Commit f4bb5ddb by lvzhengyang

train model

parent 124ce875
...@@ -4,3 +4,5 @@ data/asap7 ...@@ -4,3 +4,5 @@ data/asap7
*.log *.log
build_model/runs build_model/runs
build_model/weights build_model/weights
cell_delay/runs
cell_delay/weights
...@@ -1023,6 +1023,12 @@ def create_graph6(data_dir, parsed_libs_dir, parsed_sdf_dir, save_dir, block_nam ...@@ -1023,6 +1023,12 @@ def create_graph6(data_dir, parsed_libs_dir, parsed_sdf_dir, save_dir, block_nam
pin_y = place_node_y + place_pin_y_off pin_y = place_node_y + place_pin_y_off
pin_loc[i] = np.array([pin_x - xl, pin_y - yl, xh - pin_x, yh - pin_y]) pin_loc[i] = np.array([pin_x - xl, pin_y - yl, xh - pin_x, yh - pin_y])
# store node names for reference
node_names = valid_pin_list
with open(os.path.join(save_dir, f'{block_name}.graph.node_names.pkl'), 'wb') as f:
pickle.dump(node_names, f)
f.close()
ndata = dict() ndata = dict()
ndata["n_rats"] = torch.zeros(num_pins, 4) ndata["n_rats"] = torch.zeros(num_pins, 4)
ndata["n_ats"] = torch.zeros(num_pins, 4) ndata["n_ats"] = torch.zeros(num_pins, 4)
......
tag: 1
tensorboard: Jan23_11-57-52_gpu-t01
description: 'aes' as test
tag: 2
tensorboard: Jan23_11-57-07_gpu-t01
description: 'aes-mbff' as test
tag: 3
tensorboard: Jan23_11-56-29_gpu-t00
description: 'gcd' as test
tag: 4
tensorboard: Jan23_11-55-38_gpu-t00
description: 'ibex' as test
tag: 5
tensorboard: Jan23_11-54-37_gpu-t00
description: 'jpeg' as test
tag: 6
tensorboard: Jan23_11-53-55_gpu-t00
description: 'uart' as test
import torch
import numpy as np
import dgl
import torch.nn.functional as F
import random
import pdb
import time
import argparse
import os
from sklearn.metrics import r2_score
from model import PredModel
from load_graph import load_data
import matplotlib.pyplot as plt
import pickle
pdk = "asap7"
tag = "no_timing_opt"
dir_prefix = f"../data/{pdk}/{tag}"
# blocks = "aes aes-mbff ethmac gcd ibex jpeg mock-alu uart".split()
blocks = "aes aes-mbff gcd ibex jpeg uart".split()
blocks_test = set('uart'.split())
tag = '6'
blocks_train = set()
for block in blocks:
if not block in blocks_test:
blocks_train.add(block)
def load_model(model_path):
model = PredModel()
model.load_state_dict(torch.load(model_path))
model.cuda()
return model
def check(data, model):
model.eval()
with torch.no_grad():
for block, (g, ts) in data.items():
print(f'-------- {block} --------')
pred_net_delays, pred_cell_delays, pred_atslew = model(g, ts)
# transfer back
pred_net_delays.sub_(7.6)
pred_net_delays = torch.exp(pred_net_delays)
pred_cell_delays = torch.exp(pred_cell_delays)
# check delays only
true_net_delays = g.ndata['n_net_delays']
true_cell_delays = g.edges['cell_out'].data['e_delay']
# error rate
# true_net_delays[~ts['mask']] = 1 # net delay is defined on fanin pins only
# pred_net_delays[~ts['mask']] = 1
# filter out invalid net delays
mask = true_net_delays == 0
true_net_delays[mask] = 1
pred_net_delays[mask] = 1
err_net_delays = pred_net_delays.sub(true_net_delays).div(true_net_delays+1e-9) # avoid div-0
err_cell_delays = pred_cell_delays.sub(true_cell_delays).div(true_cell_delays+1e-9)
# check net delays
corner_names = {0: 'ER', 1: 'EF', 2: 'LR', 3: 'LF'}
truth = true_net_delays[~mask].view(-1, 4)
pred = pred_net_delays[~mask].view(-1, 4)
for corner in range(4):
tt = truth[:, corner].cpu().numpy()
pp = pred[:, corner].cpu().numpy()
minv = min(tt.min(), pp.min()) - 0.2
maxv = max(tt.max(), pp.max()) + 0.2
maxv = min(2000, maxv)
plt.axis("square")
plt.title(f'net delay prediction ({corner_names[corner]}) of block {block}')
plt.xlabel('Truth/ns')
plt.ylabel('Predicted/ns')
plt.xlim(minv - 10, maxv + 10)
plt.ylim(minv - 10, maxv + 10)
plt.axline((minv, minv), (maxv, maxv), color='r')
plt.axline((500, minv), (500, maxv), color='black', linestyle='-.')
plt.scatter(tt, pp, s=10, c='b')
save_dir = os.path.join('figures', block)
os.makedirs(save_dir, exist_ok=True)
plt.savefig(os.path.join(save_dir, f'{block}.{corner_names[corner]}.png'))
def extract_large_delay_nets(block, g, ts):
with open(os.path.join(dir_prefix, block, 'parsed', f'{block}.graph.node_names.pkl'), 'rb') as f:
node_names = pickle.load(f)
f.close()
truth = g.ndata['n_net_delays']
# check the corner 0
truth = truth[:, 0]
nodes = torch.where(truth > 500)[0]
src, dst = g.in_edges(nodes, etype='net_out') # dst == nodes
pdb.set_trace()
if __name__ == '__main__':
model_path = './weights/5/4200-0.601-0.685-392.834-31.378.pt'
model = load_model(model_path)
data = load_data()
# test_block = 'jpeg'
# extract_large_delay_nets(test_block, data[test_block][0], data[test_block][1])
check(data, model)
...@@ -20,8 +20,8 @@ dir_prefix = f"../data/{pdk}/{tag}" ...@@ -20,8 +20,8 @@ dir_prefix = f"../data/{pdk}/{tag}"
# blocks = "aes aes-mbff ethmac gcd ibex jpeg mock-alu uart".split() # blocks = "aes aes-mbff ethmac gcd ibex jpeg mock-alu uart".split()
blocks = "aes aes-mbff gcd ibex jpeg uart".split() blocks = "aes aes-mbff gcd ibex jpeg uart".split()
blocks_test = set('uart'.split()) blocks_test = set('aes'.split())
tag = '6' tag = '1'
blocks_train = set() blocks_train = set()
for block in blocks: for block in blocks:
if not block in blocks_test: if not block in blocks_test:
...@@ -62,7 +62,7 @@ def load_data(): ...@@ -62,7 +62,7 @@ def load_data():
mask = torch.zeros(g.nodes().size(0), dtype=torch.bool, device='cuda') mask = torch.zeros(g.nodes().size(0), dtype=torch.bool, device='cuda')
mask[ts['input_nodes']] = 1 mask[ts['input_nodes']] = 1
ts['mask'] = mask ts['mask'] = mask
g.ndata['n_net_delays_log'][mask] = 0 g.ndata['n_net_delays_log'][~mask] = 0
data[block] = g, ts data[block] = g, ts
return data return data
...@@ -84,7 +84,7 @@ def train(model, data_train, data_test): ...@@ -84,7 +84,7 @@ def train(model, data_train, data_test):
# net delays are defined on pins # net delays are defined on pins
# add mask to select fanin pins only # add mask to select fanin pins only
pred_net_delays[ts['mask']] = 0 pred_net_delays[~ts['mask']] = 0
loss_net_delays = F.mse_loss(pred_net_delays, g.ndata['n_net_delays_log']) loss_net_delays = F.mse_loss(pred_net_delays, g.ndata['n_net_delays_log'])
train_loss_tot_net_delays += loss_net_delays.item() train_loss_tot_net_delays += loss_net_delays.item()
train_loss_epoch_net_delays += loss_net_delays.item() train_loss_epoch_net_delays += loss_net_delays.item()
...@@ -108,6 +108,7 @@ def train(model, data_train, data_test): ...@@ -108,6 +108,7 @@ def train(model, data_train, data_test):
test_loss_tot_net_delays, test_loss_tot_cell_delays, test_loss_tot_ats = 0, 0, 0 test_loss_tot_net_delays, test_loss_tot_cell_delays, test_loss_tot_ats = 0, 0, 0
for k, (g, ts) in data_test.items(): for k, (g, ts) in data_test.items():
pred_net_delays, pred_cell_delays, pred_atslew = model(g, ts) pred_net_delays, pred_cell_delays, pred_atslew = model(g, ts)
pred_net_delays[~ts['mask']] = 0
test_loss_tot_net_delays += F.mse_loss(pred_net_delays, g.ndata['n_net_delays_log']).item() test_loss_tot_net_delays += F.mse_loss(pred_net_delays, g.ndata['n_net_delays_log']).item()
test_loss_tot_cell_delays += F.mse_loss(pred_cell_delays, g.edges['cell_out'].data['e_cell_delays_log']).item() test_loss_tot_cell_delays += F.mse_loss(pred_cell_delays, g.edges['cell_out'].data['e_cell_delays_log']).item()
print('epoch: {}, net_delay_loss (train): {:.6e}, cell_delay_loss (train): {:.6e}, net_delay_loss (test): {:.6e}, cell_delay_loss (test): {:.6e}'.format( print('epoch: {}, net_delay_loss (train): {:.6e}, cell_delay_loss (train): {:.6e}, net_delay_loss (test): {:.6e}, cell_delay_loss (test): {:.6e}'.format(
......
import torch
import numpy as np
import dgl
import os
import pickle
from utils import *
pdk = "asap7"
tag = "no_timing_opt"
dir_prefix = f"../data/{pdk}/{tag}"
blocks = "aes aes-mbff gcd ibex jpeg uart".split()
parsed_lib_dir = f'../data/{pdk}/techlib/parsed_lib'
# now we have got the dgl graph
def load_dgl_graphs():
graphs = {}
for block in blocks:
graph_path = os.path.join(dir_prefix, block, "parsed", f"{block}.graph.bin")
g = dgl.load_graphs(graph_path)[0][0]
graphs[block] = g
return graphs
def load_sdf_dict(save_dir):
inst_time = None
pin_time = None
with open(os.path.join(save_dir, "inst_time.dict.pkl"), 'rb') as f:
inst_time = pickle.load(f)
f.close()
with open(os.path.join(save_dir, "pin_time.dict.pkl"), 'rb') as f:
pin_time = pickle.load(f)
f.close()
return inst_time, pin_time
def load_libdata(save_dir):
with open(os.path.join(save_dir, "lib_data.pkl"), 'rb') as f:
libdata = pickle.load(f)
f.close()
with open(os.path.join(save_dir, "pin_caps.pkl"), 'rb') as f:
pincaps = pickle.load(f)
f.close()
return libdata, pincaps
def extract_libcell_cases(graphs):
libcell2inst_map = dict()
lib_data, pin_caps = load_libdata(parsed_lib_dir)
libcell_delays = dict()
libcell_topos = dict()
for block in blocks:
libcell2inst_map[block] = dict()
graph = graphs[block]
block_dir = os.path.join(dir_prefix, block, 'parsed')
with open(os.path.join(block_dir, f'{block}.graph.node_names.pkl'), 'rb') as f:
graph_node_names = pickle.load(f)
f.close()
graph_node_name2id_map = dict()
cnt = 0
for name in graph_node_names:
graph_node_name2id_map[name] = cnt
cnt += 1
inst_names = np.load(os.path.join(block_dir, 'node_names.npy'))
inst_x = np.load(os.path.join(block_dir, 'node_x.npy'))
inst_y = np.load(os.path.join(block_dir, 'node_y.npy'))
inst_pin_offset_x = np.load(os.path.join(block_dir, 'pin_offset_x.npy'))
inst_pin_offset_y = np.load(os.path.join(block_dir, 'pin_offset_y.npy'))
inst_pin_names_raw = np.load(os.path.join(block_dir, 'pin_names.npy'))
inst_pin_direct = np.load(os.path.join(block_dir, 'pin_direct.npy'))
inst2pin_map = np.load(os.path.join(block_dir, 'node2pin_map.npy'), allow_pickle=True)
net2pin_map = np.load(os.path.join(block_dir, 'net2pin_map.npy'), allow_pickle=True)
pin2inst_map = np.load(os.path.join(block_dir, 'pin2node_map.npy'))
pin2net_map = np.load(os.path.join(block_dir, 'pin2net_map.npy'))
inst_name2id_map = None
with open(os.path.join(block_dir, 'node_name2id_map.pkl'), 'rb') as f:
inst_name2id_map = pickle.load(f)
f.close()
inst2libcell_map = None
with open(os.path.join(block_dir, 'inst2libcell_map.pkl'), 'rb') as f:
inst2libcell_map = pickle.load(f)
f.close()
for inst, libcell in inst2libcell_map.items():
if not libcell in libcell2inst_map[block]:
libcell2inst_map[block][libcell] = []
libcell2inst_map[block][libcell].append(inst)
inst_time, pin_time = load_sdf_dict(block_dir)
# check libcell "INVx1_ASAP7_75t_R"
libcell = 'INVx1_ASAP7_75t_R'
insts = libcell2inst_map[block][libcell]
if not libcell in libcell_delays:
libcell_delays[libcell] = dict()
libcell_topos[libcell] = dict()
for inst in insts:
paths = inst_time[inst].iopath
for path in paths:
key = path.src + '-' + path.dst
if key not in libcell_delays[libcell]:
libcell_delays[libcell][key] = []
libcell_topos[libcell][key] = []
libcell_delays[libcell][key].append(path.value)
# extract fanin net and fanout net
inst_id = inst_name2id_map[inst]
src_pin_id, dst_pin_id = -1, -1
inst_pins = inst2pin_map[inst_id]
for pi in range(inst_pins.size):
pin_id = inst_pins[pi]
pin_name = inst_pin_names_raw[pin_id]
if pin_name.decode() == path.src:
src_pin_id = pin_id
elif pin_name.decode() == path.dst:
dst_pin_id = pin_id
if src_pin_id >= 0 and dst_pin_id >= 0:
break
assert(src_pin_id >= 0 and dst_pin_id >= 0)
fanin_net = pin2net_map[src_pin_id]
fanout_net = pin2net_map[dst_pin_id]
def deal_net(net_id, pin_id):
pins = net2pin_map[net_id]
# idx: pins_info[idx] is the corresponding pin_id's pin_info
idx = np.where(pins == pin_id)[0][0]
# extract pin info
pins_info = []
for pi in range(pins.size):
pin_id = pins[pi]
inst_id = pin2inst_map[pin_id]
pin_x = inst_x[inst_id] + inst_pin_offset_x[pin_id]
pin_y = inst_y[inst_id] + inst_pin_offset_y[pin_id]
inst_name = inst_names[inst_id].decode()
pin_name = inst_pin_names_raw[pin_id].decode()
info = np.zeros(7)
info[0] = pin_x
info[1] = pin_y
info[2] = pin_caps['fast'][inst2libcell_map[inst_name]][pin_name]['rise_capacitance']
info[3] = pin_caps['fast'][inst2libcell_map[inst_name]][pin_name]['fall_capacitance']
info[4] = pin_caps['fast'][inst2libcell_map[inst_name]][pin_name]['rise_capacitance']
info[5] = pin_caps['fast'][inst2libcell_map[inst_name]][pin_name]['fall_capacitance']
if inst_pin_direct[pin_id] == b'OUTPUT':
info[6] = 1
pins_info.append(info)
pins_info = np.stack(pins_info)
return pins_info, idx
fanin_info, fanin_id = deal_net(fanin_net, src_pin_id)
fanout_info, fanout_id = deal_net(fanout_net, dst_pin_id)
libcell_topos[libcell][key].append(((fanin_info, fanin_id), (fanout_info, fanout_id)))
libcell = 'INVx1_ASAP7_75t_R'
key = 'A-Y'
delays = np.stack(libcell_delays[libcell][key])
delayes_log = np.log(delays)
dataset = {'delays': libcell_delays, 'topos': libcell_topos}
with open(os.path.join('.', 'libcell_delay_dataset.pkl'), 'wb') as f:
pickle.dump(dataset, f)
f.close()
if __name__ == '__main__':
graphs = load_dgl_graphs()
extract_libcell_cases(graphs)
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import pickle
import math
import pdb
class MLP(torch.nn.Module):
def __init__(self, *sizes, batchnorm=False, dropout=False):
super().__init__()
fcs = []
for i in range(1, len(sizes)):
fcs.append(torch.nn.Linear(sizes[i - 1], sizes[i]))
if i < len(sizes) - 1:
fcs.append(torch.nn.LeakyReLU(negative_slope=0.2))
if dropout: fcs.append(torch.nn.Dropout(p=0.2))
if batchnorm: fcs.append(torch.nn.BatchNorm1d(sizes[i]))
self.layers = torch.nn.Sequential(*fcs)
def forward(self, x):
return self.layers(x)
class SelfAtt(nn.Module):
def __init__(self, input_size, n_heads, hidden_size_per_head):
super().__init__()
self.n_heads = n_heads
self.input_size = input_size
self.hidden_size_per_head = hidden_size_per_head
self.query = MLP(input_size, n_heads * hidden_size_per_head)
self.key = MLP(input_size, n_heads * hidden_size_per_head)
self.value = MLP(input_size, n_heads * hidden_size_per_head)
self.reduce_heads = MLP(n_heads * hidden_size_per_head, hidden_size_per_head)
# @param x: [#batch, #num_inputs, #n_heads*hidden_size_per_head]
def _transpose(self, x):
x = x.view(x.shape[0], x.shape[1], self.n_heads, self.hidden_size_per_head)
return x.permute(0, 2, 1, 3)
# @param input: [#batch, #num_inputs, #features]
def forward(self, input):
query = self.query(input)
key = self.key(input)
value = self.value(input)
query = self._transpose(query)
key = self._transpose(key)
value = self._transpose(value)
att_scores = torch.matmul(query, key.transpose(-1, -2))
att_scores = att_scores / math.sqrt(self.hidden_size_per_head)
att_probs = nn.Softmax(dim=-1)(att_scores)
context = torch.matmul(att_probs, value)
context = context.permute(0, 2, 1, 3).contiguous()
context = context.view(context.shape[0], context.shape[1], self.n_heads * self.hidden_size_per_head)
output = self.reduce_heads(context)
return output
class CellDelayPred(nn.Module):
def __init__(self, input_size, n_heads, hidden_size_per_head):
super().__init__()
self.input_size = input_size
self.n_heads = n_heads
self.hidden_size_per_head = hidden_size_per_head
self.fanin_att0 = SelfAtt(input_size, n_heads, hidden_size_per_head)
self.fanout_att0 = SelfAtt(input_size, n_heads, hidden_size_per_head)
self.fanin_att1 = SelfAtt(hidden_size_per_head, n_heads, hidden_size_per_head)
self.fanout_att1 = SelfAtt(hidden_size_per_head, n_heads, hidden_size_per_head)
# self.fanin_att2 = SelfAtt(hidden_size_per_head, n_heads, hidden_size_per_head)
# self.fanout_att2 = SelfAtt(hidden_size_per_head, n_heads, hidden_size_per_head)
self.delay_pred_mlp = MLP(2 * hidden_size_per_head, 64, 4)
def forward(self, fanin_topo, fanout_topo, fanin_id, fanout_id):
fanin = self.fanin_att0(fanin_topo)
fanin = self.fanin_att1(fanin)
# fanin = self.fanin_att2(fanin)
fanin = fanin[:, fanin_id]
fanout = self.fanin_att0(fanout_topo)
fanout = self.fanin_att1(fanout)
# fanout = self.fanin_att2(fanout)
fanout = fanout[:, fanout_id]
outer_feat = torch.cat([fanin, fanout], dim=-1)
pred = self.delay_pred_mlp(outer_feat)
return pred
def load_cell_delay_data():
data_path = './libcell_delay_dataset.pkl'
with open(data_path, 'rb') as f:
data = pickle.load(f)
f.close()
return data
def preprocess(data):
libcell = 'INVx1_ASAP7_75t_R'
key = 'A-Y'
delays = np.stack(data['delays'][libcell][key])
delays = torch.from_numpy(delays).cuda().float()
delays_log = torch.log(delays)
topos = data['topos'][libcell][key]
fanin_topos, fanin_ids, fanout_topos, fanout_ids = [], [], [], []
for topo in topos:
fanin_topos.append(torch.tensor(topo[0][0]).float())
fanin_ids.append(topo[0][1])
fanout_topos.append(torch.tensor(topo[1][0]).float())
fanout_ids.append(topo[1][1])
num_data = len(topos)
model = CellDelayPred(fanin_topos[0].size(-1), 4, 32)
model.cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=0.0005)
min_loss = 1e9
for e in range(1000):
model.train()
tot_train_loss = 0
for di in range(num_data):
optimizer.zero_grad()
fanin = fanin_topos[di]
fanin = fanin.cuda()
fanin.unsqueeze_(0)
fanout = fanout_topos[di]
fanout = fanout.cuda()
fanout.unsqueeze_(0)
pred = model(fanin, fanout, fanin_ids[di], fanout_ids[di])
truth = delays_log[di].unsqueeze(0)
loss = F.mse_loss(pred, truth)
loss.backward()
optimizer.step()
tot_train_loss += loss.item()
# if e == 0 or (e + 1) % 100 == 0:
if True:
print("epoch {} loss {:.3f}".format(e + 1, tot_train_loss))
# save model
if e >= 0 and tot_train_loss < min_loss:
min_loss = tot_train_loss
print('-------- Save Model --------')
tag = ''
save_dir = os.path.join('weights', tag)
save_path = os.path.join(save_dir, 'e-{}-loss-{:.3f}.pt'.format(e + 1, min_loss))
os.makedirs(save_dir, exist_ok=True)
torch.save(model.state_dict(), save_path)
pdb.set_trace()
if __name__ == '__main__':
data = load_cell_delay_data()
preprocess(data)
import numpy as np
import torch
import dgl
import os
import pickle
import re
import pdb
import gzip
import queue
from collections import defaultdict
from liberty.parser import parse_liberty
from liberty.types import *
class Delay:
def __init__(self, src, dst, val):
self.src = src
self.dst = dst
self.value = val
class CellDelay:
def __init__(self):
self.celltype = None
self.inst = None
self.interconnect = []
self.iopath = []
self.isFF = False # deprecate this
class ArrivalTime:
def __init__(self):
self.at = None
self.slew = None
self.rat = None
def parse_sdf(sdf_file, block_name, save_dir):
lines = None
with open(sdf_file, 'r') as f:
lines = f.readlines()
f.close()
# TODO: deal with FF
# e.g. inst '_73818_' of celltype 'sky130_fd_sc_hd__dfxtp_1' in block 'aes128'
inst_time = dict()
# get all insts
for line in lines:
words = line.split()
if words[0] == "(INSTANCE)":
inst_time[block_name] = CellDelay()
elif words[0] == "(INSTANCE":
inst_time[words[1][:-1]] = CellDelay()
print(f"num insts: {len(inst_time)}")
pin_time = dict()
invalid_cnt = 0
tot_cnt = 0
num_lines = len(lines)
for li in range(num_lines):
line = lines[li]
# parse CELL field
words = line.split()
if words[0] == "(CELL":
cell_type = lines[li + 1].split()[-1][1:-2]
inst = lines[li + 2].split()[-1][:-1]
if len(lines[li + 2].split()) == 1:
inst = block_name
inst_time[inst].celltype = cell_type
inst_time[inst].inst = inst
li += 5
while True:
line = lines[li]
li += 1
words = line.split()
if words[0] == ')':
break
elif words[0] == "(INTERCONNECT":
src = words[1]
dst = words[2]
if src == "VGND" or src == 'VPWR' or dst == "VGND" or dst == "VPWR":
continue
else:
numbers = words[-2] + words[-1]
# pat = r'\d+\.\d+|\d+' # find all floating numbers
pat = r'\d+\.\d+' # find all floating numbers
vals_str = re.findall(pat, numbers)
vals = []
for vs in vals_str:
vals.append(float(vs))
tot_cnt += 1
if len(vals) != 4:
# I don't know why there are some lines has only 2 values
# open sta shows that max/min rise/fall values are the same
if len(vals) != 2:
invalid_cnt += 1
print(line)
continue
vals.append(vals[0])
vals.append(vals[1])
# inst_time[inst].interconnect.append(
# Delay(src, dst, np.array(vals, dtype=np.double))
# )
# make it like the DAC22's paper
vals_np = np.zeros(4, dtype=np.double)
vals_np[0] = vals[0]
vals_np[1] = vals[2]
vals_np[2] = vals[1]
vals_np[3] = vals[3]
inst_time[inst].interconnect.append(
Delay(src, dst, vals_np)
)
elif words[0] == "(IOPATH":
src = words[1]
dst = words[2]
if src == "VGND" or src == 'VPWR' or dst == "VGND" or dst == "VPWR":
continue
else:
numbers = words[-2] + words[-1]
# pat = r'\d+\.\d+|\d+' # find all floating numbers
pat = r'\d+\.\d+' # find all floating numbers
vals_str = re.findall(pat, numbers)
vals = []
for vs in vals_str:
vals.append(float(vs))
tot_cnt += 1
if len(vals) != 4:
if len(vals) != 2:
invalid_cnt += 1
print(line)
continue
vals.append(vals[0])
vals.append(vals[1])
# inst_time[inst].iopath.append(
# Delay(src, dst, np.array(vals, dtype=np.double))
# )
# make it like the DAC22's paper
vals_np = np.zeros(4, dtype=np.double)
vals_np[0] = vals[0]
vals_np[1] = vals[2]
vals_np[2] = vals[1]
vals_np[3] = vals[3]
inst_time[inst].iopath.append(
Delay(src, dst, vals_np)
)
# parse ARRIVALTIMES field
elif words[0] == "(ARRIVALTIMES":
li += 1
while True:
line = lines[li]
li += 1
words = line.split()
if words[0] == ')':
break
elif words[0] == "(AT":
pin_name = words[1]
if pin_name == "VGND" or pin_name == "VPER":
continue
numbers = words[-2] + words[-1]
# pat = r'\d+\.\d+|\d+' # find all floating numbers
pat = r'\d+\.\d+' # find all floating numbers
vals_str = re.findall(pat, numbers)
vals = []
for vs in vals_str:
vals.append(float(vs))
assert(len(vals) == 4)
# make it like the DAC22's paper
vals_np = np.zeros(4, dtype=np.double)
vals_np[0] = vals[0]
vals_np[1] = vals[2]
vals_np[2] = vals[1]
vals_np[3] = vals[3]
if not pin_name in pin_time:
pin_time[pin_name] = ArrivalTime()
# pin_time[pin_name].at = np.array(vals, dtype=np.double)
pin_time[pin_name].at = vals_np
elif words[0] == "(SLEW":
pin_name = words[1]
if pin_name == "VGND" or pin_name == "VPER":
continue
numbers = words[-2] + words[-1]
pat = r'\d+\.\d+|\d+' # find all floating numbers
vals_str = re.findall(pat, numbers)
vals = []
for vs in vals_str:
vals.append(float(vs))
assert(len(vals) == 4)
# make it like the DAC22's paper
vals_np = np.zeros(4, dtype=np.double)
vals_np[0] = vals[0]
vals_np[1] = vals[2]
vals_np[2] = vals[1]
vals_np[3] = vals[3]
if not pin_name in pin_time:
pin_time[pin_name] = ArrivalTime()
# pin_time[pin_name].slew = np.array(vals, dtype=np.double)
pin_time[pin_name].slew = vals_np
elif words[0] == "(RAT":
pin_name = words[1]
if pin_name == "VGND" or pin_name == "VPER":
continue
numbers = words[-2] + words[-1]
pat = r'\d+\.\d+|\d+' # find all floating numbers
vals_str = re.findall(pat, numbers)
vals = []
for vs in vals_str:
vals.append(float(vs))
assert(len(vals) == 4)
# make it like the DAC22's paper
vals_np = np.zeros(4, dtype=np.double)
vals_np[0] = vals[0]
vals_np[1] = vals[2]
vals_np[2] = vals[1]
vals_np[3] = vals[3]
if not pin_name in pin_time:
pin_time[pin_name] = ArrivalTime()
# pin_time[pin_name].rat = np.array(vals, dtype=np.double)
pin_time[pin_name].rat = vals_np
print(f'invalid_cnt / tot_cnt: {invalid_cnt} / {tot_cnt}, {float(invalid_cnt / tot_cnt) * 100}%')
# deal with FFs
for li in range(num_lines):
line = lines[li]
# parse CELL field
words = line.split()
if words[0] == "(CELL":
cell_type = lines[li + 1].split()[-1][1:-2]
inst = lines[li + 2].split()[-1][:-1]
if len(lines[li + 2].split()) == 1:
inst = block_name
elif words[0] == "(TIMINGCHECK":
inst_time[inst].isFF = True
with open(os.path.join(save_dir, "inst_time.dict.pkl"), 'wb') as f:
pickle.dump(inst_time, f)
f.close()
with open(os.path.join(save_dir, "pin_time.dict.pkl"), 'wb') as f:
pickle.dump(pin_time, f)
f.close()
def load_sdf_dict(save_dir):
inst_time = None
pin_time = None
with open(os.path.join(save_dir, "inst_time.dict.pkl"), 'rb') as f:
inst_time = pickle.load(f)
f.close()
with open(os.path.join(save_dir, "pin_time.dict.pkl"), 'rb') as f:
pin_time = pickle.load(f)
f.close()
return inst_time, pin_time
def parse_libs(libs, save_dir):
libdata = dict()
pin_cap = dict()
for tag in libs:
liberty_files = libs[tag]
libdata[tag] = dict()
pin_cap[tag] = dict()
for liberty_file in liberty_files:
if liberty_file[-3:] == '.gz':
library = parse_liberty(gzip.open(liberty_file, 'rb').read().decode('utf-8'))
else:
library = parse_liberty(open(liberty_file).read())
# Loop through all cells.
for cell_group in library.get_groups('cell'):
cell_name = cell_group.args[0]
libdata[tag][cell_name] = dict()
pin_cap[tag][cell_name] = dict()
def parse_pin_group(pin_group):
if type(pin_group.args[0]) == str:
pin_name = pin_group.args[0]
else:
pin_name = pin_group.args[0].value
# Access a pin attribute.
rise_capacitance = pin_group['rise_capacitance']
fall_capacitance = pin_group['fall_capacitance']
if rise_capacitance == None:
rise_capacitance = 0.0
if fall_capacitance == None:
fall_capacitance = 0.0
pin_cap[tag][cell_name][pin_name] = dict()
pin_cap[tag][cell_name][pin_name]['rise_capacitance'] = rise_capacitance
pin_cap[tag][cell_name][pin_name]['fall_capacitance'] = fall_capacitance
timing = pin_group.get_groups('timing')
for tg in timing:
if type(tg['related_pin']) == str:
related_pin = tg['related_pin']
else:
related_pin = tg['related_pin'].value
# NOTE: for sky130hd PDK cell sky130_fd_sc_hd__ebufn_1,
# its pin "Z" has 2 timing lut related to pin "TE_B",
# with attribute "timing_type" as "three_state_disable"
# and "three_state_enable" respectively.
# with "three_state_enable", the rise/fall_transition is empty.
# with "three_state_disable", the rise/fall_transition is valid.
# Here, we just randomly choose one timing lut of this path.
# that is, if this path has been already met during parsing, just skip it.
cell_path_key = pin_name + "/" + related_pin
if cell_path_key in libdata[tag][cell_name]:
continue
def decode_lut(lut):
def decode_(key):
pat = r'\d+\.\d+|\d+' # find all floating numbers or integer numbers
data_str = ""
for ss in lut[key]:
data_str += ss.value
data_str += " "
val_strs = re.findall(pat, data_str)
vals = []
for val in val_strs:
vals.append(float(val))
return np.array(vals)
result = np.concatenate([
decode_('index_1'), decode_('index_2'), decode_('values')
])
return result
cell_rise = tg.get_groups('cell_rise')
cell_fall = tg.get_groups('cell_fall')
rise_transition = tg.get_groups('rise_transition')
fall_transition = tg.get_groups('fall_transition')
valid_cell_rise = True
valid_cell_fall = True
valid_rise_transition = True
valid_fall_transition = True
try:
cell_rise = decode_lut(cell_rise[0])
if cell_rise.size != 63:
cell_rise = np.zeros(63)
valid_cell_rise = False
except:
cell_rise = np.zeros(63)
valid_cell_rise = False
try:
cell_fall = decode_lut(cell_fall[0])
if cell_fall.size != 63:
cell_fall = np.zeros(63)
valid_cell_fall = False
except:
cell_fall = np.zeros(63)
valid_cell_fall = False
try:
rise_transition = decode_lut(rise_transition[0])
if rise_transition.size != 63:
rise_transition = np.zeros(63)
valid_rise_transition = False
except:
rise_transition = np.zeros(63)
valid_rise_transition = False
try:
fall_transition = decode_lut(fall_transition[0])
if fall_transition.size != 63:
fall_transition = np.zeros(63)
valid_fall_transition = False
except:
fall_transition = np.zeros(63)
valid_fall_transition = False
prefix = np.zeros(4*15)
suffix = np.zeros(4*49)
lut_valid = [valid_cell_rise, valid_cell_fall, valid_rise_transition, valid_fall_transition]
lut_data = [cell_rise, cell_fall, rise_transition, fall_transition]
for i in range(4):
prefix[i*15] = lut_valid[i]
prefix[i*15+1 : i*15+15] = lut_data[i][:14]
suffix[i*49 : i*49+49] = lut_data[i][14:63]
libdata[tag][cell_name][cell_path_key] = np.concatenate([prefix, suffix])
# Loop through all pins of the cell.
for pin_group in cell_group.get_groups('pin'):
parse_pin_group(pin_group)
for bundle_group in cell_group.get_groups('bundle'):
for pin_group in bundle_group.get_groups('pin'):
parse_pin_group(pin_group)
print(f'finish reading {liberty_file}')
# pickle and save libdata and pin_cap
os.makedirs(save_dir, exist_ok=True)
with open(os.path.join(save_dir, "lib_data.pkl"), 'wb') as f:
pickle.dump(libdata, f)
f.close()
with open(os.path.join(save_dir, "pin_caps.pkl"), 'wb') as f:
pickle.dump(pin_cap, f)
f.close()
def load_libdata(save_dir):
with open(os.path.join(save_dir, "lib_data.pkl"), 'rb') as f:
libdata = pickle.load(f)
f.close()
with open(os.path.join(save_dir, "pin_caps.pkl"), 'rb') as f:
pincaps = pickle.load(f)
f.close()
return libdata, pincaps
def parse_inst2libcell_map(def_file, save_dir):
with open(def_file, 'r') as f:
lines = f.readlines()
f.close()
inst2libcell_map = dict()
for li in range(len(lines)):
line = lines[li]
words = line.split()
if len(words) == 0:
continue
if words[0] == 'COMPONENTS':
li += 1
while True:
line = lines[li]
li += 1
words = line.split()
if words[0] == 'END' and words[1] == 'COMPONENTS':
break
# valid_lines
inst = words[1]
libcell = words[2]
inst2libcell_map[inst] = libcell
break
with open(os.path.join(save_dir, 'inst2libcell_map.pkl'), 'wb') as f:
pickle.dump(inst2libcell_map, f)
f.close()
timing_arc_types = [
'clk2q', 'in2out', # cell arc
'inport2d', 'inport2clk', 'inport2in', # src = input port
'q2outport', 'out2outport', # dst = output port
'inport2outport', # feed-through
'q2in', 'out2in', 'out2d', 'q2d', # wire arc
]
timing_arc_types2id_map = dict()
tmp_cnt = 0
for arc_type in timing_arc_types:
timing_arc_types2id_map[arc_type] = tmp_cnt
tmp_cnt += 1
class TimingArc:
# src, dst: pin full name
def __init__(self, src, dst):
self.src = src
self.dst = dst
self.type = None
self.buffers = [] # an ordered sequence of buffer, src->dst, (buf_in, buf_out)
self.delay = None # delays from src->dst
class TimingGraph:
def __init__(self, inst2libcell_map):
self.inst2libcell_map = inst2libcell_map
self.all_arcs = []
self.arc_groups = dict()
self.init()
def init(self):
for arc_type in timing_arc_types:
self.arc_groups[arc_type] = []
def _get_arc_type(self, arc):
_src = arc.src.split('/')
_dst = arc.dst.split('/')
if len(_src) == 1 and len(_dst) == 1: # feed through
return 'inport2outport'
elif len(_src) == 1 and len(_dst) > 1: # from input port
dst_inst = _dst[0]
dst_libcell = self.inst2libcell_map[dst_inst]
if 'FF' in dst_libcell or 'LL' in dst_libcell: # LL: Latch
dst_pin_raw = _dst[1]
if 'D' in dst_pin_raw:
return 'inport2d'
else:
return 'inport2clk'
else:
return 'inport2in'
elif len(_src) > 1 and len(_dst) == 1: # to output port
src_inst = _src[0]
if src_inst == 'ethmac_1634.DREAMPlace.Shape0': # debug
pdb.set_trace()
src_libcell = self.inst2libcell_map[src_inst]
if 'FF' in src_libcell or 'LL' in src_libcell:
return 'q2outport'
else:
return 'out2outport'
else:
src_inst = _src[0]
dst_inst = _dst[0]
src_libcell = self.inst2libcell_map[src_inst]
dst_libcell = self.inst2libcell_map[dst_inst]
if src_inst == dst_inst:
if 'FF' in src_libcell or 'LL' in dst_libcell: # cell arc
return 'clk2q'
else:
return 'in2out'
else: # wire arc
if ('FF' in src_libcell and 'FF' in dst_libcell) or ('LL' in src_libcell and 'LL' in dst_libcell):
return 'q2d'
elif 'FF' in src_libcell or 'LL' in src_libcell:
return 'q2in'
elif 'FF' in dst_libcell or 'LL' in dst_libcell:
return 'out2d'
else:
return 'out2in'
def add_arc(self, arc):
self.all_arcs.append(arc)
# add arc into corresponding groups
arc_type = self._get_arc_type(arc)
arc.type = arc_type
self.arc_groups[arc_type].append(arc)
def get_arc_group(self, arc_type):
return self.arc_groups[arc_type]
def dfs(pin, target, place_pins, src_pin2path_map, first_call=False):
if pin == target:
return [], True
if not first_call and pin in place_pins:
# stop searching
return [], False
if not pin in src_pin2path_map:
return [], False
flag = False
pin_paths = src_pin2path_map[pin]
for pin_path in pin_paths:
chain, flag = dfs(pin_path.dst, target, place_pins, src_pin2path_map)
if flag:
chain.append(pin_path)
return chain, True
# if not flag
return [], False
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment