Commit f7064d11 by Dorit Naishlos Committed by Dorit Nuzman

Makefile.in (tree-vect-analyze.o, [...]): New.

        * Makefile.in (tree-vect-analyze.o, tree-vect-transform.o): New.
        (tree-vectorizer.o): Added missing dependencies.

        * tree-vectorizer.h (vect_dump, vect_verbosity_level): Added extern
        decleration.
        (slpeel_tree_peel_loop_to_edge): Function externalized (had a static
        declaration in tree-vectorizer.c, now has an extern declaration in
        tree-vectorizer.h).
        (slpeel_make_loop_iterate_ntimes, slpeel_can_duplicate_loop_p,
        slpeel_verify_cfg_after_peeling, vect_strip_conversion,
        get_vectype_for_scalar_type, vect_is_simple_use,
        vect_is_simple_iv_evolution, vect_can_force_dr_alignment_p,
        vect_supportable_dr_alignment, new_loop_vec_info, destroy_loop_vec_info,
        new_stmt_vec_info, vect_analyze_loop, vectorizable_load,
        vectorizable_store, vectorizable_operation, vectorizable_assignment,
        vect_transform_loop, vect_print_dump_info, vect_set_verbosity_level,
        find_loop_location): Likewise.

        * tree-vectorizer.c (langhooks.h): #include removed.
        (slpeel_tree_peel_loop_to_edge): Function externalized. Declaration
        moved to tree-vectorized.h.
        (slpeel_make_loop_iterate_ntimes, slpeel_can_duplicate_loop_p,
        slpeel_verify_cfg_after_peeling, vect_strip_conversion,
        get_vectype_for_scalar_type, vect_is_simple_use,
        vect_is_simple_iv_evolution, vect_can_force_dr_alignment_p,
        vect_supportable_dr_alignment, new_loop_vec_info,
        destroy_loop_vec_info, new_stmt_vec_info, vect_print_dump_info,
        vect_set_verbosity_level, find_loop_location): Likewise.

        (vect_analyze_loop): Function externalized. Declaration moved to
        tree-vectorized.h. Function definition moved to tree-vect-analyze.c.
        (vect_analyze_loop_form): Moved to tree-vect-analyze.c.
        (vect_mark_stmts_to_be_vectorized, vect_analyze_scalar_cycles,
        vect_analyze_data_ref_accesses, vect_analyze_data_ref_dependences,
        vect_analyze_data_refs_alignment, vect_compute_data_refs_alignment,
        vect_enhance_data_refs_alignment, vect_analyze_operations,
        exist_non_indexing_operands_for_use_p, vect_mark_relevant,
        vect_stmt_relevant_p, vect_get_loop_niters,
        vect_analyze_data_ref_dependence, vect_compute_data_ref_alignment,
        vect_analyze_data_ref_access, vect_analyze_pointer_ref_access,
        vect_can_advance_ivs_p, vect_get_ptr_offset, vect_analyze_offset_expr,
        vect_base_addr_differ_p, vect_object_analysis, vect_address_analysis,
        vect_get_memtag): Likewise.

        (vectorizable_load): Function externalized. Declaration moved to
        tree-vectorized.h. Function definition moved to tree-vect-transform.c.
        (vectorizable_store, vectorizable_operation, vectorizable_assignment,
        vect_transform_loop): Likewise.
        (vect_transform_stmt): Moved to tree-vect-transform.c.
        (vect_align_data_ref, vect_create_destination_var,
        vect_create_data_ref_ptr, vect_create_index_for_vector_ref,
        vect_create_addr_base_for_vector_ref, vect_get_new_vect_var,
        vect_get_vec_def_for_operand, vect_init_vector,
        vect_finish_stmt_generation, vect_generate_tmps_on_preheader,
        vect_build_loop_niters, vect_update_ivs_after_vectorizer,
        vect_gen_niters_for_prolog_loop, vect_update_inits_of_dr,
        vect_update_inits_of_drs, vect_do_peeling_for_alignment,
        vect_do_peeling_for_loop_bound): Likewise.

        * tree-vect-analyze.c: New file.
        * tree-vect-transform.c: New file.

From-SVN: r95153
parent 96dd155e
2005-02-17 Dorit Naishlos <dorit@il.ibm.com>
* Makefile.in (tree-vect-analyze.o, tree-vect-transform.o): New.
(tree-vectorizer.o): Added missing dependencies.
* tree-vectorizer.h (vect_dump, vect_verbosity_level): Added extern
decleration.
(slpeel_tree_peel_loop_to_edge): Function externalized (had a static
declaration in tree-vectorizer.c, now has an extern declaration in
tree-vectorizer.h).
(slpeel_make_loop_iterate_ntimes, slpeel_can_duplicate_loop_p,
slpeel_verify_cfg_after_peeling, vect_strip_conversion,
get_vectype_for_scalar_type, vect_is_simple_use,
vect_is_simple_iv_evolution, vect_can_force_dr_alignment_p,
vect_supportable_dr_alignment, new_loop_vec_info, destroy_loop_vec_info,
new_stmt_vec_info, vect_analyze_loop, vectorizable_load,
vectorizable_store, vectorizable_operation, vectorizable_assignment,
vect_transform_loop, vect_print_dump_info, vect_set_verbosity_level,
find_loop_location): Likewise.
* tree-vectorizer.c (langhooks.h): #include removed.
(slpeel_tree_peel_loop_to_edge): Function externalized. Declaration
moved to tree-vectorized.h.
(slpeel_make_loop_iterate_ntimes, slpeel_can_duplicate_loop_p,
slpeel_verify_cfg_after_peeling, vect_strip_conversion,
get_vectype_for_scalar_type, vect_is_simple_use,
vect_is_simple_iv_evolution, vect_can_force_dr_alignment_p,
vect_supportable_dr_alignment, new_loop_vec_info,
destroy_loop_vec_info, new_stmt_vec_info, vect_print_dump_info,
vect_set_verbosity_level, find_loop_location): Likewise.
(vect_analyze_loop): Function externalized. Declaration moved to
tree-vectorized.h. Function definition moved to tree-vect-analyze.c.
(vect_analyze_loop_form): Moved to tree-vect-analyze.c.
(vect_mark_stmts_to_be_vectorized, vect_analyze_scalar_cycles,
vect_analyze_data_ref_accesses, vect_analyze_data_ref_dependences,
vect_analyze_data_refs_alignment, vect_compute_data_refs_alignment,
vect_enhance_data_refs_alignment, vect_analyze_operations,
exist_non_indexing_operands_for_use_p, vect_mark_relevant,
vect_stmt_relevant_p, vect_get_loop_niters,
vect_analyze_data_ref_dependence, vect_compute_data_ref_alignment,
vect_analyze_data_ref_access, vect_analyze_pointer_ref_access,
vect_can_advance_ivs_p, vect_get_ptr_offset, vect_analyze_offset_expr,
vect_base_addr_differ_p, vect_object_analysis, vect_address_analysis,
vect_get_memtag): Likewise.
(vectorizable_load): Function externalized. Declaration moved to
tree-vectorized.h. Function definition moved to tree-vect-transform.c.
(vectorizable_store, vectorizable_operation, vectorizable_assignment,
vect_transform_loop): Likewise.
(vect_transform_stmt): Moved to tree-vect-transform.c.
(vect_align_data_ref, vect_create_destination_var,
vect_create_data_ref_ptr, vect_create_index_for_vector_ref,
vect_create_addr_base_for_vector_ref, vect_get_new_vect_var,
vect_get_vec_def_for_operand, vect_init_vector,
vect_finish_stmt_generation, vect_generate_tmps_on_preheader,
vect_build_loop_niters, vect_update_ivs_after_vectorizer,
vect_gen_niters_for_prolog_loop, vect_update_inits_of_dr,
vect_update_inits_of_drs, vect_do_peeling_for_alignment,
vect_do_peeling_for_loop_bound): Likewise.
* tree-vect-analyze.c: New file.
* tree-vect-transform.c: New file.
2005-02-17 Jason Merrill <jason@redhat.com> 2005-02-17 Jason Merrill <jason@redhat.com>
PR mudflap/19319, c++/19317 PR mudflap/19319, c++/19317
......
...@@ -902,7 +902,8 @@ OBJS-common = \ ...@@ -902,7 +902,8 @@ OBJS-common = \
tree-ssa-dom.o domwalk.o tree-tailcall.o gimple-low.o tree-iterator.o \ tree-ssa-dom.o domwalk.o tree-tailcall.o gimple-low.o tree-iterator.o \
tree-phinodes.o tree-ssanames.o tree-sra.o tree-complex.o tree-ssa-loop.o \ tree-phinodes.o tree-ssanames.o tree-sra.o tree-complex.o tree-ssa-loop.o \
tree-ssa-loop-niter.o tree-ssa-loop-manip.o tree-ssa-threadupdate.o \ tree-ssa-loop-niter.o tree-ssa-loop-manip.o tree-ssa-threadupdate.o \
tree-vectorizer.o tree-ssa-loop-ivcanon.o tree-ssa-propagate.o \ tree-vectorizer.o tree-vect-analyze.o tree-vect-transform.o \
tree-ssa-loop-ivcanon.o tree-ssa-propagate.o \
tree-ssa-loop-ivopts.o tree-if-conv.o tree-ssa-loop-unswitch.o \ tree-ssa-loop-ivopts.o tree-if-conv.o tree-ssa-loop-unswitch.o \
alias.o bb-reorder.o bitmap.o builtins.o caller-save.o calls.o \ alias.o bb-reorder.o bitmap.o builtins.o caller-save.o calls.o \
cfg.o cfganal.o cfgbuild.o cfgcleanup.o cfglayout.o cfgloop.o \ cfg.o cfganal.o cfgbuild.o cfgcleanup.o cfglayout.o cfgloop.o \
...@@ -1765,10 +1766,18 @@ tree-data-ref.o: tree-data-ref.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) \ ...@@ -1765,10 +1766,18 @@ tree-data-ref.o: tree-data-ref.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) \
errors.h $(GGC_H) $(TREE_H) $(RTL_H) $(BASIC_BLOCK_H) diagnostic.h \ errors.h $(GGC_H) $(TREE_H) $(RTL_H) $(BASIC_BLOCK_H) diagnostic.h \
$(TREE_FLOW_H) $(TREE_DUMP_H) $(TIMEVAR_H) cfgloop.h \ $(TREE_FLOW_H) $(TREE_DUMP_H) $(TIMEVAR_H) cfgloop.h \
tree-data-ref.h $(SCEV_H) tree-pass.h $(LAMBDA_H) tree-data-ref.h $(SCEV_H) tree-pass.h $(LAMBDA_H)
tree-vect-analyze.o: tree-vect-analyze.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) \
errors.h $(GGC_H) $(OPTABS_H) $(TREE_H) $(RTL_H) $(BASIC_BLOCK_H) diagnostic.h \
$(TREE_FLOW_H) $(TREE_DUMP_H) $(TIMEVAR_H) cfgloop.h \
tree-vectorizer.h tree-data-ref.h $(SCEV_H) $(EXPR_H)
tree-vect-transform.o: tree-vect-transform.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) \
errors.h $(GGC_H) $(OPTABS_H) $(TREE_H) $(RTL_H) $(BASIC_BLOCK_H) diagnostic.h \
$(TREE_FLOW_H) $(TREE_DUMP_H) $(TIMEVAR_H) cfgloop.h target.h tree-pass.h $(EXPR_H) \
tree-vectorizer.h tree-data-ref.h $(SCEV_H) langhooks.h toplev.h
tree-vectorizer.o: tree-vectorizer.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) \ tree-vectorizer.o: tree-vectorizer.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) \
errors.h $(GGC_H) $(OPTABS_H) $(TREE_H) $(RTL_H) $(BASIC_BLOCK_H) diagnostic.h \ errors.h $(GGC_H) $(OPTABS_H) $(TREE_H) $(RTL_H) $(BASIC_BLOCK_H) diagnostic.h \
$(TREE_FLOW_H) $(TREE_DUMP_H) $(TIMEVAR_H) cfgloop.h tree-pass.h $(EXPR_H) \ $(TREE_FLOW_H) $(TREE_DUMP_H) $(TIMEVAR_H) cfgloop.h tree-pass.h $(EXPR_H) \
tree-vectorizer.h tree-data-ref.h $(SCEV_H) tree-vectorizer.h tree-data-ref.h $(SCEV_H) input.h target.h cfglayout.h
tree-loop-linear.o: tree-loop-linear.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) \ tree-loop-linear.o: tree-loop-linear.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) \
errors.h $(GGC_H) $(OPTABS_H) $(TREE_H) $(RTL_H) $(BASIC_BLOCK_H) diagnostic.h \ errors.h $(GGC_H) $(OPTABS_H) $(TREE_H) $(RTL_H) $(BASIC_BLOCK_H) diagnostic.h \
$(TREE_FLOW_H) $(TREE_DUMP_H) $(TIMEVAR_H) cfgloop.h tree-pass.h \ $(TREE_FLOW_H) $(TREE_DUMP_H) $(TIMEVAR_H) cfgloop.h tree-pass.h \
......
/* Anlaysis Utilities for Loop Vectorization.
Copyright (C) 2003,2004,2005 Free Software Foundation, Inc.
Contributed by Dorit Naishlos <dorit@il.ibm.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "errors.h"
#include "ggc.h"
#include "tree.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "timevar.h"
#include "cfgloop.h"
#include "expr.h"
#include "optabs.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "tree-vectorizer.h"
/* Main analysis functions. */
static loop_vec_info vect_analyze_loop_form (struct loop *);
static bool vect_analyze_data_refs (loop_vec_info);
static bool vect_mark_stmts_to_be_vectorized (loop_vec_info);
static bool vect_analyze_scalar_cycles (loop_vec_info);
static bool vect_analyze_data_ref_accesses (loop_vec_info);
static bool vect_analyze_data_ref_dependences (loop_vec_info);
static bool vect_analyze_data_refs_alignment (loop_vec_info);
static bool vect_compute_data_refs_alignment (loop_vec_info);
static void vect_enhance_data_refs_alignment (loop_vec_info);
static bool vect_analyze_operations (loop_vec_info);
/* Utility functions for the analyses. */
static bool exist_non_indexing_operands_for_use_p (tree, tree);
static void vect_mark_relevant (varray_type *, tree);
static bool vect_stmt_relevant_p (tree, loop_vec_info);
static tree vect_get_loop_niters (struct loop *, tree *);
static bool vect_analyze_data_ref_dependence
(struct data_reference *, struct data_reference *, loop_vec_info);
static bool vect_compute_data_ref_alignment (struct data_reference *);
static bool vect_analyze_data_ref_access (struct data_reference *);
static struct data_reference * vect_analyze_pointer_ref_access
(tree, tree, bool, tree, tree *, tree *);
static bool vect_can_advance_ivs_p (loop_vec_info);
static tree vect_get_ptr_offset (tree, tree, tree *);
static bool vect_analyze_offset_expr (tree, struct loop *, tree, tree *,
tree *, tree *);
static bool vect_base_addr_differ_p (struct data_reference *,
struct data_reference *drb, bool *);
static tree vect_object_analysis (tree, tree, bool, tree,
struct data_reference **, tree *, tree *,
tree *, bool *);
static tree vect_address_analysis (tree, tree, bool, tree,
struct data_reference *, tree *, tree *,
tree *, bool *);
static tree vect_get_memtag (tree, struct data_reference *);
/* Function vect_get_ptr_offset
Compute the OFFSET modulo vector-type alignment of pointer REF in bits. */
static tree
vect_get_ptr_offset (tree ref ATTRIBUTE_UNUSED,
tree vectype ATTRIBUTE_UNUSED,
tree *offset ATTRIBUTE_UNUSED)
{
/* TODO: Use alignment information. */
return NULL_TREE;
}
/* Function vect_analyze_offset_expr
Given an offset expression EXPR received from get_inner_reference, analyze
it and create an expression for INITIAL_OFFSET by substituting the variables
of EXPR with initial_condition of the corresponding access_fn in the loop.
E.g.,
for i
for (j = 3; j < N; j++)
a[j].b[i][j] = 0;
For a[j].b[i][j], EXPR will be 'i * C_i + j * C_j + C'. 'i' cannot be
substituted, since its access_fn in the inner loop is i. 'j' will be
substituted with 3. An INITIAL_OFFSET will be 'i * C_i + C`', where
C` = 3 * C_j + C.
Compute MISALIGN (the misalignment of the data reference initial access from
its base) if possible. Misalignment can be calculated only if all the
variables can be substituted with constants, or if a variable is multiplied
by a multiple of VECTYPE_ALIGNMENT. In the above example, since 'i' cannot
be substituted, MISALIGN will be NULL_TREE in case that C_i is not a multiple
of VECTYPE_ALIGNMENT, and C` otherwise. (We perform MISALIGN modulo
VECTYPE_ALIGNMENT computation in the caller of this function).
STEP is an evolution of the data reference in this loop in bytes.
In the above example, STEP is C_j.
Return FALSE, if the analysis fails, e.g., there is no access_fn for a
variable. In this case, all the outputs (INITIAL_OFFSET, MISALIGN and STEP)
are NULL_TREEs. Otherwise, return TRUE.
*/
static bool
vect_analyze_offset_expr (tree expr,
struct loop *loop,
tree vectype_alignment,
tree *initial_offset,
tree *misalign,
tree *step)
{
tree oprnd0;
tree oprnd1;
tree left_offset = ssize_int (0);
tree right_offset = ssize_int (0);
tree left_misalign = ssize_int (0);
tree right_misalign = ssize_int (0);
tree left_step = ssize_int (0);
tree right_step = ssize_int (0);
enum tree_code code;
tree init, evolution;
*step = NULL_TREE;
*misalign = NULL_TREE;
*initial_offset = NULL_TREE;
/* Strip conversions that don't narrow the mode. */
expr = vect_strip_conversion (expr);
if (!expr)
return false;
/* Stop conditions:
1. Constant. */
if (TREE_CODE (expr) == INTEGER_CST)
{
*initial_offset = fold_convert (ssizetype, expr);
*misalign = fold_convert (ssizetype, expr);
*step = ssize_int (0);
return true;
}
/* 2. Variable. Try to substitute with initial_condition of the corresponding
access_fn in the current loop. */
if (SSA_VAR_P (expr))
{
tree access_fn = analyze_scalar_evolution (loop, expr);
if (access_fn == chrec_dont_know)
/* No access_fn. */
return false;
init = initial_condition_in_loop_num (access_fn, loop->num);
if (init == expr && !expr_invariant_in_loop_p (loop, init))
/* Not enough information: may be not loop invariant.
E.g., for a[b[i]], we get a[D], where D=b[i]. EXPR is D, its
initial_condition is D, but it depends on i - loop's induction
variable. */
return false;
evolution = evolution_part_in_loop_num (access_fn, loop->num);
if (evolution && TREE_CODE (evolution) != INTEGER_CST)
/* Evolution is not constant. */
return false;
if (TREE_CODE (init) == INTEGER_CST)
*misalign = fold_convert (ssizetype, init);
else
/* Not constant, misalignment cannot be calculated. */
*misalign = NULL_TREE;
*initial_offset = fold_convert (ssizetype, init);
*step = evolution ? fold_convert (ssizetype, evolution) : ssize_int (0);
return true;
}
/* Recursive computation. */
if (!BINARY_CLASS_P (expr))
{
/* We expect to get binary expressions (PLUS/MINUS and MULT). */
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "Not binary expression ");
print_generic_expr (vect_dump, expr, TDF_SLIM);
}
return false;
}
oprnd0 = TREE_OPERAND (expr, 0);
oprnd1 = TREE_OPERAND (expr, 1);
if (!vect_analyze_offset_expr (oprnd0, loop, vectype_alignment, &left_offset,
&left_misalign, &left_step)
|| !vect_analyze_offset_expr (oprnd1, loop, vectype_alignment,
&right_offset, &right_misalign, &right_step))
return false;
/* The type of the operation: plus, minus or mult. */
code = TREE_CODE (expr);
switch (code)
{
case MULT_EXPR:
if (TREE_CODE (right_offset) != INTEGER_CST)
/* RIGHT_OFFSET can be not constant. For example, for arrays of variable
sized types.
FORNOW: We don't support such cases. */
return false;
/* Strip conversions that don't narrow the mode. */
left_offset = vect_strip_conversion (left_offset);
if (!left_offset)
return false;
/* Misalignment computation. */
if (SSA_VAR_P (left_offset))
{
/* If the left side contains variables that can't be substituted with
constants, we check if the right side is a multiple of ALIGNMENT.
*/
if (integer_zerop (size_binop (TRUNC_MOD_EXPR, right_offset,
fold_convert (ssizetype, vectype_alignment))))
*misalign = ssize_int (0);
else
/* If the remainder is not zero or the right side isn't constant,
we can't compute misalignment. */
*misalign = NULL_TREE;
}
else
{
/* The left operand was successfully substituted with constant. */
if (left_misalign)
/* In case of EXPR '(i * C1 + j) * C2', LEFT_MISALIGN is
NULL_TREE. */
*misalign = size_binop (code, left_misalign, right_misalign);
else
*misalign = NULL_TREE;
}
/* Step calculation. */
/* Multiply the step by the right operand. */
*step = size_binop (MULT_EXPR, left_step, right_offset);
break;
case PLUS_EXPR:
case MINUS_EXPR:
/* Combine the recursive calculations for step and misalignment. */
*step = size_binop (code, left_step, right_step);
if (left_misalign && right_misalign)
*misalign = size_binop (code, left_misalign, right_misalign);
else
*misalign = NULL_TREE;
break;
default:
gcc_unreachable ();
}
/* Compute offset. */
*initial_offset = fold_convert (ssizetype,
fold (build2 (code, TREE_TYPE (left_offset),
left_offset,
right_offset)));
return true;
}
/* Function vect_analyze_operations.
Scan the loop stmts and make sure they are all vectorizable. */
static bool
vect_analyze_operations (loop_vec_info loop_vinfo)
{
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
int nbbs = loop->num_nodes;
block_stmt_iterator si;
unsigned int vectorization_factor = 0;
int i;
bool ok;
tree scalar_type;
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "=== vect_analyze_operations ===");
for (i = 0; i < nbbs; i++)
{
basic_block bb = bbs[i];
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{
tree stmt = bsi_stmt (si);
unsigned int nunits;
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
tree vectype;
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "==> examining statement: ");
print_generic_expr (vect_dump, stmt, TDF_SLIM);
}
gcc_assert (stmt_info);
/* skip stmts which do not need to be vectorized.
this is expected to include:
- the COND_EXPR which is the loop exit condition
- any LABEL_EXPRs in the loop
- computations that are used only for array indexing or loop
control */
if (!STMT_VINFO_RELEVANT_P (stmt_info))
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "irrelevant.");
continue;
}
if (VECTOR_MODE_P (TYPE_MODE (TREE_TYPE (stmt))))
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
LOOP_LOC (loop_vinfo)))
{
fprintf (vect_dump, "not vectorized: vector stmt in loop:");
print_generic_expr (vect_dump, stmt, TDF_SLIM);
}
return false;
}
if (STMT_VINFO_DATA_REF (stmt_info))
scalar_type = TREE_TYPE (DR_REF (STMT_VINFO_DATA_REF (stmt_info)));
else if (TREE_CODE (stmt) == MODIFY_EXPR)
scalar_type = TREE_TYPE (TREE_OPERAND (stmt, 0));
else
scalar_type = TREE_TYPE (stmt);
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "get vectype for scalar type: ");
print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
}
vectype = get_vectype_for_scalar_type (scalar_type);
if (!vectype)
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
LOOP_LOC (loop_vinfo)))
{
fprintf (vect_dump,
"not vectorized: unsupported data-type ");
print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
}
return false;
}
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "vectype: ");
print_generic_expr (vect_dump, vectype, TDF_SLIM);
}
STMT_VINFO_VECTYPE (stmt_info) = vectype;
ok = (vectorizable_operation (stmt, NULL, NULL)
|| vectorizable_assignment (stmt, NULL, NULL)
|| vectorizable_load (stmt, NULL, NULL)
|| vectorizable_store (stmt, NULL, NULL));
if (!ok)
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
LOOP_LOC (loop_vinfo)))
{
fprintf (vect_dump, "not vectorized: stmt not supported: ");
print_generic_expr (vect_dump, stmt, TDF_SLIM);
}
return false;
}
nunits = GET_MODE_NUNITS (TYPE_MODE (vectype));
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "nunits = %d", nunits);
if (vectorization_factor)
{
/* FORNOW: don't allow mixed units.
This restriction will be relaxed in the future. */
if (nunits != vectorization_factor)
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
LOOP_LOC (loop_vinfo)))
fprintf (vect_dump, "not vectorized: mixed data-types");
return false;
}
}
else
vectorization_factor = nunits;
#ifdef ENABLE_CHECKING
gcc_assert (GET_MODE_SIZE (TYPE_MODE (scalar_type))
* vectorization_factor == UNITS_PER_SIMD_WORD);
#endif
}
}
/* TODO: Analyze cost. Decide if worth while to vectorize. */
if (vectorization_factor <= 1)
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
LOOP_LOC (loop_vinfo)))
fprintf (vect_dump, "not vectorized: unsupported data-type");
return false;
}
LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
&& vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump,
"vectorization_factor = %d, niters = " HOST_WIDE_INT_PRINT_DEC,
vectorization_factor, LOOP_VINFO_INT_NITERS (loop_vinfo));
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
&& LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor)
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
LOOP_LOC (loop_vinfo)))
fprintf (vect_dump, "not vectorized: iteration count too small.");
return false;
}
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|| LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0)
{
if (vect_print_dump_info (REPORT_DETAILS, LOOP_LOC (loop_vinfo)))
fprintf (vect_dump, "epilog loop required.");
if (!vect_can_advance_ivs_p (loop_vinfo))
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
LOOP_LOC (loop_vinfo)))
fprintf (vect_dump,
"not vectorized: can't create epilog loop 1.");
return false;
}
if (!slpeel_can_duplicate_loop_p (loop, loop->exit_edges[0]))
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
LOOP_LOC (loop_vinfo)))
fprintf (vect_dump,
"not vectorized: can't create epilog loop 2.");
return false;
}
}
return true;
}
/* Function exist_non_indexing_operands_for_use_p
USE is one of the uses attached to STMT. Check if USE is
used in STMT for anything other than indexing an array. */
static bool
exist_non_indexing_operands_for_use_p (tree use, tree stmt)
{
tree operand;
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
/* USE corresponds to some operand in STMT. If there is no data
reference in STMT, then any operand that corresponds to USE
is not indexing an array. */
if (!STMT_VINFO_DATA_REF (stmt_info))
return true;
/* STMT has a data_ref. FORNOW this means that its of one of
the following forms:
-1- ARRAY_REF = var
-2- var = ARRAY_REF
(This should have been verified in analyze_data_refs).
'var' in the second case corresponds to a def, not a use,
so USE cannot correspond to any operands that are not used
for array indexing.
Therefore, all we need to check is if STMT falls into the
first case, and whether var corresponds to USE. */
if (TREE_CODE (TREE_OPERAND (stmt, 0)) == SSA_NAME)
return false;
operand = TREE_OPERAND (stmt, 1);
if (TREE_CODE (operand) != SSA_NAME)
return false;
if (operand == use)
return true;
return false;
}
/* Function vect_analyze_scalar_cycles.
Examine the cross iteration def-use cycles of scalar variables, by
analyzing the loop (scalar) PHIs; verify that the cross iteration def-use
cycles that they represent do not impede vectorization.
FORNOW: Reduction as in the following loop, is not supported yet:
loop1:
for (i=0; i<N; i++)
sum += a[i];
The cross-iteration cycle corresponding to variable 'sum' will be
considered too complicated and will impede vectorization.
FORNOW: Induction as in the following loop, is not supported yet:
loop2:
for (i=0; i<N; i++)
a[i] = i;
However, the following loop *is* vectorizable:
loop3:
for (i=0; i<N; i++)
a[i] = b[i];
In both loops there exists a def-use cycle for the variable i:
loop: i_2 = PHI (i_0, i_1)
a[i_2] = ...;
i_1 = i_2 + 1;
GOTO loop;
The evolution of the above cycle is considered simple enough,
however, we also check that the cycle does not need to be
vectorized, i.e - we check that the variable that this cycle
defines is only used for array indexing or in stmts that do not
need to be vectorized. This is not the case in loop2, but it
*is* the case in loop3. */
static bool
vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
{
tree phi;
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block bb = loop->header;
tree dummy;
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "=== vect_analyze_scalar_cycles ===");
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
{
tree access_fn = NULL;
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "Analyze phi: ");
print_generic_expr (vect_dump, phi, TDF_SLIM);
}
/* Skip virtual phi's. The data dependences that are associated with
virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "virtual phi. skip.");
continue;
}
/* Analyze the evolution function. */
/* FORNOW: The only scalar cross-iteration cycles that we allow are
those of loop induction variables; This property is verified here.
Furthermore, if that induction variable is used in an operation
that needs to be vectorized (i.e, is not solely used to index
arrays and check the exit condition) - we do not support its
vectorization yet. This property is verified in vect_is_simple_use,
during vect_analyze_operations. */
access_fn = /* instantiate_parameters
(loop,*/
analyze_scalar_evolution (loop, PHI_RESULT (phi));
if (!access_fn)
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
LOOP_LOC (loop_vinfo)))
fprintf (vect_dump, "not vectorized: unsupported scalar cycle.");
return false;
}
if (vect_print_dump_info (REPORT_DETAILS,
LOOP_LOC (loop_vinfo)))
{
fprintf (vect_dump, "Access function of PHI: ");
print_generic_expr (vect_dump, access_fn, TDF_SLIM);
}
if (!vect_is_simple_iv_evolution (loop->num, access_fn, &dummy, &dummy))
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
LOOP_LOC (loop_vinfo)))
fprintf (vect_dump, "not vectorized: unsupported scalar cycle.");
return false;
}
}
return true;
}
/* Function vect_base_addr_differ_p.
This is the simplest data dependence test: determines whether the
data references A and B access the same array/region. Returns
false when the property is not computable at compile time.
Otherwise return true, and DIFFER_P will record the result. This
utility will not be necessary when alias_sets_conflict_p will be
less conservative. */
static bool
vect_base_addr_differ_p (struct data_reference *dra,
struct data_reference *drb,
bool *differ_p)
{
tree stmt_a = DR_STMT (dra);
stmt_vec_info stmt_info_a = vinfo_for_stmt (stmt_a);
tree stmt_b = DR_STMT (drb);
stmt_vec_info stmt_info_b = vinfo_for_stmt (stmt_b);
tree addr_a = STMT_VINFO_VECT_DR_BASE_ADDRESS (stmt_info_a);
tree addr_b = STMT_VINFO_VECT_DR_BASE_ADDRESS (stmt_info_b);
tree type_a = TREE_TYPE (addr_a);
tree type_b = TREE_TYPE (addr_b);
HOST_WIDE_INT alias_set_a, alias_set_b;
gcc_assert (POINTER_TYPE_P (type_a) && POINTER_TYPE_P (type_b));
/* Both references are ADDR_EXPR, i.e., we have the objects. */
if (TREE_CODE (addr_a) == ADDR_EXPR && TREE_CODE (addr_b) == ADDR_EXPR)
return array_base_name_differ_p (dra, drb, differ_p);
alias_set_a = (TREE_CODE (addr_a) == ADDR_EXPR) ?
get_alias_set (TREE_OPERAND (addr_a, 0)) : get_alias_set (addr_a);
alias_set_b = (TREE_CODE (addr_b) == ADDR_EXPR) ?
get_alias_set (TREE_OPERAND (addr_b, 0)) : get_alias_set (addr_b);
if (!alias_sets_conflict_p (alias_set_a, alias_set_b))
{
*differ_p = true;
return true;
}
/* An instruction writing through a restricted pointer is "independent" of any
instruction reading or writing through a different pointer, in the same
block/scope. */
else if ((TYPE_RESTRICT (type_a) && !DR_IS_READ (dra))
|| (TYPE_RESTRICT (type_b) && !DR_IS_READ (drb)))
{
*differ_p = true;
return true;
}
return false;
}
/* Function vect_analyze_data_ref_dependence.
Return TRUE if there (might) exist a dependence between a memory-reference
DRA and a memory-reference DRB. */
static bool
vect_analyze_data_ref_dependence (struct data_reference *dra,
struct data_reference *drb,
loop_vec_info loop_vinfo)
{
bool differ_p;
struct data_dependence_relation *ddr;
if (!vect_base_addr_differ_p (dra, drb, &differ_p))
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
LOOP_LOC (loop_vinfo)))
{
fprintf (vect_dump,
"not vectorized: can't determine dependence between: ");
print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
fprintf (vect_dump, " and ");
print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
}
return true;
}
if (differ_p)
return false;
ddr = initialize_data_dependence_relation (dra, drb);
compute_affine_dependence (ddr);
if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
return false;
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
LOOP_LOC (loop_vinfo)))
{
fprintf (vect_dump,
"not vectorized: possible dependence between data-refs ");
print_generic_expr (vect_dump, DR_REF (dra), TDF_SLIM);
fprintf (vect_dump, " and ");
print_generic_expr (vect_dump, DR_REF (drb), TDF_SLIM);
}
return true;
}
/* Function vect_analyze_data_ref_dependences.
Examine all the data references in the loop, and make sure there do not
exist any data dependences between them.
TODO: dependences which distance is greater than the vectorization factor
can be ignored. */
static bool
vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo)
{
unsigned int i, j;
varray_type loop_write_refs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
varray_type loop_read_refs = LOOP_VINFO_DATAREF_READS (loop_vinfo);
/* Examine store-store (output) dependences. */
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "=== vect_analyze_dependences ===");
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "compare all store-store pairs.");
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_refs); i++)
{
for (j = i + 1; j < VARRAY_ACTIVE_SIZE (loop_write_refs); j++)
{
struct data_reference *dra =
VARRAY_GENERIC_PTR (loop_write_refs, i);
struct data_reference *drb =
VARRAY_GENERIC_PTR (loop_write_refs, j);
if (vect_analyze_data_ref_dependence (dra, drb, loop_vinfo))
return false;
}
}
/* Examine load-store (true/anti) dependences. */
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "compare all load-store pairs.");
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_refs); i++)
{
for (j = 0; j < VARRAY_ACTIVE_SIZE (loop_write_refs); j++)
{
struct data_reference *dra = VARRAY_GENERIC_PTR (loop_read_refs, i);
struct data_reference *drb =
VARRAY_GENERIC_PTR (loop_write_refs, j);
if (vect_analyze_data_ref_dependence (dra, drb, loop_vinfo))
return false;
}
}
return true;
}
/* Function vect_compute_data_ref_alignment
Compute the misalignment of the data reference DR.
Output:
1. If during the misalignment computation it is found that the data reference
cannot be vectorized then false is returned.
2. DR_MISALIGNMENT (DR) is defined.
FOR NOW: No analysis is actually performed. Misalignment is calculated
only for trivial cases. TODO. */
static bool
vect_compute_data_ref_alignment (struct data_reference *dr)
{
tree stmt = DR_STMT (dr);
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
tree ref = DR_REF (dr);
tree vectype;
tree base, alignment;
bool base_aligned_p;
tree misalign;
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "vect_compute_data_ref_alignment:");
/* Initialize misalignment to unknown. */
DR_MISALIGNMENT (dr) = -1;
misalign = STMT_VINFO_VECT_MISALIGNMENT (stmt_info);
base_aligned_p = STMT_VINFO_VECT_BASE_ALIGNED_P (stmt_info);
base = build_fold_indirect_ref (STMT_VINFO_VECT_DR_BASE_ADDRESS (stmt_info));
vectype = STMT_VINFO_VECTYPE (stmt_info);
if (!misalign)
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "Unknown alignment for access: ");
print_generic_expr (vect_dump, base, TDF_SLIM);
}
return true;
}
if (!base_aligned_p)
{
if (!vect_can_force_dr_alignment_p (base, TYPE_ALIGN (vectype)))
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "can't force alignment of ref: ");
print_generic_expr (vect_dump, ref, TDF_SLIM);
}
return true;
}
/* Force the alignment of the decl.
NOTE: This is the only change to the code we make during
the analysis phase, before deciding to vectorize the loop. */
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "force alignment");
DECL_ALIGN (base) = TYPE_ALIGN (vectype);
DECL_USER_ALIGN (base) = 1;
}
/* At this point we assume that the base is aligned. */
gcc_assert (base_aligned_p
|| (TREE_CODE (base) == VAR_DECL
&& DECL_ALIGN (base) >= TYPE_ALIGN (vectype)));
/* Alignment required, in bytes: */
alignment = ssize_int (TYPE_ALIGN (vectype)/BITS_PER_UNIT);
/* Modulo alignment. */
misalign = size_binop (TRUNC_MOD_EXPR, misalign, alignment);
if (tree_int_cst_sgn (misalign) < 0)
{
/* Negative misalignment value. */
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "unexpected misalign value");
return false;
}
DR_MISALIGNMENT (dr) = tree_low_cst (misalign, 1);
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "misalign = %d bytes", DR_MISALIGNMENT (dr));
return true;
}
/* Function vect_compute_data_refs_alignment
Compute the misalignment of data references in the loop.
This pass may take place at function granularity instead of at loop
granularity.
FOR NOW: No analysis is actually performed. Misalignment is calculated
only for trivial cases. TODO. */
static bool
vect_compute_data_refs_alignment (loop_vec_info loop_vinfo)
{
varray_type loop_write_datarefs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
varray_type loop_read_datarefs = LOOP_VINFO_DATAREF_READS (loop_vinfo);
unsigned int i;
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++)
{
struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i);
if (!vect_compute_data_ref_alignment (dr))
return false;
}
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_datarefs); i++)
{
struct data_reference *dr = VARRAY_GENERIC_PTR (loop_read_datarefs, i);
if (!vect_compute_data_ref_alignment (dr))
return false;
}
return true;
}
/* Function vect_enhance_data_refs_alignment
This pass will use loop versioning and loop peeling in order to enhance
the alignment of data references in the loop.
FOR NOW: we assume that whatever versioning/peeling takes place, only the
original loop is to be vectorized; Any other loops that are created by
the transformations performed in this pass - are not supposed to be
vectorized. This restriction will be relaxed. */
static void
vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
{
varray_type loop_read_datarefs = LOOP_VINFO_DATAREF_READS (loop_vinfo);
varray_type loop_write_datarefs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
unsigned int i;
/*
This pass will require a cost model to guide it whether to apply peeling
or versioning or a combination of the two. For example, the scheme that
intel uses when given a loop with several memory accesses, is as follows:
choose one memory access ('p') which alignment you want to force by doing
peeling. Then, either (1) generate a loop in which 'p' is aligned and all
other accesses are not necessarily aligned, or (2) use loop versioning to
generate one loop in which all accesses are aligned, and another loop in
which only 'p' is necessarily aligned.
("Automatic Intra-Register Vectorization for the Intel Architecture",
Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)
Devising a cost model is the most critical aspect of this work. It will
guide us on which access to peel for, whether to use loop versioning, how
many versions to create, etc. The cost model will probably consist of
generic considerations as well as target specific considerations (on
powerpc for example, misaligned stores are more painful than misaligned
loads).
Here is the general steps involved in alignment enhancements:
-- original loop, before alignment analysis:
for (i=0; i<N; i++){
x = q[i]; # DR_MISALIGNMENT(q) = unknown
p[i] = y; # DR_MISALIGNMENT(p) = unknown
}
-- After vect_compute_data_refs_alignment:
for (i=0; i<N; i++){
x = q[i]; # DR_MISALIGNMENT(q) = 3
p[i] = y; # DR_MISALIGNMENT(p) = unknown
}
-- Possibility 1: we do loop versioning:
if (p is aligned) {
for (i=0; i<N; i++){ # loop 1A
x = q[i]; # DR_MISALIGNMENT(q) = 3
p[i] = y; # DR_MISALIGNMENT(p) = 0
}
}
else {
for (i=0; i<N; i++){ # loop 1B
x = q[i]; # DR_MISALIGNMENT(q) = 3
p[i] = y; # DR_MISALIGNMENT(p) = unaligned
}
}
-- Possibility 2: we do loop peeling:
for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
x = q[i];
p[i] = y;
}
for (i = 3; i < N; i++){ # loop 2A
x = q[i]; # DR_MISALIGNMENT(q) = 0
p[i] = y; # DR_MISALIGNMENT(p) = unknown
}
-- Possibility 3: combination of loop peeling and versioning:
for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
x = q[i];
p[i] = y;
}
if (p is aligned) {
for (i = 3; i<N; i++){ # loop 3A
x = q[i]; # DR_MISALIGNMENT(q) = 0
p[i] = y; # DR_MISALIGNMENT(p) = 0
}
}
else {
for (i = 3; i<N; i++){ # loop 3B
x = q[i]; # DR_MISALIGNMENT(q) = 0
p[i] = y; # DR_MISALIGNMENT(p) = unaligned
}
}
These loops are later passed to loop_transform to be vectorized. The
vectorizer will use the alignment information to guide the transformation
(whether to generate regular loads/stores, or with special handling for
misalignment).
*/
/* (1) Peeling to force alignment. */
/* (1.1) Decide whether to perform peeling, and how many iterations to peel:
Considerations:
+ How many accesses will become aligned due to the peeling
- How many accesses will become unaligned due to the peeling,
and the cost of misaligned accesses.
- The cost of peeling (the extra runtime checks, the increase
in code size).
The scheme we use FORNOW: peel to force the alignment of the first
misaligned store in the loop.
Rationale: misaligned stores are not yet supported.
TODO: Use a better cost model. */
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++)
{
struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i);
if (!aligned_access_p (dr))
{
LOOP_VINFO_UNALIGNED_DR (loop_vinfo) = dr;
LOOP_DO_PEELING_FOR_ALIGNMENT (loop_vinfo) = true;
break;
}
}
if (!LOOP_VINFO_UNALIGNED_DR (loop_vinfo))
{
if (vect_print_dump_info (REPORT_DETAILS, LOOP_LOC (loop_vinfo)))
fprintf (vect_dump, "Peeling for alignment will not be applied.");
return;
}
else
if (vect_print_dump_info (REPORT_DETAILS, LOOP_LOC (loop_vinfo)))
fprintf (vect_dump, "Peeling for alignment will be applied.");
/* (1.2) Update the alignment info according to the peeling factor.
If the misalignment of the DR we peel for is M, then the
peeling factor is VF - M, and the misalignment of each access DR_i
in the loop is DR_MISALIGNMENT (DR_i) + VF - M.
If the misalignment of the DR we peel for is unknown, then the
misalignment of each access DR_i in the loop is also unknown.
FORNOW: set the misalignment of the accesses to unknown even
if the peeling factor is known at compile time.
TODO: - if the peeling factor is known at compile time, use that
when updating the misalignment info of the loop DRs.
- consider accesses that are known to have the same
alignment, even if that alignment is unknown. */
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++)
{
struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i);
if (dr == LOOP_VINFO_UNALIGNED_DR (loop_vinfo))
{
DR_MISALIGNMENT (dr) = 0;
if (vect_print_dump_info (REPORT_ALIGNMENT, LOOP_LOC (loop_vinfo)))
fprintf (vect_dump, "Alignment of access forced using peeling.");
}
else
DR_MISALIGNMENT (dr) = -1;
}
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_datarefs); i++)
{
struct data_reference *dr = VARRAY_GENERIC_PTR (loop_read_datarefs, i);
if (dr == LOOP_VINFO_UNALIGNED_DR (loop_vinfo))
{
DR_MISALIGNMENT (dr) = 0;
if (vect_print_dump_info (REPORT_ALIGNMENT, LOOP_LOC (loop_vinfo)))
fprintf (vect_dump, "Alignment of access forced using peeling.");
}
else
DR_MISALIGNMENT (dr) = -1;
}
}
/* Function vect_analyze_data_refs_alignment
Analyze the alignment of the data-references in the loop.
FOR NOW: Until support for misliagned accesses is in place, only if all
accesses are aligned can the loop be vectorized. This restriction will be
relaxed. */
static bool
vect_analyze_data_refs_alignment (loop_vec_info loop_vinfo)
{
varray_type loop_read_datarefs = LOOP_VINFO_DATAREF_READS (loop_vinfo);
varray_type loop_write_datarefs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
enum dr_alignment_support supportable_dr_alignment;
unsigned int i;
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "=== vect_analyze_data_refs_alignment ===");
/* This pass may take place at function granularity instead of at loop
granularity. */
if (!vect_compute_data_refs_alignment (loop_vinfo))
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
LOOP_LOC (loop_vinfo)))
fprintf (vect_dump,
"not vectorized: can't calculate alignment for data ref.");
return false;
}
/* This pass will decide on using loop versioning and/or loop peeling in
order to enhance the alignment of data references in the loop. */
vect_enhance_data_refs_alignment (loop_vinfo);
/* Finally, check that all the data references in the loop can be
handled with respect to their alignment. */
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_datarefs); i++)
{
struct data_reference *dr = VARRAY_GENERIC_PTR (loop_read_datarefs, i);
supportable_dr_alignment = vect_supportable_dr_alignment (dr);
if (!supportable_dr_alignment)
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
LOOP_LOC (loop_vinfo)))
fprintf (vect_dump, "not vectorized: unsupported unaligned load.");
return false;
}
if (supportable_dr_alignment != dr_aligned
&& (vect_print_dump_info (REPORT_ALIGNMENT, LOOP_LOC (loop_vinfo))))
fprintf (vect_dump, "Vectorizing an unaligned access.");
}
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++)
{
struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i);
supportable_dr_alignment = vect_supportable_dr_alignment (dr);
if (!supportable_dr_alignment)
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
LOOP_LOC (loop_vinfo)))
fprintf (vect_dump, "not vectorized: unsupported unaligned store.");
return false;
}
if (supportable_dr_alignment != dr_aligned
&& (vect_print_dump_info (REPORT_ALIGNMENT, LOOP_LOC (loop_vinfo))))
fprintf (vect_dump, "Vectorizing an unaligned access.");
}
return true;
}
/* Function vect_analyze_data_ref_access.
Analyze the access pattern of the data-reference DR. For now, a data access
has to consecutive to be considered vectorizable. */
static bool
vect_analyze_data_ref_access (struct data_reference *dr)
{
tree stmt = DR_STMT (dr);
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
tree step = STMT_VINFO_VECT_STEP (stmt_info);
tree scalar_type = TREE_TYPE (DR_REF (dr));
if (!step || tree_int_cst_compare (step, TYPE_SIZE_UNIT (scalar_type)))
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "not consecutive access");
return false;
}
return true;
}
/* Function vect_analyze_data_ref_accesses.
Analyze the access pattern of all the data references in the loop.
FORNOW: the only access pattern that is considered vectorizable is a
simple step 1 (consecutive) access.
FORNOW: handle only arrays and pointer accesses. */
static bool
vect_analyze_data_ref_accesses (loop_vec_info loop_vinfo)
{
unsigned int i;
varray_type loop_write_datarefs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
varray_type loop_read_datarefs = LOOP_VINFO_DATAREF_READS (loop_vinfo);
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "=== vect_analyze_data_ref_accesses ===");
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++)
{
struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i);
bool ok = vect_analyze_data_ref_access (dr);
if (!ok)
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
LOOP_LOC (loop_vinfo)))
fprintf (vect_dump, "not vectorized: complicated access pattern.");
return false;
}
}
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_datarefs); i++)
{
struct data_reference *dr = VARRAY_GENERIC_PTR (loop_read_datarefs, i);
bool ok = vect_analyze_data_ref_access (dr);
if (!ok)
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
LOOP_LOC (loop_vinfo)))
fprintf (vect_dump, "not vectorized: complicated access pattern.");
return false;
}
}
return true;
}
/* Function vect_analyze_pointer_ref_access.
Input:
STMT - a stmt that contains a data-ref.
MEMREF - a data-ref in STMT, which is an INDIRECT_REF.
ACCESS_FN - the access function of MEMREF.
Output:
If the data-ref access is vectorizable, return a data_reference structure
that represents it (DR). Otherwise - return NULL.
STEP - the stride of MEMREF in the loop.
INIT - the initial condition of MEMREF in the loop.
*/
static struct data_reference *
vect_analyze_pointer_ref_access (tree memref, tree stmt, bool is_read,
tree access_fn, tree *ptr_init, tree *ptr_step)
{
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
tree step, init;
tree reftype, innertype;
tree indx_access_fn;
int loopnum = loop->num;
struct data_reference *dr;
if (!vect_is_simple_iv_evolution (loopnum, access_fn, &init, &step))
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
LOOP_LOC (loop_vinfo)))
fprintf (vect_dump, "not vectorized: pointer access is not simple.");
return NULL;
}
STRIP_NOPS (init);
if (!expr_invariant_in_loop_p (loop, init))
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
LOOP_LOC (loop_vinfo)))
fprintf (vect_dump,
"not vectorized: initial condition is not loop invariant.");
return NULL;
}
if (TREE_CODE (step) != INTEGER_CST)
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
LOOP_LOC (loop_vinfo)))
fprintf (vect_dump,
"not vectorized: non constant step for pointer access.");
return NULL;
}
reftype = TREE_TYPE (TREE_OPERAND (memref, 0));
if (TREE_CODE (reftype) != POINTER_TYPE)
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
LOOP_LOC (loop_vinfo)))
fprintf (vect_dump, "not vectorized: unexpected pointer access form.");
return NULL;
}
reftype = TREE_TYPE (init);
if (TREE_CODE (reftype) != POINTER_TYPE)
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
LOOP_LOC (loop_vinfo)))
fprintf (vect_dump, "not vectorized: unexpected pointer access form.");
return NULL;
}
*ptr_step = fold_convert (ssizetype, step);
innertype = TREE_TYPE (reftype);
/* Check that STEP is a multiple of type size. */
if (!integer_zerop (size_binop (TRUNC_MOD_EXPR, *ptr_step,
fold_convert (ssizetype, TYPE_SIZE_UNIT (innertype)))))
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
LOOP_LOC (loop_vinfo)))
fprintf (vect_dump, "not vectorized: non consecutive access.");
return NULL;
}
indx_access_fn =
build_polynomial_chrec (loopnum, integer_zero_node, integer_one_node);
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "Access function of ptr indx: ");
print_generic_expr (vect_dump, indx_access_fn, TDF_SLIM);
}
dr = init_data_ref (stmt, memref, NULL_TREE, indx_access_fn, is_read);
*ptr_init = init;
return dr;
}
/* Function vect_get_memtag.
The function returns the relevant variable for memory tag (for aliasing
purposes). */
static tree
vect_get_memtag (tree memref, struct data_reference *dr)
{
tree symbl, tag;
switch (TREE_CODE (memref))
{
case SSA_NAME:
symbl = SSA_NAME_VAR (memref);
tag = get_var_ann (symbl)->type_mem_tag;
if (!tag)
{
tree ptr = TREE_OPERAND (DR_REF (dr), 0);
if (TREE_CODE (ptr) == SSA_NAME)
tag = get_var_ann (SSA_NAME_VAR (ptr))->type_mem_tag;
}
return tag;
case ADDR_EXPR:
return TREE_OPERAND (memref, 0);
default:
return NULL_TREE;
}
}
/* Function vect_address_analysis
Return the BASE of the address expression EXPR.
Also compute the INITIAL_OFFSET from BASE, MISALIGN and STEP.
Input:
EXPR - the address expression that is being analyzed
STMT - the statement that contains EXPR or its original memory reference
IS_READ - TRUE if STMT reads from EXPR, FALSE if writes to EXPR
VECTYPE - the type that defines the alignment (i.e, we compute
alignment relative to TYPE_ALIGN(VECTYPE))
DR - data_reference struct for the original memory reference
Output:
BASE (returned value) - the base of the data reference EXPR.
INITIAL_OFFSET - initial offset of EXPR from BASE (an expression)
MISALIGN - offset of EXPR from BASE in bytes (a constant) or NULL_TREE if the
computation is impossible
STEP - evolution of EXPR in the loop
BASE_ALIGNED - indicates if BASE is aligned
If something unexpected is encountered (an unsupported form of data-ref),
then NULL_TREE is returned.
*/
static tree
vect_address_analysis (tree expr, tree stmt, bool is_read, tree vectype,
struct data_reference *dr, tree *offset, tree *misalign,
tree *step, bool *base_aligned)
{
tree oprnd0, oprnd1, base_address, offset_expr, base_addr0, base_addr1;
tree address_offset = ssize_int (0), address_misalign = ssize_int (0);
switch (TREE_CODE (expr))
{
case PLUS_EXPR:
case MINUS_EXPR:
/* EXPR is of form {base +/- offset} (or {offset +/- base}). */
oprnd0 = TREE_OPERAND (expr, 0);
oprnd1 = TREE_OPERAND (expr, 1);
STRIP_NOPS (oprnd0);
STRIP_NOPS (oprnd1);
/* Recursively try to find the base of the address contained in EXPR.
For offset, the returned base will be NULL. */
base_addr0 = vect_address_analysis (oprnd0, stmt, is_read, vectype, dr,
&address_offset, &address_misalign, step,
base_aligned);
base_addr1 = vect_address_analysis (oprnd1, stmt, is_read, vectype, dr,
&address_offset, &address_misalign, step,
base_aligned);
/* We support cases where only one of the operands contains an
address. */
if ((base_addr0 && base_addr1) || (!base_addr0 && !base_addr1))
return NULL_TREE;
/* To revert STRIP_NOPS. */
oprnd0 = TREE_OPERAND (expr, 0);
oprnd1 = TREE_OPERAND (expr, 1);
offset_expr = base_addr0 ?
fold_convert (ssizetype, oprnd1) : fold_convert (ssizetype, oprnd0);
/* EXPR is of form {base +/- offset} (or {offset +/- base}). If offset is
a number, we can add it to the misalignment value calculated for base,
otherwise, misalignment is NULL. */
if (TREE_CODE (offset_expr) == INTEGER_CST && address_misalign)
*misalign = size_binop (TREE_CODE (expr), address_misalign,
offset_expr);
else
*misalign = NULL_TREE;
/* Combine offset (from EXPR {base + offset}) with the offset calculated
for base. */
*offset = size_binop (TREE_CODE (expr), address_offset, offset_expr);
return base_addr0 ? base_addr0 : base_addr1;
case ADDR_EXPR:
base_address = vect_object_analysis (TREE_OPERAND (expr, 0), stmt, is_read,
vectype, &dr, offset, misalign, step,
base_aligned);
return base_address;
case SSA_NAME:
if (TREE_CODE (TREE_TYPE (expr)) != POINTER_TYPE)
return NULL_TREE;
if (TYPE_ALIGN (TREE_TYPE (TREE_TYPE (expr))) < TYPE_ALIGN (vectype))
{
if (vect_get_ptr_offset (expr, vectype, misalign))
*base_aligned = true;
else
*base_aligned = false;
}
else
{
*base_aligned = true;
*misalign = ssize_int (0);
}
*offset = ssize_int (0);
*step = ssize_int (0);
return expr;
default:
return NULL_TREE;
}
}
/* Function vect_object_analysis
Return the BASE of the data reference MEMREF.
Also compute the INITIAL_OFFSET from BASE, MISALIGN and STEP.
E.g., for EXPR a.b[i] + 4B, BASE is a, and OFFSET is the overall offset
'a.b[i] + 4B' from a (can be an expression), MISALIGN is an OFFSET
instantiated with initial_conditions of access_functions of variables,
modulo alignment, and STEP is the evolution of the DR_REF in this loop.
Function get_inner_reference is used for the above in case of ARRAY_REF and
COMPONENT_REF.
The structure of the function is as follows:
Part 1:
Case 1. For handled_component_p refs
1.1 call get_inner_reference
1.1.1 analyze offset expr received from get_inner_reference
1.2. build data-reference structure for MEMREF
(fall through with BASE)
Case 2. For declarations
2.1 check alignment
2.2 update DR_BASE_NAME if necessary for alias
Case 3. For INDIRECT_REFs
3.1 get the access function
3.2 analyze evolution of MEMREF
3.3 set data-reference structure for MEMREF
3.4 call vect_address_analysis to analyze INIT of the access function
Part 2:
Combine the results of object and address analysis to calculate
INITIAL_OFFSET, STEP and misalignment info.
Input:
MEMREF - the memory reference that is being analyzed
STMT - the statement that contains MEMREF
IS_READ - TRUE if STMT reads from MEMREF, FALSE if writes to MEMREF
VECTYPE - the type that defines the alignment (i.e, we compute
alignment relative to TYPE_ALIGN(VECTYPE))
Output:
BASE_ADDRESS (returned value) - the base address of the data reference MEMREF
E.g, if MEMREF is a.b[k].c[i][j] the returned
base is &a.
DR - data_reference struct for MEMREF
INITIAL_OFFSET - initial offset of MEMREF from BASE (an expression)
MISALIGN - offset of MEMREF from BASE in bytes (a constant) or NULL_TREE if
the computation is impossible
STEP - evolution of the DR_REF in the loop
BASE_ALIGNED - indicates if BASE is aligned
If something unexpected is encountered (an unsupported form of data-ref),
then NULL_TREE is returned. */
static tree
vect_object_analysis (tree memref, tree stmt, bool is_read,
tree vectype, struct data_reference **dr,
tree *offset, tree *misalign, tree *step,
bool *base_aligned)
{
tree base = NULL_TREE, base_address = NULL_TREE;
tree object_offset = ssize_int (0), object_misalign = ssize_int (0);
tree object_step = ssize_int (0), address_step = ssize_int (0);
bool object_base_aligned = true, address_base_aligned = true;
tree address_offset = ssize_int (0), address_misalign = ssize_int (0);
HOST_WIDE_INT pbitsize, pbitpos;
tree poffset, bit_pos_in_bytes;
enum machine_mode pmode;
int punsignedp, pvolatilep;
tree ptr_step = ssize_int (0), ptr_init = NULL_TREE;
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
struct data_reference *ptr_dr = NULL;
tree access_fn, evolution_part, address_to_analyze;
/* Part 1: */
/* Case 1. handled_component_p refs. */
if (handled_component_p (memref))
{
/* 1.1 call get_inner_reference. */
/* Find the base and the offset from it. */
base = get_inner_reference (memref, &pbitsize, &pbitpos, &poffset,
&pmode, &punsignedp, &pvolatilep, false);
if (!base)
return NULL_TREE;
/* 1.1.1 analyze offset expr received from get_inner_reference. */
if (poffset
&& !vect_analyze_offset_expr (poffset, loop, TYPE_SIZE_UNIT (vectype),
&object_offset, &object_misalign, &object_step))
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "failed to compute offset or step for ");
print_generic_expr (vect_dump, memref, TDF_SLIM);
}
return NULL_TREE;
}
/* Add bit position to OFFSET and MISALIGN. */
bit_pos_in_bytes = ssize_int (pbitpos/BITS_PER_UNIT);
/* Check that there is no remainder in bits. */
if (pbitpos%BITS_PER_UNIT)
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "bit offset alignment.");
return NULL_TREE;
}
object_offset = size_binop (PLUS_EXPR, bit_pos_in_bytes, object_offset);
if (object_misalign)
object_misalign = size_binop (PLUS_EXPR, object_misalign,
bit_pos_in_bytes);
/* Create data-reference for MEMREF. TODO: handle COMPONENT_REFs. */
if (!(*dr))
{
if (TREE_CODE (memref) == ARRAY_REF)
*dr = analyze_array (stmt, memref, is_read);
else
/* FORNOW. */
return NULL_TREE;
}
memref = base; /* To continue analysis of BASE. */
/* fall through */
}
/* Part 1: Case 2. Declarations. */
if (DECL_P (memref))
{
/* We expect to get a decl only if we already have a DR. */
if (!(*dr))
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "unhandled decl ");
print_generic_expr (vect_dump, memref, TDF_SLIM);
}
return NULL_TREE;
}
/* 2.1 check the alignment. */
if (DECL_ALIGN (memref) >= TYPE_ALIGN (vectype))
object_base_aligned = true;
else
object_base_aligned = false;
/* 2.2 update DR_BASE_NAME if necessary. */
if (!DR_BASE_NAME ((*dr)))
/* For alias analysis. In case the analysis of INDIRECT_REF brought
us to object. */
DR_BASE_NAME ((*dr)) = memref;
base_address = build_fold_addr_expr (memref);
}
/* Part 1: Case 3. INDIRECT_REFs. */
else if (TREE_CODE (memref) == INDIRECT_REF)
{
/* 3.1 get the access function. */
access_fn = analyze_scalar_evolution (loop, TREE_OPERAND (memref, 0));
if (!access_fn)
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
LOOP_LOC (loop_vinfo)))
fprintf (vect_dump, "not vectorized: complicated pointer access.");
return NULL_TREE;
}
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "Access function of ptr: ");
print_generic_expr (vect_dump, access_fn, TDF_SLIM);
}
/* 3.2 analyze evolution of MEMREF. */
evolution_part = evolution_part_in_loop_num (access_fn, loop->num);
if (evolution_part)
{
ptr_dr = vect_analyze_pointer_ref_access (memref, stmt, is_read,
access_fn, &ptr_init, &ptr_step);
if (!(ptr_dr))
return NULL_TREE;
object_step = size_binop (PLUS_EXPR, object_step, ptr_step);
address_to_analyze = ptr_init;
}
else
{
if (!(*dr))
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
LOOP_LOC (loop_vinfo)))
fprintf (vect_dump, "not vectorized: ptr is loop invariant.");
return NULL_TREE;
}
/* Since there exists DR for MEMREF, we are analyzing the base of
handled component, which not necessary has evolution in the
loop. */
address_to_analyze = TREE_OPERAND (base, 0);
}
/* 3.3 set data-reference structure for MEMREF. */
*dr = (*dr) ? *dr : ptr_dr;
/* 3.4 call vect_address_analysis to analyze INIT of the access
function. */
base_address = vect_address_analysis (address_to_analyze, stmt, is_read,
vectype, *dr, &address_offset, &address_misalign,
&address_step, &address_base_aligned);
}
if (!base_address)
/* MEMREF cannot be analyzed. */
return NULL_TREE;
/* Part 2: Combine the results of object and address analysis to calculate
INITIAL_OFFSET, STEP and misalignment info. */
*offset = size_binop (PLUS_EXPR, object_offset, address_offset);
if (object_misalign && address_misalign)
*misalign = size_binop (PLUS_EXPR, object_misalign, address_misalign);
else
*misalign = NULL_TREE;
*step = size_binop (PLUS_EXPR, object_step, address_step);
*base_aligned = object_base_aligned && address_base_aligned;
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "Results of object analysis for: ");
print_generic_expr (vect_dump, memref, TDF_SLIM);
fprintf (vect_dump, "\n\tbase: ");
print_generic_expr (vect_dump, base, TDF_SLIM);
fprintf (vect_dump, "\n\toffset: ");
print_generic_expr (vect_dump, *offset, TDF_SLIM);
fprintf (vect_dump, "\n\tstep: ");
print_generic_expr (vect_dump, *step, TDF_SLIM);
fprintf (vect_dump, "\n\tbase aligned %d\n\tmisalign: ", *base_aligned);
print_generic_expr (vect_dump, *misalign, TDF_SLIM);
}
return base_address;
}
/* Function vect_analyze_data_refs.
Find all the data references in the loop.
The general structure of the analysis of data refs in the vectorizer is as
follows:
1- vect_analyze_data_refs(loop):
Find and analyze all data-refs in the loop:
foreach ref
base_address = vect_object_analysis(ref)
ref_stmt.memtag = vect_get_memtag(base)
1.1- vect_object_analysis(ref):
Analyze ref, and build a DR (data_referece struct) for it;
compute base, initial_offset, step and alignment.
Call get_inner_reference for refs handled in this function.
Call vect_addr_analysis(addr) to analyze pointer type expressions.
Set ref_stmt.base, ref_stmt.initial_offset, ref_stmt.alignment, and
ref_stmt.step accordingly.
2- vect_analyze_dependences(): apply dependence testing using ref_stmt.DR
3- vect_analyze_drs_alignment(): check that ref_stmt.alignment is ok.
4- vect_analyze_drs_access(): check that ref_stmt.step is ok.
FORNOW: Handle aligned INDIRECT_REFs and ARRAY_REFs
which base is really an array (not a pointer) and which alignment
can be forced. This restriction will be relaxed. */
static bool
vect_analyze_data_refs (loop_vec_info loop_vinfo)
{
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
int nbbs = loop->num_nodes;
block_stmt_iterator si;
int j;
struct data_reference *dr;
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "=== vect_analyze_data_refs ===");
for (j = 0; j < nbbs; j++)
{
basic_block bb = bbs[j];
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{
bool is_read = false;
tree stmt = bsi_stmt (si);
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
v_may_def_optype v_may_defs = STMT_V_MAY_DEF_OPS (stmt);
v_must_def_optype v_must_defs = STMT_V_MUST_DEF_OPS (stmt);
vuse_optype vuses = STMT_VUSE_OPS (stmt);
varray_type *datarefs = NULL;
int nvuses, nv_may_defs, nv_must_defs;
tree memref = NULL;
tree scalar_type, vectype;
tree base, offset, misalign, step, tag;
bool base_aligned;
/* Assumption: there exists a data-ref in stmt, if and only if
it has vuses/vdefs. */
if (!vuses && !v_may_defs && !v_must_defs)
continue;
nvuses = NUM_VUSES (vuses);
nv_may_defs = NUM_V_MAY_DEFS (v_may_defs);
nv_must_defs = NUM_V_MUST_DEFS (v_must_defs);
if (nvuses && (nv_may_defs || nv_must_defs))
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "unexpected vdefs and vuses in stmt: ");
print_generic_expr (vect_dump, stmt, TDF_SLIM);
}
return false;
}
if (TREE_CODE (stmt) != MODIFY_EXPR)
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "unexpected vops in stmt: ");
print_generic_expr (vect_dump, stmt, TDF_SLIM);
}
return false;
}
if (vuses)
{
memref = TREE_OPERAND (stmt, 1);
datarefs = &(LOOP_VINFO_DATAREF_READS (loop_vinfo));
is_read = true;
}
else /* vdefs */
{
memref = TREE_OPERAND (stmt, 0);
datarefs = &(LOOP_VINFO_DATAREF_WRITES (loop_vinfo));
is_read = false;
}
scalar_type = TREE_TYPE (memref);
vectype = get_vectype_for_scalar_type (scalar_type);
if (!vectype)
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "no vectype for stmt: ");
print_generic_expr (vect_dump, stmt, TDF_SLIM);
fprintf (vect_dump, " scalar_type: ");
print_generic_expr (vect_dump, scalar_type, TDF_DETAILS);
}
/* It is not possible to vectorize this data reference. */
return false;
}
/* Analyze MEMREF. If it is of a supported form, build data_reference
struct for it (DR). */
dr = NULL;
base = vect_object_analysis (memref, stmt, is_read, vectype, &dr,
&offset, &misalign, &step,
&base_aligned);
if (!base)
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
LOOP_LOC (loop_vinfo)))
{
fprintf (vect_dump, "not vectorized: unhandled data ref: ");
print_generic_expr (vect_dump, stmt, TDF_SLIM);
}
return false;
}
/* Find memtag for aliasing purposes. */
tag = vect_get_memtag (base, dr);
if (!tag)
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
LOOP_LOC (loop_vinfo)))
{
fprintf (vect_dump, "not vectorized: no memtag ref: ");
print_generic_expr (vect_dump, memref, TDF_SLIM);
}
return false;
}
STMT_VINFO_VECT_DR_BASE_ADDRESS (stmt_info) = base;
STMT_VINFO_VECT_INIT_OFFSET (stmt_info) = offset;
STMT_VINFO_VECT_STEP (stmt_info) = step;
STMT_VINFO_VECT_MISALIGNMENT (stmt_info) = misalign;
STMT_VINFO_VECT_BASE_ALIGNED_P (stmt_info) = base_aligned;
STMT_VINFO_MEMTAG (stmt_info) = tag;
STMT_VINFO_VECTYPE (stmt_info) = vectype;
VARRAY_PUSH_GENERIC_PTR (*datarefs, dr);
STMT_VINFO_DATA_REF (stmt_info) = dr;
}
}
return true;
}
/* Utility functions used by vect_mark_stmts_to_be_vectorized. */
/* Function vect_mark_relevant.
Mark STMT as "relevant for vectorization" and add it to WORKLIST. */
static void
vect_mark_relevant (varray_type *worklist, tree stmt)
{
stmt_vec_info stmt_info;
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "mark relevant.");
if (TREE_CODE (stmt) == PHI_NODE)
{
VARRAY_PUSH_TREE (*worklist, stmt);
return;
}
stmt_info = vinfo_for_stmt (stmt);
if (!stmt_info)
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "mark relevant: no stmt info!!.");
print_generic_expr (vect_dump, stmt, TDF_SLIM);
}
return;
}
if (STMT_VINFO_RELEVANT_P (stmt_info))
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "already marked relevant.");
return;
}
STMT_VINFO_RELEVANT_P (stmt_info) = 1;
VARRAY_PUSH_TREE (*worklist, stmt);
}
/* Function vect_stmt_relevant_p.
Return true if STMT in loop that is represented by LOOP_VINFO is
"relevant for vectorization".
A stmt is considered "relevant for vectorization" if:
- it has uses outside the loop.
- it has vdefs (it alters memory).
- control stmts in the loop (except for the exit condition).
CHECKME: what other side effects would the vectorizer allow? */
static bool
vect_stmt_relevant_p (tree stmt, loop_vec_info loop_vinfo)
{
v_may_def_optype v_may_defs;
v_must_def_optype v_must_defs;
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
int i;
dataflow_t df;
int num_uses;
/* cond stmt other than loop exit cond. */
if (is_ctrl_stmt (stmt) && (stmt != LOOP_VINFO_EXIT_COND (loop_vinfo)))
return true;
/* changing memory. */
if (TREE_CODE (stmt) != PHI_NODE)
{
v_may_defs = STMT_V_MAY_DEF_OPS (stmt);
v_must_defs = STMT_V_MUST_DEF_OPS (stmt);
if (v_may_defs || v_must_defs)
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "vec_stmt_relevant_p: stmt has vdefs.");
return true;
}
}
/* uses outside the loop. */
df = get_immediate_uses (stmt);
num_uses = num_immediate_uses (df);
for (i = 0; i < num_uses; i++)
{
tree use = immediate_use (df, i);
basic_block bb = bb_for_stmt (use);
if (!flow_bb_inside_loop_p (loop, bb))
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "vec_stmt_relevant_p: used out of loop.");
return true;
}
}
return false;
}
/* Function vect_mark_stmts_to_be_vectorized.
Not all stmts in the loop need to be vectorized. For example:
for i...
for j...
1. T0 = i + j
2. T1 = a[T0]
3. j = j + 1
Stmt 1 and 3 do not need to be vectorized, because loop control and
addressing of vectorized data-refs are handled differently.
This pass detects such stmts. */
static bool
vect_mark_stmts_to_be_vectorized (loop_vec_info loop_vinfo)
{
varray_type worklist;
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
unsigned int nbbs = loop->num_nodes;
block_stmt_iterator si;
tree stmt;
stmt_ann_t ann;
unsigned int i;
int j;
use_optype use_ops;
stmt_vec_info stmt_info;
basic_block bb;
tree phi;
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "=== vect_mark_stmts_to_be_vectorized ===");
bb = loop->header;
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "init: phi relevant? ");
print_generic_expr (vect_dump, phi, TDF_SLIM);
}
if (vect_stmt_relevant_p (phi, loop_vinfo))
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
LOOP_LOC (loop_vinfo)))
fprintf (vect_dump, "unsupported reduction/induction.");
return false;
}
}
VARRAY_TREE_INIT (worklist, 64, "work list");
/* 1. Init worklist. */
for (i = 0; i < nbbs; i++)
{
bb = bbs[i];
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{
stmt = bsi_stmt (si);
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "init: stmt relevant? ");
print_generic_expr (vect_dump, stmt, TDF_SLIM);
}
stmt_info = vinfo_for_stmt (stmt);
STMT_VINFO_RELEVANT_P (stmt_info) = 0;
if (vect_stmt_relevant_p (stmt, loop_vinfo))
vect_mark_relevant (&worklist, stmt);
}
}
/* 2. Process_worklist */
while (VARRAY_ACTIVE_SIZE (worklist) > 0)
{
stmt = VARRAY_TOP_TREE (worklist);
VARRAY_POP (worklist);
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "worklist: examine stmt: ");
print_generic_expr (vect_dump, stmt, TDF_SLIM);
}
/* Examine the USES in this statement. Mark all the statements which
feed this statement's uses as "relevant", unless the USE is used as
an array index. */
if (TREE_CODE (stmt) == PHI_NODE)
{
/* follow the def-use chain inside the loop. */
for (j = 0; j < PHI_NUM_ARGS (stmt); j++)
{
tree arg = PHI_ARG_DEF (stmt, j);
tree def_stmt = NULL_TREE;
basic_block bb;
if (!vect_is_simple_use (arg, loop_vinfo, &def_stmt))
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
LOOP_LOC (loop_vinfo)))
fprintf (vect_dump, "not vectorized: unsupported use in stmt.");
varray_clear (worklist);
return false;
}
if (!def_stmt)
continue;
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "worklist: def_stmt: ");
print_generic_expr (vect_dump, def_stmt, TDF_SLIM);
}
bb = bb_for_stmt (def_stmt);
if (flow_bb_inside_loop_p (loop, bb))
vect_mark_relevant (&worklist, def_stmt);
}
}
ann = stmt_ann (stmt);
use_ops = USE_OPS (ann);
for (i = 0; i < NUM_USES (use_ops); i++)
{
tree use = USE_OP (use_ops, i);
/* We are only interested in uses that need to be vectorized. Uses
that are used for address computation are not considered relevant.
*/
if (exist_non_indexing_operands_for_use_p (use, stmt))
{
tree def_stmt = NULL_TREE;
basic_block bb;
if (!vect_is_simple_use (use, loop_vinfo, &def_stmt))
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS,
LOOP_LOC (loop_vinfo)))
fprintf (vect_dump, "not vectorized: unsupported use in stmt.");
varray_clear (worklist);
return false;
}
if (!def_stmt)
continue;
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "worklist: examine use %d: ", i);
print_generic_expr (vect_dump, use, TDF_SLIM);
}
bb = bb_for_stmt (def_stmt);
if (flow_bb_inside_loop_p (loop, bb))
vect_mark_relevant (&worklist, def_stmt);
}
}
} /* while worklist */
varray_clear (worklist);
return true;
}
/* Function vect_can_advance_ivs_p
In case the number of iterations that LOOP iterates in unknown at compile
time, an epilog loop will be generated, and the loop induction variables
(IVs) will be "advanced" to the value they are supposed to take just before
the epilog loop. Here we check that the access function of the loop IVs
and the expression that represents the loop bound are simple enough.
These restrictions will be relaxed in the future. */
static bool
vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
{
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block bb = loop->header;
tree phi;
/* Analyze phi functions of the loop header. */
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
{
tree access_fn = NULL;
tree evolution_part;
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "Analyze phi: ");
print_generic_expr (vect_dump, phi, TDF_SLIM);
}
/* Skip virtual phi's. The data dependences that are associated with
virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "virtual phi. skip.");
continue;
}
/* Analyze the evolution function. */
access_fn = instantiate_parameters
(loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
if (!access_fn)
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "No Access function.");
return false;
}
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "Access function of PHI: ");
print_generic_expr (vect_dump, access_fn, TDF_SLIM);
}
evolution_part = evolution_part_in_loop_num (access_fn, loop->num);
if (evolution_part == NULL_TREE)
return false;
/* FORNOW: We do not transform initial conditions of IVs
which evolution functions are a polynomial of degree >= 2. */
if (tree_is_chrec (evolution_part))
return false;
}
return true;
}
/* Function vect_get_loop_niters.
Determine how many iterations the loop is executed.
If an expression that represents the number of iterations
can be constructed, place it in NUMBER_OF_ITERATIONS.
Return the loop exit condition. */
static tree
vect_get_loop_niters (struct loop *loop, tree *number_of_iterations)
{
tree niters;
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "=== get_loop_niters ===");
niters = number_of_iterations_in_loop (loop);
if (niters != NULL_TREE
&& niters != chrec_dont_know)
{
*number_of_iterations = niters;
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "==> get_loop_niters:" );
print_generic_expr (vect_dump, *number_of_iterations, TDF_SLIM);
}
}
return get_loop_exit_condition (loop);
}
/* Function vect_analyze_loop_form.
Verify the following restrictions (some may be relaxed in the future):
- it's an inner-most loop
- number of BBs = 2 (which are the loop header and the latch)
- the loop has a pre-header
- the loop has a single entry and exit
- the loop exit condition is simple enough, and the number of iterations
can be analyzed (a countable loop). */
static loop_vec_info
vect_analyze_loop_form (struct loop *loop)
{
loop_vec_info loop_vinfo;
tree loop_cond;
tree number_of_iterations = NULL;
bool rescan = false;
LOC loop_loc;
loop_loc = find_loop_location (loop);
if (vect_print_dump_info (REPORT_DETAILS, loop_loc))
fprintf (vect_dump, "=== vect_analyze_loop_form ===");
if (loop->inner)
{
if (vect_print_dump_info (REPORT_OUTER_LOOPS, loop_loc))
fprintf (vect_dump, "not vectorized: nested loop.");
return NULL;
}
if (!loop->single_exit
|| loop->num_nodes != 2
|| EDGE_COUNT (loop->header->preds) != 2
|| loop->num_entries != 1)
{
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS, loop_loc))
{
if (!loop->single_exit)
fprintf (vect_dump, "not vectorized: multiple exits.");
else if (loop->num_nodes != 2)
fprintf (vect_dump, "not vectorized: too many BBs in loop.");
else if (EDGE_COUNT (loop->header->preds) != 2)
fprintf (vect_dump, "not vectorized: too many incoming edges.");
else if (loop->num_entries != 1)
fprintf (vect_dump, "not vectorized: too many entries.");
}
return NULL;
}
/* We assume that the loop exit condition is at the end of the loop. i.e,
that the loop is represented as a do-while (with a proper if-guard
before the loop if needed), where the loop header contains all the
executable statements, and the latch is empty. */
if (!empty_block_p (loop->latch))
{
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS, loop_loc))
fprintf (vect_dump, "not vectorized: unexpectd loop form.");
return NULL;
}
/* Make sure we have a preheader basic block. */
if (!loop->pre_header)
{
rescan = true;
loop_split_edge_with (loop_preheader_edge (loop), NULL);
}
/* Make sure there exists a single-predecessor exit bb: */
if (EDGE_COUNT (loop->exit_edges[0]->dest->preds) != 1)
{
rescan = true;
loop_split_edge_with (loop->exit_edges[0], NULL);
}
if (rescan)
{
flow_loop_scan (loop, LOOP_ALL);
/* Flow loop scan does not update loop->single_exit field. */
loop->single_exit = loop->exit_edges[0];
}
if (empty_block_p (loop->header))
{
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS, loop_loc))
fprintf (vect_dump, "not vectorized: empty loop.");
return NULL;
}
loop_cond = vect_get_loop_niters (loop, &number_of_iterations);
if (!loop_cond)
{
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS, loop_loc))
fprintf (vect_dump, "not vectorized: complicated exit condition.");
return NULL;
}
if (!number_of_iterations)
{
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS, loop_loc))
fprintf (vect_dump,
"not vectorized: number of iterations cannot be computed.");
return NULL;
}
if (chrec_contains_undetermined (number_of_iterations))
{
if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS, loop_loc))
fprintf (vect_dump, "Infinite number of iterations.");
return false;
}
loop_vinfo = new_loop_vec_info (loop);
LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
{
if (vect_print_dump_info (REPORT_DETAILS, loop_loc))
{
fprintf (vect_dump, "Symbolic number of iterations is ");
print_generic_expr (vect_dump, number_of_iterations, TDF_DETAILS);
}
}
else
if (LOOP_VINFO_INT_NITERS (loop_vinfo) == 0)
{
if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS, loop_loc))
fprintf (vect_dump, "not vectorized: number of iterations = 0.");
return NULL;
}
LOOP_VINFO_EXIT_COND (loop_vinfo) = loop_cond;
LOOP_VINFO_LOC (loop_vinfo) = loop_loc;
return loop_vinfo;
}
/* Function vect_analyze_loop.
Apply a set of analyses on LOOP, and create a loop_vec_info struct
for it. The different analyses will record information in the
loop_vec_info struct. */
loop_vec_info
vect_analyze_loop (struct loop *loop)
{
bool ok;
loop_vec_info loop_vinfo;
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "===== analyze_loop_nest =====");
/* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
loop_vinfo = vect_analyze_loop_form (loop);
if (!loop_vinfo)
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "bad loop form.");
return NULL;
}
/* Find all data references in the loop (which correspond to vdefs/vuses)
and analyze their evolution in the loop.
FORNOW: Handle only simple, array references, which
alignment can be forced, and aligned pointer-references. */
ok = vect_analyze_data_refs (loop_vinfo);
if (!ok)
{
if (vect_print_dump_info (REPORT_DETAILS, LOOP_LOC (loop_vinfo)))
fprintf (vect_dump, "bad data references.");
destroy_loop_vec_info (loop_vinfo);
return NULL;
}
/* Data-flow analysis to detect stmts that do not need to be vectorized. */
ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
if (!ok)
{
if (vect_print_dump_info (REPORT_DETAILS, LOOP_LOC (loop_vinfo)))
fprintf (vect_dump, "unexpected pattern.");
destroy_loop_vec_info (loop_vinfo);
return NULL;
}
/* Check that all cross-iteration scalar data-flow cycles are OK.
Cross-iteration cycles caused by virtual phis are analyzed separately. */
ok = vect_analyze_scalar_cycles (loop_vinfo);
if (!ok)
{
if (vect_print_dump_info (REPORT_DETAILS, LOOP_LOC (loop_vinfo)))
fprintf (vect_dump, "bad scalar cycle.");
destroy_loop_vec_info (loop_vinfo);
return NULL;
}
/* Analyze data dependences between the data-refs in the loop.
FORNOW: fail at the first data dependence that we encounter. */
ok = vect_analyze_data_ref_dependences (loop_vinfo);
if (!ok)
{
if (vect_print_dump_info (REPORT_DETAILS, LOOP_LOC (loop_vinfo)))
fprintf (vect_dump, "bad data dependence.");
destroy_loop_vec_info (loop_vinfo);
return NULL;
}
/* Analyze the access patterns of the data-refs in the loop (consecutive,
complex, etc.). FORNOW: Only handle consecutive access pattern. */
ok = vect_analyze_data_ref_accesses (loop_vinfo);
if (!ok)
{
if (vect_print_dump_info (REPORT_DETAILS, LOOP_LOC (loop_vinfo)))
fprintf (vect_dump, "bad data access.");
destroy_loop_vec_info (loop_vinfo);
return NULL;
}
/* Analyze the alignment of the data-refs in the loop.
FORNOW: Only aligned accesses are handled. */
ok = vect_analyze_data_refs_alignment (loop_vinfo);
if (!ok)
{
if (vect_print_dump_info (REPORT_DETAILS, LOOP_LOC (loop_vinfo)))
fprintf (vect_dump, "bad data alignment.");
destroy_loop_vec_info (loop_vinfo);
return NULL;
}
/* Scan all the operations in the loop and make sure they are
vectorizable. */
ok = vect_analyze_operations (loop_vinfo);
if (!ok)
{
if (vect_print_dump_info (REPORT_DETAILS, LOOP_LOC (loop_vinfo)))
fprintf (vect_dump, "bad operation or unsupported loop bound.");
destroy_loop_vec_info (loop_vinfo);
return NULL;
}
LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
return loop_vinfo;
}
/* Transformation Utilities for Loop Vectorization.
Copyright (C) 2003,2004,2005 Free Software Foundation, Inc.
Contributed by Dorit Naishlos <dorit@il.ibm.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "errors.h"
#include "ggc.h"
#include "tree.h"
#include "target.h"
#include "rtl.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "timevar.h"
#include "cfgloop.h"
#include "expr.h"
#include "optabs.h"
#include "tree-data-ref.h"
#include "tree-chrec.h"
#include "tree-scalar-evolution.h"
#include "tree-vectorizer.h"
#include "langhooks.h"
#include "tree-pass.h"
#include "toplev.h"
/* Utility functions for the code transformation. */
static bool vect_transform_stmt (tree, block_stmt_iterator *);
static void vect_align_data_ref (tree);
static tree vect_create_destination_var (tree, tree);
static tree vect_create_data_ref_ptr
(tree, block_stmt_iterator *, tree, tree *, bool);
static tree vect_create_index_for_vector_ref (loop_vec_info);
static tree vect_create_addr_base_for_vector_ref (tree, tree *, tree);
static tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
static tree vect_get_vec_def_for_operand (tree, tree);
static tree vect_init_vector (tree, tree);
static void vect_finish_stmt_generation
(tree stmt, tree vec_stmt, block_stmt_iterator *bsi);
/* Utility function dealing with loop peeling (not peeling itself). */
static void vect_generate_tmps_on_preheader
(loop_vec_info, tree *, tree *, tree *);
static tree vect_build_loop_niters (loop_vec_info);
static void vect_update_ivs_after_vectorizer (loop_vec_info, tree, edge);
static tree vect_gen_niters_for_prolog_loop (loop_vec_info, tree);
static void vect_update_inits_of_dr (struct data_reference *, tree niters);
static void vect_update_inits_of_drs (loop_vec_info, tree);
static void vect_do_peeling_for_alignment (loop_vec_info, struct loops *);
static void vect_do_peeling_for_loop_bound
(loop_vec_info, tree *, struct loops *);
/* Function vect_get_new_vect_var.
Returns a name for a new variable. The current naming scheme appends the
prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
the name of vectorizer generated variables, and appends that to NAME if
provided. */
static tree
vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
{
const char *prefix;
int prefix_len;
tree new_vect_var;
if (var_kind == vect_simple_var)
prefix = "vect_";
else
prefix = "vect_p";
prefix_len = strlen (prefix);
if (name)
new_vect_var = create_tmp_var (type, concat (prefix, name, NULL));
else
new_vect_var = create_tmp_var (type, prefix);
return new_vect_var;
}
/* Function vect_create_index_for_vector_ref.
Create (and return) an index variable, along with it's update chain in the
loop. This variable will be used to access a memory location in a vector
operation.
Input:
LOOP: The loop being vectorized.
BSI: The block_stmt_iterator where STMT is. Any new stmts created by this
function can be added here, or in the loop pre-header.
Output:
Return an index that will be used to index a vector array. It is expected
that a pointer to the first vector will be used as the base address for the
indexed reference.
FORNOW: we are not trying to be efficient, just creating a new index each
time from scratch. At this time all vector references could use the same
index.
TODO: create only one index to be used by all vector references. Record
the index in the LOOP_VINFO the first time this procedure is called and
return it on subsequent calls. The increment of this index must be placed
just before the conditional expression that ends the single block loop. */
static tree
vect_create_index_for_vector_ref (loop_vec_info loop_vinfo)
{
tree init, step;
block_stmt_iterator incr_bsi;
bool insert_after;
tree indx_before_incr, indx_after_incr;
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
tree incr;
/* It is assumed that the base pointer used for vectorized access contains
the address of the first vector. Therefore the index used for vectorized
access must be initialized to zero and incremented by 1. */
init = integer_zero_node;
step = integer_one_node;
standard_iv_increment_position (loop, &incr_bsi, &insert_after);
create_iv (init, step, NULL_TREE, loop, &incr_bsi, insert_after,
&indx_before_incr, &indx_after_incr);
incr = bsi_stmt (incr_bsi);
get_stmt_operands (incr);
set_stmt_info (stmt_ann (incr), new_stmt_vec_info (incr, loop_vinfo));
return indx_before_incr;
}
/* Function vect_create_addr_base_for_vector_ref.
Create an expression that computes the address of the first memory location
that will be accessed for a data reference.
Input:
STMT: The statement containing the data reference.
NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
OFFSET: Optional. If supplied, it is be added to the initial address.
Output:
1. Return an SSA_NAME whose value is the address of the memory location of
the first vector of the data reference.
2. If new_stmt_list is not NULL_TREE after return then the caller must insert
these statement(s) which define the returned SSA_NAME.
FORNOW: We are only handling array accesses with step 1. */
static tree
vect_create_addr_base_for_vector_ref (tree stmt,
tree *new_stmt_list,
tree offset)
{
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
tree data_ref_base =
unshare_expr (STMT_VINFO_VECT_DR_BASE_ADDRESS (stmt_info));
tree base_name = build_fold_indirect_ref (data_ref_base);
tree ref = DR_REF (dr);
tree scalar_type = TREE_TYPE (ref);
tree scalar_ptr_type = build_pointer_type (scalar_type);
tree vec_stmt;
tree new_temp;
tree addr_base, addr_expr;
tree dest, new_stmt;
tree base_offset = unshare_expr (STMT_VINFO_VECT_INIT_OFFSET (stmt_info));
/* Create base_offset */
dest = create_tmp_var (TREE_TYPE (base_offset), "base_off");
add_referenced_tmp_var (dest);
base_offset = force_gimple_operand (base_offset, &new_stmt, false, dest);
append_to_statement_list_force (new_stmt, new_stmt_list);
if (offset)
{
tree tmp = create_tmp_var (TREE_TYPE (base_offset), "offset");
add_referenced_tmp_var (tmp);
offset = fold (build2 (MULT_EXPR, TREE_TYPE (offset), offset,
STMT_VINFO_VECT_STEP (stmt_info)));
base_offset = fold (build2 (PLUS_EXPR, TREE_TYPE (base_offset),
base_offset, offset));
base_offset = force_gimple_operand (base_offset, &new_stmt, false, tmp);
append_to_statement_list_force (new_stmt, new_stmt_list);
}
/* base + base_offset */
addr_base = fold (build2 (PLUS_EXPR, TREE_TYPE (data_ref_base), data_ref_base,
base_offset));
/* addr_expr = addr_base */
addr_expr = vect_get_new_vect_var (scalar_ptr_type, vect_pointer_var,
get_name (base_name));
add_referenced_tmp_var (addr_expr);
vec_stmt = build2 (MODIFY_EXPR, void_type_node, addr_expr, addr_base);
new_temp = make_ssa_name (addr_expr, vec_stmt);
TREE_OPERAND (vec_stmt, 0) = new_temp;
append_to_statement_list_force (vec_stmt, new_stmt_list);
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "created ");
print_generic_expr (vect_dump, vec_stmt, TDF_SLIM);
}
return new_temp;
}
/* Function vect_align_data_ref.
Handle mislignment of a memory accesses.
FORNOW: Can't handle misaligned accesses.
Make sure that the dataref is aligned. */
static void
vect_align_data_ref (tree stmt)
{
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
/* FORNOW: can't handle misaligned accesses;
all accesses expected to be aligned. */
gcc_assert (aligned_access_p (dr));
}
/* Function vect_create_data_ref_ptr.
Create a memory reference expression for vector access, to be used in a
vector load/store stmt. The reference is based on a new pointer to vector
type (vp).
Input:
1. STMT: a stmt that references memory. Expected to be of the form
MODIFY_EXPR <name, data-ref> or MODIFY_EXPR <data-ref, name>.
2. BSI: block_stmt_iterator where new stmts can be added.
3. OFFSET (optional): an offset to be added to the initial address accessed
by the data-ref in STMT.
4. ONLY_INIT: indicate if vp is to be updated in the loop, or remain
pointing to the initial address.
Output:
1. Declare a new ptr to vector_type, and have it point to the base of the
data reference (initial addressed accessed by the data reference).
For example, for vector of type V8HI, the following code is generated:
v8hi *vp;
vp = (v8hi *)initial_address;
if OFFSET is not supplied:
initial_address = &a[init];
if OFFSET is supplied:
initial_address = &a[init + OFFSET];
Return the initial_address in INITIAL_ADDRESS.
2. Create a data-reference in the loop based on the new vector pointer vp,
and using a new index variable 'idx' as follows:
vp' = vp + update
where if ONLY_INIT is true:
update = zero
and otherwise
update = idx + vector_type_size
Return the pointer vp'.
FORNOW: handle only aligned and consecutive accesses. */
static tree
vect_create_data_ref_ptr (tree stmt, block_stmt_iterator *bsi, tree offset,
tree *initial_address, bool only_init)
{
tree base_name;
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
tree vect_ptr_type;
tree vect_ptr;
tree tag;
v_may_def_optype v_may_defs = STMT_V_MAY_DEF_OPS (stmt);
v_must_def_optype v_must_defs = STMT_V_MUST_DEF_OPS (stmt);
vuse_optype vuses = STMT_VUSE_OPS (stmt);
int nvuses, nv_may_defs, nv_must_defs;
int i;
tree new_temp;
tree vec_stmt;
tree new_stmt_list = NULL_TREE;
tree idx;
edge pe = loop_preheader_edge (loop);
basic_block new_bb;
tree vect_ptr_init;
tree vectype_size;
tree ptr_update;
tree data_ref_ptr;
tree type, tmp, size;
base_name = build_fold_indirect_ref (unshare_expr (
STMT_VINFO_VECT_DR_BASE_ADDRESS (stmt_info)));
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
tree data_ref_base = base_name;
fprintf (vect_dump, "create array_ref of type: ");
print_generic_expr (vect_dump, vectype, TDF_SLIM);
if (TREE_CODE (data_ref_base) == VAR_DECL)
fprintf (vect_dump, " vectorizing a one dimensional array ref: ");
else if (TREE_CODE (data_ref_base) == ARRAY_REF)
fprintf (vect_dump, " vectorizing a multidimensional array ref: ");
else if (TREE_CODE (data_ref_base) == COMPONENT_REF)
fprintf (vect_dump, " vectorizing a record based array ref: ");
else if (TREE_CODE (data_ref_base) == SSA_NAME)
fprintf (vect_dump, " vectorizing a pointer ref: ");
print_generic_expr (vect_dump, base_name, TDF_SLIM);
}
/** (1) Create the new vector-pointer variable: **/
vect_ptr_type = build_pointer_type (vectype);
vect_ptr = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var,
get_name (base_name));
add_referenced_tmp_var (vect_ptr);
/** (2) Handle aliasing information of the new vector-pointer: **/
tag = STMT_VINFO_MEMTAG (stmt_info);
gcc_assert (tag);
get_var_ann (vect_ptr)->type_mem_tag = tag;
/* Mark for renaming all aliased variables
(i.e, the may-aliases of the type-mem-tag). */
nvuses = NUM_VUSES (vuses);
nv_may_defs = NUM_V_MAY_DEFS (v_may_defs);
nv_must_defs = NUM_V_MUST_DEFS (v_must_defs);
for (i = 0; i < nvuses; i++)
{
tree use = VUSE_OP (vuses, i);
if (TREE_CODE (use) == SSA_NAME)
bitmap_set_bit (vars_to_rename, var_ann (SSA_NAME_VAR (use))->uid);
}
for (i = 0; i < nv_may_defs; i++)
{
tree def = V_MAY_DEF_RESULT (v_may_defs, i);
if (TREE_CODE (def) == SSA_NAME)
bitmap_set_bit (vars_to_rename, var_ann (SSA_NAME_VAR (def))->uid);
}
for (i = 0; i < nv_must_defs; i++)
{
tree def = V_MUST_DEF_RESULT (v_must_defs, i);
if (TREE_CODE (def) == SSA_NAME)
bitmap_set_bit (vars_to_rename, var_ann (SSA_NAME_VAR (def))->uid);
}
/** (3) Calculate the initial address the vector-pointer, and set
the vector-pointer to point to it before the loop: **/
/* Create: (&(base[init_val+offset]) in the loop preheader. */
new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list,
offset);
pe = loop_preheader_edge (loop);
new_bb = bsi_insert_on_edge_immediate (pe, new_stmt_list);
gcc_assert (!new_bb);
*initial_address = new_temp;
/* Create: p = (vectype *) initial_base */
vec_stmt = fold_convert (vect_ptr_type, new_temp);
vec_stmt = build2 (MODIFY_EXPR, void_type_node, vect_ptr, vec_stmt);
new_temp = make_ssa_name (vect_ptr, vec_stmt);
TREE_OPERAND (vec_stmt, 0) = new_temp;
new_bb = bsi_insert_on_edge_immediate (pe, vec_stmt);
gcc_assert (!new_bb);
vect_ptr_init = TREE_OPERAND (vec_stmt, 0);
/** (4) Handle the updating of the vector-pointer inside the loop: **/
if (only_init) /* No update in loop is required. */
return vect_ptr_init;
idx = vect_create_index_for_vector_ref (loop_vinfo);
/* Create: update = idx * vectype_size */
tmp = create_tmp_var (integer_type_node, "update");
add_referenced_tmp_var (tmp);
size = TYPE_SIZE (vect_ptr_type);
type = lang_hooks.types.type_for_size (tree_low_cst (size, 1), 1);
ptr_update = create_tmp_var (type, "update");
add_referenced_tmp_var (ptr_update);
vectype_size = TYPE_SIZE_UNIT (vectype);
vec_stmt = build2 (MULT_EXPR, integer_type_node, idx, vectype_size);
vec_stmt = build2 (MODIFY_EXPR, void_type_node, tmp, vec_stmt);
new_temp = make_ssa_name (tmp, vec_stmt);
TREE_OPERAND (vec_stmt, 0) = new_temp;
bsi_insert_before (bsi, vec_stmt, BSI_SAME_STMT);
vec_stmt = fold_convert (type, new_temp);
vec_stmt = build2 (MODIFY_EXPR, void_type_node, ptr_update, vec_stmt);
new_temp = make_ssa_name (ptr_update, vec_stmt);
TREE_OPERAND (vec_stmt, 0) = new_temp;
bsi_insert_before (bsi, vec_stmt, BSI_SAME_STMT);
/* Create: data_ref_ptr = vect_ptr_init + update */
vec_stmt = build2 (PLUS_EXPR, vect_ptr_type, vect_ptr_init, new_temp);
vec_stmt = build2 (MODIFY_EXPR, void_type_node, vect_ptr, vec_stmt);
new_temp = make_ssa_name (vect_ptr, vec_stmt);
TREE_OPERAND (vec_stmt, 0) = new_temp;
bsi_insert_before (bsi, vec_stmt, BSI_SAME_STMT);
data_ref_ptr = TREE_OPERAND (vec_stmt, 0);
return data_ref_ptr;
}
/* Function vect_create_destination_var.
Create a new temporary of type VECTYPE. */
static tree
vect_create_destination_var (tree scalar_dest, tree vectype)
{
tree vec_dest;
const char *new_name;
gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);
new_name = get_name (scalar_dest);
if (!new_name)
new_name = "var_";
vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, new_name);
add_referenced_tmp_var (vec_dest);
return vec_dest;
}
/* Function vect_init_vector.
Insert a new stmt (INIT_STMT) that initializes a new vector variable with
the vector elements of VECTOR_VAR. Return the DEF of INIT_STMT. It will be
used in the vectorization of STMT. */
static tree
vect_init_vector (tree stmt, tree vector_var)
{
stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
tree new_var;
tree init_stmt;
tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
tree vec_oprnd;
edge pe;
tree new_temp;
basic_block new_bb;
new_var = vect_get_new_vect_var (vectype, vect_simple_var, "cst_");
add_referenced_tmp_var (new_var);
init_stmt = build2 (MODIFY_EXPR, vectype, new_var, vector_var);
new_temp = make_ssa_name (new_var, init_stmt);
TREE_OPERAND (init_stmt, 0) = new_temp;
pe = loop_preheader_edge (loop);
new_bb = bsi_insert_on_edge_immediate (pe, init_stmt);
gcc_assert (!new_bb);
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "created new init_stmt: ");
print_generic_expr (vect_dump, init_stmt, TDF_SLIM);
}
vec_oprnd = TREE_OPERAND (init_stmt, 0);
return vec_oprnd;
}
/* Function vect_get_vec_def_for_operand.
OP is an operand in STMT. This function returns a (vector) def that will be
used in the vectorized stmt for STMT.
In the case that OP is an SSA_NAME which is defined in the loop, then
STMT_VINFO_VEC_STMT of the defining stmt holds the relevant def.
In case OP is an invariant or constant, a new stmt that creates a vector def
needs to be introduced. */
static tree
vect_get_vec_def_for_operand (tree op, tree stmt)
{
tree vec_oprnd;
tree vec_stmt;
tree def_stmt;
stmt_vec_info def_stmt_info = NULL;
stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
int nunits = GET_MODE_NUNITS (TYPE_MODE (vectype));
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block bb;
tree vec_inv;
tree t = NULL_TREE;
tree def;
int i;
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "vect_get_vec_def_for_operand: ");
print_generic_expr (vect_dump, op, TDF_SLIM);
}
/** ===> Case 1: operand is a constant. **/
if (TREE_CODE (op) == INTEGER_CST || TREE_CODE (op) == REAL_CST)
{
/* Create 'vect_cst_ = {cst,cst,...,cst}' */
tree vec_cst;
/* Build a tree with vector elements. */
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "Create vector_cst. nunits = %d", nunits);
for (i = nunits - 1; i >= 0; --i)
{
t = tree_cons (NULL_TREE, op, t);
}
vec_cst = build_vector (vectype, t);
return vect_init_vector (stmt, vec_cst);
}
gcc_assert (TREE_CODE (op) == SSA_NAME);
/** ===> Case 2: operand is an SSA_NAME - find the stmt that defines it. **/
def_stmt = SSA_NAME_DEF_STMT (op);
def_stmt_info = vinfo_for_stmt (def_stmt);
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "vect_get_vec_def_for_operand: def_stmt: ");
print_generic_expr (vect_dump, def_stmt, TDF_SLIM);
}
/** ==> Case 2.1: operand is defined inside the loop. **/
if (def_stmt_info)
{
/* Get the def from the vectorized stmt. */
vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
gcc_assert (vec_stmt);
vec_oprnd = TREE_OPERAND (vec_stmt, 0);
return vec_oprnd;
}
/** ==> Case 2.2: operand is defined by the loop-header phi-node -
it is a reduction/induction. **/
bb = bb_for_stmt (def_stmt);
if (TREE_CODE (def_stmt) == PHI_NODE && flow_bb_inside_loop_p (loop, bb))
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "reduction/induction - unsupported.");
internal_error ("no support for reduction/induction"); /* FORNOW */
}
/** ==> Case 2.3: operand is defined outside the loop -
it is a loop invariant. */
switch (TREE_CODE (def_stmt))
{
case PHI_NODE:
def = PHI_RESULT (def_stmt);
break;
case MODIFY_EXPR:
def = TREE_OPERAND (def_stmt, 0);
break;
case NOP_EXPR:
def = TREE_OPERAND (def_stmt, 0);
gcc_assert (IS_EMPTY_STMT (def_stmt));
def = op;
break;
default:
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "unsupported defining stmt: ");
print_generic_expr (vect_dump, def_stmt, TDF_SLIM);
}
internal_error ("unsupported defining stmt");
}
/* Build a tree with vector elements.
Create 'vec_inv = {inv,inv,..,inv}' */
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "Create vector_inv.");
for (i = nunits - 1; i >= 0; --i)
{
t = tree_cons (NULL_TREE, def, t);
}
vec_inv = build_constructor (vectype, t);
return vect_init_vector (stmt, vec_inv);
}
/* Function vect_finish_stmt_generation.
Insert a new stmt. */
static void
vect_finish_stmt_generation (tree stmt, tree vec_stmt, block_stmt_iterator *bsi)
{
bsi_insert_before (bsi, vec_stmt, BSI_SAME_STMT);
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "add new stmt: ");
print_generic_expr (vect_dump, vec_stmt, TDF_SLIM);
}
#ifdef ENABLE_CHECKING
/* Make sure bsi points to the stmt that is being vectorized. */
gcc_assert (stmt == bsi_stmt (*bsi));
#endif
#ifdef USE_MAPPED_LOCATION
SET_EXPR_LOCATION (vec_stmt, EXPR_LOCUS (stmt));
#else
SET_EXPR_LOCUS (vec_stmt, EXPR_LOCUS (stmt));
#endif
}
/* Function vectorizable_assignment.
Check if STMT performs an assignment (copy) that can be vectorized.
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
bool
vectorizable_assignment (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
{
tree vec_dest;
tree scalar_dest;
tree op;
tree vec_oprnd;
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
tree new_temp;
/* Is vectorizable assignment? */
if (TREE_CODE (stmt) != MODIFY_EXPR)
return false;
scalar_dest = TREE_OPERAND (stmt, 0);
if (TREE_CODE (scalar_dest) != SSA_NAME)
return false;
op = TREE_OPERAND (stmt, 1);
if (!vect_is_simple_use (op, loop_vinfo, NULL))
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "use not simple.");
return false;
}
if (!vec_stmt) /* transformation not required. */
{
STMT_VINFO_TYPE (stmt_info) = assignment_vec_info_type;
return true;
}
/** Transform. **/
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "transform assignment.");
/* Handle def. */
vec_dest = vect_create_destination_var (scalar_dest, vectype);
/* Handle use. */
op = TREE_OPERAND (stmt, 1);
vec_oprnd = vect_get_vec_def_for_operand (op, stmt);
/* Arguments are ready. create the new vector stmt. */
*vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, vec_oprnd);
new_temp = make_ssa_name (vec_dest, *vec_stmt);
TREE_OPERAND (*vec_stmt, 0) = new_temp;
vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
return true;
}
/* Function vectorizable_operation.
Check if STMT performs a binary or unary operation that can be vectorized.
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
bool
vectorizable_operation (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
{
tree vec_dest;
tree scalar_dest;
tree operation;
tree op0, op1 = NULL;
tree vec_oprnd0, vec_oprnd1=NULL;
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
int i;
enum tree_code code;
enum machine_mode vec_mode;
tree new_temp;
int op_type;
tree op;
optab optab;
/* Is STMT a vectorizable binary/unary operation? */
if (TREE_CODE (stmt) != MODIFY_EXPR)
return false;
if (TREE_CODE (TREE_OPERAND (stmt, 0)) != SSA_NAME)
return false;
operation = TREE_OPERAND (stmt, 1);
code = TREE_CODE (operation);
optab = optab_for_tree_code (code, vectype);
/* Support only unary or binary operations. */
op_type = TREE_CODE_LENGTH (code);
if (op_type != unary_op && op_type != binary_op)
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "num. args = %d (not unary/binary op).", op_type);
return false;
}
for (i = 0; i < op_type; i++)
{
op = TREE_OPERAND (operation, i);
if (!vect_is_simple_use (op, loop_vinfo, NULL))
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "use not simple.");
return false;
}
}
/* Supportable by target? */
if (!optab)
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "no optab.");
return false;
}
vec_mode = TYPE_MODE (vectype);
if (optab->handlers[(int) vec_mode].insn_code == CODE_FOR_nothing)
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "op not supported by target.");
return false;
}
if (!vec_stmt) /* transformation not required. */
{
STMT_VINFO_TYPE (stmt_info) = op_vec_info_type;
return true;
}
/** Transform. **/
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "transform binary/unary operation.");
/* Handle def. */
scalar_dest = TREE_OPERAND (stmt, 0);
vec_dest = vect_create_destination_var (scalar_dest, vectype);
/* Handle uses. */
op0 = TREE_OPERAND (operation, 0);
vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt);
if (op_type == binary_op)
{
op1 = TREE_OPERAND (operation, 1);
vec_oprnd1 = vect_get_vec_def_for_operand (op1, stmt);
}
/* Arguments are ready. create the new vector stmt. */
if (op_type == binary_op)
*vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
build2 (code, vectype, vec_oprnd0, vec_oprnd1));
else
*vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
build1 (code, vectype, vec_oprnd0));
new_temp = make_ssa_name (vec_dest, *vec_stmt);
TREE_OPERAND (*vec_stmt, 0) = new_temp;
vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
return true;
}
/* Function vectorizable_store.
Check if STMT defines a non scalar data-ref (array/pointer/structure) that
can be vectorized.
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
bool
vectorizable_store (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
{
tree scalar_dest;
tree data_ref;
tree op;
tree vec_oprnd1;
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
enum machine_mode vec_mode;
tree dummy;
enum dr_alignment_support alignment_support_cheme;
/* Is vectorizable store? */
if (TREE_CODE (stmt) != MODIFY_EXPR)
return false;
scalar_dest = TREE_OPERAND (stmt, 0);
if (TREE_CODE (scalar_dest) != ARRAY_REF
&& TREE_CODE (scalar_dest) != INDIRECT_REF)
return false;
op = TREE_OPERAND (stmt, 1);
if (!vect_is_simple_use (op, loop_vinfo, NULL))
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "use not simple.");
return false;
}
vec_mode = TYPE_MODE (vectype);
/* FORNOW. In some cases can vectorize even if data-type not supported
(e.g. - array initialization with 0). */
if (mov_optab->handlers[(int)vec_mode].insn_code == CODE_FOR_nothing)
return false;
if (!STMT_VINFO_DATA_REF (stmt_info))
return false;
if (!vec_stmt) /* transformation not required. */
{
STMT_VINFO_TYPE (stmt_info) = store_vec_info_type;
return true;
}
/** Transform. **/
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "transform store");
alignment_support_cheme = vect_supportable_dr_alignment (dr);
gcc_assert (alignment_support_cheme);
gcc_assert (alignment_support_cheme = dr_aligned); /* FORNOW */
/* Handle use - get the vectorized def from the defining stmt. */
vec_oprnd1 = vect_get_vec_def_for_operand (op, stmt);
/* Handle def. */
/* FORNOW: make sure the data reference is aligned. */
vect_align_data_ref (stmt);
data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE, &dummy, false);
data_ref = build_fold_indirect_ref (data_ref);
/* Arguments are ready. create the new vector stmt. */
*vec_stmt = build2 (MODIFY_EXPR, vectype, data_ref, vec_oprnd1);
vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
return true;
}
/* vectorizable_load.
Check if STMT reads a non scalar data-ref (array/pointer/structure) that
can be vectorized.
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
bool
vectorizable_load (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
{
tree scalar_dest;
tree vec_dest = NULL;
tree data_ref = NULL;
tree op;
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
tree new_temp;
int mode;
tree init_addr;
tree new_stmt;
tree dummy;
basic_block new_bb;
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
edge pe = loop_preheader_edge (loop);
enum dr_alignment_support alignment_support_cheme;
/* Is vectorizable load? */
if (TREE_CODE (stmt) != MODIFY_EXPR)
return false;
scalar_dest = TREE_OPERAND (stmt, 0);
if (TREE_CODE (scalar_dest) != SSA_NAME)
return false;
op = TREE_OPERAND (stmt, 1);
if (TREE_CODE (op) != ARRAY_REF && TREE_CODE (op) != INDIRECT_REF)
return false;
if (!STMT_VINFO_DATA_REF (stmt_info))
return false;
mode = (int) TYPE_MODE (vectype);
/* FORNOW. In some cases can vectorize even if data-type not supported
(e.g. - data copies). */
if (mov_optab->handlers[mode].insn_code == CODE_FOR_nothing)
{
if (vect_print_dump_info (REPORT_DETAILS, LOOP_LOC (loop_vinfo)))
fprintf (vect_dump, "Aligned load, but unsupported type.");
return false;
}
if (!vec_stmt) /* transformation not required. */
{
STMT_VINFO_TYPE (stmt_info) = load_vec_info_type;
return true;
}
/** Transform. **/
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "transform load.");
alignment_support_cheme = vect_supportable_dr_alignment (dr);
gcc_assert (alignment_support_cheme);
if (alignment_support_cheme == dr_aligned
|| alignment_support_cheme == dr_unaligned_supported)
{
/* Create:
p = initial_addr;
indx = 0;
loop {
vec_dest = *(p);
indx = indx + 1;
}
*/
vec_dest = vect_create_destination_var (scalar_dest, vectype);
data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE, &dummy, false);
if (aligned_access_p (dr))
data_ref = build_fold_indirect_ref (data_ref);
else
{
int mis = DR_MISALIGNMENT (dr);
tree tmis = (mis == -1 ? size_zero_node : size_int (mis));
tmis = size_binop (MULT_EXPR, tmis, size_int(BITS_PER_UNIT));
data_ref = build2 (MISALIGNED_INDIRECT_REF, vectype, data_ref, tmis);
}
new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
new_temp = make_ssa_name (vec_dest, new_stmt);
TREE_OPERAND (new_stmt, 0) = new_temp;
vect_finish_stmt_generation (stmt, new_stmt, bsi);
}
else if (alignment_support_cheme == dr_unaligned_software_pipeline)
{
/* Create:
p1 = initial_addr;
msq_init = *(floor(p1))
p2 = initial_addr + VS - 1;
magic = have_builtin ? builtin_result : initial_address;
indx = 0;
loop {
p2' = p2 + indx * vectype_size
lsq = *(floor(p2'))
vec_dest = realign_load (msq, lsq, magic)
indx = indx + 1;
msq = lsq;
}
*/
tree offset;
tree magic;
tree phi_stmt;
tree msq_init;
tree msq, lsq;
tree dataref_ptr;
tree params;
/* <1> Create msq_init = *(floor(p1)) in the loop preheader */
vec_dest = vect_create_destination_var (scalar_dest, vectype);
data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE,
&init_addr, true);
data_ref = build1 (ALIGN_INDIRECT_REF, vectype, data_ref);
new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
new_temp = make_ssa_name (vec_dest, new_stmt);
TREE_OPERAND (new_stmt, 0) = new_temp;
new_bb = bsi_insert_on_edge_immediate (pe, new_stmt);
gcc_assert (!new_bb);
msq_init = TREE_OPERAND (new_stmt, 0);
/* <2> Create lsq = *(floor(p2')) in the loop */
offset = build_int_cst (integer_type_node,
GET_MODE_NUNITS (TYPE_MODE (vectype)));
offset = int_const_binop (MINUS_EXPR, offset, integer_one_node, 1);
vec_dest = vect_create_destination_var (scalar_dest, vectype);
dataref_ptr = vect_create_data_ref_ptr (stmt, bsi, offset, &dummy, false);
data_ref = build1 (ALIGN_INDIRECT_REF, vectype, dataref_ptr);
new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
new_temp = make_ssa_name (vec_dest, new_stmt);
TREE_OPERAND (new_stmt, 0) = new_temp;
vect_finish_stmt_generation (stmt, new_stmt, bsi);
lsq = TREE_OPERAND (new_stmt, 0);
/* <3> */
if (targetm.vectorize.builtin_mask_for_load)
{
/* Create permutation mask, if required, in loop preheader. */
tree builtin_decl;
params = build_tree_list (NULL_TREE, init_addr);
vec_dest = vect_create_destination_var (scalar_dest, vectype);
builtin_decl = targetm.vectorize.builtin_mask_for_load ();
new_stmt = build_function_call_expr (builtin_decl, params);
new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, new_stmt);
new_temp = make_ssa_name (vec_dest, new_stmt);
TREE_OPERAND (new_stmt, 0) = new_temp;
new_bb = bsi_insert_on_edge_immediate (pe, new_stmt);
gcc_assert (!new_bb);
magic = TREE_OPERAND (new_stmt, 0);
/* Since we have just created a CALL_EXPR, we may need to
rename call-clobbered variables. */
mark_call_clobbered_vars_to_rename ();
}
else
{
/* Use current address instead of init_addr for reduced reg pressure.
*/
magic = dataref_ptr;
}
/* <4> Create msq = phi <msq_init, lsq> in loop */
vec_dest = vect_create_destination_var (scalar_dest, vectype);
msq = make_ssa_name (vec_dest, NULL_TREE);
phi_stmt = create_phi_node (msq, loop->header); /* CHECKME */
SSA_NAME_DEF_STMT (msq) = phi_stmt;
add_phi_arg (phi_stmt, msq_init, loop_preheader_edge (loop));
add_phi_arg (phi_stmt, lsq, loop_latch_edge (loop));
/* <5> Create <vec_dest = realign_load (msq, lsq, magic)> in loop */
vec_dest = vect_create_destination_var (scalar_dest, vectype);
new_stmt = build3 (REALIGN_LOAD_EXPR, vectype, msq, lsq, magic);
new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, new_stmt);
new_temp = make_ssa_name (vec_dest, new_stmt);
TREE_OPERAND (new_stmt, 0) = new_temp;
vect_finish_stmt_generation (stmt, new_stmt, bsi);
}
else
gcc_unreachable ();
*vec_stmt = new_stmt;
return true;
}
/* Function vect_transform_stmt.
Create a vectorized stmt to replace STMT, and insert it at BSI. */
bool
vect_transform_stmt (tree stmt, block_stmt_iterator *bsi)
{
bool is_store = false;
tree vec_stmt = NULL_TREE;
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
bool done;
switch (STMT_VINFO_TYPE (stmt_info))
{
case op_vec_info_type:
done = vectorizable_operation (stmt, bsi, &vec_stmt);
gcc_assert (done);
break;
case assignment_vec_info_type:
done = vectorizable_assignment (stmt, bsi, &vec_stmt);
gcc_assert (done);
break;
case load_vec_info_type:
done = vectorizable_load (stmt, bsi, &vec_stmt);
gcc_assert (done);
break;
case store_vec_info_type:
done = vectorizable_store (stmt, bsi, &vec_stmt);
gcc_assert (done);
is_store = true;
break;
default:
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "stmt not supported.");
gcc_unreachable ();
}
STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;
return is_store;
}
/* This function builds ni_name = number of iterations loop executes
on the loop preheader. */
static tree
vect_build_loop_niters (loop_vec_info loop_vinfo)
{
tree ni_name, stmt, var;
edge pe;
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
var = create_tmp_var (TREE_TYPE (ni), "niters");
add_referenced_tmp_var (var);
ni_name = force_gimple_operand (ni, &stmt, false, var);
pe = loop_preheader_edge (loop);
if (stmt)
{
basic_block new_bb = bsi_insert_on_edge_immediate (pe, stmt);
gcc_assert (!new_bb);
}
return ni_name;
}
/* This function generates the following statements:
ni_name = number of iterations loop executes
ratio = ni_name / vf
ratio_mult_vf_name = ratio * vf
and places them at the loop preheader edge. */
static void
vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
tree *ni_name_ptr,
tree *ratio_mult_vf_name_ptr,
tree *ratio_name_ptr)
{
edge pe;
basic_block new_bb;
tree stmt, ni_name;
tree var;
tree ratio_name;
tree ratio_mult_vf_name;
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
tree ni = LOOP_VINFO_NITERS (loop_vinfo);
int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
tree log_vf = build_int_cst (unsigned_type_node, exact_log2 (vf));
pe = loop_preheader_edge (loop);
/* Generate temporary variable that contains
number of iterations loop executes. */
ni_name = vect_build_loop_niters (loop_vinfo);
/* Create: ratio = ni >> log2(vf) */
var = create_tmp_var (TREE_TYPE (ni), "bnd");
add_referenced_tmp_var (var);
ratio_name = make_ssa_name (var, NULL_TREE);
stmt = build2 (MODIFY_EXPR, void_type_node, ratio_name,
build2 (RSHIFT_EXPR, TREE_TYPE (ni_name), ni_name, log_vf));
SSA_NAME_DEF_STMT (ratio_name) = stmt;
pe = loop_preheader_edge (loop);
new_bb = bsi_insert_on_edge_immediate (pe, stmt);
gcc_assert (!new_bb);
/* Create: ratio_mult_vf = ratio << log2 (vf). */
var = create_tmp_var (TREE_TYPE (ni), "ratio_mult_vf");
add_referenced_tmp_var (var);
ratio_mult_vf_name = make_ssa_name (var, NULL_TREE);
stmt = build2 (MODIFY_EXPR, void_type_node, ratio_mult_vf_name,
build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name), ratio_name, log_vf));
SSA_NAME_DEF_STMT (ratio_mult_vf_name) = stmt;
pe = loop_preheader_edge (loop);
new_bb = bsi_insert_on_edge_immediate (pe, stmt);
gcc_assert (!new_bb);
*ni_name_ptr = ni_name;
*ratio_mult_vf_name_ptr = ratio_mult_vf_name;
*ratio_name_ptr = ratio_name;
return;
}
/* Function vect_update_ivs_after_vectorizer.
"Advance" the induction variables of LOOP to the value they should take
after the execution of LOOP. This is currently necessary because the
vectorizer does not handle induction variables that are used after the
loop. Such a situation occurs when the last iterations of LOOP are
peeled, because:
1. We introduced new uses after LOOP for IVs that were not originally used
after LOOP: the IVs of LOOP are now used by an epilog loop.
2. LOOP is going to be vectorized; this means that it will iterate N/VF
times, whereas the loop IVs should be bumped N times.
Input:
- LOOP - a loop that is going to be vectorized. The last few iterations
of LOOP were peeled.
- NITERS - the number of iterations that LOOP executes (before it is
vectorized). i.e, the number of times the ivs should be bumped.
- UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
coming out from LOOP on which there are uses of the LOOP ivs
(this is the path from LOOP->exit to epilog_loop->preheader).
The new definitions of the ivs are placed in LOOP->exit.
The phi args associated with the edge UPDATE_E in the bb
UPDATE_E->dest are updated accordingly.
Assumption 1: Like the rest of the vectorizer, this function assumes
a single loop exit that has a single predecessor.
Assumption 2: The phi nodes in the LOOP header and in update_bb are
organized in the same order.
Assumption 3: The access function of the ivs is simple enough (see
vect_can_advance_ivs_p). This assumption will be relaxed in the future.
Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
coming out of LOOP on which the ivs of LOOP are used (this is the path
that leads to the epilog loop; other paths skip the epilog loop). This
path starts with the edge UPDATE_E, and its destination (denoted update_bb)
needs to have its phis updated.
*/
static void
vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
edge update_e)
{
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block exit_bb = loop->exit_edges[0]->dest;
tree phi, phi1;
basic_block update_bb = update_e->dest;
/* gcc_assert (vect_can_advance_ivs_p (loop_vinfo)); */
/* Make sure there exists a single-predecessor exit bb: */
gcc_assert (EDGE_COUNT (exit_bb->preds) == 1);
for (phi = phi_nodes (loop->header), phi1 = phi_nodes (update_bb);
phi && phi1;
phi = PHI_CHAIN (phi), phi1 = PHI_CHAIN (phi1))
{
tree access_fn = NULL;
tree evolution_part;
tree init_expr;
tree step_expr;
tree var, stmt, ni, ni_name;
block_stmt_iterator last_bsi;
/* Skip virtual phi's. */
if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
{
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "virtual phi. skip.");
continue;
}
access_fn = analyze_scalar_evolution (loop, PHI_RESULT (phi));
gcc_assert (access_fn);
evolution_part =
unshare_expr (evolution_part_in_loop_num (access_fn, loop->num));
gcc_assert (evolution_part != NULL_TREE);
/* FORNOW: We do not support IVs whose evolution function is a polynomial
of degree >= 2 or exponential. */
gcc_assert (!tree_is_chrec (evolution_part));
step_expr = evolution_part;
init_expr = unshare_expr (initial_condition_in_loop_num (access_fn,
loop->num));
ni = build2 (PLUS_EXPR, TREE_TYPE (init_expr),
build2 (MULT_EXPR, TREE_TYPE (niters),
niters, step_expr), init_expr);
var = create_tmp_var (TREE_TYPE (init_expr), "tmp");
add_referenced_tmp_var (var);
ni_name = force_gimple_operand (ni, &stmt, false, var);
/* Insert stmt into exit_bb. */
last_bsi = bsi_last (exit_bb);
if (stmt)
bsi_insert_before (&last_bsi, stmt, BSI_SAME_STMT);
/* Fix phi expressions in the successor bb. */
gcc_assert (PHI_ARG_DEF_FROM_EDGE (phi1, update_e) ==
PHI_ARG_DEF_FROM_EDGE (phi, EDGE_SUCC (loop->latch, 0)));
SET_PHI_ARG_DEF (phi1, update_e->dest_idx, ni_name);
}
}
/* Function vect_do_peeling_for_loop_bound
Peel the last iterations of the loop represented by LOOP_VINFO.
The peeled iterations form a new epilog loop. Given that the loop now
iterates NITERS times, the new epilog loop iterates
NITERS % VECTORIZATION_FACTOR times.
The original loop will later be made to iterate
NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO). */
static void
vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo, tree *ratio,
struct loops *loops)
{
tree ni_name, ratio_mult_vf_name;
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
struct loop *new_loop;
edge update_e;
#ifdef ENABLE_CHECKING
int loop_num;
#endif
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "=== vect_transtorm_for_unknown_loop_bound ===");
/* Generate the following variables on the preheader of original loop:
ni_name = number of iteration the original loop executes
ratio = ni_name / vf
ratio_mult_vf_name = ratio * vf */
vect_generate_tmps_on_preheader (loop_vinfo, &ni_name,
&ratio_mult_vf_name, ratio);
/* Update loop info. */
loop->pre_header = loop_preheader_edge (loop)->src;
loop->pre_header_edges[0] = loop_preheader_edge (loop);
#ifdef ENABLE_CHECKING
loop_num = loop->num;
#endif
new_loop = slpeel_tree_peel_loop_to_edge (loop, loops, loop->exit_edges[0],
ratio_mult_vf_name, ni_name, false);
#ifdef ENABLE_CHECKING
gcc_assert (new_loop);
gcc_assert (loop_num == loop->num);
slpeel_verify_cfg_after_peeling (loop, new_loop);
#endif
/* A guard that controls whether the new_loop is to be executed or skipped
is placed in LOOP->exit. LOOP->exit therefore has two successors - one
is the preheader of NEW_LOOP, where the IVs from LOOP are used. The other
is a bb after NEW_LOOP, where these IVs are not used. Find the edge that
is on the path where the LOOP IVs are used and need to be updated. */
if (EDGE_PRED (new_loop->pre_header, 0)->src == loop->exit_edges[0]->dest)
update_e = EDGE_PRED (new_loop->pre_header, 0);
else
update_e = EDGE_PRED (new_loop->pre_header, 1);
/* Update IVs of original loop as if they were advanced
by ratio_mult_vf_name steps. */
vect_update_ivs_after_vectorizer (loop_vinfo, ratio_mult_vf_name, update_e);
/* After peeling we have to reset scalar evolution analyzer. */
scev_reset ();
return;
}
/* Function vect_gen_niters_for_prolog_loop
Set the number of iterations for the loop represented by LOOP_VINFO
to the minimum between LOOP_NITERS (the original iteration count of the loop)
and the misalignment of DR - the first data reference recorded in
LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of
this loop, the data reference DR will refer to an aligned location.
The following computation is generated:
compute address misalignment in bytes:
addr_mis = addr & (vectype_size - 1)
prolog_niters = min ( LOOP_NITERS , (VF - addr_mis/elem_size)&(VF-1) )
(elem_size = element type size; an element is the scalar element
whose type is the inner type of the vectype) */
static tree
vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters)
{
struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
tree var, stmt;
tree iters, iters_name;
edge pe;
basic_block new_bb;
tree dr_stmt = DR_STMT (dr);
stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
tree elem_misalign;
tree byte_misalign;
tree new_stmts = NULL_TREE;
tree start_addr =
vect_create_addr_base_for_vector_ref (dr_stmt, &new_stmts, NULL_TREE);
tree ptr_type = TREE_TYPE (start_addr);
tree size = TYPE_SIZE (ptr_type);
tree type = lang_hooks.types.type_for_size (tree_low_cst (size, 1), 1);
tree vectype_size_minus_1 = build_int_cst (type, vectype_align - 1);
tree vf_minus_1 = build_int_cst (unsigned_type_node, vf - 1);
tree niters_type = TREE_TYPE (loop_niters);
tree elem_size_log =
build_int_cst (unsigned_type_node, exact_log2 (vectype_align/vf));
tree vf_tree = build_int_cst (unsigned_type_node, vf);
pe = loop_preheader_edge (loop);
new_bb = bsi_insert_on_edge_immediate (pe, new_stmts);
gcc_assert (!new_bb);
/* Create: byte_misalign = addr & (vectype_size - 1) */
byte_misalign = build2 (BIT_AND_EXPR, type, start_addr, vectype_size_minus_1);
/* Create: elem_misalign = byte_misalign / element_size */
elem_misalign =
build2 (RSHIFT_EXPR, unsigned_type_node, byte_misalign, elem_size_log);
/* Create: (niters_type) (VF - elem_misalign)&(VF - 1) */
iters = build2 (MINUS_EXPR, unsigned_type_node, vf_tree, elem_misalign);
iters = build2 (BIT_AND_EXPR, unsigned_type_node, iters, vf_minus_1);
iters = fold_convert (niters_type, iters);
/* Create: prolog_loop_niters = min (iters, loop_niters) */
/* If the loop bound is known at compile time we already verified that it is
greater than vf; since the misalignment ('iters') is at most vf, there's
no need to generate the MIN_EXPR in this case. */
if (TREE_CODE (loop_niters) != INTEGER_CST)
iters = build2 (MIN_EXPR, niters_type, iters, loop_niters);
var = create_tmp_var (niters_type, "prolog_loop_niters");
add_referenced_tmp_var (var);
iters_name = force_gimple_operand (iters, &stmt, false, var);
/* Insert stmt on loop preheader edge. */
pe = loop_preheader_edge (loop);
if (stmt)
{
basic_block new_bb = bsi_insert_on_edge_immediate (pe, stmt);
gcc_assert (!new_bb);
}
return iters_name;
}
/* Function vect_update_inits_of_dr
NITERS iterations were peeled from LOOP. DR represents a data reference
in LOOP. This function updates the information recorded in DR to
account for the fact that the first NITERS iterations had already been
executed. Specifically, it updates the OFFSET field of stmt_info. */
static void
vect_update_inits_of_dr (struct data_reference *dr, tree niters)
{
stmt_vec_info stmt_info = vinfo_for_stmt (DR_STMT (dr));
tree offset = STMT_VINFO_VECT_INIT_OFFSET (stmt_info);
niters = fold (build2 (MULT_EXPR, TREE_TYPE (niters), niters,
STMT_VINFO_VECT_STEP (stmt_info)));
offset = fold (build2 (PLUS_EXPR, TREE_TYPE (offset), offset, niters));
STMT_VINFO_VECT_INIT_OFFSET (stmt_info) = offset;
}
/* Function vect_update_inits_of_drs
NITERS iterations were peeled from the loop represented by LOOP_VINFO.
This function updates the information recorded for the data references in
the loop to account for the fact that the first NITERS iterations had
already been executed. Specifically, it updates the initial_condition of the
access_function of all the data_references in the loop. */
static void
vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
{
unsigned int i;
varray_type loop_write_datarefs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
varray_type loop_read_datarefs = LOOP_VINFO_DATAREF_READS (loop_vinfo);
if (vect_dump && (dump_flags & TDF_DETAILS))
fprintf (vect_dump, "=== vect_update_inits_of_dr ===");
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++)
{
struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i);
vect_update_inits_of_dr (dr, niters);
}
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_datarefs); i++)
{
struct data_reference *dr = VARRAY_GENERIC_PTR (loop_read_datarefs, i);
vect_update_inits_of_dr (dr, niters);
}
}
/* Function vect_do_peeling_for_alignment
Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
'niters' is set to the misalignment of one of the data references in the
loop, thereby forcing it to refer to an aligned location at the beginning
of the execution of this loop. The data reference for which we are
peeling is recorded in LOOP_VINFO_UNALIGNED_DR. */
static void
vect_do_peeling_for_alignment (loop_vec_info loop_vinfo, struct loops *loops)
{
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
tree niters_of_prolog_loop, ni_name;
tree n_iters;
struct loop *new_loop;
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "=== vect_do_peeling_for_alignment ===");
ni_name = vect_build_loop_niters (loop_vinfo);
niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo, ni_name);
/* Peel the prolog loop and iterate it niters_of_prolog_loop. */
new_loop =
slpeel_tree_peel_loop_to_edge (loop, loops, loop_preheader_edge (loop),
niters_of_prolog_loop, ni_name, true);
#ifdef ENABLE_CHECKING
gcc_assert (new_loop);
slpeel_verify_cfg_after_peeling (new_loop, loop);
#endif
/* Update number of times loop executes. */
n_iters = LOOP_VINFO_NITERS (loop_vinfo);
LOOP_VINFO_NITERS (loop_vinfo) =
build2 (MINUS_EXPR, TREE_TYPE (n_iters), n_iters, niters_of_prolog_loop);
/* Update the init conditions of the access functions of all data refs. */
vect_update_inits_of_drs (loop_vinfo, niters_of_prolog_loop);
/* After peeling we have to reset scalar evolution analyzer. */
scev_reset ();
return;
}
/* Function vect_transform_loop.
The analysis phase has determined that the loop is vectorizable.
Vectorize the loop - created vectorized stmts to replace the scalar
stmts in the loop, and update the loop exit condition. */
void
vect_transform_loop (loop_vec_info loop_vinfo,
struct loops *loops ATTRIBUTE_UNUSED)
{
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
int nbbs = loop->num_nodes;
block_stmt_iterator si;
int i;
tree ratio = NULL;
int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "=== vec_transform_loop ===");
/* Peel the loop if there are data refs with unknown alignment.
Only one data ref with unknown store is allowed. */
if (LOOP_DO_PEELING_FOR_ALIGNMENT (loop_vinfo))
vect_do_peeling_for_alignment (loop_vinfo, loops);
/* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
compile time constant), or it is a constant that doesn't divide by the
vectorization factor, then an epilog loop needs to be created.
We therefore duplicate the loop: the original loop will be vectorized,
and will compute the first (n/VF) iterations. The second copy of the loop
will remain scalar and will compute the remaining (n%VF) iterations.
(VF is the vectorization factor). */
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|| (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
&& LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0))
vect_do_peeling_for_loop_bound (loop_vinfo, &ratio, loops);
else
ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
/* 1) Make sure the loop header has exactly two entries
2) Make sure we have a preheader basic block. */
gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
loop_split_edge_with (loop_preheader_edge (loop), NULL);
/* FORNOW: the vectorizer supports only loops which body consist
of one basic block (header + empty latch). When the vectorizer will
support more involved loop forms, the order by which the BBs are
traversed need to be reconsidered. */
for (i = 0; i < nbbs; i++)
{
basic_block bb = bbs[i];
for (si = bsi_start (bb); !bsi_end_p (si);)
{
tree stmt = bsi_stmt (si);
stmt_vec_info stmt_info;
bool is_store;
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
{
fprintf (vect_dump, "------>vectorizing statement: ");
print_generic_expr (vect_dump, stmt, TDF_SLIM);
}
stmt_info = vinfo_for_stmt (stmt);
gcc_assert (stmt_info);
if (!STMT_VINFO_RELEVANT_P (stmt_info))
{
bsi_next (&si);
continue;
}
#ifdef ENABLE_CHECKING
/* FORNOW: Verify that all stmts operate on the same number of
units and no inner unrolling is necessary. */
gcc_assert
(GET_MODE_NUNITS (TYPE_MODE (STMT_VINFO_VECTYPE (stmt_info)))
== vectorization_factor);
#endif
/* -------- vectorize statement ------------ */
if (vect_print_dump_info (REPORT_DETAILS, UNKNOWN_LOC))
fprintf (vect_dump, "transform statement.");
is_store = vect_transform_stmt (stmt, &si);
if (is_store)
{
/* free the attached stmt_vec_info and remove the stmt. */
stmt_ann_t ann = stmt_ann (stmt);
free (stmt_info);
set_stmt_info (ann, NULL);
bsi_remove (&si);
continue;
}
bsi_next (&si);
} /* stmts in BB */
} /* BBs in loop */
slpeel_make_loop_iterate_ntimes (loop, ratio);
if (vect_print_dump_info (REPORT_VECTORIZED_LOOPS, LOOP_LOC (loop_vinfo)))
fprintf (vect_dump, "LOOP VECTORIZED.");
}
This source diff could not be displayed because it is too large. You can view the blob instead.
...@@ -258,17 +258,68 @@ unknown_alignment_for_access_p (struct data_reference *data_ref_info) ...@@ -258,17 +258,68 @@ unknown_alignment_for_access_p (struct data_reference *data_ref_info)
/* Perform signed modulo, always returning a non-negative value. */ /* Perform signed modulo, always returning a non-negative value. */
#define VECT_SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y)) #define VECT_SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
/* vect_dump will be set to stderr or dump_file if exist. */
extern FILE *vect_dump;
extern enum verbosity_levels vect_verbosity_level;
/*-----------------------------------------------------------------*/ /*-----------------------------------------------------------------*/
/* Function prototypes. */ /* Function prototypes. */
/*-----------------------------------------------------------------*/ /*-----------------------------------------------------------------*/
/* Main driver. */ /*************************************************************************
extern void vectorize_loops (struct loops *); Simple Loop Peeling Utilities - in tree-vectorizer.c
*************************************************************************/
/* Entry point for peeling of simple loops.
Peel the first/last iterations of a loop.
It can be used outside of the vectorizer for loops that are simple enough
(see function documentation). In the vectorizer it is used to peel the
last few iterations when the loop bound is unknown or does not evenly
divide by the vectorization factor, and to peel the first few iterations
to force the alignment of data references in the loop. */
extern struct loop *slpeel_tree_peel_loop_to_edge
(struct loop *, struct loops *, edge, tree, tree, bool);
extern void slpeel_make_loop_iterate_ntimes (struct loop *, tree);
extern bool slpeel_can_duplicate_loop_p (struct loop *, edge);
#ifdef ENABLE_CHECKING
extern void slpeel_verify_cfg_after_peeling (struct loop *, struct loop *);
#endif
/* creation and deletion of loop and stmt info structs. */ /*************************************************************************
General Vectorization Utilities
*************************************************************************/
/** In tree-vectorizer.c **/
extern tree vect_strip_conversion (tree);
extern tree get_vectype_for_scalar_type (tree);
extern bool vect_is_simple_use (tree , loop_vec_info, tree *);
extern bool vect_is_simple_iv_evolution (unsigned, tree, tree *, tree *);
extern bool vect_can_force_dr_alignment_p (tree, unsigned int);
extern enum dr_alignment_support vect_supportable_dr_alignment
(struct data_reference *);
/* Creation and deletion of loop and stmt info structs. */
extern loop_vec_info new_loop_vec_info (struct loop *loop); extern loop_vec_info new_loop_vec_info (struct loop *loop);
extern void destroy_loop_vec_info (loop_vec_info); extern void destroy_loop_vec_info (loop_vec_info);
extern stmt_vec_info new_stmt_vec_info (tree stmt, loop_vec_info); extern stmt_vec_info new_stmt_vec_info (tree stmt, loop_vec_info);
/* Main driver. */
extern void vectorize_loops (struct loops *);
/** In tree-vect-analyze.c **/
/* Driver for analysis stage. */
extern loop_vec_info vect_analyze_loop (struct loop *);
/** In tree-vect-transform.c **/
extern bool vectorizable_load (tree, block_stmt_iterator *, tree *);
extern bool vectorizable_store (tree, block_stmt_iterator *, tree *);
extern bool vectorizable_operation (tree, block_stmt_iterator *, tree *);
extern bool vectorizable_assignment (tree, block_stmt_iterator *, tree *);
/* Driver for transformation stage. */
extern void vect_transform_loop (loop_vec_info, struct loops *);
/*************************************************************************
Vectorization Debug Information - in tree-vectorizer.c
*************************************************************************/
extern bool vect_print_dump_info (enum verbosity_levels, LOC);
extern void vect_set_verbosity_level (const char *);
extern LOC find_loop_location (struct loop *);
#endif /* GCC_TREE_VECTORIZER_H */ #endif /* GCC_TREE_VECTORIZER_H */
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment