binutil.py 8.63 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

"""Utilities for binary file manipulation"""
import os
import subprocess
from . import util
from .._ffi.base import py_str
from ..api import register_func

@register_func("tvm_callback_get_section_size")
def tvm_callback_get_section_size(binary_path, section_name, toolchain_prefix):
    """Finds size of the section in the binary.
    Assumes `size` shell command exists (typically works only on Linux machines)

    Parameters
    ----------
    binary_path : str
        path of the binary file

    section_name : str
        name of section

    toolchain_prefix : str
        prefix for binary names in target compiler toolchain

    Returns
    -------
    size : integer
        size of the section in bytes
    """
    if not os.path.isfile(binary_path):
        raise RuntimeError("no such file \"{}\"".format(binary_path))
    # We use the "-A" flag here to get the ".rodata" section's size, which is
    # not included by default.
    size_proc = subprocess.Popen(
        ["{}size".format(toolchain_prefix), "-A", binary_path], stdout=subprocess.PIPE)
    (size_output, _) = size_proc.communicate()
    size_output = size_output.decode("utf-8")
    if size_proc.returncode != 0:
        msg = "error in finding section size:\n"
        msg += py_str(out)
        raise RuntimeError(msg)

    # TODO(weberlo): Refactor this method and `*relocate_binary` so they are
    # both aware of [".bss", ".sbss", ".sdata"] being relocated to ".bss".
    section_mapping = {
        ".text": [".text"],
        ".rodata": [".rodata"],
        ".data": [".data", ".sdata"],
        ".bss": [".bss", ".sbss"],
    }
    sections_to_sum = section_mapping["." + section_name]
    section_size = 0
    # Skip the first two header lines in the `size` output.
    for line in size_output.split("\n")[2:]:
        tokens = list(filter(lambda s: len(s) != 0, line.split(" ")))
        if len(tokens) != 3:
            continue
        entry_name = tokens[0]
        entry_size = int(tokens[1])
        if entry_name in sections_to_sum:
            section_size += entry_size

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    # NOTE: For some reason, the size of the BSS section on the RISC-V
    # GCC is sometimes reported to be smaller than it is, so we need to adjust
    # for this.
    if "riscv" in toolchain_prefix and section_name == 'bss':
        # TODO(weberlo): Figure out why 32 is the minimum constant that works.
        #
        # The current hypothesis is that the last symbols in the ".bss" and
        # ".sbss" sections may have size zero, since the symbols in these
        # sections are uninitialized and there's no address that follows that
        # would enforce a particular size.
        #
        # If this is the case, then 32 just happens to be a safe amount of
        # padding for most cases, but symbols can be arbitrarily large, so this
        # isn't bulletproof.
        return section_size + 32
    return section_size
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

@register_func("tvm_callback_relocate_binary")
def tvm_callback_relocate_binary(
        binary_path, text_addr, rodata_addr, data_addr, bss_addr, toolchain_prefix):
    """Relocates sections in the binary to new addresses

    Parameters
    ----------
    binary_path : str
        path of the binary file

    text_addr : str
        text section absolute address

    rodata_addr : str
        rodata section absolute address

    data_addr : str
        data section absolute address

    bss_addr : str
        bss section absolute address

    toolchain_prefix : str
        prefix for binary names in target compiler toolchain

    Returns
    -------
    rel_bin : bytearray
        the relocated binary
    """
    tmp_dir = util.tempdir()
    rel_obj_path = tmp_dir.relpath("relocated.o")
    ld_script_contents = ""
    # TODO(weberlo): There should be a better way to configure this for different archs.
    if "riscv" in toolchain_prefix:
        ld_script_contents += "OUTPUT_ARCH( \"riscv\" )\n\n"
    # TODO(weberlo): Generate the script in a more procedural manner.
    ld_script_contents += """
SECTIONS
{
  . = %s;
  . = ALIGN(8);
  .text :
  {
    *(.text)
    . = ALIGN(8);
    *(.text*)
  }
  . = %s;
  . = ALIGN(8);
  .rodata :
  {
    *(.rodata)
    . = ALIGN(8);
    *(.rodata*)
  }
  . = %s;
  . = ALIGN(8);
  .data :
  {
    *(.data)
    . = ALIGN(8);
    *(.data*)
    . = ALIGN(8);
    *(.sdata)
  }
  . = %s;
  . = ALIGN(8);
  .bss :
  {
    *(.bss)
    . = ALIGN(8);
    *(.bss*)
    . = ALIGN(8);
    *(.sbss)
  }
}
    """ % (text_addr, rodata_addr, data_addr, bss_addr)
    rel_ld_script_path = tmp_dir.relpath("relocated.lds")
    with open(rel_ld_script_path, "w") as f:
        f.write(ld_script_contents)
    ld_proc = subprocess.Popen(["{}ld".format(toolchain_prefix), binary_path,
                                "-T", rel_ld_script_path,
                                "-o", rel_obj_path],
                               stdout=subprocess.PIPE,
                               stderr=subprocess.STDOUT)
    (out, _) = ld_proc.communicate()
    if ld_proc.returncode != 0:
        msg = "linking error using ld:\n"
        msg += py_str(out)
        raise RuntimeError(msg)
187

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
    with open(rel_obj_path, "rb") as f:
        rel_bin = bytearray(f.read())
    return rel_bin


@register_func("tvm_callback_read_binary_section")
def tvm_callback_read_binary_section(binary, section, toolchain_prefix):
    """Returns the contents of the specified section in the binary byte array

    Parameters
    ----------
    binary : bytearray
        contents of the binary

    section : str
        type of section

    toolchain_prefix : str
        prefix for binary names in target compiler toolchain

    Returns
    -------
    section_bin : bytearray
        contents of the read section
    """
    tmp_dir = util.tempdir()
    tmp_bin = tmp_dir.relpath("temp.bin")
    tmp_section = tmp_dir.relpath("tmp_section.bin")
    with open(tmp_bin, "wb") as out_file:
        out_file.write(bytes(binary))
    objcopy_proc = subprocess.Popen(["{}objcopy".format(toolchain_prefix), "--dump-section",
                                     ".{}={}".format(section, tmp_section),
                                     tmp_bin],
                                    stdout=subprocess.PIPE,
                                    stderr=subprocess.STDOUT)
    (out, _) = objcopy_proc.communicate()
    if objcopy_proc.returncode != 0:
        msg = "error in using objcopy:\n"
        msg += py_str(out)
        raise RuntimeError(msg)
    if os.path.isfile(tmp_section):
        # Get section content if it exists.
        with open(tmp_section, "rb") as f:
            section_bin = bytearray(f.read())
    else:
        # Return empty bytearray if the section does not exist.
        section_bin = bytearray("", "utf-8")
    return section_bin


@register_func("tvm_callback_get_symbol_map")
def tvm_callback_get_symbol_map(binary, toolchain_prefix):
    """Obtains a map of symbols to addresses in the passed binary

    Parameters
    ----------
    binary : bytearray
        contents of the binary

    toolchain_prefix : str
        prefix for binary names in target compiler toolchain

    Returns
    -------
    map_str : str
        map of defined symbols to addresses, encoded as a series of
        alternating newline-separated keys and values
    """
    tmp_dir = util.tempdir()
    tmp_obj = tmp_dir.relpath("tmp_obj.bin")
    with open(tmp_obj, "wb") as out_file:
        out_file.write(bytes(binary))
    nm_proc = subprocess.Popen(["{}nm".format(toolchain_prefix), "-C", "--defined-only", tmp_obj],
                               stdout=subprocess.PIPE,
                               stderr=subprocess.STDOUT)
    (nm_output, _) = nm_proc.communicate()
    if nm_proc.returncode != 0:
        msg = "error in using nm:\n"
        msg += py_str(nm_output)
        raise RuntimeError(msg)
    nm_output = nm_output.decode("utf8").splitlines()
    map_str = ""
    for line in nm_output:
        line = line.split()
        map_str += line[2] + "\n"
        map_str += line[0] + "\n"
    return map_str