Commit f8dd9e0d by Paolo Carlini Committed by Paolo Carlini

random.tcc (discrete_distribution<>::param_type:: param_type(size_t, double,…

random.tcc (discrete_distribution<>::param_type:: param_type(size_t, double, double, _Func), [...]): Tidy.

2009-06-19  Paolo Carlini  <paolo.carlini@oracle.com>

	* include/bits/random.tcc (discrete_distribution<>::param_type::
      	param_type(size_t, double, double, _Func),
	discrete_distribution<>::operator()(_UniformRandomNumberGenerator&,
	const param_type&)): Tidy.
	(piecewise_constant_distribution<>::param_type::_M_initialize):
	Use reserve, fix.
	(piecewise_constant_distribution<>::param_type::
	param_type(initializer_list<>, _Func),
	piecewise_constant_distribution<>::param_type::
	param_type(size_t, _RealType, _RealType, _Func),
       	piecewise_linear_distribution<>::param_type::
	param_type(initializer_list<>, _Func),
       	piecewise_linear_distribution<>::param_type::
	param_type(size_t, _RealType, _RealType, _Func)): Use reserve, tidy.
	(piecewise_constant_distribution<>::param_type::
	param_type(_InputIteratorB, _InputIteratorB, _InputIteratorW),
	piecewise_constant_distribution<>::
	operator()(_UniformRandomNumberGenerator&, const param_type&),
      	piecewise_linear_distribution<>::
	operator()(_UniformRandomNumberGenerator&, const param_type&)): Fix.
	(operator>>(std::basic_istream<>&,
	piecewise_constant_distribution<>&),
	operator>>(std::basic_istream<>&, piecewise_linear_distribution<>&)):
	Use reserve.
	* include/bits/random.h: Minor cosmetic changes.

From-SVN: r148719
parent 779704e7
2009-06-19 Paolo Carlini <paolo.carlini@oracle.com>
* include/bits/random.tcc (discrete_distribution<>::param_type::
param_type(size_t, double, double, _Func),
discrete_distribution<>::operator()(_UniformRandomNumberGenerator&,
const param_type&)): Tidy.
(piecewise_constant_distribution<>::param_type::_M_initialize):
Use reserve, fix.
(piecewise_constant_distribution<>::param_type::
param_type(initializer_list<>, _Func),
piecewise_constant_distribution<>::param_type::
param_type(size_t, _RealType, _RealType, _Func),
piecewise_linear_distribution<>::param_type::
param_type(initializer_list<>, _Func),
piecewise_linear_distribution<>::param_type::
param_type(size_t, _RealType, _RealType, _Func)): Use reserve, tidy.
(piecewise_constant_distribution<>::param_type::
param_type(_InputIteratorB, _InputIteratorB, _InputIteratorW),
piecewise_constant_distribution<>::
operator()(_UniformRandomNumberGenerator&, const param_type&),
piecewise_linear_distribution<>::
operator()(_UniformRandomNumberGenerator&, const param_type&)): Fix.
(operator>>(std::basic_istream<>&,
piecewise_constant_distribution<>&),
operator>>(std::basic_istream<>&, piecewise_linear_distribution<>&)):
Use reserve.
* include/bits/random.h: Minor cosmetic changes.
2009-06-17 Benjamin Kosnik <bkoz@redhat.com>
* testsuite/23_containers/list/check_construct_destroy.h: New.
......
......@@ -4108,8 +4108,8 @@ namespace std
: _M_param(__wbegin, __wend)
{ }
discrete_distribution(initializer_list<double> __wil)
: _M_param(__wil)
discrete_distribution(initializer_list<double> __wl)
: _M_param(__wl)
{ }
template<typename _Func>
......@@ -4240,7 +4240,7 @@ namespace std
_InputIteratorW __wbegin);
template<typename _Func>
param_type(initializer_list<_RealType> __bil, _Func __fw);
param_type(initializer_list<_RealType> __bi, _Func __fw);
template<typename _Func>
param_type(size_t __nw, _RealType __xmin, _RealType __xmax,
......@@ -4276,9 +4276,9 @@ namespace std
{ }
template<typename _Func>
piecewise_constant_distribution(initializer_list<_RealType> __bil,
piecewise_constant_distribution(initializer_list<_RealType> __bl,
_Func __fw)
: _M_param(__bil, __fw)
: _M_param(__bl, __fw)
{ }
template<typename _Func>
......@@ -4408,7 +4408,9 @@ namespace std
typedef piecewise_linear_distribution<_RealType> distribution_type;
friend class piecewise_linear_distribution<_RealType>;
param_type();
param_type()
: _M_int(), _M_den(), _M_cp(), _M_m()
{ _M_initialize(); }
template<typename _InputIteratorB, typename _InputIteratorW>
param_type(_InputIteratorB __bfirst,
......@@ -4416,7 +4418,7 @@ namespace std
_InputIteratorW __wbegin);
template<typename _Func>
param_type(initializer_list<_RealType> __bil, _Func __fw);
param_type(initializer_list<_RealType> __bl, _Func __fw);
template<typename _Func>
param_type(size_t __nw, _RealType __xmin, _RealType __xmax,
......@@ -4453,9 +4455,9 @@ namespace std
{ }
template<typename _Func>
piecewise_linear_distribution(initializer_list<_RealType> __bil,
piecewise_linear_distribution(initializer_list<_RealType> __bl,
_Func __fw)
: _M_param(__bil, __fw)
: _M_param(__bl, __fw)
{ }
template<typename _Func>
......
......@@ -1985,30 +1985,31 @@ namespace std
return;
}
double __sum = std::accumulate(_M_prob.begin(), _M_prob.end(), 0.0);
// Now normalize the densities.
const double __sum = std::accumulate(_M_prob.begin(),
_M_prob.end(), 0.0);
// Now normalize the probabilites.
std::transform(_M_prob.begin(), _M_prob.end(), _M_prob.begin(),
std::bind2nd(std::divides<double>(), __sum));
// Accumulate partial sums.
// Accumulate partial sums.
_M_cp.reserve(_M_prob.size());
std::partial_sum(_M_prob.begin(), _M_prob.end(),
std::back_inserter(_M_cp));
// Make sure the last cumulative probablility is one.
// Make sure the last cumulative probability is one.
_M_cp[_M_cp.size() - 1] = 1.0;
}
template<typename _IntType>
template<typename _Func>
discrete_distribution<_IntType>::param_type::
param_type(size_t __nw, double __xmin, double __xmax,
_Func __fw)
param_type(size_t __nw, double __xmin, double __xmax, _Func __fw)
: _M_prob(), _M_cp()
{
for (size_t __i = 0; __i < __nw; ++__i)
{
const double __x = ((__nw - __i - 0.5) * __xmin
+ (__i + 0.5) * __xmax) / __nw;
_M_prob.push_back(__fw(__x));
}
const size_t __n = __nw == 0 ? 1 : __nw;
const double __delta = (__xmax - __xmin) / __n;
_M_prob.reserve(__n);
for (size_t __k = 0; __k < __nw; ++__k)
_M_prob.push_back(__fw(__xmin + __k * __delta + 0.5 * __delta));
_M_initialize();
}
......@@ -2026,11 +2027,8 @@ namespace std
const double __p = __aurng();
auto __pos = std::lower_bound(__param._M_cp.begin(),
__param._M_cp.end(), __p);
if (__pos == __param._M_cp.end())
return 0;
const size_t __i = __pos - __param._M_cp.begin();
return __i;
return __pos - __param._M_cp.begin();
}
template<typename _IntType, typename _CharT, typename _Traits>
......@@ -2075,6 +2073,7 @@ namespace std
__is >> __n;
std::vector<double> __prob_vec;
__prob_vec.reserve(__n);
for (; __n != 0; --__n)
{
double __prob;
......@@ -2098,6 +2097,7 @@ namespace std
if (_M_int.size() < 2)
{
_M_int.clear();
_M_int.reserve(2);
_M_int.push_back(_RealType(0));
_M_int.push_back(_RealType(1));
......@@ -2107,21 +2107,21 @@ namespace std
return;
}
double __sum = 0.0;
for (size_t __i = 0; __i < _M_den.size(); ++__i)
{
__sum += _M_den[__i] * (_M_int[__i + 1] - _M_int[__i]);
_M_cp.push_back(__sum);
}
const double __sum = std::accumulate(_M_den.begin(),
_M_den.end(), 0.0);
// Now normalize the densities...
std::transform(_M_den.begin(), _M_den.end(), _M_den.begin(),
std::bind2nd(std::divides<double>(), __sum));
// ... and partial sums.
std::transform(_M_cp.begin(), _M_cp.end(), _M_cp.begin(),
std::bind2nd(std::divides<double>(), __sum));
// Make sure the last cumulative probablility is one.
_M_cp.reserve(_M_den.size());
std::partial_sum(_M_den.begin(), _M_den.end(),
std::back_inserter(_M_cp));
// Make sure the last cumulative probability is one.
_M_cp[_M_cp.size() - 1] = 1.0;
for (size_t __k = 0; __k < _M_den.size(); ++__k)
_M_den[__k] /= _M_int[__k + 1] - _M_int[__k];
}
template<typename _RealType>
......@@ -2132,17 +2132,19 @@ namespace std
_InputIteratorW __wbegin)
: _M_int(), _M_den(), _M_cp()
{
do
if (__bbegin != __bend)
{
_M_int.push_back(*__bbegin);
++__bbegin;
if (__bbegin != __bend)
for (;;)
{
_M_int.push_back(*__bbegin);
++__bbegin;
if (__bbegin == __bend)
break;
_M_den.push_back(*__wbegin);
++__wbegin;
}
}
while (__bbegin != __bend);
_M_initialize();
}
......@@ -2150,17 +2152,16 @@ namespace std
template<typename _RealType>
template<typename _Func>
piecewise_constant_distribution<_RealType>::param_type::
param_type(initializer_list<_RealType> __bil, _Func __fw)
param_type(initializer_list<_RealType> __bl, _Func __fw)
: _M_int(), _M_den(), _M_cp()
{
for (auto __biter = __bil.begin(); __biter != __bil.end(); ++__biter)
_M_int.reserve(__bl.size());
for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter)
_M_int.push_back(*__biter);
for (size_t __i = 0; __i < _M_int.size() - 1; ++__i)
{
_RealType __x = 0.5 * (_M_int[__i] + _M_int[__i + 1]);
_M_den.push_back(__fw(__x));
}
_M_den.reserve(_M_int.size() - 1);
for (size_t __k = 0; __k < _M_int.size() - 1; ++__k)
_M_den.push_back(__fw(0.5 * (_M_int[__k + 1] + _M_int[__k])));
_M_initialize();
}
......@@ -2171,18 +2172,16 @@ namespace std
param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw)
: _M_int(), _M_den(), _M_cp()
{
for (size_t __i = 0; __i <= __nw; ++__i)
{
const _RealType __x = ((__nw - __i) * __xmin
+ __i * __xmax) / __nw;
_M_int.push_back(__x);
}
for (size_t __i = 0; __i < __nw; ++__i)
{
const _RealType __x = ((__nw - __i - 0.5) * __xmin
+ (__i + 0.5) * __xmax) / __nw;
_M_den.push_back(__fw(__x));
}
const size_t __n = __nw == 0 ? 1 : __nw;
const _RealType __delta = (__xmax - __xmin) / __n;
_M_int.reserve(__n + 1);
for (size_t __k = 0; __k <= __nw; ++__k)
_M_int.push_back(__xmin + __k * __delta);
_M_den.reserve(__n);
for (size_t __k = 0; __k < __nw; ++__k)
_M_den.push_back(__fw(_M_int[__k] + 0.5 * __delta));
_M_initialize();
}
......@@ -2202,8 +2201,9 @@ namespace std
__param._M_cp.end(), __p);
const size_t __i = __pos - __param._M_cp.begin();
return __param._M_int[__i]
+ (__p - __param._M_cp[__i]) / __param._M_den[__i];
const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0;
return __param._M_int[__i] + (__p - __pref) / __param._M_den[__i];
}
template<typename _RealType, typename _CharT, typename _Traits>
......@@ -2253,6 +2253,7 @@ namespace std
__is >> __n;
std::vector<_RealType> __int_vec;
__int_vec.reserve(__n + 1);
for (size_t __i = 0; __i <= __n; ++__i)
{
_RealType __int;
......@@ -2261,6 +2262,7 @@ namespace std
}
std::vector<double> __den_vec;
__den_vec.reserve(__n);
for (size_t __i = 0; __i < __n; ++__i)
{
double __den;
......@@ -2284,10 +2286,12 @@ namespace std
if (_M_int.size() < 2)
{
_M_int.clear();
_M_int.reserve(2);
_M_int.push_back(_RealType(0));
_M_int.push_back(_RealType(1));
_M_den.clear();
_M_den.reserve(2);
_M_den.push_back(1.0);
_M_den.push_back(1.0);
......@@ -2295,17 +2299,19 @@ namespace std
}
double __sum = 0.0;
for (size_t __i = 0; __i < _M_int.size() - 1; ++__i)
_M_cp.reserve(_M_int.size() - 1);
_M_m.reserve(_M_int.size() - 1);
for (size_t __k = 0; __k < _M_int.size() - 1; ++__k)
{
const _RealType __delta = _M_int[__i + 1] - _M_int[__i];
__sum += 0.5 * (_M_den[__i + 1] + _M_den[__i]) * __delta;
const _RealType __delta = _M_int[__k + 1] - _M_int[__k];
__sum += 0.5 * (_M_den[__k + 1] + _M_den[__k]) * __delta;
_M_cp.push_back(__sum);
_M_m.push_back((_M_den[__i + 1] - _M_den[__i]) / __delta);
_M_m.push_back((_M_den[__k + 1] - _M_den[__k]) / __delta);
}
// Now normalize the densities...
std::transform(_M_den.begin(), _M_den.end(), _M_den.begin(),
std::bind2nd(std::divides<double>(),__sum));
std::bind2nd(std::divides<double>(), __sum));
// ... and partial sums...
std::transform(_M_cp.begin(), _M_cp.end(), _M_cp.begin(),
std::bind2nd(std::divides<double>(), __sum));
......@@ -2314,13 +2320,7 @@ namespace std
std::bind2nd(std::divides<double>(), __sum));
// Make sure the last cumulative probablility is one.
_M_cp[_M_cp.size() - 1] = 1.0;
}
template<typename _RealType>
piecewise_linear_distribution<_RealType>::param_type::
param_type()
: _M_int(), _M_den(), _M_cp(), _M_m()
{ _M_initialize(); }
}
template<typename _RealType>
template<typename _InputIteratorB, typename _InputIteratorW>
......@@ -2342,10 +2342,12 @@ namespace std
template<typename _RealType>
template<typename _Func>
piecewise_linear_distribution<_RealType>::param_type::
param_type(initializer_list<_RealType> __bil, _Func __fw)
param_type(initializer_list<_RealType> __bl, _Func __fw)
: _M_int(), _M_den(), _M_cp(), _M_m()
{
for (auto __biter = __bil.begin(); __biter != __bil.end(); ++__biter)
_M_int.reserve(__bl.size());
_M_den.reserve(__bl.size());
for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter)
{
_M_int.push_back(*__biter);
_M_den.push_back(__fw(*__biter));
......@@ -2357,16 +2359,18 @@ namespace std
template<typename _RealType>
template<typename _Func>
piecewise_linear_distribution<_RealType>::param_type::
param_type(size_t __nw, _RealType __xmin, _RealType __xmax,
_Func __fw)
param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw)
: _M_int(), _M_den(), _M_cp(), _M_m()
{
for (size_t __i = 0; __i <= __nw; ++__i)
const size_t __n = __nw == 0 ? 1 : __nw;
const _RealType __delta = (__xmax - __xmin) / __n;
_M_int.reserve(__n + 1);
_M_den.reserve(__n + 1);
for (size_t __k = 0; __k <= __nw; ++__k)
{
const _RealType __x = ((__nw - __i) * __xmin
+ __i * __xmax) / __nw;
_M_int.push_back(__x);
_M_den.push_back(__fw(__x));
_M_int.push_back(__xmin + __k * __delta);
_M_den.push_back(__fw(_M_int[__k] + __delta));
}
_M_initialize();
......@@ -2379,7 +2383,6 @@ namespace std
operator()(_UniformRandomNumberGenerator& __urng,
const param_type& __param)
{
result_type __x;
__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
__aurng(__urng);
......@@ -2387,23 +2390,23 @@ namespace std
auto __pos = std::lower_bound(__param._M_cp.begin(),
__param._M_cp.end(), __p);
const size_t __i = __pos - __param._M_cp.begin();
const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0;
const double __a = 0.5 * __param._M_m[__i];
const double __b = __param._M_den[__i];
const double __c = __param._M_cp[__i];
const double __q = -0.5 * (__b
#if _GLIBCXX_USE_C99_MATH_TR1
+ std::copysign(std::sqrt(__b * __b
- 4.0 * __a * __c), __b));
#else
+ (__b < 0.0 ? -1.0 : 1.0)
* std::sqrt(__b * __b - 4.0 * __a * __c));
#endif
const double __x0 = __param._M_int[__i];
const double __x1 = __q / __a;
const double __x2 = __c / __q;
__x = std::max(__x0 + __x1, __x0 + __x2);
const double __cm = __p - __pref;
_RealType __x = __param._M_int[__i];
if (__a == 0)
__x += __cm / __b;
else
{
const double __d = __b * __b + 4.0 * __a * __cm;
__x += 0.5 * (std::sqrt(__d) - __b) / __a;
}
return __x;
return __x;
}
template<typename _RealType, typename _CharT, typename _Traits>
......@@ -2453,6 +2456,7 @@ namespace std
__is >> __n;
std::vector<_RealType> __int_vec;
__int_vec.reserve(__n + 1);
for (size_t __i = 0; __i <= __n; ++__i)
{
_RealType __int;
......@@ -2461,6 +2465,7 @@ namespace std
}
std::vector<double> __den_vec;
__den_vec.reserve(__n + 1);
for (size_t __i = 0; __i <= __n; ++__i)
{
double __den;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment