Commit fd0bccfb by Zachary Snow

rewrote PackedArray to properly handle the various scenarios

parent a6cd3626
......@@ -6,6 +6,19 @@
- This removes one dimension per identifier at a time. This works fine because
- the conversions are repeatedly applied.
-
- Packed arrays can be used in any of the following ways: A) as a whole,
- including as a port; B) with an index (`foo[0]`); or C) with a range
- (`foo[10:0]`). The rules for this conversion are:
- 1. If used with an index, then we must have an unflattened/unpacked
- version of that array after the conversion, so that we may get at the
- packed sub-arrays.
- 2. If used as a whole or with a range, then we must have a flattened
- version of that array after the conversion, so that we may get at a
- contiguous sequence of elements.
- 3. If both 1 and 2 apply, then we will make a fancy generate block to
- derive one from the other. The derivation direction is decided based on
- which version, if any, is exposed directly as a port.
-
- TODO FIXME XXX: The Parser/AST don't yet support indexing into an identifier
- twice, or indexing into an identifier, and then selecting a range.
-
......@@ -18,6 +31,7 @@ module Convert.PackedArray (convert) where
import Control.Monad.State
import Data.List (partition)
import qualified Data.Set as Set
import qualified Data.Map.Strict as Map
import Convert.Traverse
......@@ -25,32 +39,67 @@ import Language.SystemVerilog.AST
type DirMap = Map.Map Identifier Direction
type DimMap = Map.Map Identifier (Type, Range)
type IdentSet = Set.Set Identifier
data Info = Info
{ sTypeDims :: DimMap
, sPortDirs :: DirMap
, sIdxUses :: IdentSet
, sSeqUses :: IdentSet }
deriving Show
convert :: AST -> AST
convert = traverseDescriptions convertDescription
convertDescription :: Description -> Description
convertDescription description =
convertDescription (description @ (Module _ ports _)) =
hoistPortDecls $
traverseModuleItems (flattenModuleItem info . rewriteModuleItem dimMap') description
traverseModuleItems (flattenModuleItem info . rewriteModuleItem info) description
where
info = execState
(collectModuleItemsM collectDecl description)
(Map.empty, Map.empty)
dimMap' = Map.restrictKeys (fst info) (Map.keysSet $ snd info)
-- collect all possible information info our Info structure
rawInfo =
execState (collectModuleItemsM (collectLHSsM collectLHS) description) $
execState (collectModuleItemsM (collectExprsM collectExpr) description) $
execState (collectModuleItemsM collectDecl description) $
(Info Map.empty Map.empty Set.empty (Set.fromList ports))
relevantIdents = Map.keysSet $ sTypeDims rawInfo
-- restrict the sets/maps to only contain keys which need transformation
info = rawInfo
{ sPortDirs = Map.restrictKeys (sPortDirs rawInfo) relevantIdents
, sIdxUses = Set.intersection (sIdxUses rawInfo) relevantIdents
, sSeqUses = Set.intersection (sSeqUses rawInfo) relevantIdents }
convertDescription description = description
-- collects port direction and packed-array dimension info into the state
collectDecl :: ModuleItem -> State (DimMap, DirMap) ()
collectDecl :: ModuleItem -> State Info ()
collectDecl (MIDecl (Variable dir t ident _ _)) = do
let (tf, rs) = typeDims t
let (tf, rs) = typeRanges t
if not (typeIsImplicit t) && length rs > 1
then modify $ \(m, r) -> (Map.insert ident (tf $ tail rs, head rs) m, r)
then
let dets = (tf $ tail rs, head rs) in
modify $ \s -> s { sTypeDims = Map.insert ident dets (sTypeDims s) }
else return ()
if dir /= Local
then modify $ \(m, r) -> (m, Map.insert ident dir r)
then modify $ \s -> s { sPortDirs = Map.insert ident dir (sPortDirs s) }
else return ()
collectDecl _ = return ()
-- collectors for identifier usage information
recordSeqUsage :: Identifier -> State Info ()
recordSeqUsage i = modify $ \s -> s { sSeqUses = Set.insert i $ sSeqUses s }
recordIdxUsage :: Identifier -> State Info ()
recordIdxUsage i = modify $ \s -> s { sIdxUses = Set.insert i $ sIdxUses s }
collectExpr :: Expr -> State Info ()
collectExpr (Ident i ) = recordSeqUsage i
collectExpr (IdentRange i _) = recordSeqUsage i
collectExpr (IdentBit i _) = recordIdxUsage i
collectExpr _ = return ()
collectLHS :: LHS -> State Info ()
collectLHS (LHS i ) = recordSeqUsage i
collectLHS (LHSRange i _) = recordSeqUsage i
collectLHS (LHSBit i _) = recordIdxUsage i
collectLHS (LHSConcat lhss) = mapM collectLHS lhss >>= \_ -> return ()
-- VCS doesn't like port declarations inside of `generate` blocks, so we hoist
-- them out with this function. This obviously isn't ideal, but it's a
-- relatively straightforward transformation, and testing in VCS is important.
......@@ -72,36 +121,37 @@ hoistPortDecls (Module name ports items) =
hoistPortDecls other = other
-- rewrite a module item if it contains a declaration to flatten
flattenModuleItem :: (DimMap, DirMap) -> ModuleItem -> ModuleItem
flattenModuleItem (dimMap, dirMap) (orig @ (MIDecl (Variable dir t ident a me))) =
-- if it doesn't need any mapping
if Map.notMember ident dimMap then
-- Skip!
orig
-- if it's not a port
else if Map.notMember ident dirMap then
-- move the packed dimension to the unpacked side
MIDecl $ Variable dir (tf $ tail rs) ident (a ++ [head rs]) me
-- if it is a port, but it's not the typed declaration
else if typeIsImplicit t then
-- flatten the ranges
newDecl -- see below
-- if it is a port, and it is the typed declaration of that por
flattenModuleItem :: Info -> ModuleItem -> ModuleItem
flattenModuleItem info (origDecl @ (MIDecl (Variable dir t ident a me))) =
-- if it doesn't need any mapping, then skip it
if Map.notMember ident typeDims then origDecl
-- if it is never used as a sequence (whole or range), then move the packed
-- dimension to the unpacked side
else if Set.notMember ident seqUses then flipDecl
-- if it is used as a sequence, but never indexed-into (sub-array), then
-- flatten (combine) the ranges, leaving them packed
else if Set.notMember ident duoUses then flatDecl
-- if it is both used as a sequence and is indexed-into
else
-- do the fancy flatten-unflatten mapping
Generate $ (GenModuleItem newDecl) : genItems
-- if this is not the fully-typed declaration of this item, then flatten
-- it, but don't make the `generate` block this time to avoid duplicates
if typeIsImplicit t then flatDecl
-- otherwise, flatten it, and also create an unflattened copy
else Generate $ (GenModuleItem flatDecl) : genItems
where
(tf, rs) = typeDims t
t' = tf $ flattenRanges rs
flipGen = Map.lookup ident dirMap == Just Input
genItems = unflattener flipGen ident (dimMap Map.! ident)
newDecl = MIDecl $ Variable dir t' ident a me
Info typeDims portDirs idxUses seqUses = info
duoUses = Set.intersection idxUses seqUses
writeToFlatVariant = Map.lookup ident portDirs == Just Output
genItems = unflattener writeToFlatVariant ident (typeDims Map.! ident)
(tf, rs) = typeRanges t
flipDecl = MIDecl $ Variable dir (tf $ tail rs) ident (a ++ [head rs]) me
flatDecl = MIDecl $ Variable dir (tf $ flattenRanges rs) ident a me
flattenModuleItem _ other = other
-- produces a generate block for creating a local unflattened copy of the given
-- port-exposed flattened array
-- produces `generate` items for creating an unflattened copy of the given
-- flattened, packed array
unflattener :: Bool -> Identifier -> (Type, Range) -> [GenItem]
unflattener shouldFlip arr (t, (majorHi, majorLo)) =
unflattener writeToFlatVariant arr (t, (majorHi, majorLo)) =
[ GenModuleItem $ Comment $ "sv2v packed-array-flatten unflattener for " ++ arr
, GenModuleItem $ MIDecl $ Variable Local t arrUnflat [(majorHi, majorLo)] Nothing
, GenModuleItem $ Genvar index
......@@ -115,7 +165,7 @@ unflattener shouldFlip arr (t, (majorHi, majorLo)) =
(simplify $ BinOp Add majorLo
(BinOp Mul (Ident index) size))
, GenModuleItem $ (uncurry Assign) $
if shouldFlip
if not writeToFlatVariant
then (LHSBit arrUnflat $ Ident index, IdentRange arr origRange)
else (LHSRange arr origRange, IdentBit arrUnflat $ Ident index)
]
......@@ -124,7 +174,7 @@ unflattener shouldFlip arr (t, (majorHi, majorLo)) =
startBit = prefix "_tmp_start"
arrUnflat = prefix arr
index = prefix "_tmp_index"
(minorHi, minorLo) = head $ snd $ typeDims t
(minorHi, minorLo) = head $ snd $ typeRanges t
size = simplify $ BinOp Add (BinOp Sub minorHi minorLo) (Number "1")
localparam :: Identifier -> Expr -> GenItem
localparam x v = GenModuleItem $ MIDecl $ Localparam (Implicit []) x v
......@@ -171,33 +221,44 @@ flattenRanges rs =
r' = (simplify upper, e1)
rs' = (tail $ tail rs) ++ [r']
rewriteModuleItem :: DimMap -> ModuleItem -> ModuleItem
rewriteModuleItem dimMap =
rewriteModuleItem :: Info -> ModuleItem -> ModuleItem
rewriteModuleItem info =
traverseStmts rewriteStmt .
traverseExprs rewriteExpr
where
rewriteIdent :: Identifier -> Identifier
rewriteIdent x = if Map.member x dimMap then prefix x else x
Info typeDims portDirs idxUses seqUses = info
duoUses = Set.intersection idxUses seqUses
rewriteIdent :: Bool -> Identifier -> Identifier
rewriteIdent isAsgn x =
if isDuod && (isOutputPort == isAsgn)
then prefix x
else x
where
isDuod = Set.member x duoUses
isOutputPort = Map.lookup x portDirs == Just Output
rewriteReadIdent = rewriteIdent False
rewriteAsgnIdent = rewriteIdent True
rewriteExpr :: Expr -> Expr
rewriteExpr (Ident i) = Ident (rewriteIdent i)
rewriteExpr (IdentBit i e) = IdentBit (rewriteIdent i) e
rewriteExpr (Ident i) = Ident (rewriteReadIdent i)
rewriteExpr (IdentBit i e) = IdentBit (rewriteReadIdent i) e
rewriteExpr (IdentRange i (r @ (s, e))) =
case Map.lookup i dimMap of
Nothing -> IdentRange (rewriteIdent i) r
Just (t, _) ->
IdentRange i (simplify s', simplify e')
where
(a, b) = head $ snd $ typeDims t
size = BinOp Add (BinOp Sub a b) (Number "1")
s' = BinOp Sub (BinOp Mul size (BinOp Add s (Number "1"))) (Number "1")
e' = BinOp Mul size e
if Map.member i typeDims
then IdentRange i r'
else IdentRange i r
where
(a, b) = head $ snd $ typeRanges $ fst $ typeDims Map.! i
size = BinOp Add (BinOp Sub a b) (Number "1")
s' = BinOp Sub (BinOp Mul size (BinOp Add s (Number "1"))) (Number "1")
e' = BinOp Mul size e
r' = (simplify s', simplify e')
rewriteExpr other = other
rewriteLHS :: LHS -> LHS
rewriteLHS (LHS x ) = LHS (rewriteIdent x)
rewriteLHS (LHSBit x e) = LHSBit (rewriteIdent x) e
rewriteLHS (LHSRange x r) = LHSRange (rewriteIdent x) r
rewriteLHS (LHS x ) = LHS (rewriteAsgnIdent x)
rewriteLHS (LHSBit x e) = LHSBit (rewriteAsgnIdent x) e
rewriteLHS (LHSRange x r) = LHSRange (rewriteAsgnIdent x) r
rewriteLHS (LHSConcat ls) = LHSConcat $ map rewriteLHS ls
rewriteStmt :: Stmt -> Stmt
......@@ -206,17 +267,17 @@ rewriteModuleItem dimMap =
rewriteStmt other = other
convertAssignment :: (LHS -> Expr -> Stmt) -> LHS -> Expr -> Stmt
convertAssignment constructor (lhs @ (LHS ident)) (expr @ (Repeat _ exprs)) =
case Map.lookup ident dimMap of
Nothing -> constructor (rewriteLHS lhs) expr
Just (_, (a, b)) ->
For inir chkr incr assign
where
index = prefix $ ident ++ "_repeater_index"
assign = constructor
(LHSBit (prefix ident) (Ident index))
(Concat exprs)
inir = (index, b)
chkr = BinOp Le (Ident index) a
incr = (index, BinOp Add (Ident index) (Number "1"))
if Map.member ident typeDims
then For inir chkr incr assign
else constructor (rewriteLHS lhs) expr
where
(_, (a, b)) = typeDims Map.! ident
index = prefix $ ident ++ "_repeater_index"
assign = constructor
(LHSBit (prefix ident) (Ident index))
(Concat exprs)
inir = (index, b)
chkr = BinOp Le (Ident index) a
incr = (index, BinOp Add (Ident index) (Number "1"))
convertAssignment constructor lhs expr =
constructor (rewriteLHS lhs) expr
......@@ -24,5 +24,5 @@ splitPortDecl (orig @ (MIDecl (Variable _ (Implicit _) _ _ _))) = [orig]
splitPortDecl (MIDecl (Variable d t x a me)) =
[ MIDecl $ Variable d (Implicit r) x a Nothing
, MIDecl $ Variable Local t x a me ]
where (_, r) = typeDims t
where (_, r) = typeRanges t
splitPortDecl other = [other]
......@@ -24,6 +24,9 @@ module Convert.Traverse
, traverseExprsM
, traverseExprs
, collectExprsM
, traverseLHSsM
, traverseLHSs
, collectLHSsM
) where
import Data.Maybe (fromJust)
......@@ -259,3 +262,17 @@ traverseExprs :: Mapper Expr -> Mapper ModuleItem
traverseExprs = unmonad traverseExprsM
collectExprsM :: Monad m => CollectorM m Expr -> CollectorM m ModuleItem
collectExprsM = collectify traverseExprsM
traverseLHSsM :: Monad m => MapperM m LHS -> MapperM m ModuleItem
traverseLHSsM mapper item =
traverseStmtsM (traverseStmtLHSsM mapper) item >>= traverseModuleItemLHSsM
where
traverseModuleItemLHSsM (Assign lhs expr) = do
lhs' <- mapper lhs
return $ Assign lhs' expr
traverseModuleItemLHSsM other = return other
traverseLHSs :: Mapper LHS -> Mapper ModuleItem
traverseLHSs = unmonad traverseLHSsM
collectLHSsM :: Monad m => CollectorM m LHS -> CollectorM m ModuleItem
collectLHSsM = collectify traverseLHSsM
......@@ -19,7 +19,7 @@ module Language.SystemVerilog.AST
, Case
, Range
, GenCase
, typeDims
, typeRanges
) where
import Data.List
......@@ -94,14 +94,14 @@ instance Show Type where
showVal :: (Identifier, Maybe Expr) -> String
showVal (x, e) = x ++ (showAssignment e)
typeDims :: Type -> ([Range] -> Type, [Range])
typeDims (Reg r) = (Reg , r)
typeDims (Wire r) = (Wire , r)
typeDims (Logic r) = (Logic , r)
typeDims (Alias t r) = (Alias t, r)
typeDims (Implicit r) = (Implicit, r)
typeDims (IntegerT ) = (error "ranges cannot be applied to IntegerT", [])
typeDims (Enum t v r) = (Enum t v, r)
typeRanges :: Type -> ([Range] -> Type, [Range])
typeRanges (Reg r) = (Reg , r)
typeRanges (Wire r) = (Wire , r)
typeRanges (Logic r) = (Logic , r)
typeRanges (Alias t r) = (Alias t, r)
typeRanges (Implicit r) = (Implicit, r)
typeRanges (IntegerT ) = (error "ranges cannot be applied to IntegerT", [])
typeRanges (Enum t v r) = (Enum t v, r)
data Decl
= Parameter Type Identifier Expr
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment