Commit e4c62b26 by Phil Edwards

stl_vector.h: Reformat to follow C++STYLE.

2002-05-21  Phil Edwards  <pme@gcc.gnu.org>

	* include/bits/stl_vector.h:  Reformat to follow C++STYLE.
	Doxygenate all public members.  Reorder to follow 14882.
	(vector::push_back(void)):  Remove previously-deprecated fn.
	(vector::insert(iterator), vector::_M_insert_aux(iterator)):
	Deprecate for removal in 3.3.

From-SVN: r53696
parent f6366fc7
2002-05-21 Phil Edwards <pme@gcc.gnu.org>
* include/bits/stl_vector.h: Reformat to follow C++STYLE.
Doxygenate all public members. Reorder to follow 14882.
(vector::push_back(void)): Remove previously-deprecated fn.
(vector::insert(iterator), vector::_M_insert_aux(iterator)):
Deprecate for removal in 3.3.
2002-05-20 Phil Edwards <pme@gcc.gnu.org>
* docs/html/faq/index.html (5.4): Recommend against -I options for
......
......@@ -65,22 +65,27 @@
#include <bits/functexcept.h>
#include <bits/concept_check.h>
// Since this entire file is within namespace std, there's no reason to
// waste two spaces along the left column. Thus the leading indentation is
// slightly violated from here on.
namespace std
{
// The vector base class serves two purposes. First, its constructor
// and destructor allocate (but don't initialize) storage. This makes
// exception safety easier. Second, the base class encapsulates all of
// the differences between SGI-style allocators and standard-conforming
// allocators.
// Base class for ordinary allocators.
/// @if maint Primary default version. @endif
/**
* @if maint
* See bits/stl_deque.h's _Deque_alloc_base for an explanation.
* @endif
*/
template <class _Tp, class _Allocator, bool _IsStatic>
class _Vector_alloc_base {
class _Vector_alloc_base
{
public:
typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
allocator_type;
allocator_type get_allocator() const { return _M_data_allocator; }
allocator_type
get_allocator() const { return _M_data_allocator; }
_Vector_alloc_base(const allocator_type& __a)
: _M_data_allocator(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
......@@ -92,20 +97,24 @@ protected:
_Tp* _M_finish;
_Tp* _M_end_of_storage;
_Tp* _M_allocate(size_t __n)
{ return _M_data_allocator.allocate(__n); }
void _M_deallocate(_Tp* __p, size_t __n)
_Tp*
_M_allocate(size_t __n) { return _M_data_allocator.allocate(__n); }
void
_M_deallocate(_Tp* __p, size_t __n)
{ if (__p) _M_data_allocator.deallocate(__p, __n); }
};
// Specialization for allocators that have the property that we don't
// actually have to store an allocator object.
/// @if maint Specialization for instanceless allocators. @endif
template <class _Tp, class _Allocator>
class _Vector_alloc_base<_Tp, _Allocator, true> {
class _Vector_alloc_base<_Tp, _Allocator, true>
{
public:
typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
allocator_type
get_allocator() const { return allocator_type(); }
_Vector_alloc_base(const allocator_type&)
: _M_start(0), _M_finish(0), _M_end_of_storage(0)
......@@ -117,12 +126,20 @@ protected:
_Tp* _M_end_of_storage;
typedef typename _Alloc_traits<_Tp, _Allocator>::_Alloc_type _Alloc_type;
_Tp* _M_allocate(size_t __n)
{ return _Alloc_type::allocate(__n); }
void _M_deallocate(_Tp* __p, size_t __n)
{ _Alloc_type::deallocate(__p, __n);}
_Tp*
_M_allocate(size_t __n) { return _Alloc_type::allocate(__n); }
void
_M_deallocate(_Tp* __p, size_t __n) { _Alloc_type::deallocate(__p, __n);}
};
/**
* @if maint
* See bits/stl_deque.h's _Deque_base for an explanation.
* @endif
*/
template <class _Tp, class _Alloc>
struct _Vector_base
: public _Vector_alloc_base<_Tp, _Alloc,
......@@ -133,8 +150,11 @@ struct _Vector_base
_Base;
typedef typename _Base::allocator_type allocator_type;
_Vector_base(const allocator_type& __a) : _Base(__a) {}
_Vector_base(size_t __n, const allocator_type& __a) : _Base(__a) {
_Vector_base(const allocator_type& __a)
: _Base(__a) {}
_Vector_base(size_t __n, const allocator_type& __a)
: _Base(__a)
{
_M_start = _M_allocate(__n);
_M_finish = _M_start;
_M_end_of_storage = _M_start + __n;
......@@ -157,10 +177,10 @@ struct _Vector_base
* <a href="tables.html#68">optional sequence requirements</a> with the
* %exception of @c push_front and @c pop_front.
*
* In some terminology a vector can be described as a dynamic C-style array,
* In some terminology a %vector can be described as a dynamic C-style array,
* it offers fast and efficient access to individual elements in any order
* and saves the user from worrying about memory and size allocation.
* Subscripting ( [] ) access is also provided as with C-style arrays.
* Subscripting ( @c [] ) access is also provided as with C-style arrays.
*/
template <class _Tp, class _Alloc = allocator<_Tp> >
class vector : protected _Vector_base<_Tp, _Alloc>
......@@ -168,9 +188,9 @@ class vector : protected _Vector_base<_Tp, _Alloc>
// concept requirements
__glibcpp_class_requires(_Tp, _SGIAssignableConcept)
private:
typedef _Vector_base<_Tp, _Alloc> _Base;
typedef vector<_Tp, _Alloc> vector_type;
public:
typedef _Tp value_type;
typedef value_type* pointer;
......@@ -178,18 +198,22 @@ public:
typedef __gnu_cxx::__normal_iterator<pointer, vector_type> iterator;
typedef __gnu_cxx::__normal_iterator<const_pointer, vector_type>
const_iterator;
typedef reverse_iterator<const_iterator> const_reverse_iterator;
typedef reverse_iterator<iterator> reverse_iterator;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef typename _Base::allocator_type allocator_type;
allocator_type get_allocator() const { return _Base::get_allocator(); }
typedef reverse_iterator<const_iterator> const_reverse_iterator;
typedef reverse_iterator<iterator> reverse_iterator;
protected:
/** @if maint
* These two functions and three data members are all from the top-most
* base class, which varies depending on the type of %allocator. They
* should be pretty self-explanatory, as %vector uses a simple contiguous
* allocation scheme.
* @endif
*/
using _Base::_M_allocate;
using _Base::_M_deallocate;
using _Base::_M_start;
......@@ -198,199 +222,318 @@ protected:
protected:
void _M_insert_aux(iterator __position, const _Tp& __x);
#ifdef _GLIBCPP_DEPRECATED
void _M_insert_aux(iterator __position);
#endif
public:
// [23.2.4.1] construct/copy/destroy
// (assign() and get_allocator() are also listed in this section)
/**
* Returns a read/write iterator that points to the first element in the
* vector. Iteration is done in ordinary element order.
* @brief Default constructor creates no elements.
*/
iterator begin() { return iterator (_M_start); }
explicit
vector(const allocator_type& __a = allocator_type())
: _Base(__a) {}
/**
* Returns a read-only (constant) iterator that points to the first element
* in the vector. Iteration is done in ordinary element order.
* @brief Create a %vector with copies of an exemplar element.
* @param n The number of elements to initially create.
* @param value An element to copy.
*
* This constructor fills the %vector with @a n copies of @a value.
*/
const_iterator begin() const
{ return const_iterator (_M_start); }
vector(size_type __n, const _Tp& __value,
const allocator_type& __a = allocator_type())
: _Base(__n, __a)
{ _M_finish = uninitialized_fill_n(_M_start, __n, __value); }
/**
* Returns a read/write iterator that points one past the last element in
* the vector. Iteration is done in ordinary element order.
* @brief Create a %vector with default elements.
* @param n The number of elements to initially create.
*
* This constructor fills the %vector with @a n copies of a
* default-constructed element.
*/
iterator end() { return iterator (_M_finish); }
explicit
vector(size_type __n)
: _Base(__n, allocator_type())
{ _M_finish = uninitialized_fill_n(_M_start, __n, _Tp()); }
/**
* Returns a read-only (constant) iterator that points one past the last
* element in the vector. Iteration is done in ordinary element order.
* @brief %Vector copy constructor.
* @param x A %vector of identical element and allocator types.
*
* The newly-created %vector uses a copy of the allocation object used
* by @a x. All the elements of @a x are copied, but any extra memory in
* @a x (for fast expansion) will not be copied.
*/
const_iterator end() const { return const_iterator (_M_finish); }
vector(const vector<_Tp, _Alloc>& __x)
: _Base(__x.size(), __x.get_allocator())
{ _M_finish = uninitialized_copy(__x.begin(), __x.end(), _M_start); }
/**
* Returns a read/write reverse iterator that points to the last element in
* the vector. Iteration is done in reverse element order.
* @brief Builds a %vector from a range.
* @param first An input iterator.
* @param last An input iterator.
*
* Creats a %vector consisting of copies of the elements from [first,last).
*
* If the iterators are forward, bidirectional, or random-access, then
* this will call the elements' copy constructor N times (where N is
* distance(first,last)) and do no memory reallocation. But if only
* input iterators are used, then this will do at most 2N calls to the
* copy constructor, and logN memory reallocations.
*/
reverse_iterator rbegin()
{ return reverse_iterator(end()); }
template <class _InputIterator>
vector(_InputIterator __first, _InputIterator __last,
const allocator_type& __a = allocator_type())
: _Base(__a)
{
// Check whether it's an integral type. If so, it's not an iterator.
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_initialize_aux(__first, __last, _Integral());
}
protected:
template<class _Integer>
void
_M_initialize_aux(_Integer __n, _Integer __value, __true_type)
{
_M_start = _M_allocate(__n);
_M_end_of_storage = _M_start + __n;
_M_finish = uninitialized_fill_n(_M_start, __n, __value);
}
template<class _InputIterator>
void
_M_initialize_aux(_InputIterator __first,_InputIterator __last,__false_type)
{
typedef typename iterator_traits<_InputIterator>::iterator_category
_IterCategory;
_M_range_initialize(__first, __last, _IterCategory());
}
public:
/**
* Returns a read-only (constant) reverse iterator that points to the last
* element in the vector. Iteration is done in reverse element order.
* Creats a %vector consisting of copies of the elements from [first,last).
*
* The dtor only erases the elements, and that if the elements
* themselves are pointers, the pointed-to memory is not touched in any
* way. Managing the pointer is the user's responsibilty.
*/
const_reverse_iterator rbegin() const
{ return const_reverse_iterator(end()); }
~vector() { _Destroy(_M_start, _M_finish); }
/**
* Returns a read/write reverse iterator that points to one before the
* first element in the vector. Iteration is done in reverse element
* order.
* @brief %Vector assignment operator.
* @param x A %vector of identical element and allocator types.
*
* All the elements of @a x are copied, but any extra memory in @a x (for
* fast expansion) will not be copied. Unlike the copy constructor, the
* allocator object is not copied.
*/
reverse_iterator rend()
{ return reverse_iterator(begin()); }
vector<_Tp, _Alloc>&
operator=(const vector<_Tp, _Alloc>& __x);
/**
* Returns a read-only (constant) reverse iterator that points to one
* before the first element in the vector. Iteration is done in reverse
* element order.
* @brief Assigns a given value to a %vector.
* @param n Number of elements to be assigned.
* @param val Value to be assigned.
*
* This function fills a %vector with @a n copies of the given value.
* Note that the assignment completely changes the %vector and that the
* resulting %vector's size is the same as the number of elements assigned.
* Old data may be lost.
*/
const_reverse_iterator rend() const
{ return const_reverse_iterator(begin()); }
/** Returns the number of elements in the vector. */
size_type size() const
{ return size_type(end() - begin()); }
void
assign(size_type __n, const _Tp& __val) { _M_fill_assign(__n, __val); }
/** Returns the size of the largest possible vector. */
size_type max_size() const
{ return size_type(-1) / sizeof(_Tp); }
protected:
void
_M_fill_assign(size_type __n, const _Tp& __val);
public:
/**
* Returns the amount of memory that has been alocated for the current
* elements (?).
* @brief Assigns a range to a %vector.
* @param first An input iterator.
* @param last An input iterator.
*
* This function fills a %vector with copies of the elements in the
* range [first,last).
*
* Note that the assignment completely changes the %vector and that the
* resulting %vector's size is the same as the number of elements assigned.
* Old data may be lost.
*/
size_type capacity() const
{ return size_type(const_iterator(_M_end_of_storage) - begin()); }
template<class _InputIterator>
void
assign(_InputIterator __first, _InputIterator __last)
{
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_assign_dispatch(__first, __last, _Integral());
}
protected:
template<class _Integer>
void
_M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
{ _M_fill_assign((size_type) __n, (_Tp) __val); }
template<class _InputIter>
void
_M_assign_dispatch(_InputIter __first, _InputIter __last, __false_type)
{
typedef typename iterator_traits<_InputIter>::iterator_category
_IterCategory;
_M_assign_aux(__first, __last, _IterCategory());
}
template <class _InputIterator>
void
_M_assign_aux(_InputIterator __first, _InputIterator __last,
input_iterator_tag);
template <class _ForwardIterator>
void
_M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
forward_iterator_tag);
public:
/// Get a copy of the memory allocation object.
allocator_type
get_allocator() const { return _Base::get_allocator(); }
// iterators
/**
* Returns true if the vector is empty. (Thus begin() would equal end().)
* Returns a read/write iterator that points to the first element in the
* %vector. Iteration is done in ordinary element order.
*/
bool empty() const
{ return begin() == end(); }
iterator
begin() { return iterator (_M_start); }
/**
* @brief Subscript access to the data contained in the vector.
* @param n The element for which data should be accessed.
* @return Read/write reference to data.
*
* This operator allows for easy, array-style, data access.
* Note that data access with this operator is unchecked and out_of_range
* lookups are not defined. (For checked lookups see at().)
* Returns a read-only (constant) iterator that points to the first element
* in the %vector. Iteration is done in ordinary element order.
*/
reference operator[](size_type __n) { return *(begin() + __n); }
const_iterator
begin() const { return const_iterator (_M_start); }
/**
* @brief Subscript access to the data contained in the vector.
* @param n The element for which data should be accessed.
* @return Read-only (constant) reference to data.
*
* This operator allows for easy, array-style, data access.
* Note that data access with this operator is unchecked and out_of_range
* lookups are not defined. (For checked lookups see at().)
* Returns a read/write iterator that points one past the last element in
* the %vector. Iteration is done in ordinary element order.
*/
const_reference operator[](size_type __n) const { return *(begin() + __n); }
void _M_range_check(size_type __n) const {
if (__n >= this->size())
__throw_out_of_range("vector");
}
iterator
end() { return iterator (_M_finish); }
/**
* @brief Provides access to the data contained in the vector.
* @param n The element for which data should be accessed.
* @return Read/write reference to data.
*
* This function provides for safer data access. The parameter is first
* checked that it is in the range of the vector. The function throws
* out_of_range if the check fails.
* Returns a read-only (constant) iterator that points one past the last
* element in the %vector. Iteration is done in ordinary element order.
*/
reference at(size_type __n)
{ _M_range_check(__n); return (*this)[__n]; }
const_iterator
end() const { return const_iterator (_M_finish); }
/**
* @brief Provides access to the data contained in the vector.
* @param n The element for which data should be accessed.
* @return Read-only (constant) reference to data.
*
* This function provides for safer data access. The parameter is first
* checked that it is in the range of the vector. The function throws
* out_of_range if the check fails.
* Returns a read/write reverse iterator that points to the last element in
* the %vector. Iteration is done in reverse element order.
*/
const_reference at(size_type __n) const
{ _M_range_check(__n); return (*this)[__n]; }
reverse_iterator
rbegin() { return reverse_iterator(end()); }
/**
* Returns a read-only (constant) reverse iterator that points to the last
* element in the %vector. Iteration is done in reverse element order.
*/
const_reverse_iterator
rbegin() const { return const_reverse_iterator(end()); }
explicit vector(const allocator_type& __a = allocator_type())
: _Base(__a) {}
vector(size_type __n, const _Tp& __value,
const allocator_type& __a = allocator_type())
: _Base(__n, __a)
{ _M_finish = uninitialized_fill_n(_M_start, __n, __value); }
/**
* Returns a read/write reverse iterator that points to one before the
* first element in the %vector. Iteration is done in reverse element
* order.
*/
reverse_iterator
rend() { return reverse_iterator(begin()); }
explicit vector(size_type __n)
: _Base(__n, allocator_type())
{ _M_finish = uninitialized_fill_n(_M_start, __n, _Tp()); }
/**
* Returns a read-only (constant) reverse iterator that points to one
* before the first element in the %vector. Iteration is done in reverse
* element order.
*/
const_reverse_iterator
rend() const { return const_reverse_iterator(begin()); }
vector(const vector<_Tp, _Alloc>& __x)
: _Base(__x.size(), __x.get_allocator())
{ _M_finish = uninitialized_copy(__x.begin(), __x.end(), _M_start); }
// [23.2.4.2] capacity
/** Returns the number of elements in the %vector. */
size_type
size() const { return size_type(end() - begin()); }
// Check whether it's an integral type. If so, it's not an iterator.
template <class _InputIterator>
vector(_InputIterator __first, _InputIterator __last,
const allocator_type& __a = allocator_type())
: _Base(__a)
{
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_initialize_aux(__first, __last, _Integral());
}
/** Returns the size() of the largest possible %vector. */
size_type
max_size() const { return size_type(-1) / sizeof(_Tp); }
template <class _Integer>
void _M_initialize_aux(_Integer __n, _Integer __value, __true_type)
/**
* @brief Resizes the %vector to the specified number of elements.
* @param new_size Number of elements the %vector should contain.
* @param x Data with which new elements should be populated.
*
* This function will %resize the %vector to the specified number of
* elements. If the number is smaller than the %vector's current size the
* %vector is truncated, otherwise the %vector is extended and new elements
* are populated with given data.
*/
void
resize(size_type __new_size, const _Tp& __x)
{
_M_start = _M_allocate(__n);
_M_end_of_storage = _M_start + __n;
_M_finish = uninitialized_fill_n(_M_start, __n, __value);
if (__new_size < size())
erase(begin() + __new_size, end());
else
insert(end(), __new_size - size(), __x);
}
template<class _InputIterator>
/**
* @brief Resizes the %vector to the specified number of elements.
* @param new_size Number of elements the %vector should contain.
*
* This function will resize the %vector to the specified number of
* elements. If the number is smaller than the %vector's current size the
* %vector is truncated, otherwise the %vector is extended and new elements
* are default-constructed.
*/
void
_M_initialize_aux(_InputIterator __first, _InputIterator __last, __false_type)
{
typedef typename iterator_traits<_InputIterator>::iterator_category _IterCategory;
_M_range_initialize(__first, __last, _IterCategory());
}
resize(size_type __new_size) { resize(__new_size, _Tp()); }
~vector()
{ _Destroy(_M_start, _M_finish); }
/**
* Returns the total number of elements that the %vector can hold before
* needing to allocate more memory.
*/
size_type
capacity() const
{ return size_type(const_iterator(_M_end_of_storage) - begin()); }
vector<_Tp, _Alloc>& operator=(const vector<_Tp, _Alloc>& __x);
/**
* Returns true if the %vector is empty. (Thus begin() would equal end().)
*/
bool
empty() const { return begin() == end(); }
/**
* @brief Attempt to preallocate enough memory for specified number of
* elements.
* @param n Number of elements required
* @param n Number of elements required.
* @throw std::length_error If @a n exceeds @c max_size().
*
* This function attempts to reserve enough memory for the vector to hold
* This function attempts to reserve enough memory for the %vector to hold
* the specified number of elements. If the number requested is more than
* max_size() length_error is thrown.
* max_size(), length_error is thrown.
*
* The advantage of this function is that if optimal code is a necessity
* and the user can determine the number of elements that will be required
* the user can reserve the memory and thus prevent a possible
* reallocation of memory and copy of vector data.
* and the user can determine the number of elements that will be required,
* the user can reserve the memory in %advance, and thus prevent a possible
* reallocation of memory and copying of %vector data.
*/
void reserve(size_type __n) {
void
reserve(size_type __n) // FIXME should be out of class
{
if (capacity() < __n) {
const size_type __old_size = size();
pointer __tmp = _M_allocate_and_copy(__n, _M_start, _M_finish);
......@@ -402,88 +545,104 @@ public:
}
}
// assign(), a generalized assignment member function. Two
// versions: one that takes a count, and one that takes a range.
// The range version is a member template, so we dispatch on whether
// or not the type is an integer.
// element access
/**
* @brief Assigns a given value or range to a vector.
* @param n Number of elements to be assigned.
* @param val Value to be assigned.
* @brief Subscript access to the data contained in the %vector.
* @param n The index of the element for which data should be accessed.
* @return Read/write reference to data.
*
* This function can be used to assign a range to a vector or fill it
* with a specified number of copies of the given value.
* Note that the assignment completely changes the vector and that the
* resulting vector's size is the same as the number of elements assigned.
* Old data may be lost.
* This operator allows for easy, array-style, data access.
* Note that data access with this operator is unchecked and out_of_range
* lookups are not defined. (For checked lookups see at().)
*/
void assign(size_type __n, const _Tp& __val) { _M_fill_assign(__n, __val); }
void _M_fill_assign(size_type __n, const _Tp& __val);
reference
operator[](size_type __n) { return *(begin() + __n); }
template<class _InputIterator>
void
assign(_InputIterator __first, _InputIterator __last)
{
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_assign_dispatch(__first, __last, _Integral());
}
template<class _Integer>
void
_M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
{ _M_fill_assign((size_type) __n, (_Tp) __val); }
/**
* @brief Subscript access to the data contained in the %vector.
* @param n The index of the element for which data should be accessed.
* @return Read-only (constant) reference to data.
*
* This operator allows for easy, array-style, data access.
* Note that data access with this operator is unchecked and out_of_range
* lookups are not defined. (For checked lookups see at().)
*/
const_reference
operator[](size_type __n) const { return *(begin() + __n); }
template<class _InputIter>
protected:
/// @if maint Safety check used only from at(). @endif
void
_M_assign_dispatch(_InputIter __first, _InputIter __last, __false_type)
_M_range_check(size_type __n) const
{
typedef typename iterator_traits<_InputIter>::iterator_category _IterCategory;
_M_assign_aux(__first, __last, _IterCategory());
if (__n >= this->size())
__throw_out_of_range("vector [] access out of range");
}
template <class _InputIterator>
void
_M_assign_aux(_InputIterator __first, _InputIterator __last,
input_iterator_tag);
public:
/**
* @brief Provides access to the data contained in the %vector.
* @param n The index of the element for which data should be accessed.
* @return Read/write reference to data.
* @throw std::out_of_range If @a n is an invalid index.
*
* This function provides for safer data access. The parameter is first
* checked that it is in the range of the vector. The function throws
* out_of_range if the check fails.
*/
reference
at(size_type __n) { _M_range_check(__n); return (*this)[__n]; }
template <class _ForwardIterator>
void
_M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
forward_iterator_tag);
/**
* @brief Provides access to the data contained in the %vector.
* @param n The index of the element for which data should be accessed.
* @return Read-only (constant) reference to data.
* @throw std::out_of_range If @a n is an invalid index.
*
* This function provides for safer data access. The parameter is first
* checked that it is in the range of the vector. The function throws
* out_of_range if the check fails.
*/
const_reference
at(size_type __n) const { _M_range_check(__n); return (*this)[__n]; }
/**
* Returns a read/write reference to the data at the first element of the
* vector.
* %vector.
*/
reference front() { return *begin(); }
reference
front() { return *begin(); }
/**
* Returns a read-only (constant) reference to the data at the first
* element of the vector.
* element of the %vector.
*/
const_reference front() const { return *begin(); }
const_reference
front() const { return *begin(); }
/**
* Returns a read/write reference to the data at the last element of the
* vector.
* %vector.
*/
reference back() { return *(end() - 1); }
reference
back() { return *(end() - 1); }
/**
* Returns a read-only (constant) reference to the data at the first
* element of the vector.
* Returns a read-only (constant) reference to the data at the last
* element of the %vector.
*/
const_reference back() const { return *(end() - 1); }
const_reference
back() const { return *(end() - 1); }
// [23.2.4.3] modifiers
/**
* @brief Add data to the end of the vector.
* @brief Add data to the end of the %vector.
* @param x Data to be added.
*
* This is a typical stack operation. The function creates an element at
* the end of the vector and assigns the given data to it.
* Due to the nature of a vector this operation can be done in constant
* time if the vector has preallocated space available.
* the end of the %vector and assigns the given data to it.
* Due to the nature of a %vector this operation can be done in constant
* time if the %vector has preallocated space available.
*/
void
push_back(const _Tp& __x)
......@@ -496,43 +655,30 @@ public:
_M_insert_aux(end(), __x);
}
#ifdef _GLIBCPP_DEPRECATED
/**
* Add an element to the end of the vector. The element is
* default-constructed.
* @brief Removes last element.
*
* @note You must define _GLIBCPP_DEPRECATED to make this visible; see
* c++config.h.
* This is a typical stack operation. It shrinks the %vector by one.
*
* Note that no data is returned, and if the last element's data is
* needed, it should be retrieved before pop_back() is called.
*/
void
push_back()
{
if (_M_finish != _M_end_of_storage) {
_Construct(_M_finish);
++_M_finish;
}
else
_M_insert_aux(end());
}
#endif
void
swap(vector<_Tp, _Alloc>& __x)
pop_back()
{
std::swap(_M_start, __x._M_start);
std::swap(_M_finish, __x._M_finish);
std::swap(_M_end_of_storage, __x._M_end_of_storage);
--_M_finish;
_Destroy(_M_finish);
}
/**
* @brief Inserts given value into vector at specified element.
* @param position An iterator that points to the element where data
* should be inserted.
* @brief Inserts given value into %vector before specified iterator.
* @param position An iterator into the %vector.
* @param x Data to be inserted.
* @return An iterator that points to the inserted data.
*
* This function will insert the given value into the specified location.
* Note that this kind of operation could be expensive for a vector and if
* This function will insert a copy of the given value before the specified
* location.
* Note that this kind of operation could be expensive for a %vector and if
* it is frequently used the user should consider using std::list.
*/
iterator
......@@ -548,16 +694,21 @@ public:
return begin() + __n;
}
#ifdef _GLIBCPP_DEPRECATED
/**
* @brief Inserts an empty element into the vector.
* @param position An iterator that points to the element where empty
* element should be inserted.
* @param x Data to be inserted.
* @brief Inserts an element into the %vector.
* @param position An iterator into the %vector.
* @return An iterator that points to the inserted element.
*
* This function will insert an empty element into the specified location.
* This function will insert a default-constructed element before the
* specified location. You should consider using insert(position,Tp())
* instead.
* Note that this kind of operation could be expensive for a vector and if
* it is frequently used the user should consider using std::list.
*
* @note This was deprecated in 3.2 and will be removed in 3.3. You must
* define @c _GLIBCPP_DEPRECATED to make this visible in 3.2; see
* c++config.h.
*/
iterator
insert(iterator __position)
......@@ -571,70 +722,78 @@ public:
_M_insert_aux(iterator(__position));
return begin() + __n;
}
// Check whether it's an integral type. If so, it's not an iterator.
template<class _InputIterator>
void
insert(iterator __pos, _InputIterator __first, _InputIterator __last)
{
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_insert_dispatch(__pos, __first, __last, _Integral());
}
template <class _Integer>
void
_M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val, __true_type)
{ _M_fill_insert(__pos, static_cast<size_type>(__n), static_cast<_Tp>(__val)); }
template<class _InputIterator>
void
_M_insert_dispatch(iterator __pos,
_InputIterator __first, _InputIterator __last,
__false_type)
{
typedef typename iterator_traits<_InputIterator>::iterator_category _IterCategory;
_M_range_insert(__pos, __first, __last, _IterCategory());
}
#endif
/**
* @brief Inserts a number of copies of given data into the vector.
* @param position An iterator that points to the element where data
* should be inserted.
* @param n Amount of elements to be inserted.
* @brief Inserts a number of copies of given data into the %vector.
* @param position An iterator into the %vector.
* @param n Number of elements to be inserted.
* @param x Data to be inserted.
*
* This function will insert a specified number of copies of the given data
* into the specified location.
* before the location specified by @a position.
*
* Note that this kind of operation could be expensive for a vector and if
* Note that this kind of operation could be expensive for a %vector and if
* it is frequently used the user should consider using std::list.
*/
void insert (iterator __pos, size_type __n, const _Tp& __x)
void
insert (iterator __pos, size_type __n, const _Tp& __x)
{ _M_fill_insert(__pos, __n, __x); }
void _M_fill_insert (iterator __pos, size_type __n, const _Tp& __x);
protected:
void
_M_fill_insert (iterator __pos, size_type __n, const _Tp& __x);
public:
/**
* @brief Removes last element from vector.
* @brief Inserts a range into the %vector.
* @param pos An iterator into the %vector.
* @param first An input iterator.
* @param last An input iterator.
*
* This is a typical stack operation. It allows us to shrink the vector by
* one.
* This function will insert copies of the data in the range [first,last)
* into the %vector before the location specified by @a pos.
*
* Note that no data is returned and if last element's data is needed it
* should be retrieved before pop_back() is called.
* Note that this kind of operation could be expensive for a %vector and if
* it is frequently used the user should consider using std::list.
*/
void pop_back() {
--_M_finish;
_Destroy(_M_finish);
template<class _InputIterator>
void
insert(iterator __pos, _InputIterator __first, _InputIterator __last)
{
// Check whether it's an integral type. If so, it's not an iterator.
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_insert_dispatch(__pos, __first, __last, _Integral());
}
protected:
template<class _Integer>
void
_M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
__true_type)
{
_M_fill_insert(__pos, static_cast<size_type>(__n),
static_cast<_Tp>(__val));
}
template<class _InputIterator>
void
_M_insert_dispatch(iterator __pos, _InputIterator __first,
_InputIterator __last, __false_type)
{
typedef typename iterator_traits<_InputIterator>::iterator_category
_IterCategory;
_M_range_insert(__pos, __first, __last, _IterCategory());
}
public:
/**
* @brief Remove element at given position
* @brief Remove element at given position.
* @param position Iterator pointing to element to be erased.
* @return Doc Me! (Iterator pointing to new element at old location?)
* @return An iterator pointing to the next element (or end()).
*
* This function will erase the element at the given position and thus
* shorten the vector by one.
* shorten the %vector by one.
*
* Note This operation could be expensive and if it is frequently used the
* user should consider using std::list. The user is also cautioned that
......@@ -642,7 +801,9 @@ public:
* a pointer, the pointed-to memory is not touched in any way. Managing
* the pointer is the user's responsibilty.
*/
iterator erase(iterator __position) {
iterator
erase(iterator __position)
{
if (__position + 1 != end())
copy(__position + 1, end(), __position);
--_M_finish;
......@@ -651,13 +812,14 @@ public:
}
/**
* @brief Remove a range of elements from a vector.
* @brief Remove a range of elements.
* @param first Iterator pointing to the first element to be erased.
* @param last Iterator pointing to the last element to be erased.
* @return Doc Me! (Iterator pointing to new element at old location?)
* @param last Iterator pointing to one past the last element to be erased.
* @return An iterator pointing to the element pointed to by @a last
* prior to erasing (or end()).
*
* This function will erase the elements in the given range and shorten the
* vector accordingly.
* This function will erase the elements in the range [first,last) and
* shorten the %vector accordingly.
*
* Note This operation could be expensive and if it is frequently used the
* user should consider using std::list. The user is also cautioned that
......@@ -665,7 +827,9 @@ public:
* themselves are pointers, the pointed-to memory is not touched in any
* way. Managing the pointer is the user's responsibilty.
*/
iterator erase(iterator __first, iterator __last) {
iterator
erase(iterator __first, iterator __last)
{
iterator __i(copy(__last, end(), __first));
_Destroy(__i, end());
_M_finish = _M_finish - (__last - __first);
......@@ -673,49 +837,40 @@ public:
}
/**
* @brief Resizes the vector to the specified number of elements.
* @param new_size Number of elements the vector should contain.
* @param x Data with which new elements should be populated.
* @brief Swaps data with another %vector.
* @param x A %vector of the same element and allocator types.
*
* This function will resize the vector to the specified number of
* elements. If the number is smaller than the vector's current size the
* vector is truncated, otherwise the vector is extended and new elements
* are populated with given data.
* This exchanges the elements between two vectors in constant time.
* (Three pointers, so it should be quite fast.)
* Note that the global std::swap() function is specialized such that
* std::swap(v1,v2) will feed to this function.
*/
void resize(size_type __new_size, const _Tp& __x) {
if (__new_size < size())
erase(begin() + __new_size, end());
else
insert(end(), __new_size - size(), __x);
void
swap(vector<_Tp, _Alloc>& __x)
{
std::swap(_M_start, __x._M_start);
std::swap(_M_finish, __x._M_finish);
std::swap(_M_end_of_storage, __x._M_end_of_storage);
}
/**
* @brief Resizes the vector to the specified number of elements.
* @param new_size Number of elements the vector should contain.
*
* This function will resize the vector to the specified number of
* elements. If the number is smaller than the vector's current size the
* vector is truncated, otherwise the vector is extended and new elements
* are left uninitialized.
*/
void resize(size_type __new_size) { resize(__new_size, _Tp()); }
/**
* Erases all elements in vector. Note that this function only erases the
* Erases all the elements. Note that this function only erases the
* elements, and that if the elements themselves are pointers, the
* pointed-to memory is not touched in any way. Managing the pointer is
* the user's responsibilty.
*/
void clear() { erase(begin(), end()); }
void
clear() { erase(begin(), end()); }
protected:
template <class _ForwardIterator>
pointer _M_allocate_and_copy(size_type __n, _ForwardIterator __first,
pointer
_M_allocate_and_copy(size_type __n, _ForwardIterator __first,
_ForwardIterator __last)
{
pointer __result = _M_allocate(__n);
try {
try
{
uninitialized_copy(__first, __last, __result);
return __result;
}
......@@ -727,7 +882,8 @@ protected:
}
template <class _InputIterator>
void _M_range_initialize(_InputIterator __first,
void
_M_range_initialize(_InputIterator __first,
_InputIterator __last, input_iterator_tag)
{
for ( ; __first != __last; ++__first)
......@@ -756,6 +912,17 @@ protected:
forward_iterator_tag);
};
/**
* @brief Vector equality comparison.
* @param x A %vector.
* @param y A %vector of the same type as @a x.
* @return True iff the size and elements of the vectors are equal.
*
* This is an equivalence relation. It is linear in the size of the
* vectors. Vectors are considered equivalent if their sizes are equal,
* and if corresponding elements compare equal.
*/
template <class _Tp, class _Alloc>
inline bool
operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
......@@ -764,6 +931,17 @@ operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
equal(__x.begin(), __x.end(), __y.begin());
}
/**
* @brief Vector ordering relation.
* @param x A %vector.
* @param y A %vector of the same type as @a x.
* @return True iff @a x is lexographically less than @a y.
*
* This is a total ordering relation. It is linear in the size of the
* vectors. The elements must be comparable with @c <.
*
* See std::lexographical_compare() for how the determination is made.
*/
template <class _Tp, class _Alloc>
inline bool
operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
......@@ -772,36 +950,42 @@ operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
__y.begin(), __y.end());
}
/// See std::vector::swap().
template <class _Tp, class _Alloc>
inline void swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
{
__x.swap(__y);
}
/// Based on operator==
template <class _Tp, class _Alloc>
inline bool
operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) {
return !(__x == __y);
}
/// Based on operator<
template <class _Tp, class _Alloc>
inline bool
operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) {
return __y < __x;
}
/// Based on operator<
template <class _Tp, class _Alloc>
inline bool
operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) {
return !(__y < __x);
}
/// Based on operator<
template <class _Tp, class _Alloc>
inline bool
operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) {
return !(__x < __y);
}
// XXX begin tcc me
template <class _Tp, class _Alloc>
vector<_Tp,_Alloc>&
vector<_Tp,_Alloc>::operator=(const vector<_Tp, _Alloc>& __x)
......@@ -919,6 +1103,7 @@ vector<_Tp, _Alloc>::_M_insert_aux(iterator __position, const _Tp& __x)
}
}
#ifdef _GLIBCPP_DEPRECATED
template <class _Tp, class _Alloc>
void
vector<_Tp, _Alloc>::_M_insert_aux(iterator __position)
......@@ -956,6 +1141,7 @@ vector<_Tp, _Alloc>::_M_insert_aux(iterator __position)
_M_end_of_storage = __new_start + __len;
}
}
#endif
template <class _Tp, class _Alloc>
void vector<_Tp, _Alloc>::_M_fill_insert(iterator __position, size_type __n,
......@@ -1078,6 +1264,3 @@ vector<_Tp, _Alloc>::_M_range_insert(iterator __position,
#endif /* __GLIBCPP_INTERNAL_VECTOR_H */
// Local Variables:
// mode:C++
// End:
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment