Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
R
riscv-gcc-1
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
lvzhengyang
riscv-gcc-1
Commits
ec65fa66
Commit
ec65fa66
authored
Nov 24, 1991
by
Richard Kenner
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Initial revision
From-SVN: r71
parent
1af1688b
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
1339 additions
and
0 deletions
+1339
-0
gcc/genrecog.c
+1339
-0
No files found.
gcc/genrecog.c
0 → 100644
View file @
ec65fa66
/* Generate code from machine description to recognize rtl as insns.
Copyright (C) 1987-1991 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
/* This program is used to produce insn-recog.c, which contains
a function called `recog' plus its subroutines.
These functions contain a decision tree
that recognizes whether an rtx, the argument given to recog,
is a valid instruction.
recog returns -1 if the rtx is not valid.
If the rtx is valid, recog returns a nonnegative number
which is the insn code number for the pattern that matched.
This is the same as the order in the machine description of the
entry that matched. This number can be used as an index into various
insn_* tables, such as insn_templates, insn_outfun, and insn_n_operands
(found in insn-output.c).
The third argument to recog is an optional pointer to an int.
If present, recog will accept a pattern if it matches except for
missing CLOBBER expressions at the end. In that case, the value
pointed to by the optional pointer will be set to the number of
CLOBBERs that need to be added (it should be initialized to zero by
the caller). If it is set nonzero, the caller should allocate a
PARALLEL of the appropriate size, copy the initial entries, and call
add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
This program also generates the function `split_insns',
which returns 0 if the rtl could not be split, or
it returns the split rtl in a SEQUENCE. */
#include <stdio.h>
#include "config.h"
#include "rtl.h"
#include "obstack.h"
static
struct
obstack
obstack
;
struct
obstack
*
rtl_obstack
=
&
obstack
;
#define obstack_chunk_alloc xmalloc
#define obstack_chunk_free free
extern
void
free
();
/* Data structure for decision tree for recognizing
legitimate instructions. */
struct
decision
{
int
number
;
char
*
position
;
RTX_CODE
code
;
char
*
exact
;
enum
machine_mode
mode
;
char
*
tests
;
int
insn_code_number
;
int
num_clobbers_to_add
;
struct
decision
*
next
;
struct
decision
*
success
;
int
opno
;
int
dupno
;
int
test_elt_zero_int
;
int
elt_zero_int
;
int
test_elt_one_int
;
int
elt_one_int
;
int
ignmode
;
struct
decision
*
afterward
;
int
label_needed
;
char
*
c_test
;
char
enforce_mode
;
int
veclen
;
int
subroutine_number
;
/* Used for DEFINE_SPLITs. */
char
*
c_hook
;
rtx
split_sequence
;
};
#define SUBROUTINE_THRESHOLD 50
static
int
next_subroutine_number
;
/* We can write two types of subroutines: One for insn recognition and
one to split insns. This defines which type is being written. */
enum
routine_type
{
RECOG
,
SPLIT
};
static
int
try_merge_1
();
static
int
no_same_mode
();
static
int
same_codes
();
static
int
same_modes
();
/*
static int
recognize (top)
{
staten:
x = XVECEXP (top, 0, 3);
if (test_code (GET_CODE (x))
&& test_mode (MODE (x))
&& whatever_else)
goto statep;
else if (next one...)
goto statem:
goto stater;
statep:
actions...;
return 1;
statem:
x = stack[depth--];
more tests...;
stateq:
stack[++depth] = x;
x = XEXP (stack[depth], 0);
more tests...;
stater:
x = XEXP (stack[depth], 1);
}
*/
static
int
next_number
;
static
int
next_insn_code
;
static
int
next_index
;
char
*
xmalloc
();
static
struct
decision
*
add_to_sequence
();
static
struct
decision
*
merge_trees
();
static
struct
decision
*
try_merge_2
();
static
void
write_subroutine
();
static
void
print_code
();
static
void
clear_codes
();
static
void
clear_modes
();
static
void
change_state
();
static
void
write_tree
();
static
char
*
copystr
();
static
char
*
concat
();
static
void
fatal
();
void
fancy_abort
();
static
void
mybzero
();
static
struct
decision
*
first
;
/* Construct and return a sequence of decisions
that will recognize INSN. */
static
struct
decision
*
make_insn_sequence
(
insn
)
rtx
insn
;
{
rtx
x
;
char
*
c_test
=
XSTR
(
insn
,
2
);
struct
decision
*
last
;
if
(
XVECLEN
(
insn
,
1
)
==
1
)
x
=
XVECEXP
(
insn
,
1
,
0
);
else
{
x
=
rtx_alloc
(
PARALLEL
);
XVEC
(
x
,
0
)
=
XVEC
(
insn
,
1
);
PUT_MODE
(
x
,
VOIDmode
);
}
last
=
add_to_sequence
(
x
,
0
,
""
);
if
(
c_test
[
0
])
last
->
c_test
=
c_test
;
last
->
insn_code_number
=
next_insn_code
;
last
->
num_clobbers_to_add
=
0
;
/* If X is a PARALLEL, see if it ends with a group of CLOBBERs of (hard)
registers or MATCH_SCRATCHes. If so, set up to recognize the pattern
without these CLOBBERs. */
if
(
GET_CODE
(
x
)
==
PARALLEL
)
{
int
i
;
for
(
i
=
XVECLEN
(
x
,
0
);
i
>
0
;
i
--
)
if
(
GET_CODE
(
XVECEXP
(
x
,
0
,
i
-
1
))
!=
CLOBBER
||
(
GET_CODE
(
XEXP
(
XVECEXP
(
x
,
0
,
i
-
1
),
0
))
!=
REG
&&
GET_CODE
(
XEXP
(
XVECEXP
(
x
,
0
,
i
-
1
),
0
))
!=
MATCH_SCRATCH
))
break
;
if
(
i
!=
XVECLEN
(
x
,
0
))
{
rtx
new
;
struct
decision
*
previous_first
=
first
;
if
(
i
==
1
)
new
=
XVECEXP
(
x
,
0
,
0
);
else
{
int
j
;
new
=
rtx_alloc
(
PARALLEL
);
XVEC
(
new
,
0
)
=
rtvec_alloc
(
i
);
for
(
j
=
i
-
1
;
j
>=
0
;
j
--
)
XVECEXP
(
new
,
0
,
j
)
=
XVECEXP
(
x
,
0
,
j
);
}
last
=
add_to_sequence
(
new
,
0
,
""
);
if
(
c_test
[
0
])
last
->
c_test
=
c_test
;
last
->
insn_code_number
=
next_insn_code
;
last
->
num_clobbers_to_add
=
XVECLEN
(
x
,
0
)
-
i
;
first
=
merge_trees
(
previous_first
,
first
);
}
}
next_insn_code
++
;
return
first
;
}
static
struct
decision
*
make_split_sequence
(
insn
)
rtx
insn
;
{
rtx
x
;
char
*
c_test
=
XSTR
(
insn
,
1
);
char
*
c_hook
=
XSTR
(
insn
,
3
);
struct
decision
*
last
;
if
(
XVECLEN
(
insn
,
0
)
==
1
)
x
=
XVECEXP
(
insn
,
0
,
0
);
else
{
x
=
rtx_alloc
(
PARALLEL
);
XVEC
(
x
,
0
)
=
XVEC
(
insn
,
0
);
PUT_MODE
(
x
,
VOIDmode
);
}
last
=
add_to_sequence
(
x
,
0
,
""
);
if
(
c_test
[
0
])
last
->
c_test
=
c_test
;
if
(
c_hook
!=
0
&&
c_hook
[
0
]
!=
0
)
last
->
c_hook
=
c_hook
;
last
->
split_sequence
=
XEXP
(
insn
,
2
);
last
->
insn_code_number
=
next_insn_code
++
;
/* Define the subroutine we will call below and emit in genemit. */
printf
(
"extern rtx gen_split_%d ();
\n
"
,
last
->
insn_code_number
);
return
first
;
}
static
struct
decision
*
add_to_sequence
(
pattern
,
last
,
position
)
rtx
pattern
;
struct
decision
*
last
;
char
*
position
;
{
register
RTX_CODE
code
;
register
struct
decision
*
new
=
(
struct
decision
*
)
xmalloc
(
sizeof
(
struct
decision
));
struct
decision
*
this
;
char
*
newpos
;
register
char
*
fmt
;
register
int
i
;
int
depth
;
int
len
;
new
->
number
=
next_number
++
;
new
->
position
=
copystr
(
position
);
new
->
exact
=
0
;
new
->
next
=
0
;
new
->
success
=
0
;
new
->
insn_code_number
=
-
1
;
new
->
num_clobbers_to_add
=
0
;
new
->
tests
=
0
;
new
->
opno
=
-
1
;
new
->
dupno
=
-
1
;
new
->
test_elt_zero_int
=
0
;
new
->
test_elt_one_int
=
0
;
new
->
elt_zero_int
=
0
;
new
->
elt_one_int
=
0
;
new
->
enforce_mode
=
0
;
new
->
ignmode
=
0
;
new
->
afterward
=
0
;
new
->
label_needed
=
0
;
new
->
c_test
=
0
;
new
->
c_hook
=
0
;
new
->
split_sequence
=
0
;
new
->
veclen
=
0
;
new
->
subroutine_number
=
0
;
this
=
new
;
if
(
last
==
0
)
first
=
new
;
else
last
->
success
=
new
;
depth
=
strlen
(
position
);
newpos
=
(
char
*
)
alloca
(
depth
+
2
);
strcpy
(
newpos
,
position
);
newpos
[
depth
+
1
]
=
0
;
restart
:
if
(
pattern
==
0
)
{
new
->
exact
=
"0"
;
new
->
code
=
UNKNOWN
;
new
->
mode
=
VOIDmode
;
return
new
;
}
new
->
mode
=
GET_MODE
(
pattern
);
new
->
code
=
code
=
GET_CODE
(
pattern
);
switch
(
code
)
{
case
MATCH_OPERAND
:
new
->
opno
=
XINT
(
pattern
,
0
);
new
->
code
=
UNKNOWN
;
new
->
tests
=
XSTR
(
pattern
,
1
);
if
(
*
new
->
tests
==
0
)
new
->
tests
=
0
;
return
new
;
case
MATCH_SCRATCH
:
new
->
opno
=
XINT
(
pattern
,
0
);
new
->
code
=
UNKNOWN
;
new
->
tests
=
"scratch_operand"
;
if
(
*
new
->
tests
==
0
)
new
->
tests
=
0
;
return
new
;
case
MATCH_OPERATOR
:
new
->
opno
=
XINT
(
pattern
,
0
);
new
->
code
=
UNKNOWN
;
new
->
tests
=
XSTR
(
pattern
,
1
);
if
(
*
new
->
tests
==
0
)
new
->
tests
=
0
;
for
(
i
=
0
;
i
<
XVECLEN
(
pattern
,
2
);
i
++
)
{
newpos
[
depth
]
=
i
+
'0'
;
new
=
add_to_sequence
(
XVECEXP
(
pattern
,
2
,
i
),
new
,
newpos
);
}
this
->
success
->
enforce_mode
=
0
;
return
new
;
case
MATCH_PARALLEL
:
new
->
opno
=
XINT
(
pattern
,
0
);
new
->
code
=
PARALLEL
;
new
->
tests
=
XSTR
(
pattern
,
1
);
if
(
*
new
->
tests
==
0
)
new
->
tests
=
0
;
for
(
i
=
0
;
i
<
XVECLEN
(
pattern
,
2
);
i
++
)
{
newpos
[
depth
]
=
i
+
'a'
;
new
=
add_to_sequence
(
XVECEXP
(
pattern
,
2
,
i
),
new
,
newpos
);
}
this
->
success
->
enforce_mode
=
0
;
return
new
;
case
MATCH_OP_DUP
:
new
->
opno
=
XINT
(
pattern
,
0
);
new
->
dupno
=
XINT
(
pattern
,
0
);
new
->
code
=
UNKNOWN
;
new
->
tests
=
0
;
for
(
i
=
0
;
i
<
XVECLEN
(
pattern
,
1
);
i
++
)
{
newpos
[
depth
]
=
i
+
'0'
;
new
=
add_to_sequence
(
XVECEXP
(
pattern
,
1
,
i
),
new
,
newpos
);
}
this
->
success
->
enforce_mode
=
0
;
return
new
;
case
MATCH_DUP
:
new
->
dupno
=
XINT
(
pattern
,
0
);
new
->
code
=
UNKNOWN
;
return
new
;
case
ADDRESS
:
pattern
=
XEXP
(
pattern
,
0
);
goto
restart
;
case
PC
:
new
->
exact
=
"pc_rtx"
;
return
new
;
case
CC0
:
new
->
exact
=
"cc0_rtx"
;
return
new
;
case
CONST_INT
:
if
(
INTVAL
(
pattern
)
==
0
)
{
new
->
exact
=
"const0_rtx"
;
return
new
;
}
if
(
INTVAL
(
pattern
)
==
1
)
{
new
->
exact
=
"const1_rtx"
;
return
new
;
}
if
(
INTVAL
(
pattern
)
==
-
1
)
{
new
->
exact
=
"constm1_rtx"
;
return
new
;
}
if
(
INTVAL
(
pattern
)
==
STORE_FLAG_VALUE
)
{
new
->
exact
=
"const_true_rtx"
;
return
new
;
}
break
;
case
SET
:
newpos
[
depth
]
=
'0'
;
new
=
add_to_sequence
(
SET_DEST
(
pattern
),
new
,
newpos
);
this
->
success
->
enforce_mode
=
1
;
newpos
[
depth
]
=
'1'
;
new
=
add_to_sequence
(
SET_SRC
(
pattern
),
new
,
newpos
);
return
new
;
case
STRICT_LOW_PART
:
newpos
[
depth
]
=
'0'
;
new
=
add_to_sequence
(
XEXP
(
pattern
,
0
),
new
,
newpos
);
this
->
success
->
enforce_mode
=
1
;
return
new
;
case
SUBREG
:
this
->
test_elt_one_int
=
1
;
this
->
elt_one_int
=
XINT
(
pattern
,
1
);
newpos
[
depth
]
=
'0'
;
new
=
add_to_sequence
(
XEXP
(
pattern
,
0
),
new
,
newpos
);
this
->
success
->
enforce_mode
=
1
;
return
new
;
case
ZERO_EXTRACT
:
case
SIGN_EXTRACT
:
newpos
[
depth
]
=
'0'
;
new
=
add_to_sequence
(
XEXP
(
pattern
,
0
),
new
,
newpos
);
this
->
success
->
enforce_mode
=
1
;
newpos
[
depth
]
=
'1'
;
new
=
add_to_sequence
(
XEXP
(
pattern
,
1
),
new
,
newpos
);
newpos
[
depth
]
=
'2'
;
new
=
add_to_sequence
(
XEXP
(
pattern
,
2
),
new
,
newpos
);
return
new
;
}
fmt
=
GET_RTX_FORMAT
(
code
);
len
=
GET_RTX_LENGTH
(
code
);
for
(
i
=
0
;
i
<
len
;
i
++
)
{
newpos
[
depth
]
=
'0'
+
i
;
if
(
fmt
[
i
]
==
'e'
||
fmt
[
i
]
==
'u'
)
new
=
add_to_sequence
(
XEXP
(
pattern
,
i
),
new
,
newpos
);
else
if
(
fmt
[
i
]
==
'i'
&&
i
==
0
)
{
this
->
test_elt_zero_int
=
1
;
this
->
elt_zero_int
=
XINT
(
pattern
,
i
);
}
else
if
(
fmt
[
i
]
==
'i'
&&
i
==
1
)
{
this
->
test_elt_one_int
=
1
;
this
->
elt_one_int
=
XINT
(
pattern
,
i
);
}
else
if
(
fmt
[
i
]
==
'E'
)
{
register
int
j
;
/* We do not handle a vector appearing as other than
the first item, just because nothing uses them
and by handling only the special case
we can use one element in newpos for either
the item number of a subexpression
or the element number in a vector. */
if
(
i
!=
0
)
abort
();
this
->
veclen
=
XVECLEN
(
pattern
,
i
);
for
(
j
=
0
;
j
<
XVECLEN
(
pattern
,
i
);
j
++
)
{
newpos
[
depth
]
=
'a'
+
j
;
new
=
add_to_sequence
(
XVECEXP
(
pattern
,
i
,
j
),
new
,
newpos
);
}
}
else
if
(
fmt
[
i
]
!=
'0'
)
abort
();
}
return
new
;
}
/* Merge two decision trees OLD and ADD,
modifying OLD destructively,
and return the merged tree. */
static
struct
decision
*
merge_trees
(
old
,
add
)
register
struct
decision
*
old
,
*
add
;
{
while
(
add
)
{
register
struct
decision
*
next
=
add
->
next
;
add
->
next
=
0
;
if
(
!
try_merge_1
(
old
,
add
))
old
=
try_merge_2
(
old
,
add
);
add
=
next
;
}
return
old
;
}
/* Merge ADD into the next-chain starting with OLD
only if it overlaps a condition already tested in OLD.
Returns 1 if successful (OLD is modified),
0 if nothing has been done. */
static
int
try_merge_1
(
old
,
add
)
register
struct
decision
*
old
,
*
add
;
{
while
(
old
)
{
if
((
old
->
position
==
add
->
position
||
(
old
->
position
&&
add
->
position
&&
!
strcmp
(
old
->
position
,
add
->
position
)))
&&
(
old
->
tests
==
add
->
tests
||
(
old
->
tests
&&
add
->
tests
&&
!
strcmp
(
old
->
tests
,
add
->
tests
)))
&&
(
old
->
c_test
==
add
->
c_test
||
(
old
->
c_test
&&
add
->
c_test
&&
!
strcmp
(
old
->
c_test
,
add
->
c_test
)))
&&
(
old
->
c_hook
==
add
->
c_hook
||
(
old
->
c_hook
&&
add
->
c_hook
&&
!
strcmp
(
old
->
c_hook
,
add
->
c_hook
)))
&&
old
->
test_elt_zero_int
==
add
->
test_elt_zero_int
&&
old
->
elt_zero_int
==
add
->
elt_zero_int
&&
old
->
test_elt_one_int
==
add
->
test_elt_one_int
&&
old
->
elt_one_int
==
add
->
elt_one_int
&&
old
->
veclen
==
add
->
veclen
&&
old
->
dupno
==
add
->
dupno
&&
old
->
opno
==
add
->
opno
/* In a collection of nodes that don't have predicates,
we can always merge a new one with any node that matches it.
This is because we know that two different nodes can't possibly match
the same RTL object. So we can reorder the tests to simplify the
whole collection of them.
But when predicates are involved, we have to preserve the order of
testing them. This means that a new node can only be merged with the
last existing node.
enforce_mode indicates that at this level each of the nodes
requires a particular mode. When this is true, then we know
that two nodes with different modes can't possibly both match.
Therefore, it is ok to merge a new node with the last node
that wants the same mode, even if other nodes for different modes
appear after it. no_same_mode tests for this condition. */
&&
(
old
->
tests
==
0
||
(
add
->
enforce_mode
?
no_same_mode
(
old
)
:
old
->
next
==
0
))
&&
old
->
code
==
add
->
code
&&
old
->
mode
==
add
->
mode
&&
(
old
->
exact
==
add
->
exact
||
(
old
->
exact
&&
add
->
exact
&&
!
strcmp
(
old
->
exact
,
add
->
exact
))))
{
old
->
success
=
merge_trees
(
old
->
success
,
add
->
success
);
if
(
old
->
insn_code_number
>=
0
&&
add
->
insn_code_number
>=
0
)
fatal
(
"Two actions at one point in tree"
);
if
(
old
->
insn_code_number
==
-
1
)
old
->
insn_code_number
=
add
->
insn_code_number
;
return
1
;
}
old
=
old
->
next
;
}
return
0
;
}
/* Merge ADD into the next-chain that starts with OLD,
preferably after something that tests the same place
that ADD does.
The next-chain of ADD itself is ignored, and it is set
up for entering ADD into the new chain.
Returns the new chain. */
static
struct
decision
*
try_merge_2
(
old
,
add
)
struct
decision
*
old
,
*
add
;
{
register
struct
decision
*
p
;
struct
decision
*
last
=
0
;
struct
decision
*
last_same_place
=
0
;
/* Put this in after the others that test the same place,
if there are any. If not, find the last chain element
and insert there.
One modification: if this one is NOT a MATCH_OPERAND,
put it before any MATCH_OPERANDS that test the same place.
Another: if enforce_mode (i.e. this is first operand of a SET),
put this after the last thing that tests the same place for
the same mode. */
#if 0
int operand = 0 != add->tests;
#endif
for
(
p
=
old
;
p
;
p
=
p
->
next
)
{
if
(
p
->
position
==
add
->
position
||
(
p
->
position
&&
add
->
position
&&
!
strcmp
(
p
->
position
,
add
->
position
)))
{
last_same_place
=
p
;
/* If enforce_mode, segregate the modes in numerical order. */
if
(
p
->
enforce_mode
&&
(
int
)
add
->
mode
<
(
int
)
p
->
mode
)
break
;
#if 0
/* Keep explicit decompositions before those that test predicates.
If enforce_mode, do this separately within each mode. */
if (! p->enforce_mode || p->mode == add->mode)
if (!operand && p->tests)
break;
#endif
}
/* If this is past the end of the decisions at the same place as ADD,
stop looking now; add ADD before here. */
else
if
(
last_same_place
)
break
;
last
=
p
;
}
/* Insert before P, which means after LAST. */
if
(
last
)
{
add
->
next
=
last
->
next
;
last
->
next
=
add
;
return
old
;
}
add
->
next
=
old
;
return
add
;
}
static
int
no_same_mode
(
node
)
struct
decision
*
node
;
{
register
struct
decision
*
p
;
register
enum
machine_mode
mode
=
node
->
mode
;
for
(
p
=
node
->
next
;
p
;
p
=
p
->
next
)
if
(
p
->
mode
==
mode
)
return
0
;
return
1
;
}
/* Count the number of subnodes of node NODE, assumed to be the start
of a next-chain. If the number is high enough, make NODE start
a separate subroutine in the C code that is generated.
TYPE gives the type of routine we are writing. */
static
int
break_out_subroutines
(
node
,
type
)
struct
decision
*
node
;
enum
routine_type
type
;
{
int
size
=
0
;
struct
decision
*
sub
;
for
(
sub
=
node
;
sub
;
sub
=
sub
->
next
)
size
+=
1
+
break_out_subroutines
(
sub
->
success
,
type
);
if
(
size
>
SUBROUTINE_THRESHOLD
)
{
node
->
subroutine_number
=
++
next_subroutine_number
;
write_subroutine
(
node
,
type
);
size
=
1
;
}
return
size
;
}
static
void
write_subroutine
(
tree
,
type
)
struct
decision
*
tree
;
enum
routine_type
type
;
{
char
*
return_type
=
(
type
==
SPLIT
?
"rtx"
:
"int"
);
if
(
type
==
SPLIT
)
{
printf
(
"rtx
\n
split_%d (x0, insn)
\n
"
,
tree
->
subroutine_number
);
printf
(
" register rtx x0;
\n
rtx insn;
\n
"
);
}
else
{
printf
(
"int
\n
recog_%d (x0, insn, pnum_clobbers)
\n
"
,
tree
->
subroutine_number
);
printf
(
" register rtx x0;
\n
rtx insn;
\n
"
);
printf
(
" int *pnum_clobbers;
\n
"
);
}
printf
(
"{
\n
"
);
printf
(
" register rtx *ro = &recog_operand[0];
\n
"
);
printf
(
" register rtx x1, x2, x3, x4, x5;
\n
rtx x6, x7, x8, x9, x10, x11;
\n
"
);
printf
(
" %s tem;
\n
"
,
return_type
);
write_tree
(
tree
,
""
,
0
,
""
,
1
,
type
);
printf
(
" ret0: return %d;
\n
}
\n\n
"
,
type
==
SPLIT
?
0
:
-
1
);
}
/* Write out C code to perform the decisions in the tree. */
static
char
*
write_tree_1
(
tree
,
prevpos
,
afterward
,
afterpos
,
initial
,
type
)
struct
decision
*
tree
;
char
*
prevpos
;
int
afterward
;
char
*
afterpos
;
int
initial
;
enum
routine_type
type
;
{
register
struct
decision
*
p
,
*
p1
;
char
*
pos
;
register
int
depth
;
int
ignmode
;
enum
anon1
{
NO_SWITCH
,
CODE_SWITCH
,
MODE_SWITCH
}
in_switch
=
NO_SWITCH
;
char
modemap
[
NUM_MACHINE_MODES
];
char
codemap
[
NUM_RTX_CODE
];
pos
=
prevpos
;
tree
->
label_needed
=
1
;
for
(
p
=
tree
;
p
;
p
=
p
->
next
)
{
/* Find the next alternative to p
that might be true when p is true.
Test that one next if p's successors fail.
Note that when the `tests' field is nonzero
it is up to the specified test-function to compare machine modes
and some (such as general_operand) don't always do so.
But when inside a switch-on-modes we ignore this and
consider all modes mutually exclusive. */
for
(
p1
=
p
->
next
;
p1
;
p1
=
p1
->
next
)
if
(((
p
->
code
==
UNKNOWN
||
p1
->
code
==
UNKNOWN
||
p
->
code
==
p1
->
code
)
&&
(
p
->
mode
==
VOIDmode
||
p1
->
mode
==
VOIDmode
||
p
->
mode
==
p1
->
mode
||
(
in_switch
!=
MODE_SWITCH
&&
(
p
->
tests
||
p1
->
tests
))))
||
strcmp
(
p1
->
position
,
p
->
position
))
break
;
p
->
afterward
=
p1
;
if
(
p1
)
p1
->
label_needed
=
1
;
if
(
in_switch
==
MODE_SWITCH
&&
(
p
->
mode
==
VOIDmode
||
(
!
p
->
enforce_mode
&&
p
->
tests
!=
0
)))
{
in_switch
=
NO_SWITCH
;
printf
(
" }
\n
"
);
}
if
(
in_switch
==
CODE_SWITCH
&&
p
->
code
==
UNKNOWN
)
{
in_switch
=
NO_SWITCH
;
printf
(
" }
\n
"
);
}
if
(
p
->
label_needed
)
printf
(
" L%d:
\n
"
,
p
->
number
);
if
(
p
->
success
==
0
&&
p
->
insn_code_number
<
0
)
abort
();
change_state
(
pos
,
p
->
position
);
pos
=
p
->
position
;
depth
=
strlen
(
pos
);
ignmode
=
(
p
->
ignmode
||
p
->
tests
);
if
(
in_switch
==
NO_SWITCH
)
{
/* If p and its alternatives all want the same mode,
reject all others at once, first, then ignore the mode. */
if
(
!
ignmode
&&
p
->
mode
!=
VOIDmode
&&
p
->
next
&&
same_modes
(
p
,
p
->
mode
))
{
printf
(
" if (GET_MODE (x%d) != %smode)
\n
"
,
depth
,
GET_MODE_NAME
(
p
->
mode
));
if
(
afterward
)
{
printf
(
" {
\n
"
);
change_state
(
pos
,
afterpos
);
printf
(
" goto L%d;
\n
}
\n
"
,
afterward
);
}
else
printf
(
" goto ret0;
\n
"
);
clear_modes
(
p
);
ignmode
=
1
;
}
/* If p and its alternatives all want the same code,
reject all others at once, first, then ignore the code. */
if
(
p
->
code
!=
UNKNOWN
&&
p
->
next
&&
same_codes
(
p
,
p
->
code
))
{
printf
(
" if (GET_CODE (x%d) != "
,
depth
);
print_code
(
p
->
code
);
printf
(
")
\n
"
);
if
(
afterward
)
{
printf
(
" {"
);
change_state
(
pos
,
afterpos
);
printf
(
" goto L%d; }
\n
"
,
afterward
);
}
else
printf
(
" goto ret0;
\n
"
);
clear_codes
(
p
);
}
}
/* If p and its alternatives all have different modes
and there are at least 4 of them, make a switch. */
if
(
in_switch
==
NO_SWITCH
)
{
register
int
i
;
int
lose
=
0
;
mybzero
(
modemap
,
sizeof
modemap
);
for
(
p1
=
p
,
i
=
0
;
(
p1
&&
p1
->
mode
!=
VOIDmode
&&
(
p1
->
tests
==
0
||
p1
->
enforce_mode
));
p1
=
p1
->
next
,
i
++
)
{
if
(
!
p
->
enforce_mode
&&
modemap
[(
int
)
p1
->
mode
])
{
lose
=
1
;
break
;
}
modemap
[(
int
)
p1
->
mode
]
=
1
;
}
if
(
!
lose
&&
i
>=
4
)
{
in_switch
=
MODE_SWITCH
;
printf
(
" switch (GET_MODE (x%d))
\n
{
\n
"
,
depth
);
}
}
if
(
in_switch
==
NO_SWITCH
)
{
register
int
i
;
mybzero
(
codemap
,
sizeof
codemap
);
for
(
p1
=
p
,
i
=
0
;
p1
&&
p1
->
code
!=
UNKNOWN
;
p1
=
p1
->
next
,
i
++
)
{
if
(
codemap
[(
int
)
p1
->
code
])
break
;
codemap
[(
int
)
p1
->
code
]
=
1
;
}
if
((
p1
==
0
||
p1
->
code
==
UNKNOWN
)
&&
i
>=
4
)
{
in_switch
=
CODE_SWITCH
;
printf
(
" switch (GET_CODE (x%d))
\n
{
\n
"
,
depth
);
}
}
if
(
in_switch
==
MODE_SWITCH
)
{
if
(
modemap
[(
int
)
p
->
mode
])
{
printf
(
" case %smode:
\n
"
,
GET_MODE_NAME
(
p
->
mode
));
modemap
[(
int
)
p
->
mode
]
=
0
;
}
}
if
(
in_switch
==
CODE_SWITCH
)
{
if
(
codemap
[(
int
)
p
->
code
])
{
printf
(
" case "
);
print_code
(
p
->
code
);
printf
(
":
\n
"
);
codemap
[(
int
)
p
->
code
]
=
0
;
}
}
printf
(
" if ("
);
if
(
p
->
exact
||
(
p
->
code
!=
UNKNOWN
&&
in_switch
!=
CODE_SWITCH
))
{
if
(
p
->
exact
)
printf
(
"x%d == %s"
,
depth
,
p
->
exact
);
else
{
printf
(
"GET_CODE (x%d) == "
,
depth
);
print_code
(
p
->
code
);
}
printf
(
" && "
);
}
if
(
p
->
mode
!=
VOIDmode
&&
!
ignmode
&&
in_switch
!=
MODE_SWITCH
)
printf
(
"GET_MODE (x%d) == %smode && "
,
depth
,
GET_MODE_NAME
(
p
->
mode
));
if
(
p
->
test_elt_zero_int
)
printf
(
"XINT (x%d, 0) == %d && "
,
depth
,
p
->
elt_zero_int
);
if
(
p
->
veclen
)
printf
(
"XVECLEN (x%d, 0) == %d && "
,
depth
,
p
->
veclen
);
if
(
p
->
test_elt_one_int
)
printf
(
"XINT (x%d, 1) == %d && "
,
depth
,
p
->
elt_one_int
);
if
(
p
->
dupno
>=
0
)
printf
(
"rtx_equal_p (x%d, ro[%d]) && "
,
depth
,
p
->
dupno
);
if
(
p
->
tests
)
printf
(
"%s (x%d, %smode)"
,
p
->
tests
,
depth
,
GET_MODE_NAME
(
p
->
mode
));
else
printf
(
"1"
);
if
(
p
->
opno
>=
0
)
printf
(
")
\n
{ ro[%d] = x%d; "
,
p
->
opno
,
depth
);
else
printf
(
")
\n
"
);
if
(
p
->
c_test
)
printf
(
"if (%s) "
,
p
->
c_test
);
if
(
p
->
insn_code_number
>=
0
)
{
if
(
type
==
SPLIT
)
printf
(
"return gen_split_%d (operands);"
,
p
->
insn_code_number
);
else
{
if
(
p
->
num_clobbers_to_add
)
{
printf
(
"
\n
{
\n
"
);
printf
(
"
\t
if (pnum_clobbers == 0) goto ret0; "
);
printf
(
"*pnum_clobbers = %d; "
,
p
->
num_clobbers_to_add
);
printf
(
"return %d;
\n
}"
,
p
->
insn_code_number
);
}
else
printf
(
"return %d;"
,
p
->
insn_code_number
);
}
}
else
printf
(
"goto L%d;"
,
p
->
success
->
number
);
if
(
p
->
opno
>=
0
)
printf
(
" }
\n
"
);
else
printf
(
"
\n
"
);
/* Now, if inside a switch, branch to next switch member
that might also need to be tested if this one fails. */
if
(
in_switch
==
CODE_SWITCH
)
{
/* Find the next alternative to p
that might be applicable if p was applicable. */
for
(
p1
=
p
->
next
;
p1
;
p1
=
p1
->
next
)
if
(
p1
->
code
==
UNKNOWN
||
p
->
code
==
p1
->
code
)
break
;
if
(
p1
==
0
||
p1
->
code
==
UNKNOWN
)
printf
(
" break;
\n
"
);
else
if
(
p1
!=
p
->
next
)
{
printf
(
" goto L%d;
\n
"
,
p1
->
number
);
p1
->
label_needed
=
1
;
}
}
if
(
in_switch
==
MODE_SWITCH
)
{
/* Find the next alternative to p
that might be applicable if p was applicable. */
for
(
p1
=
p
->
next
;
p1
;
p1
=
p1
->
next
)
if
(
p1
->
mode
==
VOIDmode
||
p
->
mode
==
p1
->
mode
)
break
;
if
(
p1
==
0
||
p1
->
mode
==
VOIDmode
)
printf
(
" break;
\n
"
);
else
if
(
p1
!=
p
->
next
)
{
printf
(
" goto L%d;
\n
"
,
p1
->
number
);
p1
->
label_needed
=
1
;
}
}
}
if
(
in_switch
!=
NO_SWITCH
)
printf
(
" }
\n
"
);
if
(
afterward
)
{
change_state
(
pos
,
afterpos
);
printf
(
" goto L%d;
\n
"
,
afterward
);
}
else
printf
(
" goto ret0;
\n
"
);
return
pos
;
}
static
void
write_tree
(
tree
,
prevpos
,
afterward
,
afterpos
,
initial
,
type
)
struct
decision
*
tree
;
char
*
prevpos
;
int
afterward
;
char
*
afterpos
;
int
initial
;
enum
routine_type
type
;
{
register
struct
decision
*
p
;
char
*
pos
=
prevpos
;
char
*
name_prefix
=
(
type
==
SPLIT
?
"split"
:
"recog"
);
char
*
call_suffix
=
(
type
==
SPLIT
?
""
:
", pnum_clobbers"
);
if
(
tree
->
subroutine_number
>
0
&&
!
initial
)
{
printf
(
" L%d:
\n
"
,
tree
->
number
);
if
(
afterward
)
{
printf
(
" tem = %s_%d (x0, insn%s);
\n
"
,
name_prefix
,
tree
->
subroutine_number
,
call_suffix
);
printf
(
" if (tem >= 0) return tem;
\n
"
);
change_state
(
pos
,
afterpos
);
printf
(
" goto L%d;
\n
"
,
afterward
);
}
else
printf
(
" return %s_%d (x0, insn%s);
\n
"
,
name_prefix
,
tree
->
subroutine_number
,
call_suffix
);
return
;
}
pos
=
write_tree_1
(
tree
,
prevpos
,
afterward
,
afterpos
,
initial
,
type
);
for
(
p
=
tree
;
p
;
p
=
p
->
next
)
if
(
p
->
success
)
{
pos
=
p
->
position
;
write_tree
(
p
->
success
,
pos
,
p
->
afterward
?
p
->
afterward
->
number
:
afterward
,
p
->
afterward
?
pos
:
afterpos
,
0
,
type
);
}
}
static
void
print_code
(
code
)
RTX_CODE
code
;
{
register
char
*
p1
;
for
(
p1
=
GET_RTX_NAME
(
code
);
*
p1
;
p1
++
)
{
if
(
*
p1
>=
'a'
&&
*
p1
<=
'z'
)
putchar
(
*
p1
+
'A'
-
'a'
);
else
putchar
(
*
p1
);
}
}
static
int
same_codes
(
p
,
code
)
register
struct
decision
*
p
;
register
RTX_CODE
code
;
{
for
(;
p
;
p
=
p
->
next
)
if
(
p
->
code
!=
code
)
return
0
;
return
1
;
}
static
void
clear_codes
(
p
)
register
struct
decision
*
p
;
{
for
(;
p
;
p
=
p
->
next
)
p
->
code
=
UNKNOWN
;
}
static
int
same_modes
(
p
,
mode
)
register
struct
decision
*
p
;
register
enum
machine_mode
mode
;
{
for
(;
p
;
p
=
p
->
next
)
if
(
p
->
mode
!=
mode
||
p
->
tests
)
return
0
;
return
1
;
}
static
void
clear_modes
(
p
)
register
struct
decision
*
p
;
{
for
(;
p
;
p
=
p
->
next
)
p
->
ignmode
=
1
;
}
static
void
change_state
(
oldpos
,
newpos
)
char
*
oldpos
;
char
*
newpos
;
{
int
odepth
=
strlen
(
oldpos
);
int
depth
=
odepth
;
int
ndepth
=
strlen
(
newpos
);
/* Pop up as many levels as necessary. */
while
(
strncmp
(
oldpos
,
newpos
,
depth
))
--
depth
;
/* Go down to desired level. */
while
(
depth
<
ndepth
)
{
if
(
newpos
[
depth
]
>=
'a'
&&
newpos
[
depth
]
<=
'z'
)
printf
(
" x%d = XVECEXP (x%d, 0, %d);
\n
"
,
depth
+
1
,
depth
,
newpos
[
depth
]
-
'a'
);
else
printf
(
" x%d = XEXP (x%d, %c);
\n
"
,
depth
+
1
,
depth
,
newpos
[
depth
]);
++
depth
;
}
}
static
char
*
copystr
(
s1
)
char
*
s1
;
{
register
char
*
tem
;
if
(
s1
==
0
)
return
0
;
tem
=
(
char
*
)
xmalloc
(
strlen
(
s1
)
+
1
);
strcpy
(
tem
,
s1
);
return
tem
;
}
static
void
mybzero
(
b
,
length
)
register
char
*
b
;
register
unsigned
length
;
{
while
(
length
--
>
0
)
*
b
++
=
0
;
}
static
char
*
concat
(
s1
,
s2
)
char
*
s1
,
*
s2
;
{
register
char
*
tem
;
if
(
s1
==
0
)
return
s2
;
if
(
s2
==
0
)
return
s1
;
tem
=
(
char
*
)
xmalloc
(
strlen
(
s1
)
+
strlen
(
s2
)
+
2
);
strcpy
(
tem
,
s1
);
strcat
(
tem
,
" "
);
strcat
(
tem
,
s2
);
return
tem
;
}
char
*
xrealloc
(
ptr
,
size
)
char
*
ptr
;
unsigned
size
;
{
char
*
result
=
(
char
*
)
realloc
(
ptr
,
size
);
if
(
!
result
)
fatal
(
"virtual memory exhausted"
);
return
result
;
}
char
*
xmalloc
(
size
)
unsigned
size
;
{
register
char
*
val
=
(
char
*
)
malloc
(
size
);
if
(
val
==
0
)
fatal
(
"virtual memory exhausted"
);
return
val
;
}
static
void
fatal
(
s
,
a1
,
a2
)
char
*
s
;
{
fprintf
(
stderr
,
"genrecog: "
);
fprintf
(
stderr
,
s
,
a1
,
a2
);
fprintf
(
stderr
,
"
\n
"
);
fprintf
(
stderr
,
"after %d instruction definitions
\n
"
,
next_index
);
exit
(
FATAL_EXIT_CODE
);
}
/* More 'friendly' abort that prints the line and file.
config.h can #define abort fancy_abort if you like that sort of thing. */
void
fancy_abort
()
{
fatal
(
"Internal gcc abort."
);
}
int
main
(
argc
,
argv
)
int
argc
;
char
**
argv
;
{
rtx
desc
;
struct
decision
*
tree
=
0
;
struct
decision
*
split_tree
=
0
;
FILE
*
infile
;
extern
rtx
read_rtx
();
register
int
c
;
obstack_init
(
rtl_obstack
);
if
(
argc
<=
1
)
fatal
(
"No input file name."
);
infile
=
fopen
(
argv
[
1
],
"r"
);
if
(
infile
==
0
)
{
perror
(
argv
[
1
]);
exit
(
FATAL_EXIT_CODE
);
}
init_rtl
();
next_insn_code
=
0
;
next_index
=
0
;
printf
(
"/* Generated automatically by the program `genrecog'
\n
\
from the machine description file `md'. */
\n\n
"
);
printf
(
"#include
\"
config.h
\"\n
"
);
printf
(
"#include
\"
rtl.h
\"\n
"
);
printf
(
"#include
\"
insn-config.h
\"\n
"
);
printf
(
"#include
\"
recog.h
\"\n
"
);
printf
(
"#include
\"
real.h
\"\n
"
);
printf
(
"#include
\"
output.h
\"\n
"
);
printf
(
"#include
\"
flags.h
\"\n
"
);
printf
(
"
\n
"
);
/* Read the machine description. */
while
(
1
)
{
c
=
read_skip_spaces
(
infile
);
if
(
c
==
EOF
)
break
;
ungetc
(
c
,
infile
);
desc
=
read_rtx
(
infile
);
if
(
GET_CODE
(
desc
)
==
DEFINE_INSN
)
tree
=
merge_trees
(
tree
,
make_insn_sequence
(
desc
));
else
if
(
GET_CODE
(
desc
)
==
DEFINE_SPLIT
)
split_tree
=
merge_trees
(
split_tree
,
make_split_sequence
(
desc
));
if
(
GET_CODE
(
desc
)
==
DEFINE_PEEPHOLE
||
GET_CODE
(
desc
)
==
DEFINE_EXPAND
)
next_insn_code
++
;
next_index
++
;
}
printf
(
"
\n
\
/* `recog' contains a decision tree
\n
\
that recognizes whether the rtx X0 is a valid instruction.
\n
\
\n
\
recog returns -1 if the rtx is not valid.
\n
\
If the rtx is valid, recog returns a nonnegative number
\n
\
which is the insn code number for the pattern that matched.
\n
"
);
printf
(
" This is the same as the order in the machine description of
\n
\
the entry that matched. This number can be used as an index into
\n
\
entry that matched. This number can be used as an index into various
\n
\
insn_* tables, such as insn_templates, insn_outfun, and insn_n_operands
\n
\
(found in insn-output.c).
\n\n
"
);
printf
(
" The third argument to recog is an optional pointer to an int.
\n
\
If present, recog will accept a pattern if it matches except for
\n
\
missing CLOBBER expressions at the end. In that case, the value
\n
\
pointed to by the optional pointer will be set to the number of
\n
\
CLOBBERs that need to be added (it should be initialized to zero by
\n
\
the caller). If it is set nonzero, the caller should allocate a
\n
\
PARALLEL of the appropriate size, copy the initial entries, and call
\n
\
add_clobbers (found in insn-emit.c) to fill in the CLOBBERs."
);
if
(
split_tree
)
printf
(
"
\n\n
The function split_insns returns 0 if the rtl could not
\n
\
be split or the split rtl in a SEQUENCE if it can be."
);
printf
(
"*/
\n\n
"
);
printf
(
"rtx recog_operand[MAX_RECOG_OPERANDS];
\n\n
"
);
printf
(
"rtx *recog_operand_loc[MAX_RECOG_OPERANDS];
\n\n
"
);
printf
(
"rtx *recog_dup_loc[MAX_DUP_OPERANDS];
\n\n
"
);
printf
(
"char recog_dup_num[MAX_DUP_OPERANDS];
\n\n
"
);
printf
(
"#define operands recog_operand
\n\n
"
);
next_subroutine_number
=
0
;
break_out_subroutines
(
tree
,
RECOG
);
printf
(
"int
\n
recog (x0, insn, pnum_clobbers)
\n
"
);
printf
(
" register rtx x0;
\n
rtx insn;
\n
"
);
printf
(
" int *pnum_clobbers;
\n
{
\n
"
);
printf
(
" register rtx *ro = &recog_operand[0];
\n
"
);
printf
(
" register rtx x1, x2, x3, x4, x5;
\n
rtx x6, x7, x8, x9, x10, x11;
\n
"
);
printf
(
" int tem;
\n
"
);
if
(
tree
)
write_tree
(
tree
,
""
,
0
,
""
,
1
,
RECOG
);
printf
(
" ret0: return -1;
\n
}
\n
"
);
next_subroutine_number
=
0
;
break_out_subroutines
(
split_tree
,
SPLIT
);
printf
(
"rtx
\n
split_insns (x0, insn)
\n
register rtx x0;
\n
rtx insn;
\n
{
\n
"
);
printf
(
" register rtx *ro = &recog_operand[0];
\n
"
);
printf
(
" register rtx x1, x2, x3, x4, x5;
\n
rtx x6, x7, x8, x9, x10, x11;
\n
"
);
printf
(
" rtx tem;
\n
"
);
if
(
split_tree
)
write_tree
(
split_tree
,
""
,
0
,
""
,
1
,
SPLIT
);
printf
(
" ret0: return 0;
\n
}
\n
"
);
fflush
(
stdout
);
exit
(
ferror
(
stdout
)
!=
0
?
FATAL_EXIT_CODE
:
SUCCESS_EXIT_CODE
);
/* NOTREACHED */
return
0
;
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment