
y_scale
,
output_zero_point
=
1
,
output_zero_point
=
relay
.
const
(
1
,
'int32'
)
,
axis
=
axis
)
func
=
relay
.
Function
([
x
,
y
],
z
)
...
...
@@ -110,16 +117,19 @@ def test_same_i_qnn_params():
axis
=
0
x_data
=
np
.
arange
(
-
32
,
32
,
1
)
.
reshape
(
1
,
64
)
.
astype
(
data_dtype
)
y_data
=
np
.
arange
(
-
64
,
64
,
2
)
.
reshape
(
1
,
64
)
.
astype
(
data_dtype
)
x_scale
=
(
62
+
64
)
/
(
np
.
power
(
2
,
32
)
-
1.0
)
y_scale
=
(
62
+
64
)
/
(
np
.
power
(
2
,
32
)
-
1.0
)
x_scale
=
relay
.
const
((
62
+
64
)
/
(
np
.
power
(
2
,
32
)
-
1.0
),
'float32'
)
y_scale
=
relay
.
const
((
62
+
64
)
/
(
np
.
power
(
2
,
32
)
-
1.0
),
'float32'
)
x_zero_point
=
relay
.
const
(
0
,
'int32'
)
y_zero_point
=
relay
.
const
(
0
,
'int32'
)
x
=
relay
.
var
(
"x"
,
shape
=
(
1
,
64
),
dtype
=
data_dtype
)
y
=
relay
.
var
(
"y"
,
shape
=
(
1
,
64
),
dtype
=
data_dtype
)
z
=
relay
.
qnn
.
op
.
concatenate
((
x
,
y
),
input_scales
=
[
x_scale
,
y_scale
]
,
input_zero_points
=
[
0
,
0
]
,
input_scales
=
(
x_scale
,
y_scale
)
,
input_zero_points
=
(
x_zero_point
,
y_zero_point
)
,
output_scale
=
y_scale
,
output_zero_point
=
1
,
output_zero_point
=
relay
.
const
(
1
,
'int32'
)
,
axis
=
axis
)
func
=
relay
.
Function
([
x
,
y
],
z
)
...
...
tests/python/relay/test_op_qnn_conv2d.py
View file @
0720ed67
...
...
@@ -52,16 +52,16 @@ def get_ref_func(data,
shifted_kernel
=
relay
.
op
.
subtract
(
casted_kernel
,
relay
.
const
(
kernel_zero_point
,
"int32"
))
func
=
relay
.
op
.
nn
.
conv2d
(
shifted_data
,
shifted_kernel
,
padding
=
padding
,
strides
=
strides
,
dilation
=
dilation
,
groups
=
groups
,
channels
=
channels
,
kernel_size
=
kernel_size
,
out_dtype
=
out_dtype
,
data_layout
=
data_layout
,
kernel_layout
=
kernel_layout
)
shifted_kernel
,
padding
=
padding
,
strides
=
strides
,
dilation
=
dilation
,
groups
=
groups
,
channels
=
channels
,
kernel_size
=
kernel_size
,
out_dtype
=
out_dtype
,
data_layout
=
data_layout
,
kernel_layout
=
kernel_layout
)
func
=
relay
.
Function
(
relay
.
analysis
.
free_vars
(
func
),
func
)
return
func
...
...
@@ -83,10 +83,10 @@ def get_qnn_func(data,
channels
=
None
):
func
=
relay
.
qnn
.
op
.
conv2d
(
data
,
kernel
,
input_zero_point
=
input_zero_point
,
kernel_zero_point
=
kernel_zero_point
,
input_scale
=
input_scale
,
kernel_scale
=
kernel_scale
,
input_zero_point
=
relay
.
const
(
input_zero_point
,
'int32'
)
,
kernel_zero_point
=
relay
.
const
(
kernel_zero_point
,
'int32'
)
,
input_scale
=
relay
.
const
(
input_scale
,
'float32'
)
,
kernel_scale
=
relay
.
const
(
kernel_scale
,
'float32'
)
,
kernel_size
=
kernel_size
,
strides
=
strides
,
dilation
=
dilation
,
...
...
tests/python/relay/test_op_qnn_dense.py
View file @
0720ed67
...
...
@@ -179,10 +179,10 @@ def qnn_dense_driver(test_configuration):
mod
=
relay
.
qnn
.
op
.
dense
(
quantized_data
,
quantized_kernel
,
test_configuration
[
'input_zero_point'
]
,
test_configuration
[
'kernel_zero_point'
]
,
test_configuration
[
'input_scale'
]
,
test_configuration
[
'kernel_scale'
]
,
relay
.
const
(
test_configuration
[
'input_zero_point'
],
'int32'
)
,
relay
.
const
(
test_configuration
[
'kernel_zero_point'
],
'int32'
)
,
relay
.
const
(
test_configuration
[
'input_scale'
],
'float32'
)
,
relay
.
const
(
test_configuration
[
'kernel_scale'
],
'float32'
)
,
test_configuration
[
'units'
])
if
test_configuration
[
bias_name
]
is
not
None
:
bias
=
relay
.
var
(
bias_name
,
...
...
@@ -193,10 +193,10 @@ def qnn_dense_driver(test_configuration):
requantize_config
=
test_configuration
[
'requantize'
]
mod
=
relay
.
qnn
.
op
.
requantize
(
mod
,
input_scale
=
re
quantize_config
[
'input_scale'
]
,
input_zero_point
=
0
,
output_scale
=
re
quantize_config
[
'output_scale'
]
,
output_zero_point
=
re
quantize_config
[
'output_zero_point'
]
,
input_scale
=
re
lay
.
const
(
requantize_config
[
'input_scale'
],
'float32'
)
,
input_zero_point
=
relay
.
const
(
0
,
'int32'
)
,
output_scale
=
re
lay
.
const
(
requantize_config
[
'output_scale'
],
'float32'
)
,
output_zero_point
=
re
lay
.
const
(
requantize_config
[
'output_zero_point'
],
'int32'
)
,
out_dtype
=
requantize_config
[
'out_dtype'
])
expected_out_dtype
=
requantize_config
[
'out_dtype'
]
...
...
tests/python/relay/test_op_qnn_dequantize.py
View file @
0720ed67
...
...
@@ -20,61 +20,56 @@ import numpy as np
from
tvm
import
relay
from
tvm.contrib
import
graph_runtime
def
test_dequantize_op
():
def
quantize_test_driver
(
in_dtype
,
quant_args
,
in_data
,
verify_output_data
):
shape
=
in_data
.
shape
input_data
=
relay
.
var
(
"input_data"
,
shape
=
shape
,
dtype
=
in_dtype
)
input_zero_point
=
relay
.
const
(
quant_args
[
'in_zero_point'
],
'int32'
)
input_scale
=
relay
.
const
(
quant_args
[
'in_scale'
],
'float32'
)
quantized_output
=
relay
.
qnn
.
op
.
dequantize
(
input_data
,
input_scale
=
input_scale
,
input_zero_point
=
input_zero_point
)
mod
=
relay
.
Function
(
relay
.
analysis
.
free_vars
(
quantized_output
),
quantized_output
)
mod
=
relay
.
Module
.
from_expr
(
mod
)
with
relay
.
build_config
(
opt_level
=
3
):
graph
,
lib
,
params
=
relay
.
build
(
mod
,
"llvm"
,
params
=
None
)
rt_mod
=
graph_runtime
.
create
(
graph
,
lib
,
ctx
=
tvm
.
cpu
(
0
))
rt_mod
.
set_input
(
input_data
=
in_data
)
rt_mod
.
set_input
(
**
params
)
rt_mod
.
run
()
res
=
rt_mod
.
get_output
(
0
)
.
asnumpy
()
np
.
testing
.
assert_equal
(
res
,
verify_output_data
)
assert
res
.
dtype
==
np
.
float32
def
quantize_test_driver
(
in_dtype
,
quant_args
,
in_data
,
verify_output_data
):
shape
=
in_data
.
shape
input_data
=
relay
.
var
(
"input_data"
,
shape
=
shape
,
dtype
=
in_dtype
)
input_zero_point
=
quant_args
[
'in_zero_point'
]
input_scale
=
quant_args
[
'in_scale'
]
quantized_output
=
relay
.
qnn
.
op
.
dequantize
(
input_data
,
input_scale
=
input_scale
,
input_zero_point
=
input_zero_point
)
mod
=
relay
.
Function
(
relay
.
analysis
.
free_vars
(
quantized_output
),
quantized_output
)
mod
=
relay
.
Module
.
from_expr
(
mod
)
with
relay
.
build_config
(
opt_level
=
3
):
graph
,
lib
,
params
=
relay
.
build
(
mod
,
"llvm"
,
params
=
None
)
rt_mod
=
graph_runtime
.
create
(
graph
,
lib
,
ctx
=
tvm
.
cpu
(
0
))
rt_mod
.
set_input
(
input_data
=
in_data
)
rt_mod
.
set_input
(
**
params
)
rt_mod
.
run
()
res
=
rt_mod
.
get_output
(
0
)
.
asnumpy
()
np
.
testing
.
assert_equal
(
res
,
verify_output_data
)
assert
res
.
dtype
==
np
.
float32
def
test_uint8_to_float32
():
data
=
np
.
array
([
0
,
1
,
2
,
3
,
4
,
251
,
252
,
253
,
254
,
255
])
\
.
astype
(
'uint8'
)
\
.
reshape
((
2
,
5
))
output
=
np
.
array
([
-
63.5
,
-
63
,
-
62.5
,
-
62
,
-
61.5
,
62
,
62.5
,
63
,
63.5
,
64
])
\
.
astype
(
'float32'
)
\
.
reshape
((
2
,
5
))
quant_args
=
{
"in_zero_point"
:
127
,
"in_scale"
:
0.5
}
quantize_test_driver
(
in_dtype
=
'uint8'
,
quant_args
=
quant_args
,
in_data
=
data
,
verify_output_data
=
output
)
def
test_u
int8_to_float32
():
data
=
np
.
array
([
0
,
1
,
2
,
3
,
4
,
251
,
252
,
253
,
254
,
255
])
\
.
astype
(
'u
int8'
)
\
.
reshape
((
2
,
5
))
output
=
np
.
array
([
-
63.5
,
-
63
,
-
62.5
,
-
62
,
-
61.5
,
62
,
62.5
,
63
,
63.5
,
64
])
\
.
astype
(
'float32'
)
\
.
reshape
((
2
,
5
))
quant_args
=
{
"in_zero_point"
:
127
,
"in_scale"
:
0.5
}
quantize_test_driver
(
in_dtype
=
'u
int8'
,
quant_args
=
quant_args
,
in_data
=
data
,
verify_output_data
=
output
)
def
test_
int8_to_float32
():
data
=
np
.
array
([
-
128
,
-
127
,
-
126
,
-
125
,
-
124
,
123
,
124
,
125
,
126
,
127
])
\
.
astype
(
'
int8'
)
\
.
reshape
((
2
,
5
))
output
=
np
.
array
([
-
63.5
,
-
63
,
-
62.5
,
-
62
,
-
61.5
,
62
,
62.5
,
63
,
63.5
,
64
])
\
.
astype
(
'float32'
)
\
.
reshape
((
2
,
5
))
quant_args
=
{
"in_zero_point"
:
-
1
,
"in_scale"
:
0.5
}
quantize_test_driver
(
in_dtype
=
'
int8'
,
quant_args
=
quant_args
,
in_data
=
data
,
verify_output_data
=
output
)
def
test_int8_to_float32
():
data
=
np
.
array
([
-
128
,
-
127
,
-
126
,
-
125
,
-
124
,
123
,
124
,
125
,
126
,
127
])
\
.
astype
(
'int8'
)
\
.
reshape
((
2
,
5
))
output
=
np
.
array
([
-
63.5
,
-
63
,
-
62.5
,
-
62
,
-
61.5
,
62
,
62.5
,
63
,
63.5
,
64
])
\
.
astype
(
'float32'
)
\
.
reshape
((
2
,
5
))
quant_args
=
{
"in_zero_point"
:
-
1
,
"in_scale"
:
0.5
}
quantize_test_driver
(
in_dtype
=
'int8'
,
quant_args
=
quant_args
,
in_data
=
data
,
verify_output_data
=
output
)
def
test_int32_to_float32
():
data
=
np
.
array
([
113
,
29
,
-
1052
])
.
astype
(
'int32'
)
output
=
np
.
array
([
0.6550452
,
0.16810896
,
-
6.098297
])
.
astype
(
'float32'
)
quant_args
=
{
"in_zero_point"
:
0
,
"in_scale"
:
0.0057968604
}
quantize_test_driver
(
in_dtype
=
'int32'
,
quant_args
=
quant_args
,
in_data
=
data
,
verify_output_data
=
output
)
def
test_int32_to_float32
():
data
=
np
.
array
([
113
,
29
,
-
1052
])
.
astype
(
'int32'
)
output
=
np
.
array
([
0.6550452
,
0.16810896
,
-
6.098297
])
.
astype
(
'float32'
)
quant_args
=
{
"in_zero_point"
:
0
,
"in_scale"
:
0.0057968604
}
quantize_test_driver
(
in_dtype
=
'int32'
,
quant_args
=
quant_args
,
in_data
=
data
,
verify_output_data
=
output
)
if
__name__
==
"__main__"
:
test_uint8_to_float32
()
test_int8_to_float32
()
test_int32_to_float32
()
if
__name__
==
"__main__"
:
test_dequantize_op
()
tests/python/relay/test_op_qnn_mul.py
View file @
0720ed67
...
...
@@ -44,12 +44,12 @@ def test_tflite_same_io_qnn_params():
x
=
relay
.
var
(
"x"
,
shape
=
(
1
,
4
),
dtype
=
data_dtype
)
y
=
relay
.
var
(
"y"
,
shape
=
(
1
,
4
),
dtype
=
data_dtype
)
z
=
relay
.
qnn
.
op
.
mul
(
lhs
=
x
,
rhs
=
y
,
lhs_scale
=
lhs_scale
,
lhs_zero_point
=
lhs_zero_point
,
rhs_scale
=
r
hs_scale
,
rhs_zero_point
=
r
hs_zero_point
,
output_scale
=
output_scale
,
output_zero_point
=
output_zero_point
)
lhs_scale
=
relay
.
const
(
lhs_scale
,
'float32'
)
,
lhs_zero_point
=
relay
.
const
(
lhs_zero_point
,
'int32'
)
,
rhs_scale
=
r
elay
.
const
(
rhs_scale
,
'float32'
)
,
rhs_zero_point
=
r
elay
.
const
(
rhs_zero_point
,
'int32'
)
,
output_scale
=
relay
.
const
(
output_scale
,
'float32'
)
,
output_zero_point
=
relay
.
const
(
output_zero_point
,
'int32'
)
)
func
=
relay
.
Function
([
x
,
y
],
z
)
mod
=
relay
.
Module
.
from_expr
(
func
)
...
...
@@ -95,12 +95,12 @@ def test_tflite_different_io_qnn_params():
x
=
relay
.
var
(
"x"
,
shape
=
(
1
,
4
),
dtype
=
data_dtype
)
y
=
relay
.
var
(
"y"
,
shape
=
(
1
,
4
),
dtype
=
data_dtype
)
z
=
relay
.
qnn
.
op
.
mul
(
lhs
=
x
,
rhs
=
y
,
lhs_scale
=
lhs_scale
,
lhs_zero_point
=
lhs_zero_point
,
rhs_scale
=
r
hs_scale
,
rhs_zero_point
=
r
hs_zero_point
,
output_scale
=
output_scale
,
output_zero_point
=
output_zero_point
)
lhs_scale
=
relay
.
const
(
lhs_scale
,
'float32'
)
,
lhs_zero_point
=
relay
.
const
(
lhs_zero_point
,
'int32'
)
,
rhs_scale
=
r
elay
.
const
(
rhs_scale
,
'float32'
)
,
rhs_zero_point
=
r
elay
.
const
(
rhs_zero_point
,
'int32'
)
,
output_scale
=
relay
.
const
(
output_scale
,
'float32'
)
,
output_zero_point
=
relay
.
const
(
output_zero_point
,
'int32'
)
)
func
=
relay
.
Function
([
x
,
y
],
z
)
mod
=
relay
.
Module
.
from_expr
(
func
)
...
...
@@ -141,12 +141,12 @@ def test_saturation():
x
=
relay
.
var
(
"x"
,
shape
=
(
1
,
4
),
dtype
=
data_dtype
)
y
=
relay
.
var
(
"y"
,
shape
=
(
1
,
4
),
dtype
=
data_dtype
)
z
=
relay
.
qnn
.
op
.
mul
(
lhs
=
x
,
rhs
=
y
,
lhs_scale
=
lhs_scale
,
lhs_zero_point
=
lhs_zero_point
,
rhs_scale
=
r
hs_scale
,
rhs_zero_point
=
r
hs_zero_point
,
output_scale
=
output_scale
,
output_zero_point
=
output_zero_point
)
lhs_scale
=
relay
.
const
(
lhs_scale
,
'float32'
)
,
lhs_zero_point
=
relay
.
const
(
lhs_zero_point
,
'int32'
)
,
rhs_scale
=
r
elay
.
const
(
rhs_scale
,
'float32'
)
,
rhs_zero_point
=
r
elay
.
const
(
rhs_zero_point
,
'int32'
)
,
output_scale
=
relay
.
const
(
output_scale
,
'float32'
)
,
output_zero_point
=
relay
.
const
(
output_zero_point
,
'int32'
)
)
func
=
relay
.
Function
([
x
,
y
],
z
)
mod
=
relay
.
Module
.
from_expr
(
func
)
...
...
@@ -172,12 +172,12 @@ def test_saturation():
output_scale
=
0.25
z
=
relay
.
qnn
.
op
.
mul
(
lhs
=
x
,
rhs
=
y
,
lhs_scale
=
lhs_scale
,
lhs_zero_point
=
lhs_zero_point
,
rhs_scale
=
r
hs_scale
,
rhs_zero_point
=
r
hs_zero_point
,
output_scale
=
output_scale
,
output_zero_point
=
output_zero_point
)
lhs_scale
=
relay
.
const
(
lhs_scale
,
'float32'
)
,
lhs_zero_point
=
relay
.
const
(
lhs_zero_point
,
'int32'
)
,
rhs_scale
=
r
elay
.
const
(
rhs_scale
,
'float32'
)
,
rhs_zero_point
=
r
elay
.
const
(
rhs_zero_point
,
'int32'
)
,
output_scale
=
relay
.
const
(
output_scale
,
'float32'
)
,
output_zero_point
=
relay
.
const
(
output_zero_point
,
'int32'
)
)
func
=
relay
.
Function
([
x
,
y
],
z
)
mod
=
relay
.
Module
.
from_expr
(
func
)
...
...
@@ -204,12 +204,12 @@ def test_saturation():
output_scale
=
0.125
z
=
relay
.
qnn
.
op
.
mul
(
lhs
=
x
,
rhs
=
y
,
lhs_scale
=
lhs_scale
,
lhs_zero_point
=
lhs_zero_point
,
rhs_scale
=
r
hs_scale
,
rhs_zero_point
=
r
hs_zero_point
,
output_scale
=
output_scale
,
output_zero_point
=
output_zero_point
)
lhs_scale
=
relay
.
const
(
lhs_scale
,
'float32'
)
,
lhs_zero_point
=
relay
.
const
(
lhs_zero_point
,
'int32'
)
,
rhs_scale
=
r
elay
.
const
(
rhs_scale
,
'float32'
)
,
rhs_zero_point
=
r
elay
.
const
(
rhs_zero_point
,
'int32'
)
,
output_scale
=
relay
.
const
(
output_scale
,
'float32'
)
,
output_zero_point
=
relay
.
const
(
output_zero_point
,
'int32'
)
)
func
=
relay
.
Function
([
x
,
y
],
z
)
mod
=
relay
.
Module
.
from_expr
(
func
)
...
...
tests/python/relay/test_op_qnn_quantize.py
View file @
0720ed67
...
...
@@ -20,51 +20,47 @@ import numpy as np
from
tvm
import
relay
from
tvm.contrib
import
graph_runtime
def
test_quantize_op
():
def
quantize_test_driver
(
in_dtype
,
quant_args
,
out_dtype
,
in_data
,
verify_output_data
):
shape
=
in_data
.
shape
input_data
=
relay
.
var
(
"input_data"
,
shape
=
shape
,
dtype
=
in_dtype
)
output_zero_point
=
relay
.
const
(
quant_args
[
'out_zero_point'
],
'int32'
)
output_scale
=
relay
.
const
(
quant_args
[
'out_scale'
],
'float32'
)
quantized_output
=
relay
.
qnn
.
op
.
quantize
(
input_data
,
output_scale
=
output_scale
,
output_zero_point
=
output_zero_point
,
out_dtype
=
out_dtype
)
mod
=
relay
.
Function
(
relay
.
analysis
.
free_vars
(
quantized_output
),
quantized_output
)
mod
=
relay
.
Module
.
from_expr
(
mod
)
with
relay
.
build_config
(
opt_level
=
3
):
graph
,
lib
,
params
=
relay
.
build
(
mod
,
"llvm"
,
params
=
None
)
rt_mod
=
graph_runtime
.
create
(
graph
,
lib
,
ctx
=
tvm
.
cpu
(
0
))
rt_mod
.
set_input
(
input_data
=
in_data
)
rt_mod
.
set_input
(
**
params
)
rt_mod
.
run
()
res
=
rt_mod
.
get_output
(
0
)
.
asnumpy
()
np
.
testing
.
assert_equal
(
res
,
verify_output_data
)
assert
res
.
dtype
==
out_dtype
def
quantize_test_driver
(
in_dtype
,
quant_args
,
out_dtype
,
in_data
,
verify_output_data
):
shape
=
in_data
.
shape
input_data
=
relay
.
var
(
"input_data"
,
shape
=
shape
,
dtype
=
in_dtype
)
output_zero_point
=
quant_args
[
'out_zero_point'
]
output_scale
=
quant_args
[
'out_scale'
]
quantized_output
=
relay
.
qnn
.
op
.
quantize
(
input_data
,
output_scale
=
output_scale
,
output_zero_point
=
output_zero_point
,
out_dtype
=
out_dtype
)
mod
=
relay
.
Function
(
relay
.
analysis
.
free_vars
(
quantized_output
),
quantized_output
)
mod
=
relay
.
Module
.
from_expr
(
mod
)
with
relay
.
build_config
(
opt_level
=
3
):
graph
,
lib
,
params
=
relay
.
build
(
mod
,
"llvm"
,
params
=
None
)
rt_mod
=
graph_runtime
.
create
(
graph
,
lib
,
ctx
=
tvm
.
cpu
(
0
))
rt_mod
.
set_input
(
input_data
=
in_data
)
rt_mod
.
set_input
(
**
params
)
rt_mod
.
run
()
res
=
rt_mod
.
get_output
(
0
)
.
asnumpy
()
np
.
testing
.
assert_equal
(
res
,
verify_output_data
)
assert
res
.
dtype
==
out_dtype
def
test_float32_to_uint8
():
data
=
np
.
array
([
-
63.5
,
-
63
,
-
62.5
,
-
62
,
-
61.5
,
62
,
62.5
,
63
,
63.5
,
64
])
\
.
astype
(
'float32'
)
\
.
reshape
((
2
,
5
))
output
=
np
.
array
([
0
,
1
,
2
,
3
,
4
,
251
,
252
,
253
,
254
,
255
])
\
.
astype
(
'uint8'
)
\
.
reshape
((
2
,
5
))
quant_args
=
{
"out_zero_point"
:
127
,
"out_scale"
:
0.5
}
quantize_test_driver
(
in_dtype
=
'float32'
,
quant_args
=
quant_args
,
out_dtype
=
'uint8'
,
in_data
=
data
,
verify_output_data
=
output
)
def
test_float32_to_uint8
():
data
=
np
.
array
([
-
63.5
,
-
63
,
-
62.5
,
-
62
,
-
61.5
,
62
,
62.5
,
63
,
63.5
,
64
])
\
.
astype
(
'float32'
)
\
.
reshape
((
2
,
5
))
output
=
np
.
array
([
0
,
1
,
2
,
3
,
4
,
251
,
252
,
253
,
254
,
255
])
\
.
astype
(
'uint8'
)
\
.
reshape
((
2
,
5
))
quant_args
=
{
"out_zero_point"
:
127
,
"out_scale"
:
0.5
}
quantize_test_driver
(
in_dtype
=
'float32'
,
quant_args
=
quant_args
,
out_dtype
=
'uint8'
,
in_data
=
data
,
verify_output_data
=
output
)
def
test_float32_to_int8
():
data
=
np
.
array
([
-
63.5
,
-
63
,
-
62.5
,
-
62
,
-
61.5
,
62
,
62.5
,
63
,
63.5
,
64
])
\
.
astype
(
'float32'
)
\
.
reshape
((
2
,
5
))
output
=
np
.
array
([
-
128
,
-
127
,
-
126
,
-
125
,
-
124
,
123
,
124
,
125
,
126
,
127
])
\
.
astype
(
'int8'
)
\
.
reshape
((
2
,
5
))
quant_args
=
{
"out_zero_point"
:
-
1
,
"out_scale"
:
0.5
}
quantize_test_driver
(
in_dtype
=
'float32'
,
quant_args
=
quant_args
,
out_dtype
=
'int8'
,
in_data
=
data
,
verify_output_data
=
output
)
def
test_float32_to_int8
():
data
=
np
.
array
([
-
63.5
,
-
63
,
-
62.5
,
-
62
,
-
61.5
,
62
,
62.5
,
63
,
63.5
,
64
])
\
.
astype
(
'float32'
)
\
.
reshape
((
2
,
5
))
output
=
np
.
array
([
-
128
,
-
127
,
-
126
,
-
125
,
-
124
,
123
,
124
,
125
,
126
,
127
])
\
.
astype
(
'int8'
)
\
.
reshape
((
2
,
5
))
quant_args
=
{
"out_zero_point"
:
-
1
,
"out_scale"
:
0.5
}
quantize_test_driver
(
in_dtype
=
'float32'
,
quant_args
=
quant_args
,
out_dtype
=
'int8'
,
in_data
=
data
,
verify_output_data
=
output
)
if
__name__
==
"__main__"
:
test_float32_to_uint8
()
test_float32_to_int8
()
if
__name__
==
"__main__"
:
test_quantize_op
()
tests/python/relay/test_op_qnn_requantize.py
View file @
0720ed67
...
...
@@ -39,10 +39,10 @@ def get_mod(data_shape, data_dtype, out_dtype, input_scale, output_scale,
dtype
=
data_dtype
)
mod
=
relay
.
qnn
.
op
.
requantize
(
quantized_data
,
input_scale
=
input_scale
,
input_zero_point
=
input_zero_point
,
output_scale
=
output_scale
,
output_zero_point
=
output_zero_point
,
input_scale
=
relay
.
const
(
input_scale
,
'float32'
)
,
input_zero_point
=
relay
.
const
(
input_zero_point
,
'int32'
)
,
output_scale
=
relay
.
const
(
output_scale
,
'float32'
)
,
output_zero_point
=
relay
.
const
(
output_zero_point
,
'int32'
)
,
rounding
=
rounding
,
out_dtype
=
out_dtype
)
...
...
tests/python/relay/test_pass_qnn_legalize.py
View file @
0720ed67
...
...
@@ -46,10 +46,10 @@ def test_qnn_legalize():
def
before
():
x
=
relay
.
var
(
"x"
,
shape
=
(
1
,
64
,
56
,
56
),
dtype
=
'int8'
)
y
=
relay
.
qnn
.
op
.
requantize
(
x
,
input_scale
=
1
,
input_zero_point
=
0
,
output_scale
=
1
,
output_zero_point
=
0
,
input_scale
=
relay
.
const
(
1
,
'float32'
)
,
input_zero_point
=
relay
.
const
(
0
,
'int32'
)
,
output_scale
=
relay
.
const
(
1
,
'float32'
)
,
output_zero_point
=
relay
.
const
(
0
,
'int32'
)
,
out_dtype
=
'int8'
)
y
=
relay
.
Function
([
x
],
y
)
return
y
...
...
@@ -58,10 +58,10 @@ def test_qnn_legalize():
data
=
inputs
[
0
]
data
=
relay
.
add
(
relay
.
const
(
0
,
'int8'
),
data
)
y
=
relay
.
qnn
.
op
.
requantize
(
data
,
input_scale
=
1
,
input_zero_point
=
0
,
output_scale
=
1
,
output_zero_point
=
0
,
input_scale
=
relay
.
const
(
1
,
'float32'
)
,
input_zero_point
=
relay
.
const
(
0
,
'int32'
)
,
output_scale
=
relay
.
const
(
1
,
'float32'
)
,
output_zero_point
=
relay
.
const
(
0
,
'int32'
)
,
out_dtype
=
'int8'
)
return
y
...
...
@@ -69,10 +69,10 @@ def test_qnn_legalize():
x
=
relay
.
var
(
"x"
,
shape
=
(
1
,
64
,
56
,
56
),
dtype
=
'int8'
)
y
=
relay
.
add
(
relay
.
const
(
0
,
'int8'
),
x
)
z
=
relay
.
qnn
.
op
.
requantize
(
y
,
input_scale
=
1
,
input_zero_point
=
0
,
output_scale
=
1
,
output_zero_point
=
0
,
input_scale
=
relay
.
const
(
1
,
'float32'
)
,
input_zero_point
=
relay
.
const
(
0
,
'int32'
)
,
output_scale
=
relay
.
const
(
1
,
'float32'
)
,
output_zero_point
=
relay
.
const
(
0
,
'int32'
)
,
out_dtype
=
'int8'
)
z
=
relay
.
Function
([
x
],
z
)
return
z
...
...
@@ -102,10 +102,10 @@ def test_qnn_legalize_qnn_conv2d():
dtype
=
kernel_dtype
)
func
=
relay
.
qnn
.
op
.
conv2d
(
data
,
kernel
,
input_zero_point
=
1
,
kernel_zero_point
=
1
,
input_scale
=
1.0
,
kernel_scale
=
1.0
,
input_zero_point
=
relay
.
const
(
1
,
'int32'
)
,
kernel_zero_point
=
relay
.
const
(
1
,
'int32'
)
,
input_scale
=
relay
.
const
(
1.0
,
'float32'
)
,
kernel_scale
=
relay
.
const
(
1.0
,
'float32'
)
,
kernel_size
=
(
3
,
3
),
strides
=
(
1
,
1
),
dilation
=
(
1
,
1
),
...
...
@@ -186,10 +186,10 @@ def test_qnn_legalize_qnn_dense():
dtype
=
kernel_dtype
)
func
=
relay
.
qnn
.
op
.
dense
(
data
,
kernel
,
input_zero_point
=
1
,
kernel_zero_point
=
1
,
input_scale
=
1
,
kernel_scale
=
1
,
input_zero_point
=
relay
.
const
(
1
,
'int32'
)
,
kernel_zero_point
=
relay
.
const
(
1
,
'int32'
)
,
input_scale
=
relay
.
const
(
1
,
'float32'
)
,
kernel_scale
=
relay
.
const
(
1
,
'float32'
)
,
out_dtype
=
'int32'
)
mod
=
relay
.
Function
(
relay
.
analysis
.
free_vars
(
func
),
func
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment