Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
R
riscv-gcc-1
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
lvzhengyang
riscv-gcc-1
Commits
e6ee5154
Commit
e6ee5154
authored
Jan 02, 1992
by
Richard Kenner
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Initial revision
From-SVN: r154
parent
9f682aa7
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
1898 additions
and
0 deletions
+1898
-0
gcc/config/romp/romp.c
+1898
-0
No files found.
gcc/config/romp/romp.c
0 → 100644
View file @
e6ee5154
/* Subroutines used for code generation on ROMP.
Copyright (C) 1987-1991 Free Software Foundation, Inc.
Contributed by Richard Kenner (kenner@nyu.edu)
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
#include <stdio.h>
#include "config.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "recog.h"
#include "expr.h"
#include "obstack.h"
#include "tree.h"
#define min(A,B) ((A) < (B) ? (A) : (B))
#define max(A,B) ((A) > (B) ? (A) : (B))
static
int
unsigned_comparisons_p
();
static
void
output_loadsave_fpregs
();
static
void
output_fpops
();
static
void
init_fpops
();
/* Return 1 if the insn using CC0 set by INSN does not contain
any unsigned tests applied to the condition codes.
Based on `next_insn_tests_no_inequality' in recog.c. */
int
next_insn_tests_no_unsigned
(
insn
)
rtx
insn
;
{
register
rtx
next
=
next_cc0_user
(
insn
);
if
(
next
==
0
)
{
if
(
find_reg_note
(
insn
,
REG_UNUSED
,
cc0_rtx
))
return
1
;
else
abort
();
}
return
((
GET_CODE
(
next
)
==
JUMP_INSN
||
GET_CODE
(
next
)
==
INSN
||
GET_CODE
(
next
)
==
CALL_INSN
)
&&
!
unsigned_comparisons_p
(
PATTERN
(
next
)));
}
static
int
unsigned_comparisons_p
(
x
)
rtx
x
;
{
register
char
*
fmt
;
register
int
len
,
i
;
register
enum
rtx_code
code
=
GET_CODE
(
x
);
switch
(
code
)
{
case
REG
:
case
PC
:
case
CC0
:
case
CONST_INT
:
case
CONST_DOUBLE
:
case
CONST
:
case
LABEL_REF
:
case
SYMBOL_REF
:
return
0
;
case
LTU
:
case
GTU
:
case
LEU
:
case
GEU
:
return
(
XEXP
(
x
,
0
)
==
cc0_rtx
||
XEXP
(
x
,
1
)
==
cc0_rtx
);
}
len
=
GET_RTX_LENGTH
(
code
);
fmt
=
GET_RTX_FORMAT
(
code
);
for
(
i
=
0
;
i
<
len
;
i
++
)
{
if
(
fmt
[
i
]
==
'e'
)
{
if
(
unsigned_comparisons_p
(
XEXP
(
x
,
i
)))
return
1
;
}
else
if
(
fmt
[
i
]
==
'E'
)
{
register
int
j
;
for
(
j
=
XVECLEN
(
x
,
i
)
-
1
;
j
>=
0
;
j
--
)
if
(
unsigned_comparisons_p
(
XVECEXP
(
x
,
i
,
j
)))
return
1
;
}
}
return
0
;
}
/* Update the condition code from the insn. Look mostly at the first
byte of the machine-specific insn description information.
cc_state.value[12] refer to two possible values that might correspond
to the CC. We only store register values. */
update_cc
(
body
,
insn
)
rtx
body
;
rtx
insn
;
{
switch
(
get_attr_cc
(
insn
))
{
case
CC_NONE
:
/* Insn does not affect the CC at all. */
break
;
case
CC_CHANGE0
:
/* Insn doesn't affect the CC but does modify operand[0], known to be
a register. */
if
(
cc_status
.
value1
!=
0
&&
reg_overlap_mentioned_p
(
recog_operand
[
0
],
cc_status
.
value1
))
cc_status
.
value1
=
0
;
if
(
cc_status
.
value2
!=
0
&&
reg_overlap_mentioned_p
(
recog_operand
[
0
],
cc_status
.
value2
))
cc_status
.
value2
=
0
;
break
;
case
CC_COPY1TO0
:
/* Insn copies operand[1] to operand[0], both registers, but doesn't
affect the CC. */
if
(
cc_status
.
value1
!=
0
&&
reg_overlap_mentioned_p
(
recog_operand
[
0
],
cc_status
.
value1
))
cc_status
.
value1
=
0
;
if
(
cc_status
.
value2
!=
0
&&
reg_overlap_mentioned_p
(
recog_operand
[
0
],
cc_status
.
value2
))
cc_status
.
value2
=
0
;
if
(
cc_status
.
value1
!=
0
&&
rtx_equal_p
(
cc_status
.
value1
,
recog_operand
[
1
]))
cc_status
.
value2
=
recog_operand
[
0
];
if
(
cc_status
.
value2
!=
0
&&
rtx_equal_p
(
cc_status
.
value2
,
recog_operand
[
1
]))
cc_status
.
value1
=
recog_operand
[
0
];
break
;
case
CC_CLOBBER
:
/* Insn clobbers CC. */
CC_STATUS_INIT
;
break
;
case
CC_SETS
:
/* Insn sets CC to recog_operand[0], but overflow is impossible. */
CC_STATUS_INIT
;
cc_status
.
flags
|=
CC_NO_OVERFLOW
;
cc_status
.
value1
=
recog_operand
[
0
];
break
;
case
CC_COMPARE
:
/* Insn is a compare which sets the CC fully. Update CC_STATUS for this
compare and mark whether the test will be signed or unsigned. */
{
register
rtx
p
=
PATTERN
(
insn
);
CC_STATUS_INIT
;
if
(
GET_CODE
(
p
)
==
PARALLEL
)
p
=
XVECEXP
(
p
,
0
,
0
);
cc_status
.
value1
=
SET_SRC
(
p
);
if
(
GET_CODE
(
SET_SRC
(
p
))
==
REG
)
cc_status
.
flags
|=
CC_NO_OVERFLOW
;
if
(
!
next_insn_tests_no_unsigned
(
insn
))
cc_status
.
flags
|=
CC_UNSIGNED
;
}
break
;
case
CC_TBIT
:
/* Insn sets T bit if result is non-zero. Next insn must be branch. */
CC_STATUS_INIT
;
cc_status
.
flags
=
CC_IN_TB
|
CC_NOT_NEGATIVE
;
break
;
default
:
abort
();
}
}
/* Return 1 if a previous compare needs to be re-issued. This will happen
if two compares tested the same objects, but one was signed and the
other unsigned. OP is the comparison operation being performed. */
int
restore_compare_p
(
op
)
rtx
op
;
{
enum
rtx_code
code
=
GET_CODE
(
op
);
return
(((
code
==
GEU
||
code
==
LEU
||
code
==
GTU
||
code
==
LTU
)
&&
!
(
cc_status
.
flags
&
CC_UNSIGNED
))
||
((
code
==
GE
||
code
==
LE
||
code
==
GT
||
code
==
LT
)
&&
(
cc_status
.
flags
&
CC_UNSIGNED
)));
}
/* Generate the (long) string corresponding to an inline multiply insn.
Note that `r10' does not refer to the register r10, but rather to the
SCR used as the MQ. */
char
*
output_in_line_mul
()
{
static
char
insns
[
200
];
int
i
;
strcpy
(
insns
,
"s %0,%0
\n
"
);
strcat
(
insns
,
"
\t
mts r10,%1
\n
"
);
for
(
i
=
0
;
i
<
16
;
i
++
)
strcat
(
insns
,
"
\t
m %0,%2
\n
"
);
strcat
(
insns
,
"
\t
mfs r10,%0"
);
return
insns
;
}
/* Returns 1 if OP is a memory reference with an offset from a register within
the range specified. The offset must also be a multiple of the size of the
mode. */
static
int
memory_offset_in_range_p
(
op
,
mode
,
low
,
high
)
register
rtx
op
;
enum
machine_mode
mode
;
int
low
,
high
;
{
int
offset
=
0
;
if
(
!
memory_operand
(
op
,
mode
))
return
0
;
while
(
GET_CODE
(
op
)
==
SUBREG
)
{
offset
+=
SUBREG_WORD
(
op
)
*
UNITS_PER_WORD
;
#if BYTES_BIG_ENDIAN
offset
-=
(
min
(
UNITS_PER_WORD
,
GET_MODE_SIZE
(
GET_MODE
(
op
)))
-
min
(
UNITS_PER_WORD
,
GET_MODE_SIZE
(
GET_MODE
(
SUBREG_REG
(
op
)))));
#endif
op
=
SUBREG_REG
(
op
);
}
/* We must now have either (mem (reg (x)), (mem (plus (reg (x)) (c))),
or a constant pool address. */
if
(
GET_CODE
(
op
)
!=
MEM
)
abort
();
/* Now use the actual mode and get the address. */
mode
=
GET_MODE
(
op
);
op
=
XEXP
(
op
,
0
);
if
(
GET_CODE
(
op
)
==
SYMBOL_REF
&&
CONSTANT_POOL_ADDRESS_P
(
op
))
offset
=
get_pool_offset
(
op
)
+
12
;
else
if
(
GET_CODE
(
op
)
==
PLUS
)
{
if
(
GET_CODE
(
XEXP
(
op
,
1
))
!=
CONST_INT
||
!
register_operand
(
XEXP
(
op
,
0
),
Pmode
))
return
0
;
offset
+=
INTVAL
(
XEXP
(
op
,
1
));
}
else
if
(
!
register_operand
(
op
,
Pmode
))
return
0
;
return
(
offset
>=
low
&&
offset
<=
high
&&
(
offset
%
GET_MODE_SIZE
(
mode
)
==
0
));
}
/* Return 1 if OP is a valid operand for a memory reference insn that can
only reference indirect through a register. */
int
zero_memory_operand
(
op
,
mode
)
rtx
op
;
enum
machine_mode
mode
;
{
return
memory_offset_in_range_p
(
op
,
mode
,
0
,
0
);
}
/* Return 1 if OP is a valid operand for a `short' memory reference insn. */
int
short_memory_operand
(
op
,
mode
)
rtx
op
;
enum
machine_mode
mode
;
{
if
(
mode
==
VOIDmode
)
mode
=
GET_MODE
(
op
);
return
memory_offset_in_range_p
(
op
,
mode
,
0
,
15
*
min
(
UNITS_PER_WORD
,
GET_MODE_SIZE
(
mode
)));
}
/* Returns 1 if OP is a memory reference involving a symbolic constant
that is not in the constant pool. */
int
symbolic_memory_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
if
(
!
memory_operand
(
op
,
mode
))
return
0
;
while
(
GET_CODE
(
op
)
==
SUBREG
)
op
=
SUBREG_REG
(
op
);
if
(
GET_CODE
(
op
)
!=
MEM
)
abort
();
op
=
XEXP
(
op
,
0
);
if
(
constant_pool_address_operand
(
op
,
VOIDmode
))
return
0
;
else
return
romp_symbolic_operand
(
op
,
Pmode
)
||
(
GET_CODE
(
op
)
==
PLUS
&&
register_operand
(
XEXP
(
op
,
0
),
Pmode
)
&&
romp_symbolic_operand
(
XEXP
(
op
,
1
),
Pmode
));
}
/* Returns 1 if OP is a constant pool reference to the current function. */
int
current_function_operand
(
op
,
mode
)
rtx
op
;
enum
machine_mode
mode
;
{
if
(
GET_CODE
(
op
)
!=
MEM
||
GET_CODE
(
XEXP
(
op
,
0
))
!=
SYMBOL_REF
||
!
CONSTANT_POOL_ADDRESS_P
(
XEXP
(
op
,
0
)))
return
0
;
op
=
get_pool_constant
(
XEXP
(
op
,
0
));
return
(
GET_CODE
(
op
)
==
SYMBOL_REF
&&
!
strcmp
(
current_function_name
,
XSTR
(
op
,
0
)));
}
/* Return non-zero if this function is known to have a null epilogue. */
int
null_epilogue
()
{
return
(
reload_completed
&&
first_reg_to_save
()
==
16
&&
!
romp_pushes_stack
());
}
/* Returns 1 if OP is the address of a location in the constant pool. */
int
constant_pool_address_operand
(
op
,
mode
)
rtx
op
;
enum
machine_mode
mode
;
{
return
((
GET_CODE
(
op
)
==
SYMBOL_REF
&&
CONSTANT_POOL_ADDRESS_P
(
op
))
||
(
GET_CODE
(
op
)
==
CONST
&&
GET_CODE
(
XEXP
(
op
,
0
))
==
PLUS
&&
GET_CODE
(
XEXP
(
XEXP
(
op
,
0
),
1
))
==
CONST_INT
&&
GET_CODE
(
XEXP
(
XEXP
(
op
,
0
),
0
))
==
SYMBOL_REF
&&
CONSTANT_POOL_ADDRESS_P
(
XEXP
(
XEXP
(
op
,
0
),
0
))));
}
/* Returns 1 if OP is either a symbol reference or a sum of a symbol
reference and a constant. */
int
romp_symbolic_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
switch
(
GET_CODE
(
op
))
{
case
SYMBOL_REF
:
case
LABEL_REF
:
return
!
op
->
integrated
;
case
CONST
:
op
=
XEXP
(
op
,
0
);
return
(
GET_CODE
(
XEXP
(
op
,
0
))
==
SYMBOL_REF
||
GET_CODE
(
XEXP
(
op
,
0
))
==
LABEL_REF
)
&&
GET_CODE
(
XEXP
(
op
,
1
))
==
CONST_INT
;
default
:
return
0
;
}
}
/* Returns 1 if OP is a valid constant for the ROMP. */
int
constant_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
switch
(
GET_CODE
(
op
))
{
case
LABEL_REF
:
case
SYMBOL_REF
:
case
PLUS
:
case
CONST
:
return
romp_symbolic_operand
(
op
,
mode
);
case
CONST_INT
:
return
(
unsigned
int
)
(
INTVAL
(
op
)
+
0x8000
)
<
0x10000
||
(
INTVAL
(
op
)
&
0xffff
)
==
0
||
(
INTVAL
(
op
)
&
0xffff0000
)
==
0
;
default
:
return
0
;
}
}
/* Returns 1 if OP is either a constant integer valid for the ROMP or a
register. If a register, it must be in the proper mode unless MODE is
VOIDmode. */
int
reg_or_cint_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
if
(
GET_CODE
(
op
)
==
CONST_INT
)
return
constant_operand
(
op
,
mode
);
return
register_operand
(
op
,
mode
);
}
/* Return 1 is the operand is either a register or ANY constant integer. */
int
reg_or_any_cint_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
return
GET_CODE
(
op
)
==
CONST_INT
||
register_operand
(
op
,
mode
);
}
/* Return 1 if the operand is either a register or a valid D-type operand. */
int
reg_or_D_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
if
(
GET_CODE
(
op
)
==
CONST_INT
)
return
(
unsigned
)
(
INTVAL
(
op
)
+
0x8000
)
<
0x10000
;
return
register_operand
(
op
,
mode
);
}
/* Return 1 if the operand is either a register or an item that can be
used as the operand of an SI add insn. */
int
reg_or_add_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
return
reg_or_D_operand
(
op
,
mode
)
||
romp_symbolic_operand
(
op
,
mode
)
||
(
GET_CODE
(
op
)
==
CONST_INT
&&
(
INTVAL
(
op
)
&
0xffff
)
==
0
);
}
/* Return 1 if the operand is either a register or an item that can be
used as the operand of a ROMP logical AND insn. */
int
reg_or_and_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
if
(
reg_or_cint_operand
(
op
,
mode
))
return
1
;
if
(
GET_CODE
(
op
)
!=
CONST_INT
)
return
0
;
return
(
INTVAL
(
op
)
&
0xffff
)
==
0xffff
||
(
INTVAL
(
op
)
&
0xffff0000
)
==
0xffff0000
;
}
/* Return 1 if the operand is a register or memory operand. */
int
reg_or_mem_operand
(
op
,
mode
)
register
rtx
op
;
register
enum
machine_mode
mode
;
{
return
register_operand
(
op
,
mode
)
||
memory_operand
(
op
,
mode
);
}
/* Return 1 if the operand is either a register or a memory operand that is
not symbolic. */
int
reg_or_nonsymb_mem_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
if
(
register_operand
(
op
,
mode
))
return
1
;
if
(
memory_operand
(
op
,
mode
)
&&
!
symbolic_memory_operand
(
op
,
mode
))
return
1
;
return
0
;
}
/* Return 1 if this operand is valid for the ROMP. This is any operand except
certain constant integers. */
int
romp_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
if
(
GET_CODE
(
op
)
==
CONST_INT
)
return
constant_operand
(
op
,
mode
);
return
general_operand
(
op
,
mode
);
}
/* Return 1 if the operand is (reg:mode 0). */
int
reg_0_operand
(
op
,
mode
)
rtx
op
;
enum
machine_mode
mode
;
{
return
((
mode
==
VOIDmode
||
mode
==
GET_MODE
(
op
))
&&
GET_CODE
(
op
)
==
REG
&&
REGNO
(
op
)
==
0
);
}
/* Return 1 if the operand is (reg:mode 15). */
int
reg_15_operand
(
op
,
mode
)
rtx
op
;
enum
machine_mode
mode
;
{
return
((
mode
==
VOIDmode
||
mode
==
GET_MODE
(
op
))
&&
GET_CODE
(
op
)
==
REG
&&
REGNO
(
op
)
==
15
);
}
/* Return 1 if this is a binary floating-point operation. */
int
float_binary
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
if
(
mode
!=
VOIDmode
&&
mode
!=
GET_MODE
(
op
))
return
0
;
if
(
GET_MODE
(
op
)
!=
SFmode
&&
GET_MODE
(
op
)
!=
DFmode
)
return
0
;
switch
(
GET_CODE
(
op
))
{
case
PLUS
:
case
MINUS
:
case
MULT
:
case
DIV
:
return
GET_MODE
(
XEXP
(
op
,
0
))
==
GET_MODE
(
op
)
&&
GET_MODE
(
XEXP
(
op
,
1
))
==
GET_MODE
(
op
);
default
:
return
0
;
}
}
/* Return 1 if this is a unary floating-point operation. */
int
float_unary
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
if
(
mode
!=
VOIDmode
&&
mode
!=
GET_MODE
(
op
))
return
0
;
if
(
GET_MODE
(
op
)
!=
SFmode
&&
GET_MODE
(
op
)
!=
DFmode
)
return
0
;
return
(
GET_CODE
(
op
)
==
NEG
||
GET_CODE
(
op
)
==
ABS
)
&&
GET_MODE
(
XEXP
(
op
,
0
))
==
GET_MODE
(
op
);
}
/* Return 1 if this is a valid floating-point converstion that can be done
as part of an operation by the RT floating-point routines. */
int
float_conversion
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
if
(
mode
!=
VOIDmode
&&
mode
!=
GET_MODE
(
op
))
return
0
;
switch
(
GET_CODE
(
op
))
{
case
FLOAT_TRUNCATE
:
return
GET_MODE
(
op
)
==
SFmode
&&
GET_MODE
(
XEXP
(
op
,
0
))
==
DFmode
;
case
FLOAT_EXTEND
:
return
GET_MODE
(
op
)
==
DFmode
&&
GET_MODE
(
XEXP
(
op
,
0
))
==
SFmode
;
case
FLOAT
:
return
((
GET_MODE
(
XEXP
(
op
,
0
))
==
SImode
||
GET_CODE
(
XEXP
(
op
,
0
))
==
CONST_INT
)
&&
(
GET_MODE
(
op
)
==
SFmode
||
GET_MODE
(
op
)
==
DFmode
));
case
FIX
:
return
((
GET_MODE
(
op
)
==
SImode
||
GET_CODE
(
XEXP
(
op
,
0
))
==
CONST_INT
)
&&
(
GET_MODE
(
XEXP
(
op
,
0
))
==
SFmode
||
GET_MODE
(
XEXP
(
op
,
0
))
==
DFmode
));
default
:
return
0
;
}
}
/* Print an operand. Recognize special options, documented below. */
void
print_operand
(
file
,
x
,
code
)
FILE
*
file
;
rtx
x
;
char
code
;
{
int
i
;
switch
(
code
)
{
case
'B'
:
/* Byte number (const/8) */
if
(
GET_CODE
(
x
)
!=
CONST_INT
)
output_operand_lossage
(
"invalid %%B value"
);
fprintf
(
file
,
"%d"
,
INTVAL
(
x
)
/
8
);
break
;
case
'L'
:
/* Low order 16 bits of constant. */
if
(
GET_CODE
(
x
)
!=
CONST_INT
)
output_operand_lossage
(
"invalid %%L value"
);
fprintf
(
file
,
"%d"
,
INTVAL
(
x
)
&
0xffff
);
break
;
case
's'
:
/* Null or "16" depending on whether the constant is greater than 16. */
if
(
GET_CODE
(
x
)
!=
CONST_INT
)
output_operand_lossage
(
"invalid %%s value"
);
if
(
INTVAL
(
x
)
>=
16
)
fprintf
(
file
,
"16"
);
break
;
case
'S'
:
/* For shifts: 's' will have given the half. Just give the amount
within 16. */
if
(
GET_CODE
(
x
)
!=
CONST_INT
)
output_operand_lossage
(
"invalid %%S value"
);
fprintf
(
file
,
"%d"
,
INTVAL
(
x
)
&
15
);
break
;
case
'b'
:
/* The number of a single bit set or cleared, mod 16. Note that the ROMP
numbers bits with the high-order bit 31. */
if
(
GET_CODE
(
x
)
!=
CONST_INT
)
output_operand_lossage
(
"invalid %%b value"
);
if
((
i
=
exact_log2
(
INTVAL
(
x
)))
>=
0
)
fprintf
(
file
,
"%d"
,
(
31
-
i
)
%
16
);
else
if
((
i
=
exact_log2
(
~
INTVAL
(
x
)))
>=
0
)
fprintf
(
file
,
"%d"
,
(
31
-
i
)
%
16
);
else
output_operand_lossage
(
"invalid %%b value"
);
break
;
case
'h'
:
/* "l" or "u" depending on which half of the constant is zero. */
if
(
GET_CODE
(
x
)
!=
CONST_INT
)
output_operand_lossage
(
"invalid %%h value"
);
if
((
INTVAL
(
x
)
&
0xffff0000
)
==
0
)
fprintf
(
file
,
"l"
);
else
if
((
INTVAL
(
x
)
&
0xffff
)
==
0
)
fprintf
(
file
,
"u"
);
else
output_operand_lossage
(
"invalid %%h value"
);
break
;
case
'H'
:
/* Upper or lower half, depending on which half is zero. */
if
(
GET_CODE
(
x
)
!=
CONST_INT
)
output_operand_lossage
(
"invalid %%H value"
);
if
((
INTVAL
(
x
)
&
0xffff0000
)
==
0
)
fprintf
(
file
,
"%d"
,
INTVAL
(
x
)
&
0xffff
);
else
if
((
INTVAL
(
x
)
&
0xffff
)
==
0
)
fprintf
(
file
,
"%d"
,
(
INTVAL
(
x
)
>>
16
)
&
0xffff
);
else
output_operand_lossage
(
"invalid %%H value"
);
break
;
case
'z'
:
/* Write two characters:
'lo' if the high order part is all ones
'lz' if the high order part is all zeros
'uo' if the low order part is all ones
'uz' if the low order part is all zeros
*/
if
(
GET_CODE
(
x
)
!=
CONST_INT
)
output_operand_lossage
(
"invalid %%z value"
);
if
((
INTVAL
(
x
)
&
0xffff0000
)
==
0
)
fprintf
(
file
,
"lz"
);
else
if
((
INTVAL
(
x
)
&
0xffff0000
)
==
0xffff0000
)
fprintf
(
file
,
"lo"
);
else
if
((
INTVAL
(
x
)
&
0xffff
)
==
0
)
fprintf
(
file
,
"uz"
);
else
if
((
INTVAL
(
x
)
&
0xffff
)
==
0xffff
)
fprintf
(
file
,
"uo"
);
else
output_operand_lossage
(
"invalid %%z value"
);
break
;
case
'Z'
:
/* Upper or lower half, depending on which is non-zero or not
all ones. Must be consistent with 'z' above. */
if
(
GET_CODE
(
x
)
!=
CONST_INT
)
output_operand_lossage
(
"invalid %%Z value"
);
if
((
INTVAL
(
x
)
&
0xffff0000
)
==
0
||
(
INTVAL
(
x
)
&
0xffff0000
)
==
0xffff0000
)
fprintf
(
file
,
"%d"
,
INTVAL
(
x
)
&
0xffff
);
else
if
((
INTVAL
(
x
)
&
0xffff
)
==
0
||
(
INTVAL
(
x
)
&
0xffff
)
==
0xffff
)
fprintf
(
file
,
"%d"
,
(
INTVAL
(
x
)
>>
16
)
&
0xffff
);
else
output_operand_lossage
(
"invalid %%Z value"
);
break
;
case
'k'
:
/* Same as 'z', except the trailing 'o' or 'z' is not written. */
if
(
GET_CODE
(
x
)
!=
CONST_INT
)
output_operand_lossage
(
"invalid %%k value"
);
if
((
INTVAL
(
x
)
&
0xffff0000
)
==
0
||
(
INTVAL
(
x
)
&
0xffff0000
)
==
0xffff0000
)
fprintf
(
file
,
"l"
);
else
if
((
INTVAL
(
x
)
&
0xffff
)
==
0
||
(
INTVAL
(
x
)
&
0xffff
)
==
0xffff
)
fprintf
(
file
,
"u"
);
else
output_operand_lossage
(
"invalid %%k value"
);
break
;
case
't'
:
/* Similar to 's', except that we write 'h' or 'u'. */
if
(
GET_CODE
(
x
)
!=
CONST_INT
)
output_operand_lossage
(
"invalid %%k value"
);
if
(
INTVAL
(
x
)
<
16
)
fprintf
(
file
,
"u"
);
else
fprintf
(
file
,
"l"
);
break
;
case
'M'
:
/* For memory operations, write 's' if the operand is a short
memory operand. */
if
(
short_memory_operand
(
x
,
VOIDmode
))
fprintf
(
file
,
"s"
);
break
;
case
'N'
:
/* Like 'M', but check for zero memory offset. */
if
(
zero_memory_operand
(
x
,
VOIDmode
))
fprintf
(
file
,
"s"
);
break
;
case
'O'
:
/* Write low-order part of DImode or DFmode. Supported for MEM
and REG only. */
if
(
GET_CODE
(
x
)
==
REG
)
fprintf
(
file
,
"%s"
,
reg_names
[
REGNO
(
x
)
+
1
]);
else
if
(
GET_CODE
(
x
)
==
MEM
)
print_operand
(
file
,
gen_rtx
(
MEM
,
GET_MODE
(
x
),
plus_constant
(
XEXP
(
x
,
0
),
4
)),
0
);
else
abort
();
break
;
case
'C'
:
/* Offset in constant pool for constant pool address. */
if
(
!
constant_pool_address_operand
(
x
,
VOIDmode
))
abort
();
if
(
GET_CODE
(
x
)
==
SYMBOL_REF
)
fprintf
(
file
,
"%d"
,
get_pool_offset
(
x
)
+
12
);
else
/* Must be (const (plus (symbol_ref) (const_int))) */
fprintf
(
file
,
"%d"
,
(
get_pool_offset
(
XEXP
(
XEXP
(
x
,
0
),
0
))
+
12
+
INTVAL
(
XEXP
(
XEXP
(
x
,
0
),
1
))));
break
;
case
'j'
:
/* Branch opcode. Check for condition in test bit for eq/ne. */
switch
(
GET_CODE
(
x
))
{
case
EQ
:
if
(
cc_status
.
flags
&
CC_IN_TB
)
fprintf
(
file
,
"ntb"
);
else
fprintf
(
file
,
"eq"
);
break
;
case
NE
:
if
(
cc_status
.
flags
&
CC_IN_TB
)
fprintf
(
file
,
"tb"
);
else
fprintf
(
file
,
"ne"
);
break
;
case
GT
:
case
GTU
:
fprintf
(
file
,
"h"
);
break
;
case
LT
:
case
LTU
:
fprintf
(
file
,
"l"
);
break
;
case
GE
:
case
GEU
:
fprintf
(
file
,
"he"
);
break
;
case
LE
:
case
LEU
:
fprintf
(
file
,
"le"
);
break
;
default
:
output_operand_lossage
(
"invalid %%j value"
);
}
break
;
case
'J'
:
/* Reversed branch opcode. */
switch
(
GET_CODE
(
x
))
{
case
EQ
:
if
(
cc_status
.
flags
&
CC_IN_TB
)
fprintf
(
file
,
"tb"
);
else
fprintf
(
file
,
"ne"
);
break
;
case
NE
:
if
(
cc_status
.
flags
&
CC_IN_TB
)
fprintf
(
file
,
"ntb"
);
else
fprintf
(
file
,
"eq"
);
break
;
case
GT
:
case
GTU
:
fprintf
(
file
,
"le"
);
break
;
case
LT
:
case
LTU
:
fprintf
(
file
,
"he"
);
break
;
case
GE
:
case
GEU
:
fprintf
(
file
,
"l"
);
break
;
case
LE
:
case
LEU
:
fprintf
(
file
,
"h"
);
break
;
default
:
output_operand_lossage
(
"invalid %%j value"
);
}
break
;
case
'.'
:
/* Output nothing. Used as delimeter in, e.g., "mc%B1%.3 " */
break
;
case
'#'
:
/* Output 'x' if this insn has a delay slot, else nothing. */
if
(
dbr_sequence_length
())
fprintf
(
file
,
"x"
);
break
;
case
0
:
if
(
GET_CODE
(
x
)
==
REG
)
fprintf
(
file
,
"%s"
,
reg_names
[
REGNO
(
x
)]);
else
if
(
GET_CODE
(
x
)
==
MEM
)
{
if
(
GET_CODE
(
XEXP
(
x
,
0
))
==
SYMBOL_REF
&&
current_function_operand
(
x
,
Pmode
))
fprintf
(
file
,
"r14"
);
else
output_address
(
XEXP
(
x
,
0
));
}
else
output_addr_const
(
file
,
x
);
break
;
default
:
output_operand_lossage
(
"invalid %%xn code"
);
}
}
/* This page contains routines that are used to determine what the function
prologue and epilogue code will do and write them out. */
/* Return the first register that is required to be saved. 16 if none. */
int
first_reg_to_save
()
{
int
first_reg
;
/* Find lowest numbered live register. */
for
(
first_reg
=
6
;
first_reg
<=
15
;
first_reg
++
)
if
(
regs_ever_live
[
first_reg
])
break
;
/* If we think that we do not have to save r14, see if it will be used
to be sure. */
if
(
first_reg
>
14
&&
romp_using_r14
())
first_reg
=
14
;
return
first_reg
;
}
/* Compute the size of the save area in the stack, including the space for
the first four incoming arguments. */
int
romp_sa_size
()
{
int
size
;
int
i
;
/* We have the 4 words corresponding to the arguments passed in registers,
4 reserved words, space for static chain, general register save area,
and floating-point save area. */
size
=
4
+
4
+
1
+
(
16
-
first_reg_to_save
());
/* The documentation says we have to leave 18 words in the save area if
any floating-point registers at all are saved, not the three words
per register you might otherwise expect. */
for
(
i
=
2
+
(
TARGET_FP_REGS
!=
0
);
i
<=
7
;
i
++
)
if
(
regs_ever_live
[
i
+
17
])
{
size
+=
18
;
break
;
}
return
size
*
4
;
}
/* Return non-zero if this function makes calls or has fp operations
(which are really calls). */
int
romp_makes_calls
()
{
rtx
insn
;
for
(
insn
=
get_insns
();
insn
;
insn
=
next_insn
(
insn
))
{
if
(
GET_CODE
(
insn
)
==
CALL_INSN
)
return
1
;
else
if
(
GET_CODE
(
insn
)
==
INSN
)
{
rtx
body
=
PATTERN
(
insn
);
if
(
GET_CODE
(
body
)
!=
USE
&&
GET_CODE
(
body
)
!=
CLOBBER
&&
GET_CODE
(
body
)
!=
ADDR_VEC
&&
GET_CODE
(
body
)
!=
ADDR_DIFF_VEC
&&
get_attr_type
(
insn
)
==
TYPE_FP
)
return
1
;
}
}
return
0
;
}
/* Return non-zero if this function will use r14 as a pointer to its
constant pool. */
int
romp_using_r14
()
{
/* If we are debugging, profiling, have a non-empty constant pool, or
call a function, we need r14. */
return
(
write_symbols
!=
NO_DEBUG
||
profile_flag
||
get_pool_size
()
!=
0
||
romp_makes_calls
());
}
/* Return non-zero if this function needs to push space on the stack. */
int
romp_pushes_stack
()
{
/* We need to push the stack if a frame pointer is needed (because the
stack might be dynamically adjusted), if we are debugging, if the
total required size is more than 100 bytes, or if we make calls. */
return
(
frame_pointer_needed
||
write_symbols
!=
NO_DEBUG
||
(
romp_sa_size
()
+
get_frame_size
())
>
100
||
romp_makes_calls
());
}
/* Write function prologue.
We compute the size of the fixed area required as follows:
We always allocate 4 words for incoming arguments, 4 word reserved, 1
word for static link, as many words as required for general register
save area, plus 2 words for each FP reg 2-7 that must be saved. */
void
output_prolog
(
file
,
size
)
FILE
*
file
;
int
size
;
{
int
first_reg
;
int
reg_save_offset
;
rtx
insn
;
int
fp_save
=
size
+
current_function_outgoing_args_size
;
init_fpops
();
/* Add in fixed size plus output argument area. */
size
+=
romp_sa_size
()
+
current_function_outgoing_args_size
;
/* Compute first register to save and perform the save operation if anything
needs to be saved. */
first_reg
=
first_reg_to_save
();
reg_save_offset
=
-
(
4
+
4
+
1
+
(
16
-
first_reg
))
*
4
;
if
(
first_reg
==
15
)
fprintf
(
file
,
"
\t
st r15,%d(r1)
\n
"
,
reg_save_offset
);
else
if
(
first_reg
<
16
)
fprintf
(
file
,
"
\t
stm r%d,%d(r1)
\n
"
,
first_reg
,
reg_save_offset
);
/* Set up pointer to data area if it is needed. */
if
(
romp_using_r14
())
fprintf
(
file
,
"
\t
cas r14,r0,r0
\n
"
);
/* Set up frame pointer if needed. */
if
(
frame_pointer_needed
)
fprintf
(
file
,
"
\t
cal r13,-%d(r1)
\n
"
,
romp_sa_size
()
+
64
);
/* Push stack if neeeded. There are a couple of ways of doing this. */
if
(
romp_pushes_stack
())
{
if
(
size
>=
32768
)
{
if
(
size
>=
65536
)
{
fprintf
(
file
,
"
\t
cau r0,%d(r0)
\n
"
,
size
>>
16
);
fprintf
(
file
,
"
\t
oil r0,r0,%d
\n
"
,
size
&
0xffff
);
}
else
fprintf
(
file
,
"
\t
cal16 r0,%d(r0)
\n
"
,
size
);
fprintf
(
file
,
"
\t
s r1,r0
\n
"
);
}
else
fprintf
(
file
,
"
\t
cal r1,-%d(r1)
\n
"
,
size
);
}
/* Save floating-point registers. */
output_loadsave_fpregs
(
file
,
USE
,
plus_constant
(
stack_pointer_rtx
,
fp_save
));
}
/* Write function epilogue. */
void
output_epilog
(
file
,
size
)
FILE
*
file
;
int
size
;
{
int
first_reg
=
first_reg_to_save
();
int
pushes_stack
=
romp_pushes_stack
();
int
reg_save_offset
=
-
((
16
-
first_reg
)
+
1
+
4
+
4
)
*
4
;
int
total_size
=
(
size
+
romp_sa_size
()
+
current_function_outgoing_args_size
);
int
fp_save
=
size
+
current_function_outgoing_args_size
;
int
long_frame
=
total_size
>=
32768
;
rtx
insn
=
get_last_insn
();
int
write_code
=
1
;
int
nargs
=
0
;
/* words of arguments */
tree
argptr
;
for
(
argptr
=
DECL_ARGUMENTS
(
current_function_decl
);
argptr
;
argptr
=
TREE_CHAIN
(
argptr
))
nargs
+=
((
TREE_INT_CST_LOW
(
TYPE_SIZE
(
TREE_TYPE
(
argptr
)))
+
BITS_PER_WORD
-
1
)
/
BITS_PER_WORD
);
/* If the last insn was a BARRIER, we don't have to write anything except
the trace table. */
if
(
GET_CODE
(
insn
)
==
NOTE
)
insn
=
prev_nonnote_insn
(
insn
);
if
(
insn
&&
GET_CODE
(
insn
)
==
BARRIER
)
write_code
=
0
;
/* Restore floating-point registers. */
if
(
write_code
)
output_loadsave_fpregs
(
file
,
CLOBBER
,
gen_rtx
(
PLUS
,
Pmode
,
gen_rtx
(
REG
,
Pmode
,
1
),
gen_rtx
(
CONST_INT
,
VOIDmode
,
fp_save
)));
/* If we push the stack and do not have size > 32K, adjust the register
save location to the current position of sp. Otherwise, if long frame,
restore sp from fp. */
if
(
pushes_stack
&&
!
long_frame
)
reg_save_offset
+=
total_size
;
else
if
(
long_frame
&&
write_code
)
fprintf
(
file
,
"
\t
cal r1,%d(r13)
\n
"
,
romp_sa_size
()
+
64
);
/* Restore registers. */
if
(
first_reg
==
15
&&
write_code
)
fprintf
(
file
,
"
\t
l r15,%d(r1)
\n
"
,
reg_save_offset
);
else
if
(
first_reg
<
16
&&
write_code
)
fprintf
(
file
,
"
\t
lm r%d,%d(r1)
\n
"
,
first_reg
,
reg_save_offset
);
if
(
first_reg
==
16
)
first_reg
=
0
;
/* Handle popping stack, if needed and write debug table entry. */
if
(
pushes_stack
)
{
if
(
write_code
)
{
if
(
long_frame
)
fprintf
(
file
,
"
\t
br r15
\n
"
);
else
fprintf
(
file
,
"
\t
brx r15
\n\t
cal r1,%d(r1)
\n
"
,
total_size
);
}
fprintf
(
file
,
"
\t
.long 0x%x
\n
"
,
0xdf07df08
+
first_reg
*
0x10
);
if
(
nargs
>
15
)
nargs
=
15
;
if
(
frame_pointer_needed
)
fprintf
(
file
,
"
\t
.byte 0x%xd, 53
\n
"
,
nargs
);
else
fprintf
(
file
,
"
\t
.short 0x%x100
\n
"
,
nargs
);
}
else
{
if
(
write_code
)
fprintf
(
file
,
"
\t
br r15
\n
"
);
fprintf
(
file
,
"
\t
.long 0xdf02df00
\n
"
);
}
/* Output any pending floating-point operations. */
if
(
write_code
)
output_fpops
(
file
);
}
/* For the ROMP we need to make new SYMBOL_REFs for the actual name of a
called routine. To keep them unique we maintain a hash table of all
that have been created so far. */
struct
symref_hashent
{
rtx
symref
;
/* Created SYMBOL_REF rtx. */
struct
symref_hashent
*
next
;
/* Next with same hash code. */
};
#define SYMHASHSIZE 151
#define HASHBITS 65535
/* Define the hash table itself. */
static
struct
symref_hashent
*
symref_hash_table
[
SYMHASHSIZE
];
/* Given a name (allocatable in temporary storage), return a SYMBOL_REF
for the name. The rtx is allocated from the current rtl_obstack, while
the name string is allocated from the permanent obstack. */
rtx
get_symref
(
name
)
register
char
*
name
;
{
extern
struct
obstack
permanent_obstack
;
register
char
*
sp
=
name
;
unsigned
int
hash
=
0
;
struct
symref_hashent
*
p
,
**
last_p
;
/* Compute the hash code for the string. */
while
(
*
sp
)
hash
=
(
hash
<<
4
)
+
*
sp
++
;
/* Search for a matching entry in the hash table, keeping track of the
insertion location as we do so. */
hash
=
(
hash
&
HASHBITS
)
%
SYMHASHSIZE
;
for
(
last_p
=
&
symref_hash_table
[
hash
],
p
=
*
last_p
;
p
;
last_p
=
&
p
->
next
,
p
=
*
last_p
)
if
(
strcmp
(
name
,
XSTR
(
p
->
symref
,
0
))
==
0
)
break
;
/* If couldn't find matching SYMBOL_REF, make a new one. */
if
(
p
==
0
)
{
/* Ensure SYMBOL_REF will stay around. */
end_temporary_allocation
();
p
=
*
last_p
=
(
struct
symref_hashent
*
)
permalloc
(
sizeof
(
struct
symref_hashent
));
p
->
symref
=
gen_rtx
(
SYMBOL_REF
,
Pmode
,
obstack_copy0
(
&
permanent_obstack
,
name
,
strlen
(
name
)));
p
->
next
=
0
;
resume_temporary_allocation
();
}
return
p
->
symref
;
}
/* Validate the precision of a floating-point operation.
We merge conversions from integers and between floating-point modes into
the insn. However, this must not effect the desired precision of the
insn. The RT floating-point system uses the widest of the operand modes.
If this should be a double-precision insn, ensure that one operand
passed to the floating-point processor has double mode.
Note that since we don't check anything if the mode is single precision,
it, strictly speaking, isn't necessary to call this for those insns.
However, we do so in case something else needs to be checked in the
future.
This routine returns 1 if the operation is OK. */
int
check_precision
(
opmode
,
op1
,
op2
)
enum
machine_mode
opmode
;
rtx
op1
,
op2
;
{
if
(
opmode
==
SFmode
)
return
1
;
/* If operand is not a conversion from an integer mode or an extension from
single-precision, it must be a double-precision value. */
if
(
GET_CODE
(
op1
)
!=
FLOAT
&&
GET_CODE
(
op1
)
!=
FLOAT_EXTEND
)
return
1
;
if
(
op2
&&
GET_CODE
(
op2
)
!=
FLOAT
&&
GET_CODE
(
op2
)
!=
FLOAT_EXTEND
)
return
1
;
return
0
;
}
/* Floating-point on the RT is done by creating an operation block in the data
area that describes the operation. If two floating-point operations are the
same in a single function, they can use the same block.
These routines are responsible for managing these blocks. */
/* Structure to describe a floating-point operation. */
struct
fp_op
{
struct
fp_op
*
next_same_hash
;
/* Next op with same hash code. */
struct
fp_op
*
next_in_mem
;
/* Next op in memory. */
int
mem_offset
;
/* Offset from data area. */
short
size
;
/* Size of block in bytes. */
short
noperands
;
/* Number of operands in block. */
rtx
ops
[
3
];
/* RTL for operands. */
enum
rtx_code
opcode
;
/* Operation being performed. */
};
/* Size of hash table. */
#define FP_HASH_SIZE 101
/* Hash table of floating-point operation blocks. */
static
struct
fp_op
*
fp_hash_table
[
FP_HASH_SIZE
];
/* First floating-point block in data area. */
static
struct
fp_op
*
first_fpop
;
/* Last block in data area so far. */
static
struct
fp_op
*
last_fpop_in_mem
;
/* Subroutine number in file, to get unique "LF" labels. */
static
int
subr_number
=
0
;
/* Current word offset in data area (includes header and any constant pool). */
int
data_offset
;
/* Compute hash code for an RTX used in floating-point. */
static
unsigned
int
hash_rtx
(
x
)
register
rtx
x
;
{
register
unsigned
int
hash
=
(((
int
)
GET_CODE
(
x
)
<<
10
)
+
((
int
)
GET_MODE
(
x
)
<<
20
));
register
int
i
;
register
char
*
fmt
=
GET_RTX_FORMAT
(
GET_CODE
(
x
));
for
(
i
=
0
;
i
<
GET_RTX_LENGTH
(
GET_CODE
(
x
));
i
++
)
if
(
fmt
[
i
]
==
'e'
)
hash
+=
hash_rtx
(
XEXP
(
x
,
i
));
else
if
(
fmt
[
i
]
==
'u'
)
hash
+=
(
int
)
XEXP
(
x
,
i
);
else
if
(
fmt
[
i
]
==
'i'
)
hash
+=
XINT
(
x
,
i
);
else
if
(
fmt
[
i
]
==
's'
)
hash
+=
(
int
)
XSTR
(
x
,
i
);
return
hash
;
}
/* Given an operation code and up to three operands, return a character string
corresponding to the code to emit to branch to a floating-point operation
block. INSN is provided to see if the delay slot has been filled or not.
A new floating-point operation block is created if this operation has not
been seen before. */
char
*
output_fpop
(
code
,
op0
,
op1
,
op2
,
insn
)
enum
rtx_code
code
;
rtx
op0
,
op1
,
op2
;
rtx
insn
;
{
static
char
outbuf
[
40
];
unsigned
int
hash
,
hash0
,
hash1
,
hash2
;
int
size
,
i
;
register
struct
fp_op
*
fpop
,
*
last_fpop
;
int
dyadic
=
(
op2
!=
0
);
enum
machine_mode
opmode
;
int
noperands
;
rtx
tem
;
unsigned
int
tem_hash
;
int
fr0_avail
=
0
;
/* Compute hash code for each operand. If the operation is commutative,
put the one with the smaller hash code first. This will make us see
more operations as identical. */
hash0
=
op0
?
hash_rtx
(
op0
)
:
0
;
hash1
=
op1
?
hash_rtx
(
op1
)
:
0
;
hash2
=
op2
?
hash_rtx
(
op2
)
:
0
;
if
(
hash0
>
hash1
&&
code
==
EQ
)
{
tem
=
op0
;
op0
=
op1
;
op1
=
tem
;
tem_hash
=
hash0
;
hash0
=
hash1
;
hash1
=
tem_hash
;
}
else
if
(
hash1
>
hash2
&&
(
code
==
PLUS
||
code
==
MULT
))
{
tem
=
op1
;
op1
=
op2
;
op2
=
tem
;
tem_hash
=
hash1
;
hash1
=
hash2
;
hash2
=
tem_hash
;
}
/* If operation is commutative and the first and third operands are equal,
swap the second and third operands. Note that we must consider two
operands equal if they are the same register even if different modes. */
if
(
op2
&&
(
code
==
PLUS
||
code
==
MULT
)
&&
(
rtx_equal_p
(
op0
,
op2
)
||
(
GET_CODE
(
op0
)
==
REG
&&
GET_CODE
(
op2
)
==
REG
&&
REGNO
(
op0
)
==
REGNO
(
op2
))))
{
tem
=
op1
;
op1
=
op2
;
op2
=
tem
;
tem_hash
=
hash1
;
hash1
=
hash2
;
hash2
=
tem_hash
;
}
/* If the first and second operands are the same, merge them. Don't do this
for SFmode in general registers because this triggers a bug in the RT fp
code. */
if
(
op1
&&
rtx_equal_p
(
op0
,
op1
)
&&
code
!=
EQ
&&
code
!=
GE
&&
code
!=
SET
&&
(
GET_MODE
(
op1
)
!=
SFmode
||
GET_CODE
(
op0
)
!=
REG
||
FP_REGNO_P
(
REGNO
(
op0
))))
{
op1
=
op2
;
op2
=
0
;
}
noperands
=
1
+
(
op1
!=
0
)
+
(
op2
!=
0
);
/* Compute hash code for entire expression and see if operation block
already exists. */
hash
=
((
int
)
code
<<
13
)
+
(
hash0
<<
2
)
+
(
hash1
<<
1
)
+
hash2
;
hash
%=
FP_HASH_SIZE
;
for
(
fpop
=
fp_hash_table
[
hash
],
last_fpop
=
0
;
fpop
;
last_fpop
=
fpop
,
fpop
=
fpop
->
next_same_hash
)
if
(
fpop
->
opcode
==
code
&&
noperands
==
fpop
->
noperands
&&
(
op0
==
0
||
rtx_equal_p
(
op0
,
fpop
->
ops
[
0
]))
&&
(
op1
==
0
||
rtx_equal_p
(
op1
,
fpop
->
ops
[
1
]))
&&
(
op2
==
0
||
rtx_equal_p
(
op2
,
fpop
->
ops
[
2
])))
goto
win
;
/* We have never seen this operation before. */
fpop
=
(
struct
fp_op
*
)
oballoc
(
sizeof
(
struct
fp_op
));
fpop
->
mem_offset
=
data_offset
;
fpop
->
opcode
=
code
;
fpop
->
noperands
=
noperands
;
fpop
->
ops
[
0
]
=
op0
;
fpop
->
ops
[
1
]
=
op1
;
fpop
->
ops
[
2
]
=
op2
;
/* Compute the size using the rules in Appendix A of the RT Linkage
Convention (4.3/RT-PSD:5) manual. These rules are a bit ambiguous,
but if we guess wrong, it will effect only efficiency, not correctness. */
/* Size = 24 + 32 for each non-fp (or fr7) */
size
=
24
;
if
(
op0
&&
(
GET_CODE
(
op0
)
!=
REG
||
!
FP_REGNO_P
(
REGNO
(
op0
))
||
REGNO
(
op0
)
==
23
))
size
+=
32
;
if
(
op1
&&
(
GET_CODE
(
op1
)
!=
REG
||
!
FP_REGNO_P
(
REGNO
(
op1
))
||
REGNO
(
op1
)
==
23
))
size
+=
32
;
if
(
op2
&&
(
GET_CODE
(
op2
)
!=
REG
||
!
FP_REGNO_P
(
REGNO
(
op2
))
||
REGNO
(
op2
)
==
23
))
size
+=
32
;
/* Size + 12 for each conversion. First get operation mode. */
if
((
op0
&&
GET_MODE
(
op0
)
==
DFmode
)
||
(
op1
&&
GET_MODE
(
op1
)
==
DFmode
)
||
(
op2
&&
GET_MODE
(
op2
)
==
DFmode
))
opmode
=
DFmode
;
else
opmode
=
SFmode
;
if
(
op0
&&
GET_MODE
(
op0
)
!=
opmode
)
size
+=
12
;
if
(
op1
&&
GET_MODE
(
op1
)
!=
opmode
)
size
+=
12
;
if
(
op2
&&
GET_MODE
(
op2
)
!=
opmode
)
size
+=
12
;
/* 12 more if first and third operand types not the same. */
if
(
op2
&&
GET_MODE
(
op0
)
!=
GET_MODE
(
op2
))
size
+=
12
;
/* CMP and CMPT need additional. Also, compute size of save/restore here. */
if
(
code
==
EQ
)
size
+=
32
;
else
if
(
code
==
GE
)
size
+=
64
;
else
if
(
code
==
USE
||
code
==
CLOBBER
)
{
/* 34 + 24 for each additional register plus 8 if fr7 saved. (We
call it 36 because we need to keep the block length a multiple
of four. */
size
=
36
-
24
;
for
(
i
=
0
;
i
<=
7
;
i
++
)
if
(
INTVAL
(
op0
)
&
(
1
<<
(
7
-
i
)))
size
+=
24
+
8
*
(
i
==
7
);
}
/* We provide no general-purpose scratch registers. */
size
+=
16
;
/* No floating-point scratch registers are provided. Compute extra
length due to this. This logic is that shown in the referenced
appendix. */
i
=
0
;
if
(
op0
&&
GET_CODE
(
op0
)
==
REG
&&
FP_REGNO_P
(
REGNO
(
op0
)))
i
++
;
if
(
op1
&&
GET_CODE
(
op1
)
==
REG
&&
FP_REGNO_P
(
REGNO
(
op1
)))
i
++
;
if
(
op2
&&
GET_CODE
(
op2
)
==
REG
&&
FP_REGNO_P
(
REGNO
(
op2
)))
i
++
;
if
((
op0
==
0
||
GET_CODE
(
op0
)
!=
REG
||
REGNO
(
op0
)
!=
17
)
&&
(
op1
==
0
||
GET_CODE
(
op1
)
!=
REG
||
REGNO
(
op1
)
!=
17
)
&&
(
op2
==
0
||
GET_CODE
(
op2
)
!=
REG
||
REGNO
(
op2
)
!=
17
))
fr0_avail
=
1
;
if
(
dyadic
)
{
if
(
i
==
0
)
size
+=
fr0_avail
?
64
:
112
;
else
if
(
fpop
->
noperands
==
2
&&
i
==
1
)
size
+=
fr0_avail
?
0
:
64
;
else
if
(
fpop
->
noperands
==
3
)
{
if
(
GET_CODE
(
op0
)
==
REG
&&
FP_REGNO_P
(
REGNO
(
op0
))
&&
GET_CODE
(
op2
)
==
REG
&&
FP_REGNO_P
(
REGNO
(
op2
)))
{
if
(
REGNO
(
op0
)
==
REGNO
(
op2
))
#if 1
/* This triggers a bug on the RT. */
abort
();
#else
size
+=
fr0_avail
?
0
:
64
;
#endif
}
else
{
i
=
0
;
if
(
GET_CODE
(
op0
)
==
REG
&&
FP_REGNO_P
(
REGNO
(
op0
)))
i
++
;
if
(
GET_CODE
(
op2
)
==
REG
&&
FP_REGNO_P
(
REGNO
(
op2
)))
i
++
;
if
(
i
==
0
)
size
+=
fr0_avail
?
64
:
112
;
else
if
(
i
==
1
)
size
+=
fr0_avail
?
0
:
64
;
}
}
}
else
if
(
code
!=
USE
&&
code
!=
CLOBBER
&&
(
GET_CODE
(
op0
)
!=
REG
||
!
FP_REGNO_P
(
REGNO
(
op0
))))
size
+=
64
;
if
(
!
TARGET_FULL_FP_BLOCKS
)
{
/* If we are not to pad the blocks, just compute its actual length. */
size
=
12
;
/* Header + opcode */
if
(
code
==
USE
||
code
==
CLOBBER
)
size
+=
2
;
else
{
if
(
op0
)
size
+=
2
;
if
(
op1
)
size
+=
2
;
if
(
op2
)
size
+=
2
;
}
/* If in the middle of a word, round. */
if
(
size
%
UNITS_PER_WORD
)
size
+=
2
;
/* Handle any immediates. */
if
(
code
!=
USE
&&
code
!=
CLOBBER
&&
op0
&&
GET_CODE
(
op0
)
!=
REG
)
size
+=
4
;
if
(
op1
&&
GET_CODE
(
op1
)
!=
REG
)
size
+=
4
;
if
(
op2
&&
GET_CODE
(
op2
)
!=
REG
)
size
+=
4
;
if
(
code
!=
USE
&&
code
!=
CLOBBER
&&
op0
&&
GET_CODE
(
op0
)
==
CONST_DOUBLE
&&
GET_MODE
(
op0
)
==
DFmode
)
size
+=
4
;
if
(
op1
&&
GET_CODE
(
op1
)
==
CONST_DOUBLE
&&
GET_MODE
(
op1
)
==
DFmode
)
size
+=
4
;
if
(
op2
&&
GET_CODE
(
op2
)
==
CONST_DOUBLE
&&
GET_MODE
(
op2
)
==
DFmode
)
size
+=
4
;
}
/* Done with size computation! Chain this in. */
fpop
->
size
=
size
;
data_offset
+=
size
/
UNITS_PER_WORD
;
fpop
->
next_in_mem
=
0
;
fpop
->
next_same_hash
=
0
;
if
(
last_fpop_in_mem
)
last_fpop_in_mem
->
next_in_mem
=
fpop
;
else
first_fpop
=
fpop
;
last_fpop_in_mem
=
fpop
;
if
(
last_fpop
)
last_fpop
->
next_same_hash
=
fpop
;
else
fp_hash_table
[
hash
]
=
fpop
;
win
:
/* FPOP describes the operation to be performed. Return a string to branch
to it. */
if
(
fpop
->
mem_offset
<
32768
/
UNITS_PER_WORD
)
sprintf
(
outbuf
,
"cal r15,%d(r14)
\n\t
balr%s r15,r15"
,
fpop
->
mem_offset
*
UNITS_PER_WORD
,
dbr_sequence_length
()
?
"x"
:
""
);
else
sprintf
(
outbuf
,
"get r15,$L%dF%d
\n\t
balr%s r15,r15"
,
subr_number
,
fpop
->
mem_offset
*
UNITS_PER_WORD
,
dbr_sequence_length
()
?
"x"
:
""
);
return
outbuf
;
}
/* If necessary, output a floating-point operation to save or restore all
floating-point registers.
file is the file to write the operation to, CODE is USE for save, CLOBBER
for restore, and ADDR is the address of the same area, as RTL. */
static
void
output_loadsave_fpregs
(
file
,
code
,
addr
)
FILE
*
file
;
enum
rtx_code
code
;
rtx
addr
;
{
register
int
i
;
register
int
mask
=
0
;
for
(
i
=
2
+
(
TARGET_FP_REGS
!=
0
);
i
<=
7
;
i
++
)
if
(
regs_ever_live
[
i
+
17
])
mask
|=
1
<<
(
7
-
i
);
if
(
mask
)
fprintf
(
file
,
"
\t
%s
\n
"
,
output_fpop
(
code
,
gen_rtx
(
CONST_INT
,
VOIDmode
,
mask
),
gen_rtx
(
MEM
,
Pmode
,
addr
),
0
,
const0_rtx
));
}
/* Output any floating-point operations at the end of the routine. */
static
void
output_fpops
(
file
)
FILE
*
file
;
{
register
struct
fp_op
*
fpop
;
register
int
size_so_far
;
register
int
i
;
rtx
immed
[
3
];
if
(
first_fpop
==
0
)
return
;
data_section
();
ASM_OUTPUT_ALIGN
(
file
,
2
);
for
(
fpop
=
first_fpop
;
fpop
;
fpop
=
fpop
->
next_in_mem
)
{
if
(
fpop
->
mem_offset
<
32768
/
UNITS_PER_WORD
)
fprintf
(
file
,
"# data area offset = %d
\n
"
,
fpop
->
mem_offset
*
UNITS_PER_WORD
);
else
fprintf
(
file
,
"L%dF%d:
\n
"
,
subr_number
,
fpop
->
mem_offset
*
UNITS_PER_WORD
);
fprintf
(
file
,
"
\t
cas r0,r15,r0
\n
"
);
fprintf
(
file
,
"
\t
.long FPGLUE
\n
"
);
switch
(
fpop
->
opcode
)
{
case
USE
:
fprintf
(
file
,
"
\t
.byte 0x1d
\t
# STOREM
\n
"
);
break
;
case
CLOBBER
:
fprintf
(
file
,
"
\t
.byte 0x0f
\t
# LOADM
\n
"
);
break
;
case
ABS
:
fprintf
(
file
,
"
\t
.byte 0x00
\t
# ABS
\n
"
);
break
;
case
PLUS
:
fprintf
(
file
,
"
\t
.byte 0x02
\t
# ADD
\n
"
);
break
;
case
EQ
:
fprintf
(
file
,
"
\t
.byte 0x07
\t
# CMP
\n
"
);
break
;
case
GE
:
fprintf
(
file
,
"
\t
.byte 0x08
\t
# CMPT
\n
"
);
break
;
case
DIV
:
fprintf
(
file
,
"
\t
.byte 0x0c
\t
# DIV
\n
"
);
break
;
case
SET
:
fprintf
(
file
,
"
\t
.byte 0x14
\t
# MOVE
\n
"
);
break
;
case
MULT
:
fprintf
(
file
,
"
\t
.byte 0x15
\t
# MUL
\n
"
);
break
;
case
NEG
:
fprintf
(
file
,
"
\t
.byte 0x16
\t
# NEG
\n
"
);
break
;
case
SQRT
:
fprintf
(
file
,
"
\t
.byte 0x1c
\t
# SQRT
\n
"
);
break
;
case
MINUS
:
fprintf
(
file
,
"
\t
.byte 0x1e
\t
# SUB
\n
"
);
break
;
default
:
abort
();
}
fprintf
(
file
,
"
\t
.byte %d
\n
"
,
fpop
->
noperands
);
fprintf
(
file
,
"
\t
.short 0x8001
\n
"
);
if
((
fpop
->
ops
[
0
]
==
0
||
GET_CODE
(
fpop
->
ops
[
0
])
!=
REG
||
REGNO
(
fpop
->
ops
[
0
])
!=
17
)
&&
(
fpop
->
ops
[
1
]
==
0
||
GET_CODE
(
fpop
->
ops
[
1
])
!=
REG
||
REGNO
(
fpop
->
ops
[
1
])
!=
17
)
&&
(
fpop
->
ops
[
2
]
==
0
||
GET_CODE
(
fpop
->
ops
[
2
])
!=
REG
||
REGNO
(
fpop
->
ops
[
2
])
!=
17
))
fprintf
(
file
,
"
\t
.byte %d, 0x80
\n
"
,
fpop
->
size
);
else
fprintf
(
file
,
"
\t
.byte %d, 0
\n
"
,
fpop
->
size
);
size_so_far
=
12
;
for
(
i
=
0
;
i
<
fpop
->
noperands
;
i
++
)
{
register
int
type
;
register
int
opbyte
;
register
char
*
desc0
;
char
desc1
[
50
];
immed
[
i
]
=
0
;
switch
(
GET_MODE
(
fpop
->
ops
[
i
]))
{
case
SImode
:
case
VOIDmode
:
desc0
=
"int"
;
type
=
0
;
break
;
case
SFmode
:
desc0
=
"float"
;
type
=
2
;
break
;
case
DFmode
:
desc0
=
"double"
;
type
=
3
;
break
;
default
:
abort
();
}
switch
(
GET_CODE
(
fpop
->
ops
[
i
]))
{
case
REG
:
strcpy
(
desc1
,
reg_names
[
REGNO
(
fpop
->
ops
[
i
])]);
if
(
FP_REGNO_P
(
REGNO
(
fpop
->
ops
[
i
])))
{
type
+=
0x10
;
opbyte
=
REGNO
(
fpop
->
ops
[
i
])
-
17
;
}
else
{
type
+=
0x00
;
opbyte
=
REGNO
(
fpop
->
ops
[
i
]);
if
(
type
==
3
)
opbyte
=
(
opbyte
<<
4
)
+
opbyte
+
1
;
}
break
;
case
MEM
:
type
+=
0x30
;
if
(
GET_CODE
(
XEXP
(
fpop
->
ops
[
i
],
0
))
==
PLUS
)
{
immed
[
i
]
=
XEXP
(
XEXP
(
fpop
->
ops
[
i
],
0
),
1
);
opbyte
=
REGNO
(
XEXP
(
XEXP
(
fpop
->
ops
[
i
],
0
),
0
));
if
(
GET_CODE
(
immed
[
i
])
==
CONST_INT
)
sprintf
(
desc1
,
"%d(%s)"
,
INTVAL
(
immed
[
i
]),
reg_names
[
opbyte
]);
else
sprintf
(
desc1
,
"<memory> (%s)"
,
reg_names
[
opbyte
]);
}
else
if
(
GET_CODE
(
XEXP
(
fpop
->
ops
[
i
],
0
))
==
REG
)
{
opbyte
=
REGNO
(
XEXP
(
fpop
->
ops
[
i
],
0
));
immed
[
i
]
=
const0_rtx
;
sprintf
(
desc1
,
"(%s)"
,
reg_names
[
opbyte
]);
}
else
{
immed
[
i
]
=
XEXP
(
fpop
->
ops
[
i
],
0
);
opbyte
=
0
;
sprintf
(
desc1
,
"<memory>"
);
}
break
;
case
CONST_INT
:
case
CONST_DOUBLE
:
case
CONST
:
type
+=
0x20
;
opbyte
=
0
;
immed
[
i
]
=
fpop
->
ops
[
i
];
desc1
[
0
]
=
'$'
;
desc1
[
1
]
=
'\0'
;
break
;
default
:
abort
();
}
/* Save/restore is special. */
if
(
i
==
0
&&
(
fpop
->
opcode
==
USE
||
fpop
->
opcode
==
CLOBBER
))
type
=
0xff
,
opbyte
=
INTVAL
(
fpop
->
ops
[
0
]),
immed
[
i
]
=
0
;
fprintf
(
file
,
"
\t
.byte 0x%x,0x%x # (%s) %s
\n
"
,
type
,
opbyte
,
desc0
,
desc1
);
size_so_far
+=
2
;
}
/* If in the middle of a word, round. */
if
(
size_so_far
%
UNITS_PER_WORD
)
{
fprintf
(
file
,
"
\t
.space 2
\n
"
);
size_so_far
+=
2
;
}
for
(
i
=
0
;
i
<
fpop
->
noperands
;
i
++
)
if
(
immed
[
i
])
switch
(
GET_MODE
(
immed
[
i
]))
{
case
SImode
:
case
VOIDmode
:
size_so_far
+=
4
;
fprintf
(
file
,
"
\t
.long "
);
output_addr_const
(
file
,
immed
[
i
]);
fprintf
(
file
,
"
\n
"
);
break
;
case
DFmode
:
size_so_far
+=
4
;
case
SFmode
:
size_so_far
+=
4
;
if
(
GET_CODE
(
immed
[
i
])
==
CONST_DOUBLE
)
{
union
real_extract
u
;
bcopy
(
&
CONST_DOUBLE_LOW
(
immed
[
i
]),
&
u
,
sizeof
u
);
if
(
GET_MODE
(
immed
[
i
])
==
DFmode
)
ASM_OUTPUT_DOUBLE
(
file
,
u
.
d
);
else
ASM_OUTPUT_FLOAT
(
file
,
u
.
d
);
}
else
abort
();
break
;
default
:
abort
();
}
if
(
size_so_far
!=
fpop
->
size
)
{
if
(
TARGET_FULL_FP_BLOCKS
)
fprintf
(
file
,
"
\t
.space %d
\n
"
,
fpop
->
size
-
size_so_far
);
else
abort
();
}
}
/* Update for next subroutine. */
subr_number
++
;
text_section
();
}
/* Initialize floating-point operation table. */
static
void
init_fpops
()
{
register
int
i
;
first_fpop
=
last_fpop_in_mem
=
0
;
for
(
i
=
0
;
i
<
FP_HASH_SIZE
;
i
++
)
fp_hash_table
[
i
]
=
0
;
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment