Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
R
riscv-gcc-1
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
lvzhengyang
riscv-gcc-1
Commits
e4600702
Commit
e4600702
authored
Jun 27, 1992
by
Richard Kenner
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
*** empty log message ***
From-SVN: r1313
parent
b0dda4b1
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
874 additions
and
431 deletions
+874
-431
gcc/Makefile.in
+1
-1
gcc/cse.c
+31
-0
gcc/flow.c
+9
-4
gcc/local-alloc.c
+13
-10
gcc/regclass.c
+817
-414
gcc/reload.c
+2
-2
gcc/rtl.h
+1
-0
No files found.
gcc/Makefile.in
View file @
e4600702
...
@@ -817,7 +817,7 @@ combine.o : combine.c $(CONFIG_H) $(RTL_H) gvarargs.h flags.h \
...
@@ -817,7 +817,7 @@ combine.o : combine.c $(CONFIG_H) $(RTL_H) gvarargs.h flags.h \
insn-config.h insn-flags.h insn-codes.h insn-attr.h regs.h expr.h
\
insn-config.h insn-flags.h insn-codes.h insn-attr.h regs.h expr.h
\
basic-block.h recog.h real.h
basic-block.h recog.h real.h
regclass.o
:
regclass.c $(CONFIG_H) $(RTL_H) hard-reg-set.h flags.h
\
regclass.o
:
regclass.c $(CONFIG_H) $(RTL_H) hard-reg-set.h flags.h
\
basic-block.h regs.h insn-config.h recog.h
basic-block.h regs.h insn-config.h recog.h
reload.h real.h
local-alloc.o
:
local-alloc.c $(CONFIG_H) $(RTL_H) flags.h basic-block.h
\
local-alloc.o
:
local-alloc.c $(CONFIG_H) $(RTL_H) flags.h basic-block.h
\
regs.h hard-reg-set.h insn-config.h recog.h output.h
regs.h hard-reg-set.h insn-config.h recog.h output.h
global-alloc.o
:
global-alloc.c $(CONFIG_H) $(RTL_H) flags.h
\
global-alloc.o
:
global-alloc.c $(CONFIG_H) $(RTL_H) flags.h
\
...
...
gcc/cse.c
View file @
e4600702
...
@@ -5836,6 +5836,37 @@ cse_insn (insn, in_libcall_block)
...
@@ -5836,6 +5836,37 @@ cse_insn (insn, in_libcall_block)
}
}
}
}
/* See if we have a CONST_INT that is already in a register in a
wider mode. */
if
(
src_const
&&
src_related
==
0
&&
GET_CODE
(
src_const
)
==
CONST_INT
&&
GET_MODE_CLASS
(
mode
)
==
MODE_INT
&&
GET_MODE_BITSIZE
(
mode
)
<
BITS_PER_WORD
)
{
enum
machine_mode
wider_mode
;
for
(
wider_mode
=
GET_MODE_WIDER_MODE
(
mode
);
GET_MODE_BITSIZE
(
wider_mode
)
<=
BITS_PER_WORD
&&
src_related
==
0
;
wider_mode
=
GET_MODE_WIDER_MODE
(
wider_mode
))
{
struct
table_elt
*
const_elt
=
lookup
(
src_const
,
HASH
(
src_const
,
wider_mode
),
wider_mode
);
if
(
const_elt
==
0
)
continue
;
for
(
const_elt
=
const_elt
->
first_same_value
;
const_elt
;
const_elt
=
const_elt
->
next_same_value
)
if
(
GET_CODE
(
const_elt
->
exp
)
==
REG
)
{
src_related
=
gen_lowpart_if_possible
(
mode
,
const_elt
->
exp
);
break
;
}
}
}
/* Another possibility is that we have an AND with a constant in
/* Another possibility is that we have an AND with a constant in
a mode narrower than a word. If so, it might have been generated
a mode narrower than a word. If so, it might have been generated
as part of an "if" which would narrow the AND. If we already
as part of an "if" which would narrow the AND. If we already
...
...
gcc/flow.c
View file @
e4600702
...
@@ -2554,7 +2554,7 @@ dump_flow_info (file)
...
@@ -2554,7 +2554,7 @@ dump_flow_info (file)
for
(
i
=
FIRST_PSEUDO_REGISTER
;
i
<
max_regno
;
i
++
)
for
(
i
=
FIRST_PSEUDO_REGISTER
;
i
<
max_regno
;
i
++
)
if
(
reg_n_refs
[
i
])
if
(
reg_n_refs
[
i
])
{
{
enum
reg_class
class
;
enum
reg_class
class
,
altclass
;
fprintf
(
file
,
"
\n
Register %d used %d times across %d insns"
,
fprintf
(
file
,
"
\n
Register %d used %d times across %d insns"
,
i
,
reg_n_refs
[
i
],
reg_live_length
[
i
]);
i
,
reg_n_refs
[
i
],
reg_live_length
[
i
]);
if
(
reg_basic_block
[
i
]
>=
0
)
if
(
reg_basic_block
[
i
]
>=
0
)
...
@@ -2568,12 +2568,17 @@ dump_flow_info (file)
...
@@ -2568,12 +2568,17 @@ dump_flow_info (file)
if
(
PSEUDO_REGNO_BYTES
(
i
)
!=
UNITS_PER_WORD
)
if
(
PSEUDO_REGNO_BYTES
(
i
)
!=
UNITS_PER_WORD
)
fprintf
(
file
,
"; %d bytes"
,
PSEUDO_REGNO_BYTES
(
i
));
fprintf
(
file
,
"; %d bytes"
,
PSEUDO_REGNO_BYTES
(
i
));
class
=
reg_preferred_class
(
i
);
class
=
reg_preferred_class
(
i
);
if
(
class
!=
GENERAL_REGS
)
altclass
=
reg_alternate_class
(
i
);
if
(
class
!=
GENERAL_REGS
||
altclass
!=
ALL_REGS
)
{
{
if
(
reg_preferred_or_nothing
(
i
))
if
(
altclass
==
ALL_REGS
||
class
==
ALL_REGS
)
fprintf
(
file
,
"; pref %s"
,
reg_class_names
[(
int
)
class
]);
else
if
(
altclass
==
NO_REGS
)
fprintf
(
file
,
"; %s or none"
,
reg_class_names
[(
int
)
class
]);
fprintf
(
file
,
"; %s or none"
,
reg_class_names
[(
int
)
class
]);
else
else
fprintf
(
file
,
"; pref %s"
,
reg_class_names
[(
int
)
class
]);
fprintf
(
file
,
"; pref %s, else %s"
,
reg_class_names
[(
int
)
class
],
reg_class_names
[(
int
)
altclass
]);
}
}
if
(
REGNO_POINTER_FLAG
(
i
))
if
(
REGNO_POINTER_FLAG
(
i
))
fprintf
(
file
,
"; pointer"
);
fprintf
(
file
,
"; pointer"
);
...
...
gcc/local-alloc.c
View file @
e4600702
...
@@ -145,9 +145,10 @@ static enum machine_mode *qty_mode;
...
@@ -145,9 +145,10 @@ static enum machine_mode *qty_mode;
static
int
*
qty_n_calls_crossed
;
static
int
*
qty_n_calls_crossed
;
/* Nonzero means don't allocate qty Q if we can't get its preferred class. */
/* Register class within which we allocate qty Q if we can't get
its preferred class. */
static
char
*
qty_preferred_or_nothing
;
static
enum
reg_class
*
qty_alternate_class
;
/* Element Q is the SCRATCH expression for which this quantity is being
/* Element Q is the SCRATCH expression for which this quantity is being
allocated or 0 if this quantity is allocating registers. */
allocated or 0 if this quantity is allocating registers. */
...
@@ -258,7 +259,7 @@ alloc_qty (regno, mode, size, birth)
...
@@ -258,7 +259,7 @@ alloc_qty (regno, mode, size, birth)
qty_birth
[
qty
]
=
birth
;
qty_birth
[
qty
]
=
birth
;
qty_n_calls_crossed
[
qty
]
=
reg_n_calls_crossed
[
regno
];
qty_n_calls_crossed
[
qty
]
=
reg_n_calls_crossed
[
regno
];
qty_min_class
[
qty
]
=
reg_preferred_class
(
regno
);
qty_min_class
[
qty
]
=
reg_preferred_class
(
regno
);
qty_
preferred_or_nothing
[
qty
]
=
reg_preferred_or_nothing
(
regno
);
qty_
alternate_class
[
qty
]
=
reg_alternate_class
(
regno
);
qty_n_refs
[
qty
]
=
reg_n_refs
[
regno
];
qty_n_refs
[
qty
]
=
reg_n_refs
[
regno
];
}
}
...
@@ -344,7 +345,7 @@ alloc_qty_for_scratch (scratch, n, insn, insn_code_num, insn_number)
...
@@ -344,7 +345,7 @@ alloc_qty_for_scratch (scratch, n, insn, insn_code_num, insn_number)
qty_death
[
qty
]
=
2
*
insn_number
+
1
;
qty_death
[
qty
]
=
2
*
insn_number
+
1
;
qty_n_calls_crossed
[
qty
]
=
0
;
qty_n_calls_crossed
[
qty
]
=
0
;
qty_min_class
[
qty
]
=
class
;
qty_min_class
[
qty
]
=
class
;
qty_
preferred_or_nothing
[
qty
]
=
1
;
qty_
alternate_class
[
qty
]
=
NO_REGS
;
qty_n_refs
[
qty
]
=
1
;
qty_n_refs
[
qty
]
=
1
;
}
}
...
@@ -389,7 +390,7 @@ local_alloc ()
...
@@ -389,7 +390,7 @@ local_alloc ()
qty_mode
=
(
enum
machine_mode
*
)
alloca
(
max_qty
*
sizeof
(
enum
machine_mode
));
qty_mode
=
(
enum
machine_mode
*
)
alloca
(
max_qty
*
sizeof
(
enum
machine_mode
));
qty_n_calls_crossed
=
(
int
*
)
alloca
(
max_qty
*
sizeof
(
int
));
qty_n_calls_crossed
=
(
int
*
)
alloca
(
max_qty
*
sizeof
(
int
));
qty_min_class
=
(
enum
reg_class
*
)
alloca
(
max_qty
*
sizeof
(
enum
reg_class
));
qty_min_class
=
(
enum
reg_class
*
)
alloca
(
max_qty
*
sizeof
(
enum
reg_class
));
qty_
preferred_or_nothing
=
(
char
*
)
alloca
(
max_qty
);
qty_
alternate_class
=
(
enum
reg_class
*
)
alloca
(
max_qty
*
sizeof
(
enum
reg_class
)
);
qty_n_refs
=
(
short
*
)
alloca
(
max_qty
*
sizeof
(
short
));
qty_n_refs
=
(
short
*
)
alloca
(
max_qty
*
sizeof
(
short
));
reg_qty
=
(
int
*
)
alloca
(
max_regno
*
sizeof
(
int
));
reg_qty
=
(
int
*
)
alloca
(
max_regno
*
sizeof
(
int
));
...
@@ -413,7 +414,7 @@ local_alloc ()
...
@@ -413,7 +414,7 @@ local_alloc ()
for
(
i
=
FIRST_PSEUDO_REGISTER
;
i
<
max_regno
;
i
++
)
for
(
i
=
FIRST_PSEUDO_REGISTER
;
i
<
max_regno
;
i
++
)
{
{
if
(
reg_basic_block
[
i
]
>=
0
&&
reg_n_deaths
[
i
]
==
1
if
(
reg_basic_block
[
i
]
>=
0
&&
reg_n_deaths
[
i
]
==
1
&&
(
reg_
preferred_or_nothing
(
i
)
&&
(
reg_
alternate_class
(
i
)
==
NO_REGS
||
reg_class_size
[(
int
)
reg_preferred_class
(
i
)]
>
1
))
||
reg_class_size
[(
int
)
reg_preferred_class
(
i
)]
>
1
))
reg_qty
[
i
]
=
-
2
;
reg_qty
[
i
]
=
-
2
;
else
else
...
@@ -1336,8 +1337,8 @@ block_alloc (b)
...
@@ -1336,8 +1337,8 @@ block_alloc (b)
continue
;
continue
;
}
}
if
(
!
qty_preferred_or_nothing
[
q
]
)
if
(
qty_alternate_class
[
q
]
!=
NO_REGS
)
qty_phys_reg
[
q
]
=
find_free_reg
(
ALL_REGS
,
qty_phys_reg
[
q
]
=
find_free_reg
(
qty_alternate_class
[
q
],
qty_mode
[
q
],
q
,
0
,
0
,
qty_mode
[
q
],
q
,
0
,
0
,
qty_birth
[
q
],
qty_death
[
q
]);
qty_birth
[
q
],
qty_death
[
q
]);
}
}
...
@@ -1596,8 +1597,6 @@ combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
...
@@ -1596,8 +1597,6 @@ combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
/* Update info about quantity SQTY. */
/* Update info about quantity SQTY. */
qty_n_calls_crossed
[
sqty
]
+=
reg_n_calls_crossed
[
sreg
];
qty_n_calls_crossed
[
sqty
]
+=
reg_n_calls_crossed
[
sreg
];
qty_n_refs
[
sqty
]
+=
reg_n_refs
[
sreg
];
qty_n_refs
[
sqty
]
+=
reg_n_refs
[
sreg
];
if
(
!
reg_preferred_or_nothing
(
sreg
))
qty_preferred_or_nothing
[
sqty
]
=
0
;
if
(
usize
<
ssize
)
if
(
usize
<
ssize
)
{
{
register
int
i
;
register
int
i
;
...
@@ -1662,6 +1661,10 @@ update_qty_class (qty, reg)
...
@@ -1662,6 +1661,10 @@ update_qty_class (qty, reg)
enum
reg_class
rclass
=
reg_preferred_class
(
reg
);
enum
reg_class
rclass
=
reg_preferred_class
(
reg
);
if
(
reg_class_subset_p
(
rclass
,
qty_min_class
[
qty
]))
if
(
reg_class_subset_p
(
rclass
,
qty_min_class
[
qty
]))
qty_min_class
[
qty
]
=
rclass
;
qty_min_class
[
qty
]
=
rclass
;
rclass
=
reg_alternate_class
(
reg
);
if
(
reg_class_subset_p
(
rclass
,
qty_alternate_class
[
qty
]))
qty_alternate_class
[
qty
]
=
rclass
;
}
}
/* Handle something which alters the value of an rtx REG.
/* Handle something which alters the value of an rtx REG.
...
...
gcc/regclass.c
View file @
e4600702
/* Compute register class preferences for pseudo-registers.
/* Compute register class preferences for pseudo-registers.
Copyright (C) 1987, 1988, 1991 Free Software Foundation, Inc.
Copyright (C) 1987, 1988, 1991
, 1992
Free Software Foundation, Inc.
This file is part of GNU CC.
This file is part of GNU CC.
...
@@ -30,13 +30,15 @@ the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
...
@@ -30,13 +30,15 @@ the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "regs.h"
#include "regs.h"
#include "insn-config.h"
#include "insn-config.h"
#include "recog.h"
#include "recog.h"
#include "reload.h"
#include "real.h"
#ifndef REGISTER_MOVE_COST
#ifndef REGISTER_MOVE_COST
#define REGISTER_MOVE_COST(x, y) 2
#define REGISTER_MOVE_COST(x, y) 2
#endif
#endif
#ifndef MEMORY_MOVE_COST
#ifndef MEMORY_MOVE_COST
#define MEMORY_MOVE_COST(x)
2
#define MEMORY_MOVE_COST(x)
4
#endif
#endif
/* Register tables used by many passes. */
/* Register tables used by many passes. */
...
@@ -129,7 +131,6 @@ enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
...
@@ -129,7 +131,6 @@ enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
char
*
reg_names
[]
=
REGISTER_NAMES
;
char
*
reg_names
[]
=
REGISTER_NAMES
;
/* Indexed by n, gives number of times (REG n) is set or clobbered.
/* Indexed by n, gives number of times (REG n) is set or clobbered.
This information remains valid for the rest of the compilation
This information remains valid for the rest of the compilation
of the current function; it is used to control register allocation.
of the current function; it is used to control register allocation.
...
@@ -139,6 +140,16 @@ char *reg_names[] = REGISTER_NAMES;
...
@@ -139,6 +140,16 @@ char *reg_names[] = REGISTER_NAMES;
short
*
reg_n_sets
;
short
*
reg_n_sets
;
/* Maximum cost of moving from a register in one class to a register in
another class. Based on REGISTER_MOVE_COST. */
static
int
move_cost
[
N_REG_CLASSES
][
N_REG_CLASSES
];
/* Similar, but here we don't have to move if the first index is a subset
of the second so in that case the cost is zero. */
static
int
may_move_cost
[
N_REG_CLASSES
][
N_REG_CLASSES
];
/* Function called only once to initialize the above data on reg usage.
/* Function called only once to initialize the above data on reg usage.
Once this is done, various switches may override. */
Once this is done, various switches may override. */
...
@@ -253,6 +264,38 @@ init_reg_sets ()
...
@@ -253,6 +264,38 @@ init_reg_sets ()
*
p
=
(
enum
reg_class
)
i
;
*
p
=
(
enum
reg_class
)
i
;
}
}
}
}
/* Initialize the move cost table. Find every subset of each class
and take the maximum cost of moving any subset to any other. */
for
(
i
=
0
;
i
<
N_REG_CLASSES
;
i
++
)
for
(
j
=
0
;
j
<
N_REG_CLASSES
;
j
++
)
{
int
cost
=
i
==
j
?
2
:
REGISTER_MOVE_COST
(
i
,
j
);
enum
reg_class
*
p1
,
*
p2
;
for
(
p2
=
&
reg_class_subclasses
[
j
][
0
];
*
p2
!=
LIM_REG_CLASSES
;
p2
++
)
if
(
*
p2
!=
i
)
cost
=
MAX
(
cost
,
REGISTER_MOVE_COST
(
i
,
*
p2
));
for
(
p1
=
&
reg_class_subclasses
[
i
][
0
];
*
p1
!=
LIM_REG_CLASSES
;
p1
++
)
{
if
(
*
p1
!=
j
)
cost
=
MAX
(
cost
,
REGISTER_MOVE_COST
(
*
p1
,
j
));
for
(
p2
=
&
reg_class_subclasses
[
j
][
0
];
*
p2
!=
LIM_REG_CLASSES
;
p2
++
)
if
(
*
p1
!=
*
p2
)
cost
=
MAX
(
cost
,
REGISTER_MOVE_COST
(
*
p1
,
*
p2
));
}
move_cost
[
i
][
j
]
=
cost
;
if
(
reg_class_subset_p
(
i
,
j
))
cost
=
0
;
may_move_cost
[
i
][
j
]
=
cost
;
}
}
}
/* After switches have been processed, which perhaps alter
/* After switches have been processed, which perhaps alter
...
@@ -340,18 +383,25 @@ fix_register (name, fixed, call_used)
...
@@ -340,18 +383,25 @@ fix_register (name, fixed, call_used)
/* Now the data and code for the `regclass' pass, which happens
/* Now the data and code for the `regclass' pass, which happens
just before local-alloc. */
just before local-alloc. */
/*
savings[R].savings[CL] is twice the amount saved by putting register R
/*
The `costs' struct records the cost of using a hard register of each class
in class CL. This data is used within `regclass' and freed
and of using memory for each pseudo. We use this data to set up
when it is finished
. */
register class preferences
. */
struct
saving
s
struct
cost
s
{
{
short
savings
[
N_REG_CLASSES
];
int
cost
[
N_REG_CLASSES
];
short
memcost
;
int
mem_cost
;
short
nrefs
;
};
};
static
struct
savings
*
savings
;
/* Record the cost of each class for each pseudo. */
static
struct
costs
*
costs
;
/* Record the same data by operand number, accumulated for each alternative
in an insn. The contribution to a pseudo is that of the minimum-cost
alternative. */
static
struct
costs
op_costs
[
MAX_RECOG_OPERANDS
];
/* (enum reg_class) prefclass[R] is the preferred class for pseudo number R.
/* (enum reg_class) prefclass[R] is the preferred class for pseudo number R.
This is available after `regclass' is run. */
This is available after `regclass' is run. */
...
@@ -385,12 +435,13 @@ reg_preferred_class (regno)
...
@@ -385,12 +435,13 @@ reg_preferred_class (regno)
return
(
enum
reg_class
)
prefclass
[
regno
];
return
(
enum
reg_class
)
prefclass
[
regno
];
}
}
int
enum
reg_class
reg_
preferred_or_nothing
(
regno
)
reg_
alternate_class
(
regno
)
{
{
if
(
prefclass
==
0
)
if
(
prefclass
==
0
)
return
0
;
return
ALL_REGS
;
return
preferred_or_nothing
[
regno
];
return
(
enum
reg_class
)
altclass
[
regno
];
}
}
/* This prevents dump_flow_info from losing if called
/* This prevents dump_flow_info from losing if called
...
@@ -414,394 +465,756 @@ regclass (f, nregs)
...
@@ -414,394 +465,756 @@ regclass (f, nregs)
{
{
#ifdef REGISTER_CONSTRAINTS
#ifdef REGISTER_CONSTRAINTS
register
rtx
insn
;
register
rtx
insn
;
register
int
i
;
register
int
i
,
j
;
struct
costs
init_cost
;
rtx
set
;
int
pass
;
init_recog
();
init_recog
();
/* Zero out our accumulation of the cost of each class for each reg. */
init_cost
.
mem_cost
=
10000
;
for
(
i
=
0
;
i
<
N_REG_CLASSES
;
i
++
)
init_cost
.
cost
[
i
]
=
10000
;
savings
=
(
struct
savings
*
)
alloca
(
nregs
*
sizeof
(
struct
savings
));
/* Normally we scan the insns once and determine the best class to use for
bzero
(
savings
,
nregs
*
sizeof
(
struct
savings
));
each register. However, if -fexpensive_optimizations are on, we do so
twice, the second time using the tentative best classes to guide the
selection. */
loop_depth
=
1
;
for
(
pass
=
0
;
pass
<=
flag_expensive_optimizations
;
pass
++
)
{
/* Zero out our accumulation of the cost of each class for each reg. */
/* Scan the instructions and record each time it would
costs
=
(
struct
costs
*
)
alloca
(
nregs
*
sizeof
(
struct
costs
));
save code to put a certain register in a certain class. */
bzero
(
costs
,
nregs
*
sizeof
(
struct
costs
));
for
(
insn
=
f
;
insn
;
insn
=
NEXT_INSN
(
insn
))
loop_depth
=
0
,
loop_cost
=
1
;
{
if
(
GET_CODE
(
insn
)
==
NOTE
/* Scan the instructions and record each time it would
&&
NOTE_LINE_NUMBER
(
insn
)
==
NOTE_INSN_LOOP_BEG
)
save code to put a certain register in a certain class. */
loop_depth
++
;
else
if
(
GET_CODE
(
insn
)
==
NOTE
for
(
insn
=
f
;
insn
;
insn
=
NEXT_INSN
(
insn
))
&&
NOTE_LINE_NUMBER
(
insn
)
==
NOTE_INSN_LOOP_END
)
loop_depth
--
;
else
if
((
GET_CODE
(
insn
)
==
INSN
&&
GET_CODE
(
PATTERN
(
insn
))
!=
USE
&&
GET_CODE
(
PATTERN
(
insn
))
!=
CLOBBER
&&
GET_CODE
(
PATTERN
(
insn
))
!=
ASM_INPUT
)
||
(
GET_CODE
(
insn
)
==
JUMP_INSN
&&
GET_CODE
(
PATTERN
(
insn
))
!=
ADDR_VEC
&&
GET_CODE
(
PATTERN
(
insn
))
!=
ADDR_DIFF_VEC
)
||
GET_CODE
(
insn
)
==
CALL_INSN
)
{
{
if
(
GET_CODE
(
insn
)
==
INSN
&&
asm_noperands
(
PATTERN
(
insn
))
>=
0
)
char
*
constraints
[
MAX_RECOG_OPERANDS
];
enum
machine_mode
modes
[
MAX_RECOG_OPERANDS
];
int
nalternatives
;
int
noperands
;
/* Show that an insn inside a loop is likely to be executed three
times more than insns outside a loop. This is much more agressive
than the assumptions made elsewhere and is being tried as an
experiment. */
if
(
GET_CODE
(
insn
)
==
NOTE
&&
NOTE_LINE_NUMBER
(
insn
)
==
NOTE_INSN_LOOP_BEG
)
loop_depth
++
,
loop_cost
=
1
<<
(
2
*
MIN
(
loop_depth
,
5
));
else
if
(
GET_CODE
(
insn
)
==
NOTE
&&
NOTE_LINE_NUMBER
(
insn
)
==
NOTE_INSN_LOOP_END
)
loop_depth
--
,
loop_cost
=
1
<<
(
2
*
MIN
(
loop_depth
,
5
));
else
if
((
GET_CODE
(
insn
)
==
INSN
&&
GET_CODE
(
PATTERN
(
insn
))
!=
USE
&&
GET_CODE
(
PATTERN
(
insn
))
!=
CLOBBER
&&
GET_CODE
(
PATTERN
(
insn
))
!=
ASM_INPUT
)
||
(
GET_CODE
(
insn
)
==
JUMP_INSN
&&
GET_CODE
(
PATTERN
(
insn
))
!=
ADDR_VEC
&&
GET_CODE
(
PATTERN
(
insn
))
!=
ADDR_DIFF_VEC
)
||
GET_CODE
(
insn
)
==
CALL_INSN
)
{
{
int
noperands
=
asm_noperands
(
PATTERN
(
insn
));
if
(
GET_CODE
(
insn
)
==
INSN
/* We don't use alloca because alloca would not free
&&
(
noperands
=
asm_noperands
(
PATTERN
(
insn
)))
>=
0
)
any of the space until this function returns. */
{
rtx
*
operands
=
(
rtx
*
)
oballoc
(
noperands
*
sizeof
(
rtx
));
decode_asm_operands
(
PATTERN
(
insn
),
recog_operand
,
0
,
char
**
constraints
constraints
,
modes
);
=
(
char
**
)
oballoc
(
noperands
*
sizeof
(
char
*
));
nalternatives
=
n_occurrences
(
','
,
constraints
[
0
])
+
1
;
}
else
{
int
insn_code_number
=
recog_memoized
(
insn
);
rtx
note
;
decode_asm_operands
(
PATTERN
(
insn
),
operands
,
0
,
constraints
,
0
);
set
=
single_set
(
insn
);
insn_extract
(
insn
);
for
(
i
=
noperands
-
1
;
i
>=
0
;
i
--
)
nalternatives
=
insn_n_alternatives
[
insn_code_number
];
reg_class_record
(
operands
[
i
],
i
,
constraints
)
;
noperands
=
insn_n_operands
[
insn_code_number
]
;
obfree
(
operands
);
/* If this insn loads a parameter from its stack slot, then
}
it represents a savings, rather than a cost, if the
else
parameter is stored in memory. Record this fact. */
{
int
insn_code_number
=
recog_memoized
(
insn
);
rtx
set
=
single_set
(
insn
);
insn_extract
(
insn
);
if
(
set
!=
0
&&
GET_CODE
(
SET_DEST
(
set
))
==
REG
&&
GET_CODE
(
SET_SRC
(
set
))
==
MEM
&&
(
note
=
find_reg_note
(
insn
,
REG_EQUIV
,
0
))
!=
0
&&
GET_CODE
(
XEXP
(
note
,
0
))
==
MEM
)
{
costs
[
REGNO
(
SET_DEST
(
set
))].
mem_cost
-=
(
MEMORY_MOVE_COST
(
GET_MODE
(
SET_DEST
(
set
)))
*
loop_cost
);
record_address_regs
(
XEXP
(
SET_SRC
(
set
),
0
),
BASE_REG_CLASS
,
loop_cost
*
2
);
continue
;
}
/* Improve handling of two-address insns such as
(set X (ashift CONST Y)) where CONST must be made to
match X. Change it into two insns: (set X CONST)
(set X (ashift X Y)). If we left this for reloading, it
would probably get three insns because X and Y might go
in the same place. This prevents X and Y from receiving
the same hard reg.
We can only do this if the modes of operands 0 and 1
(which might not be the same) are tieable and we only need
do this during our first pass. */
if
(
pass
==
0
&&
optimize
&&
noperands
>=
3
&&
insn_operand_constraint
[
insn_code_number
][
1
][
0
]
==
'0'
&&
insn_operand_constraint
[
insn_code_number
][
1
][
1
]
==
0
&&
CONSTANT_P
(
recog_operand
[
1
])
&&
!
rtx_equal_p
(
recog_operand
[
0
],
recog_operand
[
1
])
&&
!
rtx_equal_p
(
recog_operand
[
0
],
recog_operand
[
2
])
&&
GET_CODE
(
recog_operand
[
0
])
==
REG
&&
MODES_TIEABLE_P
(
GET_MODE
(
recog_operand
[
0
]),
insn_operand_mode
[
insn_code_number
][
1
]))
{
rtx
previnsn
=
prev_real_insn
(
insn
);
rtx
dest
=
gen_lowpart
(
insn_operand_mode
[
insn_code_number
][
1
],
recog_operand
[
0
]);
rtx
newinsn
=
emit_insn_before
(
gen_move_insn
(
dest
,
recog_operand
[
1
]),
insn
);
/* If this insn was the start of a basic block,
include the new insn in that block. */
if
(
previnsn
==
0
||
GET_CODE
(
previnsn
)
==
JUMP_INSN
)
{
int
b
;
for
(
b
=
0
;
b
<
n_basic_blocks
;
b
++
)
if
(
insn
==
basic_block_head
[
b
])
basic_block_head
[
b
]
=
newinsn
;
}
/* This makes one more setting of new insns's dest. */
reg_n_sets
[
REGNO
(
recog_operand
[
0
])]
++
;
insn
=
PREV_INSN
(
newinsn
);
continue
;
}
for
(
i
=
insn_n_operands
[
insn_code_number
]
-
1
;
i
>=
0
;
i
--
)
/* If this is setting a pseudo from another pseudo or the
reg_class_record
(
recog_operand
[
i
],
i
,
sum of a pseudo and a constant integer and the other
insn_operand_constraint
[
insn_code_number
]);
pseudo is known to be a pointer, set the destination to
be a pointer as well.
Likewise if it is setting the destination from an address
or from a value equivalent to an address or to the sum of
an address and something else.
But don't do any of this if the pseudo corresponds to
a user variable since it should have already been set
as a pointer based on the type.
There is no point in doing this during our second
pass since not enough should have changed. */
if
(
pass
==
0
&&
set
!=
0
&&
GET_CODE
(
SET_DEST
(
set
))
==
REG
&&
REGNO
(
SET_DEST
(
set
))
>=
FIRST_PSEUDO_REGISTER
&&
!
REG_USERVAR_P
(
SET_DEST
(
set
))
&&
!
REGNO_POINTER_FLAG
(
REGNO
(
SET_DEST
(
set
)))
&&
((
GET_CODE
(
SET_SRC
(
set
))
==
REG
&&
REGNO_POINTER_FLAG
(
REGNO
(
SET_SRC
(
set
))))
||
((
GET_CODE
(
SET_SRC
(
set
))
==
PLUS
||
GET_CODE
(
SET_SRC
(
set
))
==
LO_SUM
)
&&
(
GET_CODE
(
XEXP
(
SET_SRC
(
set
),
1
))
==
CONST_INT
)
&&
GET_CODE
(
XEXP
(
SET_SRC
(
set
),
0
))
==
REG
&&
REGNO_POINTER_FLAG
(
REGNO
(
XEXP
(
SET_SRC
(
set
),
0
))))
||
GET_CODE
(
SET_SRC
(
set
))
==
CONST
||
GET_CODE
(
SET_SRC
(
set
))
==
SYMBOL_REF
||
GET_CODE
(
SET_SRC
(
set
))
==
LABEL_REF
||
(
GET_CODE
(
SET_SRC
(
set
))
==
HIGH
&&
(
GET_CODE
(
XEXP
(
SET_SRC
(
set
),
0
))
==
CONST
||
(
GET_CODE
(
XEXP
(
SET_SRC
(
set
),
0
))
==
SYMBOL_REF
)
||
(
GET_CODE
(
XEXP
(
SET_SRC
(
set
),
0
))
==
LABEL_REF
)))
||
((
GET_CODE
(
SET_SRC
(
set
))
==
PLUS
||
GET_CODE
(
SET_SRC
(
set
))
==
LO_SUM
)
&&
(
GET_CODE
(
XEXP
(
SET_SRC
(
set
),
1
))
==
CONST
||
(
GET_CODE
(
XEXP
(
SET_SRC
(
set
),
1
))
==
SYMBOL_REF
)
||
(
GET_CODE
(
XEXP
(
SET_SRC
(
set
),
1
))
==
LABEL_REF
)))
||
((
note
=
find_reg_note
(
insn
,
REG_EQUAL
,
0
))
!=
0
&&
(
GET_CODE
(
XEXP
(
note
,
0
))
==
CONST
||
GET_CODE
(
XEXP
(
note
,
0
))
==
SYMBOL_REF
||
GET_CODE
(
XEXP
(
note
,
0
))
==
LABEL_REF
))))
REGNO_POINTER_FLAG
(
REGNO
(
SET_DEST
(
set
)))
=
1
;
for
(
i
=
0
;
i
<
noperands
;
i
++
)
{
constraints
[
i
]
=
insn_operand_constraint
[
insn_code_number
][
i
];
modes
[
i
]
=
insn_operand_mode
[
insn_code_number
][
i
];
}
}
/* If this insn loads a parameter from its stack slot,
/* If we get here, we are set up to record the costs of all the
then it represents a savings, rather than a cost,
operands for this insn. Start by initializing the costs.
if the parameter is stored in memory. Record this fact. */
Then handle any address registers. Finally record the desired
if
(
set
!=
0
&&
GET_CODE
(
SET_DEST
(
set
))
==
REG
classes for any pseudos, doing it twice if some pair of
&&
GET_CODE
(
SET_SRC
(
set
))
==
MEM
)
operands are commutative. */
for
(
i
=
0
;
i
<
noperands
;
i
++
)
{
{
rtx
note
=
find_reg_note
(
insn
,
REG_EQUIV
,
0
);
op_costs
[
i
]
=
init_cost
;
if
(
note
!=
0
&&
GET_CODE
(
XEXP
(
note
,
0
))
==
MEM
)
savings
[
REGNO
(
SET_DEST
(
set
))].
memcost
if
(
GET_CODE
(
recog_operand
[
i
])
==
SUBREG
)
-=
(
MEMORY_MOVE_COST
(
GET_MODE
(
SET_DEST
(
set
)))
recog_operand
[
i
]
=
SUBREG_REG
(
recog_operand
[
i
]);
*
loop_depth
);
if
(
GET_CODE
(
recog_operand
[
i
])
==
MEM
)
record_address_regs
(
XEXP
(
recog_operand
[
i
],
0
),
BASE_REG_CLASS
,
loop_cost
*
2
);
else
if
(
constraints
[
i
][
0
]
==
'p'
)
record_address_regs
(
recog_operand
[
i
],
BASE_REG_CLASS
,
loop_cost
*
2
);
}
}
/* Check for commutative in a separate loop so everything will
have been initialized. Don't bother doing anything if the
second operand is a constant since that is the case
for which the constraints should have been written. */
/* Improve handling of two-address insns such as
for
(
i
=
0
;
i
<
noperands
;
i
++
)
(set X (ashift CONST Y)) where CONST must be made to match X.
if
(
constraints
[
i
][
0
]
==
'%'
Change it into two insns: (set X CONST) (set X (ashift X Y)).
&&
!
CONSTANT_P
(
recog_operand
[
i
+
1
]))
If we left this for reloading, it would probably get three
{
insns because X and Y might go in the same place.
char
*
xconstraints
[
MAX_RECOG_OPERANDS
];
This prevents X and Y from receiving the same hard reg.
int
j
;
We can only do this if the modes of operands 0 and 1 (which
/* Handle commutative operands by swapping the constraints.
might not be the same) are tieable. */
We assume the modes are the same. */
if
(
optimize
for
(
j
=
0
;
j
<
noperands
;
j
++
)
&&
insn_n_operands
[
insn_code_number
]
>=
3
xconstraints
[
j
]
=
constraints
[
j
];
&&
insn_operand_constraint
[
insn_code_number
][
1
][
0
]
==
'0'
&&
insn_operand_constraint
[
insn_code_number
][
1
][
1
]
==
0
xconstraints
[
i
]
=
constraints
[
i
+
1
];
&&
CONSTANT_P
(
recog_operand
[
1
])
xconstraints
[
i
+
1
]
=
constraints
[
i
];
&&
!
rtx_equal_p
(
recog_operand
[
0
],
recog_operand
[
1
])
record_reg_classes
(
nalternatives
,
noperands
,
&&
!
rtx_equal_p
(
recog_operand
[
0
],
recog_operand
[
2
])
recog_operand
,
modes
,
xconstraints
,
&&
GET_CODE
(
recog_operand
[
0
])
==
REG
&&
MODES_TIEABLE_P
(
GET_MODE
(
recog_operand
[
0
]),
insn_operand_mode
[
insn_code_number
][
1
]))
{
rtx
previnsn
=
prev_real_insn
(
insn
);
rtx
dest
=
gen_lowpart
(
insn_operand_mode
[
insn_code_number
][
1
],
recog_operand
[
0
]);
rtx
newinsn
=
emit_insn_before
(
gen_move_insn
(
dest
,
recog_operand
[
1
]),
insn
);
insn
);
}
/* If this insn was the start of a basic block,
record_reg_classes
(
nalternatives
,
noperands
,
recog_operand
,
include the new insn in that block. */
modes
,
constraints
,
insn
);
if
(
previnsn
==
0
||
GET_CODE
(
previnsn
)
==
JUMP_INSN
)
{
int
b
;
for
(
b
=
0
;
b
<
n_basic_blocks
;
b
++
)
if
(
insn
==
basic_block_head
[
b
])
basic_block_head
[
b
]
=
newinsn
;
}
/* This makes one more setting of new insns's destination. */
/* Now add the cost for each operand to the total costs for
reg_n_sets
[
REGNO
(
recog_operand
[
0
])]
++
;
its register. */
*
recog_operand_loc
[
1
]
=
recog_operand
[
0
];
for
(
i
=
0
;
i
<
noperands
;
i
++
)
for
(
i
=
insn_n_dups
[
insn_code_number
]
-
1
;
i
>=
0
;
i
--
)
if
(
GET_CODE
(
recog_operand
[
i
])
==
REG
if
(
recog_dup_num
[
i
]
==
1
)
&&
REGNO
(
recog_operand
[
i
])
>=
FIRST_PSEUDO_REGISTER
)
*
recog_dup_loc
[
i
]
=
recog_operand
[
0
];
{
}
int
regno
=
REGNO
(
recog_operand
[
i
]);
struct
costs
*
p
=
&
costs
[
regno
],
*
q
=
&
op_costs
[
i
];
p
->
mem_cost
+=
q
->
mem_cost
*
loop_cost
;
for
(
j
=
0
;
j
<
N_REG_CLASSES
;
j
++
)
p
->
cost
[
j
]
+=
q
->
cost
[
j
]
*
loop_cost
;
}
}
}
}
}
}
/* Now for each register look at how desirable each class is
/* Now for each register look at how desirable each class is
and find which class is preferred. Store that in `prefclass[REGNO]'. */
and find which class is preferred. Store that in
`prefclass[REGNO]'. Record in `altclass[REGNO]' the largest register
prefclass
=
(
char
*
)
oballoc
(
nregs
);
class any of whose registers is better than memory. */
preferred_or_nothing
=
(
char
*
)
oballoc
(
nregs
);
if
(
pass
==
0
)
{
for
(
i
=
FIRST_PSEUDO_REGISTER
;
i
<
nregs
;
i
++
)
prefclass
=
(
char
*
)
oballoc
(
nregs
);
{
altclass
=
(
char
*
)
oballoc
(
nregs
);
register
int
best_savings
=
0
;
}
enum
reg_class
best
=
ALL_REGS
;
/* This is an enum reg_class, but we call it an int
to save lots of casts. */
register
int
class
;
register
struct
savings
*
p
=
&
savings
[
i
];
for
(
class
=
(
int
)
ALL_REGS
-
1
;
class
>
0
;
class
--
)
for
(
i
=
FIRST_PSEUDO_REGISTER
;
i
<
nregs
;
i
++
)
{
{
if
(
p
->
savings
[
class
]
>
best_savings
)
register
int
best_cost
=
(
1
<<
(
HOST_BITS_PER_INT
-
1
))
-
1
;
enum
reg_class
best
=
ALL_REGS
,
alt
=
NO_REGS
;
/* This is an enum reg_class, but we call it an int
to save lots of casts. */
register
int
class
;
register
struct
costs
*
p
=
&
costs
[
i
];
for
(
class
=
(
int
)
ALL_REGS
-
1
;
class
>
0
;
class
--
)
{
{
best_savings
=
p
->
savings
[
class
];
/* Ignore classes that are too small for this operand. */
best
=
(
enum
reg_class
)
class
;
if
(
CLASS_MAX_NREGS
(
class
,
PSEUDO_REGNO_MODE
(
i
))
}
>
reg_class_size
[
class
])
else
if
(
p
->
savings
[
class
]
==
best_savings
)
;
{
else
if
(
p
->
cost
[
class
]
<
best_cost
)
best
=
reg_class_subunion
[(
int
)
best
][
class
];
{
best_cost
=
p
->
cost
[
class
];
best
=
(
enum
reg_class
)
class
;
}
else
if
(
p
->
cost
[
class
]
==
best_cost
)
best
=
reg_class_subunion
[(
int
)
best
][
class
];
}
}
}
#if 0
/* Note that best_savings is twice number of places something
is saved. */
if ((best_savings - p->savings[(int) GENERAL_REGS]) * 5 < reg_n_refs[i])
prefclass[i] = (int) GENERAL_REGS;
else
prefclass[i] = (int) best;
#else
/* We cast to (int) because (char) hits bugs in some compilers. */
prefclass
[
i
]
=
(
int
)
best
;
#endif
/* reg_n_refs + p->memcost measures the cost of putting in memory.
/* Record the alternate register class; i.e., a class for which
If a GENERAL_REG is no better, don't even try for one.
every register in it is better than using memory. If adding a
Since savings and memcost are 2 * number of refs,
class would make a smaller class (i.e., no union of just those
this effectively counts each memory operand not needing reloading
classes exists), skip that class. The major unions of classes
as costing 1/2 of a reload insn. */
should be provided as a register class. Don't do this if we
if
(
reg_n_refs
!=
0
)
will be doing it again later. */
preferred_or_nothing
[
i
]
=
((
best_savings
-
p
->
savings
[(
int
)
GENERAL_REGS
])
if
(
pass
==
1
||
!
flag_expensive_optimizations
)
>=
p
->
nrefs
+
p
->
memcost
);
for
(
class
=
0
;
class
<
N_REG_CLASSES
;
class
++
)
if
(
p
->
cost
[
class
]
<
p
->
mem_cost
&&
(
reg_class_size
[
reg_class_subunion
[(
int
)
alt
][
class
]]
>
reg_class_size
[(
int
)
alt
]))
alt
=
reg_class_subunion
[(
int
)
alt
][
class
];
/* If we don't add any classes, nothing to try. */
if
(
alt
==
best
)
alt
=
(
int
)
NO_REGS
;
/* We cast to (int) because (char) hits bugs in some compilers. */
prefclass
[
i
]
=
(
int
)
best
;
altclass
[
i
]
=
(
int
)
alt
;
}
}
}
#endif
/* REGISTER_CONSTRAINTS */
#endif
/* REGISTER_CONSTRAINTS */
}
}
#ifdef REGISTER_CONSTRAINTS
#ifdef REGISTER_CONSTRAINTS
/* Scan an operand OP for register class preferences.
/* Record the cost of using memory or registers of various classes for
OPNO is the operand number, and CONSTRAINTS is the constraint
the operands in INSN.
vector for the insn.
Record the preferred register classes from the constraint for OP
N_ALTS is the number of alternatives.
if OP is a register. If OP is a memory reference, record suitable
preferences for registers used in the address. */
void
N_OPS is the number of operands.
reg_class_record
(
op
,
opno
,
constraints
)
rtx
op
;
OPS is an array of the operands.
int
opno
;
MODES are the modes of the operands, in case any are VOIDmode.
CONSTRAINTS are the constraints to use for the operands. This array
is modified by this procedure.
This procedure works alternative by alternative. For each alternative
we assume that we will be able to allocate all pseudos to their ideal
register class and calculate the cost of using that alternative. Then
we compute for each operand that is a pseudo-register, the cost of
having the pseudo allocated to each register class and using it in that
alternative. To this cost is added the cost of the alternative.
The cost of each class for this insn is its lowest cost among all the
alternatives. */
static
void
record_reg_classes
(
n_alts
,
n_ops
,
ops
,
modes
,
constraints
,
insn
)
int
n_alts
;
int
n_ops
;
rtx
*
ops
;
enum
machine_mode
*
modes
;
char
**
constraints
;
char
**
constraints
;
rtx
insn
;
{
{
char
*
constraint
=
constraints
[
opno
];
int
alt
;
register
char
*
p
;
enum
op_type
{
OP_READ
,
OP_WRITE
,
OP_READ_WRITE
}
op_types
[
MAX_RECOG_OPERANDS
];
register
enum
reg_class
class
=
NO_REGS
;
int
i
,
j
;
char
*
next
=
0
;
int
memok
=
0
;
/* By default, each operand is an input operand. */
int
double_cost
=
0
;
if
(
op
==
0
)
for
(
i
=
0
;
i
<
n_ops
;
i
++
)
return
;
op_types
[
i
]
=
OP_READ
;
while
(
1
)
/* Process each alternative, each time minimizing an operand's cost with
the cost for each operand in that alternative. */
for
(
alt
=
0
;
alt
<
n_alts
;
alt
++
)
{
{
if
(
GET_CODE
(
op
)
==
SUBREG
)
struct
costs
this_op_costs
[
MAX_RECOG_OPERANDS
];
op
=
SUBREG_REG
(
op
);
int
alt_fail
=
0
;
else
break
;
int
alt_cost
=
0
;
}
enum
reg_class
classes
[
MAX_RECOG_OPERANDS
];
int
class
;
/* Memory reference: scan the address. */
for
(
i
=
0
;
i
<
n_ops
;
i
++
)
{
char
*
p
=
constraints
[
i
];
rtx
op
=
ops
[
i
];
enum
machine_mode
mode
=
modes
[
i
];
int
allows_mem
=
0
;
int
win
=
0
;
char
c
;
if
(
GET_CODE
(
op
)
==
MEM
)
/* If this operand has no constraints at all, we can conclude
record_address_regs
(
XEXP
(
op
,
0
),
2
,
0
);
nothing about it since anything is valid. */
if
(
GET_CODE
(
op
)
!=
REG
)
if
(
*
p
==
0
)
{
{
/* If the constraint says the operand is supposed to BE an address,
if
(
GET_CODE
(
op
)
==
REG
&&
REGNO
(
op
)
>=
FIRST_PSEUDO_REGISTER
)
scan it as one. */
bzero
((
char
*
)
&
this_op_costs
[
i
],
sizeof
this_op_costs
[
i
]);
if
(
constraint
!=
0
&&
constraint
[
0
]
==
'p'
)
continue
;
record_address_regs
(
op
,
2
,
0
);
}
return
;
}
/* Operand is a register: examine the constraint for specified classes. */
/* If this alternative is only relevant when this operand
matches a previous operand, we do different things depending
on whether this operand is a pseudo-reg or not. */
for
(
p
=
constraint
;
*
p
||
next
;
p
++
)
if
(
p
[
0
]
>=
'0'
&&
p
[
0
]
<=
'0'
+
i
&&
(
p
[
1
]
==
','
||
p
[
1
]
==
0
))
{
{
enum
reg_class
new_class
=
NO_REGS
;
j
=
p
[
0
]
-
'0'
;
classes
[
i
]
=
classes
[
j
];
if
(
GET_CODE
(
op
)
!=
REG
||
REGNO
(
op
)
<
FIRST_PSEUDO_REGISTER
)
{
/* If this matches the other operand, we have no added
cost. */
if
(
rtx_equal_p
(
ops
[
j
],
op
))
;
/* If we can't put the other operand into a register, this
alternative can't be used. */
else
if
(
classes
[
j
]
==
NO_REGS
)
alt_fail
=
1
;
/* Otherwise, add to the cost of this alternative the cost
to copy this operand to the register used for the other
operand. */
else
alt_cost
+=
copy_cost
(
op
,
mode
,
classes
[
j
],
1
);
}
else
{
/* The costs of this operand are the same as that of the
other operand. However, if we cannot tie them, this
alternative needs to do a copy, which is one
instruction. */
this_op_costs
[
i
]
=
this_op_costs
[
j
];
if
(
!
find_reg_note
(
insn
,
REG_DEAD
,
op
))
alt_cost
+=
2
;
}
continue
;
}
/* Scan all the constraint letters. See if the operand matches
any of the constraints. Collect the valid register classes
and see if this operand accepts memory. */
classes
[
i
]
=
NO_REGS
;
while
(
*
p
&&
(
c
=
*
p
++
)
!=
','
)
switch
(
c
)
{
case
'='
:
op_types
[
i
]
=
OP_WRITE
;
break
;
case
'+'
:
op_types
[
i
]
=
OP_READ_WRITE
;
break
;
case
'*'
:
/* Ignore the next letter for this pass. */
p
++
;
break
;
case
'%'
:
case
'?'
:
case
'!'
:
case
'#'
:
case
'&'
:
case
'0'
:
case
'1'
:
case
'2'
:
case
'3'
:
case
'4'
:
case
'p'
:
break
;
case
'm'
:
case
'o'
:
case
'V'
:
/* It doesn't seem worth distingishing between offsettable
and non-offsettable addresses here. */
allows_mem
=
1
;
if
(
GET_CODE
(
op
)
==
MEM
)
win
=
1
;
break
;
case
'<'
:
if
(
GET_CODE
(
op
)
==
MEM
&&
(
GET_CODE
(
XEXP
(
op
,
0
))
==
PRE_DEC
||
GET_CODE
(
XEXP
(
op
,
0
))
==
POST_DEC
))
win
=
1
;
break
;
case
'>'
:
if
(
GET_CODE
(
op
)
==
MEM
&&
(
GET_CODE
(
XEXP
(
op
,
0
))
==
PRE_INC
||
GET_CODE
(
XEXP
(
op
,
0
))
==
POST_INC
))
win
=
1
;
break
;
case
'E'
:
/* Match any floating double constant, but only if
we can examine the bits of it reliably. */
if
((
HOST_FLOAT_FORMAT
!=
TARGET_FLOAT_FORMAT
||
HOST_BITS_PER_INT
!=
BITS_PER_WORD
)
&&
GET_MODE
(
op
)
!=
VOIDmode
&&
!
flag_pretend_float
)
break
;
if
(
GET_CODE
(
op
)
==
CONST_DOUBLE
)
win
=
1
;
break
;
case
'F'
:
if
(
GET_CODE
(
op
)
==
CONST_DOUBLE
)
win
=
1
;
break
;
case
'G'
:
case
'H'
:
if
(
GET_CODE
(
op
)
==
CONST_DOUBLE
&&
CONST_DOUBLE_OK_FOR_LETTER_P
(
op
,
c
))
win
=
1
;
break
;
case
's'
:
if
(
GET_CODE
(
op
)
==
CONST_INT
||
(
GET_CODE
(
op
)
==
CONST_DOUBLE
&&
GET_MODE
(
op
)
==
VOIDmode
))
break
;
case
'i'
:
if
(
CONSTANT_P
(
op
)
#ifdef LEGITIMATE_PIC_OPERAND_P
&&
(
!
flag_pic
||
LEGITIMATE_PIC_OPERAND_P
(
op
))
#endif
)
win
=
1
;
break
;
case
'n'
:
if
(
GET_CODE
(
op
)
==
CONST_INT
||
(
GET_CODE
(
op
)
==
CONST_DOUBLE
&&
GET_MODE
(
op
)
==
VOIDmode
))
win
=
1
;
break
;
case
'I'
:
case
'J'
:
case
'K'
:
case
'L'
:
case
'M'
:
case
'N'
:
case
'O'
:
case
'P'
:
if
(
GET_CODE
(
op
)
==
CONST_INT
&&
CONST_OK_FOR_LETTER_P
(
INTVAL
(
op
),
c
))
win
=
1
;
break
;
case
'X'
:
win
=
1
;
break
;
if
(
*
p
==
0
)
{
p
=
next
;
next
=
0
;
}
switch
(
*
p
)
{
case
'='
:
case
'?'
:
case
'#'
:
case
'&'
:
case
'!'
:
case
'%'
:
case
'E'
:
case
'F'
:
case
'G'
:
case
'H'
:
case
'i'
:
case
'n'
:
case
's'
:
case
'p'
:
case
','
:
case
'I'
:
case
'J'
:
case
'K'
:
case
'L'
:
case
'M'
:
case
'N'
:
case
'O'
:
case
'P'
:
#ifdef EXTRA_CONSTRAINT
#ifdef EXTRA_CONSTRAINT
case
'Q'
:
case
'Q'
:
case
'R'
:
case
'R'
:
case
'S'
:
case
'S'
:
case
'T'
:
case
'T'
:
case
'U'
:
case
'U'
:
if
(
EXTRA_CONSTRAINT
(
op
,
c
))
win
=
1
;
break
;
#endif
#endif
case
'V'
:
case
'X'
:
case
'g'
:
break
;
if
(
GET_CODE
(
op
)
==
MEM
||
(
CONSTANT_P
(
op
)
case
'+'
:
#ifdef LEGITIMATE_PIC_OPERAND_P
/* An input-output operand is twice as costly if it loses. */
&&
(
!
flag_pic
||
LEGITIMATE_PIC_OPERAND_P
(
op
))
double_cost
=
1
;
#endif
break
;
))
win
=
1
;
case
'm'
:
allows_mem
=
1
;
case
'o'
:
case
'r'
:
memok
=
1
;
classes
[
i
]
break
;
=
reg_class_subunion
[(
int
)
classes
[
i
]][(
int
)
GENERAL_REGS
];
break
;
/* * means ignore following letter
when choosing register preferences. */
default
:
case
'*'
:
classes
[
i
]
p
++
;
=
reg_class_subunion
[(
int
)
classes
[
i
]]
break
;
[(
int
)
REG_CLASS_FROM_LETTER
(
c
)];
}
case
'g'
:
case
'r'
:
constraints
[
i
]
=
p
;
new_class
=
GENERAL_REGS
;
break
;
/* How we account for this operand now depends on whether it is a
pseudo register or not. If it is, we first check if any
case
'0'
:
register classes are valid. If not, we ignore this alternative,
case
'1'
:
since we want to assume that all pseudos get allocated for
case
'2'
:
register preferencing. If some register class is valid, compute
case
'3'
:
the costs of moving the pseudo into that class. */
case
'4'
:
/* If constraint says "match another operand",
if
(
GET_CODE
(
op
)
==
REG
&&
REGNO
(
op
)
>=
FIRST_PSEUDO_REGISTER
)
use that operand's constraint to choose preferences. */
if
(
*
p
-
'0'
<
opno
)
{
{
opno
=
*
p
-
'0'
;
if
(
classes
[
i
]
==
NO_REGS
)
next
=
constraints
[
opno
];
alt_fail
=
1
;
else
{
struct
costs
*
pp
=
&
this_op_costs
[
i
];
for
(
class
=
0
;
class
<
N_REG_CLASSES
;
class
++
)
pp
->
cost
[
class
]
=
may_move_cost
[
class
][(
int
)
classes
[
i
]];
/* If the alternative actually allows memory, make things
a bit cheaper since we won't need an extra insn to
load it. */
pp
->
mem_cost
=
MEMORY_MOVE_COST
(
mode
)
-
allows_mem
;
/* If we have assigned a class to this register in our
first pass, add a cost to this alternative corresponding
to what we would add if this register were not in the
appropriate class. */
if
(
prefclass
)
alt_cost
+=
may_move_cost
[
prefclass
[
REGNO
(
op
)]][(
int
)
classes
[
i
]];
}
}
}
break
;
default
:
/* Otherwise, if this alternative wins, either because we
new_class
=
REG_CLASS_FROM_LETTER
(
*
p
);
have already determined that or if we have a hard register of
break
;
the proper class, there is no cost for this alternative. */
}
/* If this object can fit into the class requested, compute the subunion
else
if
(
win
of the requested class and classes found so far. */
||
(
GET_CODE
(
op
)
==
REG
if
(
CLASS_MAX_NREGS
(
new_class
,
GET_MODE
(
op
))
&&
reg_fits_class_p
(
op
,
classes
[
i
],
0
,
mode
)))
<=
reg_class_size
[(
int
)
new_class
])
;
class
=
reg_class_subunion
[(
int
)
class
][(
int
)
new_class
];
}
{
/* If registers are valid, the cost of this alternative includes
register
int
i
;
copying the object to and/or from a register. */
register
struct
savings
*
pp
;
register
enum
reg_class
class1
;
int
cost
=
2
*
(
1
+
double_cost
)
*
loop_depth
;
pp
=
&
savings
[
REGNO
(
op
)];
/* Increment the savings for this reg
else
if
(
classes
[
i
]
!=
NO_REGS
)
for each class contained in the one the constraint asks for. */
{
if
(
op_types
[
i
]
!=
OP_WRITE
)
alt_cost
+=
copy_cost
(
op
,
mode
,
classes
[
i
],
1
);
if
(
class
!=
NO_REGS
&&
class
!=
ALL_REGS
)
if
(
op_types
[
i
]
!=
OP_READ
)
{
alt_cost
+=
copy_cost
(
op
,
mode
,
classes
[
i
],
0
);
int
extracost
;
}
pp
->
savings
[(
int
)
class
]
+=
cost
;
/* The only other way this alternative can be used is if this is a
for
(
i
=
0
;
;
i
++
)
constant that could be placed into memory. */
{
class1
=
reg_class_subclasses
[(
int
)
class
][
i
];
else
if
(
CONSTANT_P
(
op
)
&&
allows_mem
)
if
(
class1
==
LIM_REG_CLASSES
)
alt_cost
+=
MEMORY_MOVE_COST
(
mode
);
break
;
else
pp
->
savings
[(
int
)
class1
]
+=
cost
;
alt_fail
=
1
;
}
}
/* If it's slow to move data between this class and GENERAL_REGS,
record that fact. */
if
(
alt_fail
)
extracost
=
(
REGISTER_MOVE_COST
(
class
,
GENERAL_REGS
)
-
2
)
*
loop_depth
;
continue
;
if
(
extracost
>
0
)
/* Finally, update the costs with the information we've calculated
about this alternative. */
for
(
i
=
0
;
i
<
n_ops
;
i
++
)
if
(
GET_CODE
(
ops
[
i
])
==
REG
&&
REGNO
(
ops
[
i
])
>=
FIRST_PSEUDO_REGISTER
)
{
{
/* Check that this class and GENERAL_REGS don't overlap.
struct
costs
*
pp
=
&
op_costs
[
i
],
*
qq
=
&
this_op_costs
[
i
];
REGISTER_MOVE_COST is meaningless if there is overlap. */
int
scale
=
1
+
(
op_types
[
i
]
==
OP_READ_WRITE
);
HARD_REG_SET
temp
;
COMPL_HARD_REG_SET
(
temp
,
reg_class_contents
[(
int
)
class
]);
GO_IF_HARD_REG_SUBSET
(
reg_class_contents
[(
int
)
GENERAL_REGS
],
temp
,
label1
);
/* Overlap. */
goto
label2
;
label1
:
/* No overlap. */
/* Charge this extra cost to GENERAL_REGS
and all its subclasses (none of which overlap this class). */
extracost
=
extracost
*
cost
/
(
2
*
loop_depth
);
pp
->
savings
[(
int
)
GENERAL_REGS
]
-=
extracost
;
for
(
i
=
0
;
;
i
++
)
{
class1
=
reg_class_subclasses
[(
int
)
GENERAL_REGS
][
i
];
if
(
class1
==
LIM_REG_CLASSES
)
break
;
pp
->
savings
[(
int
)
class1
]
-=
extracost
;
}
label2
:
;
pp
->
mem_cost
=
MIN
(
pp
->
mem_cost
,
}
(
qq
->
mem_cost
+
alt_cost
)
*
scale
);
}
if
(
!
memok
)
for
(
class
=
0
;
class
<
N_REG_CLASSES
;
class
++
)
pp
->
memcost
+=
(
MEMORY_MOVE_COST
(
GET_MODE
(
op
))
*
(
1
+
double_cost
)
pp
->
cost
[
class
]
=
MIN
(
pp
->
cost
[
class
],
-
1
)
*
loop_depth
;
(
qq
->
cost
[
class
]
+
alt_cost
)
*
scale
)
;
pp
->
nrefs
+=
loop_depth
;
}
}
}
}
}
/* Compute the cost of loading X into (if TO_P is non-zero) or from (if
TO_P is zero) a register of class CLASS in mode MODE.
X must not be a pseudo. */
static
int
copy_cost
(
x
,
mode
,
class
,
to_p
)
rtx
x
;
enum
machine_mode
mode
;
enum
reg_class
class
;
int
to_p
;
{
enum
reg_class
secondary_class
=
NO_REGS
;
/* If X is a SCRATCH, there is actually nothing to move since we are
assuming optimal allocation. */
if
(
GET_CODE
(
x
)
==
SCRATCH
)
return
0
;
/* Get the class we will actually use for a reload. */
class
=
PREFERRED_RELOAD_CLASS
(
x
,
class
);
#ifdef HAVE_SECONDARY_RELOADS
/* If we need a secondary reload (we assume here that we are using
the secondary reload as an intermediate, not a scratch register), the
cost is that to load the input into the intermediate register, then
to copy them. We use a special value of TO_P to avoid recursion. */
#ifdef SECONDARY_INPUT_RELOAD_CLASS
if
(
to_p
==
1
)
secondary_class
=
SECONDARY_INPUT_RELOAD_CLASS
(
class
,
mode
,
x
);
#endif
#ifdef SECONARY_OUTPUT_RELOAD_CLASS
if
(
!
to_p
)
secondary_class
=
SECONDARY_OUTPUT_RELOAD_CLASS
(
class
,
mode
,
x
);
#endif
if
(
secondary_class
!=
NO_REGS
)
return
(
move_cost
[(
int
)
secondary_class
][(
int
)
class
]
+
copy_cost
(
x
,
mode
,
secondary_class
,
2
));
#endif
/* HAVE_SECONARY_RELOADS */
/* For memory, use the memory move cost, for (hard) registers, use the
cost to move between the register classes, and use 2 for everything
else (constants). */
if
(
GET_CODE
(
x
)
==
MEM
||
class
==
NO_REGS
)
return
MEMORY_MOVE_COST
(
mode
);
else
if
(
GET_CODE
(
x
)
==
REG
)
return
move_cost
[(
int
)
REGNO_REG_CLASS
(
REGNO
(
x
))][(
int
)
class
];
else
/* If this is a constant, we may eventually want to call rtx_cost here. */
return
2
;
}
/* Record the pseudo registers we must reload into hard registers
/* Record the pseudo registers we must reload into hard registers
in a subexpression of a memory address, X.
in a subexpression of a memory address, X.
BCOST is the cost if X is a register and it fails to be in BASE_REG_CLASS.
ICOST is the cost if it fails to be in INDEX_REG_CLASS. */
CLASS is the class that the register needs to be in and is either
BASE_REG_CLASS or INDEX_REG_CLASS.
SCALE is twice the amount to multiply the cost by (it is twice so we
can represent half-cost adjustments). */
void
void
record_address_regs
(
x
,
bcost
,
icost
)
record_address_regs
(
x
,
class
,
scale
)
rtx
x
;
rtx
x
;
int
bcost
,
icost
;
enum
reg_class
class
;
int
scale
;
{
{
register
enum
rtx_code
code
=
GET_CODE
(
x
);
register
enum
rtx_code
code
=
GET_CODE
(
x
);
...
@@ -820,66 +1233,88 @@ record_address_regs (x, bcost, icost)
...
@@ -820,66 +1233,88 @@ record_address_regs (x, bcost, icost)
we must determine whether registers are "base" or "index" regs.
we must determine whether registers are "base" or "index" regs.
If there is a sum of two registers, we must choose one to be
If there is a sum of two registers, we must choose one to be
the "base". Luckily, we can use the REGNO_POINTER_FLAG
the "base". Luckily, we can use the REGNO_POINTER_FLAG
to make a good choice most of the time. */
to make a good choice most of the time. We only need to do this
on machines that can have two registers in an address and where
the base and index register classes are different.
??? This code used to set REGNO_POINTER_FLAG in some cases, but
that seems bogus since it should only be set when we are sure
the register is being used as a pointer. */
{
{
rtx
arg0
=
XEXP
(
x
,
0
);
rtx
arg0
=
XEXP
(
x
,
0
);
rtx
arg1
=
XEXP
(
x
,
1
);
rtx
arg1
=
XEXP
(
x
,
1
);
register
enum
rtx_code
code0
=
GET_CODE
(
arg0
);
register
enum
rtx_code
code0
=
GET_CODE
(
arg0
);
register
enum
rtx_code
code1
=
GET_CODE
(
arg1
);
register
enum
rtx_code
code1
=
GET_CODE
(
arg1
);
int
icost0
=
0
;
int
icost1
=
0
;
int
suppress1
=
0
;
int
suppress0
=
0
;
/* Look inside subregs. */
/* Look inside subregs. */
while
(
code0
==
SUBREG
)
if
(
code0
==
SUBREG
)
arg0
=
SUBREG_REG
(
arg0
),
code0
=
GET_CODE
(
arg0
);
arg0
=
SUBREG_REG
(
arg0
),
code0
=
GET_CODE
(
arg0
);
while
(
code1
==
SUBREG
)
if
(
code1
==
SUBREG
)
arg1
=
SUBREG_REG
(
arg1
),
code1
=
GET_CODE
(
arg1
);
arg1
=
SUBREG_REG
(
arg1
),
code1
=
GET_CODE
(
arg1
);
if
(
code0
==
MULT
||
code1
==
MEM
)
/* If this machine only allows one register per address, it must
icost0
=
2
;
be in the first operand. */
else
if
(
code1
==
MULT
||
code0
==
MEM
)
icost1
=
2
;
if
(
MAX_REGS_PER_ADDRESS
==
1
)
else
if
(
code0
==
CONST_INT
)
record_address_regs
(
arg0
,
class
,
scale
);
suppress0
=
1
;
else
if
(
code1
==
CONST_INT
)
/* If index and base registers are the same on this machine, just
suppress1
=
1
;
record registers in any non-constant operands. We assume here,
else
if
(
code0
==
REG
&&
code1
==
REG
)
as well as in the tests below, that all addresses are in
canonical form. */
else
if
(
INDEX_REG_CLASS
==
BASE_REG_CLASS
)
{
{
if
(
REGNO_POINTER_FLAG
(
REGNO
(
arg0
)))
record_address_regs
(
arg0
,
class
,
scale
);
icost1
=
2
;
if
(
!
CONSTANT_P
(
arg1
))
else
if
(
REGNO_POINTER_FLAG
(
REGNO
(
arg1
)))
record_address_regs
(
arg1
,
class
,
scale
);
icost0
=
2
;
else
icost0
=
icost1
=
1
;
}
}
else
if
(
code0
==
REG
)
/* If the second operand is a constant integer, it doesn't change
what class the first operand must be. */
else
if
(
code1
==
CONST_INT
||
code1
==
CONST_DOUBLE
)
record_address_regs
(
arg0
,
class
,
scale
);
/* If the second operand is a symbolic constant, the first operand
must be an index register. */
else
if
(
code1
==
SYMBOL_REF
||
code1
==
CONST
||
code1
==
LABEL_REF
)
record_address_regs
(
arg0
,
INDEX_REG_CLASS
,
scale
);
/* If this the sum of two registers where the first is known to be a
pointer, it must be a base register with the second an index. */
else
if
(
code0
==
REG
&&
code1
==
REG
&&
REGNO_POINTER_FLAG
(
REGNO
(
arg0
)))
{
{
if
(
code1
==
PLUS
record_address_regs
(
arg0
,
BASE_REG_CLASS
,
scale
);
&&
!
REGNO_POINTER_FLAG
(
REGNO
(
arg0
)))
record_address_regs
(
arg1
,
INDEX_REG_CLASS
,
scale
);
icost0
=
2
;
else
REGNO_POINTER_FLAG
(
REGNO
(
arg0
))
=
1
;
}
}
else
if
(
code1
==
REG
)
/* If this is the sum of two registers and neither is known to
be a pointer, count equal chances that each might be a base
or index register. This case should be rare. */
else
if
(
code0
==
REG
&&
code1
==
REG
&&
!
REGNO_POINTER_FLAG
(
REGNO
(
arg0
))
&&
!
REGNO_POINTER_FLAG
(
REGNO
(
arg1
)))
{
{
if
(
code0
==
PLUS
record_address_regs
(
arg0
,
BASE_REG_CLASS
,
scale
/
2
);
&&
!
REGNO_POINTER_FLAG
(
REGNO
(
arg1
)))
record_address_regs
(
arg0
,
INDEX_REG_CLASS
,
scale
/
2
);
icost1
=
2
;
record_address_regs
(
arg1
,
BASE_REG_CLASS
,
scale
/
2
);
else
record_address_regs
(
arg1
,
INDEX_REG_CLASS
,
scale
/
2
);
REGNO_POINTER_FLAG
(
REGNO
(
arg1
))
=
1
;
}
}
/* ICOST0 determines whether we are treating operand 0
/* In all other cases, the first operand is an index and the
as a base register or as an index register.
second is the base. */
SUPPRESS0 nonzero means it isn't a register at all.
ICOST1 and SUPPRESS1 are likewise for operand 1. */
if
(
!
suppress0
)
else
record_address_regs
(
arg0
,
2
-
icost0
,
icost0
);
{
if
(
!
suppress1
)
record_address_regs
(
arg0
,
INDEX_REG_CLASS
,
scale
);
record_address_regs
(
arg1
,
2
-
icost1
,
icost1
);
record_address_regs
(
arg1
,
BASE_REG_CLASS
,
scale
);
}
}
}
break
;
break
;
...
@@ -890,51 +1325,19 @@ record_address_regs (x, bcost, icost)
...
@@ -890,51 +1325,19 @@ record_address_regs (x, bcost, icost)
/* Double the importance of a pseudo register that is incremented
/* Double the importance of a pseudo register that is incremented
or decremented, since it would take two extra insns
or decremented, since it would take two extra insns
if it ends up in the wrong place. */
if it ends up in the wrong place. */
record_address_regs
(
XEXP
(
x
,
0
),
2
*
bcost
,
2
*
icost
);
record_address_regs
(
XEXP
(
x
,
0
),
class
,
2
*
scale
);
break
;
break
;
case
REG
:
case
REG
:
{
{
register
struct
savings
*
pp
;
register
struct
costs
*
pp
=
&
costs
[
REGNO
(
x
)];
register
enum
reg_class
class
,
class1
;
register
int
i
;
pp
=
&
savings
[
REGNO
(
x
)];
pp
->
nrefs
+=
loop_depth
;
/* We have an address (or part of one) that is just one register. */
/* Record BCOST worth of savings for classes contained
in BASE_REG_CLASS. */
class
=
BASE_REG_CLASS
;
if
(
class
!=
NO_REGS
&&
class
!=
ALL_REGS
)
{
register
int
i
;
pp
->
savings
[(
int
)
class
]
+=
bcost
*
loop_depth
;
for
(
i
=
0
;
;
i
++
)
{
class1
=
reg_class_subclasses
[(
int
)
class
][
i
];
if
(
class1
==
LIM_REG_CLASSES
)
break
;
pp
->
savings
[(
int
)
class1
]
+=
bcost
*
loop_depth
;
}
}
/* Record ICOST worth of savings for classes contained
pp
->
mem_cost
+=
(
MEMORY_MOVE_COST
(
Pmode
)
*
scale
)
/
2
;
in INDEX_REG_CLASS. */
class
=
INDEX_REG_CLASS
;
for
(
i
=
0
;
i
<
N_REG_CLASSES
;
i
++
)
if
(
icost
!=
0
&&
class
!=
NO_REGS
&&
class
!=
ALL_REGS
)
pp
->
cost
[
i
]
+=
(
may_move_cost
[
i
][(
int
)
class
]
*
scale
)
/
2
;
{
register
int
i
;
pp
->
savings
[(
int
)
class
]
+=
icost
*
loop_depth
;
for
(
i
=
0
;
;
i
++
)
{
class1
=
reg_class_subclasses
[(
int
)
class
][
i
];
if
(
class1
==
LIM_REG_CLASSES
)
break
;
pp
->
savings
[(
int
)
class1
]
+=
icost
*
loop_depth
;
}
}
}
}
break
;
break
;
...
@@ -944,7 +1347,7 @@ record_address_regs (x, bcost, icost)
...
@@ -944,7 +1347,7 @@ record_address_regs (x, bcost, icost)
register
int
i
;
register
int
i
;
for
(
i
=
GET_RTX_LENGTH
(
code
)
-
1
;
i
>=
0
;
i
--
)
for
(
i
=
GET_RTX_LENGTH
(
code
)
-
1
;
i
>=
0
;
i
--
)
if
(
fmt
[
i
]
==
'e'
)
if
(
fmt
[
i
]
==
'e'
)
record_address_regs
(
XEXP
(
x
,
i
),
bcost
,
icost
);
record_address_regs
(
XEXP
(
x
,
i
),
class
,
scale
);
}
}
}
}
}
}
...
...
gcc/reload.c
View file @
e4600702
...
@@ -1502,7 +1502,7 @@ operands_match_p (x, y)
...
@@ -1502,7 +1502,7 @@ operands_match_p (x, y)
/* Return the number of times character C occurs in string S. */
/* Return the number of times character C occurs in string S. */
static
int
int
n_occurrences
(
c
,
s
)
n_occurrences
(
c
,
s
)
char
c
;
char
c
;
char
*
s
;
char
*
s
;
...
@@ -2045,7 +2045,7 @@ find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
...
@@ -2045,7 +2045,7 @@ find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
?
reg_preferred_class
(
REGNO
(
recog_operand
[
i
]))
:
NO_REGS
);
?
reg_preferred_class
(
REGNO
(
recog_operand
[
i
]))
:
NO_REGS
);
pref_or_nothing
[
i
]
pref_or_nothing
[
i
]
=
(
code
==
REG
&&
REGNO
(
recog_operand
[
i
])
>
FIRST_PSEUDO_REGISTER
=
(
code
==
REG
&&
REGNO
(
recog_operand
[
i
])
>
FIRST_PSEUDO_REGISTER
&&
reg_
preferred_or_nothing
(
REGNO
(
recog_operand
[
i
]))
);
&&
reg_
alternate_class
(
REGNO
(
recog_operand
[
i
]))
==
NO_REGS
);
}
}
/* If this is simply a copy from operand 1 to operand 0, merge the
/* If this is simply a copy from operand 1 to operand 0, merge the
...
...
gcc/rtl.h
View file @
e4600702
...
@@ -642,6 +642,7 @@ extern char *decode_asm_operands ();
...
@@ -642,6 +642,7 @@ extern char *decode_asm_operands ();
#ifdef BITS_PER_WORD
#ifdef BITS_PER_WORD
/* Conditional is to detect when config.h has been included. */
/* Conditional is to detect when config.h has been included. */
extern
enum
reg_class
reg_preferred_class
();
extern
enum
reg_class
reg_preferred_class
();
extern
enum
reg_class
reg_alternate_class
();
#endif
#endif
extern
rtx
get_first_nonparm_insn
();
extern
rtx
get_first_nonparm_insn
();
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment