Commit d3d526ac by Benjamin Kosnik Committed by Benjamin Kosnik

stl_tree.h (_S_rb_tree_red): Make enum.


2002-03-06  Benjamin Kosnik  <bkoz@redhat.com>
	    Stephen M. Webb  <stephen.webb@bregmasoft.com>

	* include/bits/stl_tree.h (_S_rb_tree_red): Make enum.
	(_S_rb_tree_black): Make enum.
	Clean. Format.
	* include/bits/stl_bvector.h (__WORD_BIT): To _M_word_bit, enum.
	* include/bits/stl_algo.h (__stl_chunk_size): _M_chunk_size, enum.
	(__stl_threshold): _M_threshold, enum.
	* src/stl-inst.cc: Same.
	* config/linker-map.gnu: Remove.

	* testsuite/23_containers/vector_bool.cc: New.

Co-Authored-By: Stephen M. Webb <stephen.webb@bregmasoft.com>

From-SVN: r50393
parent 76a773f3
2002-03-06 Benjamin Kosnik <bkoz@redhat.com>
Stephen M. Webb <stephen.webb@bregmasoft.com>
* include/bits/stl_tree.h (_S_rb_tree_red): Make enum.
(_S_rb_tree_black): Make enum.
Clean. Format.
* include/bits/stl_bvector.h (__WORD_BIT): To _M_word_bit, enum.
* include/bits/stl_algo.h (__stl_chunk_size): _M_chunk_size, enum.
(__stl_threshold): _M_threshold, enum.
* src/stl-inst.cc: Same.
* config/linker-map.gnu: Remove.
* testsuite/23_containers/vector_bool.cc: New.
2002-03-06 Phil Edwards <pme@gcc.gnu.org>
* docs/doxygen/user.cfg.in: Also document deprecated entries.
......
......@@ -82,18 +82,6 @@ GLIBCPP_3.1 {
_ZTv*;
_ZTc*;
# std::_S_rb_tree_red
_ZSt14_S_rb_tree_red;
# std::_S_rb_tree_black
_ZSt16_S_rb_tree_black;
# std::__stl_threshold
_ZSt15__stl_threshold;
# std::__stl_chunk_size
_ZSt16__stl_chunk_size;
# std::__convert_to_v
_ZSt14__convert_to_v*;
......
......@@ -1889,7 +1889,7 @@ __result, __binary_pred, _IterType());
* This controls some aspect of the sort routines.
* @endmaint
*/
extern const int __stl_threshold;
enum { _M_threshold = 16 };
/**
* @maint
......@@ -2016,9 +2016,9 @@ __result, __binary_pred, _IterType());
void
__final_insertion_sort(_RandomAccessIter __first, _RandomAccessIter __last)
{
if (__last - __first > __stl_threshold) {
__insertion_sort(__first, __first + __stl_threshold);
__unguarded_insertion_sort(__first + __stl_threshold, __last);
if (__last - __first > _M_threshold) {
__insertion_sort(__first, __first + _M_threshold);
__unguarded_insertion_sort(__first + _M_threshold, __last);
}
else
__insertion_sort(__first, __last);
......@@ -2034,9 +2034,9 @@ __result, __binary_pred, _IterType());
__final_insertion_sort(_RandomAccessIter __first, _RandomAccessIter __last,
_Compare __comp)
{
if (__last - __first > __stl_threshold) {
__insertion_sort(__first, __first + __stl_threshold, __comp);
__unguarded_insertion_sort(__first + __stl_threshold, __last, __comp);
if (__last - __first > _M_threshold) {
__insertion_sort(__first, __first + _M_threshold, __comp);
__unguarded_insertion_sort(__first + _M_threshold, __last, __comp);
}
else
__insertion_sort(__first, __last, __comp);
......@@ -2068,7 +2068,7 @@ __result, __binary_pred, _IterType());
{
typedef typename iterator_traits<_RandomAccessIter>::value_type _ValueType;
while (__last - __first > __stl_threshold) {
while (__last - __first > _M_threshold) {
if (__depth_limit == 0) {
partial_sort(__first, __last, __last);
return;
......@@ -2096,7 +2096,7 @@ __result, __binary_pred, _IterType());
{
typedef typename iterator_traits<_RandomAccessIter>::value_type _ValueType;
while (__last - __first > __stl_threshold) {
while (__last - __first > _M_threshold) {
if (__depth_limit == 0) {
partial_sort(__first, __last, __last, __comp);
return;
......@@ -2253,7 +2253,7 @@ __result, __binary_pred, _IterType());
__comp);
}
extern const int __stl_chunk_size;
enum { _M_chunk_size = 7 };
template<typename _RandomAccessIter, typename _Distance>
void
......@@ -2289,7 +2289,7 @@ __result, __binary_pred, _IterType());
_Distance __len = __last - __first;
_Pointer __buffer_last = __buffer + __len;
_Distance __step_size = __stl_chunk_size;
_Distance __step_size = _M_chunk_size;
__chunk_insertion_sort(__first, __last, __step_size);
while (__step_size < __len) {
......@@ -2310,7 +2310,7 @@ __result, __binary_pred, _IterType());
_Distance __len = __last - __first;
_Pointer __buffer_last = __buffer + __len;
_Distance __step_size = __stl_chunk_size;
_Distance __step_size = _M_chunk_size;
__chunk_insertion_sort(__first, __last, __step_size, __comp);
while (__step_size < __len) {
......
......@@ -63,7 +63,7 @@
namespace std
{
extern const int __WORD_BIT;
enum { _M_word_bit = int(CHAR_BIT * sizeof(unsigned long)) };
struct _Bit_reference {
unsigned int* _M_p;
......@@ -106,24 +106,24 @@ struct _Bit_iterator_base : public iterator<random_access_iterator_tag, bool>
: _M_p(__x), _M_offset(__y) {}
void _M_bump_up() {
if (_M_offset++ == __WORD_BIT - 1) {
if (_M_offset++ == _M_word_bit - 1) {
_M_offset = 0;
++_M_p;
}
}
void _M_bump_down() {
if (_M_offset-- == 0) {
_M_offset = __WORD_BIT - 1;
_M_offset = _M_word_bit - 1;
--_M_p;
}
}
void _M_incr(ptrdiff_t __i) {
difference_type __n = __i + _M_offset;
_M_p += __n / __WORD_BIT;
__n = __n % __WORD_BIT;
_M_p += __n / _M_word_bit;
__n = __n % _M_word_bit;
if (__n < 0) {
_M_offset = (unsigned int) __n + __WORD_BIT;
_M_offset = (unsigned int) __n + _M_word_bit;
--_M_p;
} else
_M_offset = (unsigned int) __n;
......@@ -151,7 +151,7 @@ struct _Bit_iterator_base : public iterator<random_access_iterator_tag, bool>
inline ptrdiff_t
operator-(const _Bit_iterator_base& __x, const _Bit_iterator_base& __y) {
return __WORD_BIT * (__x._M_p - __y._M_p) + __x._M_offset - __y._M_offset;
return _M_word_bit * (__x._M_p - __y._M_p) + __x._M_offset - __y._M_offset;
}
......@@ -283,7 +283,7 @@ public:
protected:
unsigned int* _M_bit_alloc(size_t __n)
{ return _M_data_allocator.allocate((__n + __WORD_BIT - 1)/__WORD_BIT); }
{ return _M_data_allocator.allocate((__n + _M_word_bit - 1)/_M_word_bit); }
void _M_deallocate() {
if (_M_start._M_p)
_M_data_allocator.deallocate(_M_start._M_p,
......@@ -313,7 +313,7 @@ protected:
_Alloc_type;
unsigned int* _M_bit_alloc(size_t __n)
{ return _Alloc_type::allocate((__n + __WORD_BIT - 1)/__WORD_BIT); }
{ return _Alloc_type::allocate((__n + _M_word_bit - 1)/_M_word_bit); }
void _M_deallocate() {
if (_M_start._M_p)
_Alloc_type::deallocate(_M_start._M_p,
......@@ -380,7 +380,7 @@ template <typename _Alloc>
protected:
void _M_initialize(size_type __n) {
unsigned int* __q = _M_bit_alloc(__n);
_M_end_of_storage = __q + (__n + __WORD_BIT - 1)/__WORD_BIT;
_M_end_of_storage = __q + (__n + _M_word_bit - 1)/_M_word_bit;
_M_start = iterator(__q, 0);
_M_finish = _M_start + difference_type(__n);
}
......@@ -391,13 +391,13 @@ template <typename _Alloc>
++_M_finish;
}
else {
size_type __len = size() ? 2 * size() : __WORD_BIT;
size_type __len = size() ? 2 * size() : _M_word_bit;
unsigned int* __q = _M_bit_alloc(__len);
iterator __i = copy(begin(), __position, iterator(__q, 0));
*__i++ = __x;
_M_finish = copy(__position, end(), __i);
_M_deallocate();
_M_end_of_storage = __q + (__len + __WORD_BIT - 1)/__WORD_BIT;
_M_end_of_storage = __q + (__len + _M_word_bit - 1)/_M_word_bit;
_M_start = iterator(__q, 0);
}
}
......@@ -448,7 +448,7 @@ template <typename _Alloc>
__i = copy(__first, __last, __i);
_M_finish = copy(__position, end(), __i);
_M_deallocate();
_M_end_of_storage = __q + (__len + __WORD_BIT - 1)/__WORD_BIT;
_M_end_of_storage = __q + (__len + _M_word_bit - 1)/_M_word_bit;
_M_start = iterator(__q, 0);
}
}
......@@ -614,7 +614,7 @@ template <typename _Alloc>
_M_finish = copy(begin(), end(), iterator(__q, 0));
_M_deallocate();
_M_start = iterator(__q, 0);
_M_end_of_storage = __q + (__n + __WORD_BIT - 1)/__WORD_BIT;
_M_end_of_storage = __q + (__n + _M_word_bit - 1)/_M_word_bit;
}
}
......@@ -678,7 +678,7 @@ template <typename _Alloc>
fill_n(__i, __n, __x);
_M_finish = copy(__position, end(), __i + difference_type(__n));
_M_deallocate();
_M_end_of_storage = __q + (__len + __WORD_BIT - 1)/__WORD_BIT;
_M_end_of_storage = __q + (__len + _M_word_bit - 1)/_M_word_bit;
_M_start = iterator(__q, 0);
}
}
......
......@@ -90,1207 +90,1373 @@ iterators invalidated are those referring to the deleted node.
namespace std
{
typedef bool _Rb_tree_Color_type;
extern const _Rb_tree_Color_type _S_rb_tree_red; // false
extern const _Rb_tree_Color_type _S_rb_tree_black; // true
enum _Rb_tree_color { _M_red = false, _M_black = true };
struct _Rb_tree_node_base
{
typedef _Rb_tree_Color_type _Color_type;
typedef _Rb_tree_node_base* _Base_ptr;
struct _Rb_tree_node_base
{
typedef _Rb_tree_node_base* _Base_ptr;
_Rb_tree_color _M_color;
_Base_ptr _M_parent;
_Base_ptr _M_left;
_Base_ptr _M_right;
static _Base_ptr
_S_minimum(_Base_ptr __x)
{
while (__x->_M_left != 0) __x = __x->_M_left;
return __x;
}
_Color_type _M_color;
_Base_ptr _M_parent;
_Base_ptr _M_left;
_Base_ptr _M_right;
static _Base_ptr
_S_maximum(_Base_ptr __x)
{
while (__x->_M_right != 0) __x = __x->_M_right;
return __x;
}
};
static _Base_ptr _S_minimum(_Base_ptr __x)
template<typename _Val>
struct _Rb_tree_node : public _Rb_tree_node_base
{
typedef _Rb_tree_node<_Val>* _Link_type;
_Val _M_value_field;
};
struct _Rb_tree_base_iterator
{
while (__x->_M_left != 0) __x = __x->_M_left;
return __x;
}
typedef _Rb_tree_node_base::_Base_ptr _Base_ptr;
typedef bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
_Base_ptr _M_node;
void
_M_increment()
{
if (_M_node->_M_right != 0)
{
_M_node = _M_node->_M_right;
while (_M_node->_M_left != 0)
_M_node = _M_node->_M_left;
}
else
{
_Base_ptr __y = _M_node->_M_parent;
while (_M_node == __y->_M_right)
{
_M_node = __y;
__y = __y->_M_parent;
}
if (_M_node->_M_right != __y)
_M_node = __y;
}
}
void
_M_decrement()
{
if (_M_node->_M_color == _M_red
&& _M_node->_M_parent->_M_parent == _M_node)
_M_node = _M_node->_M_right;
else if (_M_node->_M_left != 0)
{
_Base_ptr __y = _M_node->_M_left;
while (__y->_M_right != 0)
__y = __y->_M_right;
_M_node = __y;
}
else
{
_Base_ptr __y = _M_node->_M_parent;
while (_M_node == __y->_M_left)
{
_M_node = __y;
__y = __y->_M_parent;
}
_M_node = __y;
}
}
};
template<typename _Val, typename _Ref, typename _Ptr>
struct _Rb_tree_iterator : public _Rb_tree_base_iterator
{
typedef _Val value_type;
typedef _Ref reference;
typedef _Ptr pointer;
typedef _Rb_tree_iterator<_Val, _Val&, _Val*> iterator;
typedef _Rb_tree_iterator<_Val, const _Val&, const _Val*>
const_iterator;
typedef _Rb_tree_iterator<_Val, _Ref, _Ptr> _Self;
typedef _Rb_tree_node<_Val>* _Link_type;
_Rb_tree_iterator() {}
_Rb_tree_iterator(_Link_type __x) { _M_node = __x; }
_Rb_tree_iterator(const iterator& __it) { _M_node = __it._M_node; }
reference
operator*() const { return _Link_type(_M_node)->_M_value_field; }
pointer
operator->() const { return &(operator*()); }
_Self&
operator++()
{
_M_increment();
return *this;
}
static _Base_ptr _S_maximum(_Base_ptr __x)
_Self
operator++(int)
{
_Self __tmp = *this;
_M_increment();
return __tmp;
}
_Self&
operator--() { _M_decrement(); return *this; }
_Self
operator--(int)
{
_Self __tmp = *this;
_M_decrement();
return __tmp;
}
};
template<typename _Val, typename _Ref, typename _Ptr>
inline bool
operator==(const _Rb_tree_iterator<_Val, _Ref, _Ptr>& __x,
const _Rb_tree_iterator<_Val, _Ref, _Ptr>& __y)
{ return __x._M_node == __y._M_node; }
template<typename _Val>
inline bool
operator==(const _Rb_tree_iterator<_Val, const _Val&, const _Val*>& __x,
const _Rb_tree_iterator<_Val, _Val&, _Val*>& __y)
{ return __x._M_node == __y._M_node; }
template<typename _Val>
inline bool
operator==(const _Rb_tree_iterator<_Val, _Val&, _Val*>& __x,
const _Rb_tree_iterator<_Val, const _Val&, const _Val*>& __y)
{ return __x._M_node == __y._M_node; }
template<typename _Val, typename _Ref, typename _Ptr>
inline bool
operator!=(const _Rb_tree_iterator<_Val, _Ref, _Ptr>& __x,
const _Rb_tree_iterator<_Val, _Ref, _Ptr>& __y)
{ return __x._M_node != __y._M_node; }
template<typename _Val>
inline bool
operator!=(const _Rb_tree_iterator<_Val, const _Val&, const _Val*>& __x,
const _Rb_tree_iterator<_Val, _Val&, _Val*>& __y)
{ return __x._M_node != __y._M_node; }
template<typename _Val>
inline bool
operator!=(const _Rb_tree_iterator<_Val, _Val&, _Val*>& __x,
const _Rb_tree_iterator<_Val, const _Val&, const _Val*>& __y)
{ return __x._M_node != __y._M_node; }
inline void
_Rb_tree_rotate_left(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root)
{
while (__x->_M_right != 0) __x = __x->_M_right;
return __x;
_Rb_tree_node_base* __y = __x->_M_right;
__x->_M_right = __y->_M_left;
if (__y->_M_left !=0)
__y->_M_left->_M_parent = __x;
__y->_M_parent = __x->_M_parent;
if (__x == __root)
__root = __y;
else if (__x == __x->_M_parent->_M_left)
__x->_M_parent->_M_left = __y;
else
__x->_M_parent->_M_right = __y;
__y->_M_left = __x;
__x->_M_parent = __y;
}
};
template <class _Value>
struct _Rb_tree_node : public _Rb_tree_node_base
{
typedef _Rb_tree_node<_Value>* _Link_type;
_Value _M_value_field;
};
inline void
_Rb_tree_rotate_right(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root)
{
_Rb_tree_node_base* __y = __x->_M_left;
__x->_M_left = __y->_M_right;
if (__y->_M_right != 0)
__y->_M_right->_M_parent = __x;
__y->_M_parent = __x->_M_parent;
struct _Rb_tree_base_iterator
{
typedef _Rb_tree_node_base::_Base_ptr _Base_ptr;
typedef bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
_Base_ptr _M_node;
if (__x == __root)
__root = __y;
else if (__x == __x->_M_parent->_M_right)
__x->_M_parent->_M_right = __y;
else
__x->_M_parent->_M_left = __y;
__y->_M_right = __x;
__x->_M_parent = __y;
}
void _M_increment()
inline void
_Rb_tree_rebalance(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root)
{
if (_M_node->_M_right != 0) {
_M_node = _M_node->_M_right;
while (_M_node->_M_left != 0)
_M_node = _M_node->_M_left;
}
else {
_Base_ptr __y = _M_node->_M_parent;
while (_M_node == __y->_M_right) {
_M_node = __y;
__y = __y->_M_parent;
__x->_M_color = _M_red;
while (__x != __root
&& __x->_M_parent->_M_color == _M_red)
{
if (__x->_M_parent == __x->_M_parent->_M_parent->_M_left)
{
_Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_right;
if (__y && __y->_M_color == _M_red)
{
__x->_M_parent->_M_color = _M_black;
__y->_M_color = _M_black;
__x->_M_parent->_M_parent->_M_color = _M_red;
__x = __x->_M_parent->_M_parent;
}
else
{
if (__x == __x->_M_parent->_M_right)
{
__x = __x->_M_parent;
_Rb_tree_rotate_left(__x, __root);
}
__x->_M_parent->_M_color = _M_black;
__x->_M_parent->_M_parent->_M_color = _M_red;
_Rb_tree_rotate_right(__x->_M_parent->_M_parent, __root);
}
}
else
{
_Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_left;
if (__y && __y->_M_color == _M_red)
{
__x->_M_parent->_M_color = _M_black;
__y->_M_color = _M_black;
__x->_M_parent->_M_parent->_M_color = _M_red;
__x = __x->_M_parent->_M_parent;
}
else
{
if (__x == __x->_M_parent->_M_left)
{
__x = __x->_M_parent;
_Rb_tree_rotate_right(__x, __root);
}
__x->_M_parent->_M_color = _M_black;
__x->_M_parent->_M_parent->_M_color = _M_red;
_Rb_tree_rotate_left(__x->_M_parent->_M_parent, __root);
}
}
}
if (_M_node->_M_right != __y)
_M_node = __y;
}
__root->_M_color = _M_black;
}
void _M_decrement()
inline _Rb_tree_node_base*
_Rb_tree_rebalance_for_erase(_Rb_tree_node_base* __z,
_Rb_tree_node_base*& __root,
_Rb_tree_node_base*& __leftmost,
_Rb_tree_node_base*& __rightmost)
{
if (_M_node->_M_color == _S_rb_tree_red &&
_M_node->_M_parent->_M_parent == _M_node)
_M_node = _M_node->_M_right;
else if (_M_node->_M_left != 0) {
_Base_ptr __y = _M_node->_M_left;
while (__y->_M_right != 0)
__y = __y->_M_right;
_M_node = __y;
}
else {
_Base_ptr __y = _M_node->_M_parent;
while (_M_node == __y->_M_left) {
_M_node = __y;
__y = __y->_M_parent;
_Rb_tree_node_base* __y = __z;
_Rb_tree_node_base* __x = 0;
_Rb_tree_node_base* __x_parent = 0;
if (__y->_M_left == 0) // __z has at most one non-null child. y == z.
__x = __y->_M_right; // __x might be null.
else
if (__y->_M_right == 0) // __z has exactly one non-null child. y == z.
__x = __y->_M_left; // __x is not null.
else
{
// __z has two non-null children. Set __y to
__y = __y->_M_right; // __z's successor. __x might be null.
while (__y->_M_left != 0)
__y = __y->_M_left;
__x = __y->_M_right;
}
if (__y != __z)
{
// relink y in place of z. y is z's successor
__z->_M_left->_M_parent = __y;
__y->_M_left = __z->_M_left;
if (__y != __z->_M_right)
{
__x_parent = __y->_M_parent;
if (__x) __x->_M_parent = __y->_M_parent;
__y->_M_parent->_M_left = __x; // __y must be a child of _M_left
__y->_M_right = __z->_M_right;
__z->_M_right->_M_parent = __y;
}
else
__x_parent = __y;
if (__root == __z)
__root = __y;
else if (__z->_M_parent->_M_left == __z)
__z->_M_parent->_M_left = __y;
else
__z->_M_parent->_M_right = __y;
__y->_M_parent = __z->_M_parent;
std::swap(__y->_M_color, __z->_M_color);
__y = __z;
// __y now points to node to be actually deleted
}
_M_node = __y;
}
}
};
template <class _Value, class _Ref, class _Ptr>
struct _Rb_tree_iterator : public _Rb_tree_base_iterator
{
typedef _Value value_type;
typedef _Ref reference;
typedef _Ptr pointer;
typedef _Rb_tree_iterator<_Value, _Value&, _Value*>
iterator;
typedef _Rb_tree_iterator<_Value, const _Value&, const _Value*>
const_iterator;
typedef _Rb_tree_iterator<_Value, _Ref, _Ptr>
_Self;
typedef _Rb_tree_node<_Value>* _Link_type;
_Rb_tree_iterator() {}
_Rb_tree_iterator(_Link_type __x) { _M_node = __x; }
_Rb_tree_iterator(const iterator& __it) { _M_node = __it._M_node; }
reference operator*() const { return _Link_type(_M_node)->_M_value_field; }
pointer operator->() const { return &(operator*()); }
_Self& operator++() { _M_increment(); return *this; }
_Self operator++(int) {
_Self __tmp = *this;
_M_increment();
return __tmp;
}
_Self& operator--() { _M_decrement(); return *this; }
_Self operator--(int) {
_Self __tmp = *this;
_M_decrement();
return __tmp;
else
{ // __y == __z
__x_parent = __y->_M_parent;
if (__x)
__x->_M_parent = __y->_M_parent;
if (__root == __z)
__root = __x;
else
if (__z->_M_parent->_M_left == __z)
__z->_M_parent->_M_left = __x;
else
__z->_M_parent->_M_right = __x;
if (__leftmost == __z)
if (__z->_M_right == 0) // __z->_M_left must be null also
__leftmost = __z->_M_parent;
// makes __leftmost == _M_header if __z == __root
else
__leftmost = _Rb_tree_node_base::_S_minimum(__x);
if (__rightmost == __z)
if (__z->_M_left == 0) // __z->_M_right must be null also
__rightmost = __z->_M_parent;
// makes __rightmost == _M_header if __z == __root
else // __x == __z->_M_left
__rightmost = _Rb_tree_node_base::_S_maximum(__x);
}
if (__y->_M_color != _M_red)
{
while (__x != __root && (__x == 0 || __x->_M_color == _M_black))
if (__x == __x_parent->_M_left)
{
_Rb_tree_node_base* __w = __x_parent->_M_right;
if (__w->_M_color == _M_red)
{
__w->_M_color = _M_black;
__x_parent->_M_color = _M_red;
_Rb_tree_rotate_left(__x_parent, __root);
__w = __x_parent->_M_right;
}
if ((__w->_M_left == 0 ||
__w->_M_left->_M_color == _M_black) &&
(__w->_M_right == 0 ||
__w->_M_right->_M_color == _M_black))
{
__w->_M_color = _M_red;
__x = __x_parent;
__x_parent = __x_parent->_M_parent;
}
else
{
if (__w->_M_right == 0
|| __w->_M_right->_M_color == _M_black)
{
if (__w->_M_left) __w->_M_left->_M_color = _M_black;
__w->_M_color = _M_red;
_Rb_tree_rotate_right(__w, __root);
__w = __x_parent->_M_right;
}
__w->_M_color = __x_parent->_M_color;
__x_parent->_M_color = _M_black;
if (__w->_M_right)
__w->_M_right->_M_color = _M_black;
_Rb_tree_rotate_left(__x_parent, __root);
break;
}
}
else
{
// same as above, with _M_right <-> _M_left.
_Rb_tree_node_base* __w = __x_parent->_M_left;
if (__w->_M_color == _M_red)
{
__w->_M_color = _M_black;
__x_parent->_M_color = _M_red;
_Rb_tree_rotate_right(__x_parent, __root);
__w = __x_parent->_M_left;
}
if ((__w->_M_right == 0 ||
__w->_M_right->_M_color == _M_black) &&
(__w->_M_left == 0 ||
__w->_M_left->_M_color == _M_black))
{
__w->_M_color = _M_red;
__x = __x_parent;
__x_parent = __x_parent->_M_parent;
}
else
{
if (__w->_M_left == 0 || __w->_M_left->_M_color == _M_black)
{
if (__w->_M_right) __w->_M_right->_M_color = _M_black;
__w->_M_color = _M_red;
_Rb_tree_rotate_left(__w, __root);
__w = __x_parent->_M_left;
}
__w->_M_color = __x_parent->_M_color;
__x_parent->_M_color = _M_black;
if (__w->_M_left)
__w->_M_left->_M_color = _M_black;
_Rb_tree_rotate_right(__x_parent, __root);
break;
}
}
if (__x) __x->_M_color = _M_black;
}
return __y;
}
};
template <class _Value, class _Ref, class _Ptr>
inline bool operator==(const _Rb_tree_iterator<_Value, _Ref, _Ptr>& __x,
const _Rb_tree_iterator<_Value, _Ref, _Ptr>& __y) {
return __x._M_node == __y._M_node;
}
template <class _Value>
inline bool operator==(const _Rb_tree_iterator<_Value, const _Value&, const _Value*>& __x,
const _Rb_tree_iterator<_Value, _Value&, _Value*>& __y) {
return __x._M_node == __y._M_node;
}
template <class _Value>
inline bool operator==(const _Rb_tree_iterator<_Value, _Value&, _Value*>& __x,
const _Rb_tree_iterator<_Value, const _Value&, const _Value*>& __y) {
return __x._M_node == __y._M_node;
}
template <class _Value, class _Ref, class _Ptr>
inline bool operator!=(const _Rb_tree_iterator<_Value, _Ref, _Ptr>& __x,
const _Rb_tree_iterator<_Value, _Ref, _Ptr>& __y) {
return __x._M_node != __y._M_node;
}
template <class _Value>
inline bool operator!=(const _Rb_tree_iterator<_Value, const _Value&, const _Value*>& __x,
const _Rb_tree_iterator<_Value, _Value&, _Value*>& __y) {
return __x._M_node != __y._M_node;
}
template <class _Value>
inline bool operator!=(const _Rb_tree_iterator<_Value, _Value&, _Value*>& __x,
const _Rb_tree_iterator<_Value, const _Value&, const _Value*>& __y) {
return __x._M_node != __y._M_node;
}
inline void
_Rb_tree_rotate_left(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root)
{
_Rb_tree_node_base* __y = __x->_M_right;
__x->_M_right = __y->_M_left;
if (__y->_M_left !=0)
__y->_M_left->_M_parent = __x;
__y->_M_parent = __x->_M_parent;
if (__x == __root)
__root = __y;
else if (__x == __x->_M_parent->_M_left)
__x->_M_parent->_M_left = __y;
else
__x->_M_parent->_M_right = __y;
__y->_M_left = __x;
__x->_M_parent = __y;
}
inline void
_Rb_tree_rotate_right(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root)
{
_Rb_tree_node_base* __y = __x->_M_left;
__x->_M_left = __y->_M_right;
if (__y->_M_right != 0)
__y->_M_right->_M_parent = __x;
__y->_M_parent = __x->_M_parent;
if (__x == __root)
__root = __y;
else if (__x == __x->_M_parent->_M_right)
__x->_M_parent->_M_right = __y;
else
__x->_M_parent->_M_left = __y;
__y->_M_right = __x;
__x->_M_parent = __y;
}
inline void
_Rb_tree_rebalance(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root)
{
__x->_M_color = _S_rb_tree_red;
while (__x != __root && __x->_M_parent->_M_color == _S_rb_tree_red) {
if (__x->_M_parent == __x->_M_parent->_M_parent->_M_left) {
_Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_right;
if (__y && __y->_M_color == _S_rb_tree_red) {
__x->_M_parent->_M_color = _S_rb_tree_black;
__y->_M_color = _S_rb_tree_black;
__x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
__x = __x->_M_parent->_M_parent;
// Base class to encapsulate the differences between old SGI-style
// allocators and standard-conforming allocators. In order to avoid
// having an empty base class, we arbitrarily move one of rb_tree's
// data members into the base class.
// _Base for general standard-conforming allocators.
template<typename _Tp, typename _Alloc, bool _S_instanceless>
class _Rb_tree_alloc_base
{
public:
typedef typename _Alloc_traits<_Tp, _Alloc>::allocator_type allocator_type;
allocator_type
get_allocator() const { return _M_node_allocator; }
_Rb_tree_alloc_base(const allocator_type& __a)
: _M_node_allocator(__a), _M_header(0) {}
protected:
typename _Alloc_traits<_Rb_tree_node<_Tp>, _Alloc>::allocator_type
_M_node_allocator;
_Rb_tree_node<_Tp>* _M_header;
_Rb_tree_node<_Tp>*
_M_get_node() { return _M_node_allocator.allocate(1); }
void
_M_put_node(_Rb_tree_node<_Tp>* __p)
{ _M_node_allocator.deallocate(__p, 1); }
};
// Specialization for instanceless allocators.
template<typename _Tp, typename _Alloc>
class _Rb_tree_alloc_base<_Tp, _Alloc, true>
{
public:
typedef typename _Alloc_traits<_Tp, _Alloc>::allocator_type allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
_Rb_tree_alloc_base(const allocator_type&) : _M_header(0) {}
protected:
_Rb_tree_node<_Tp>* _M_header;
typedef typename _Alloc_traits<_Rb_tree_node<_Tp>, _Alloc>::_Alloc_type
_Alloc_type;
_Rb_tree_node<_Tp>*
_M_get_node() { return _Alloc_type::allocate(1); }
void
_M_put_node(_Rb_tree_node<_Tp>* __p) { _Alloc_type::deallocate(__p, 1); }
};
template<typename _Tp, typename _Alloc>
struct _Rb_tree_base : public _Rb_tree_alloc_base<_Tp, _Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
{
typedef _Rb_tree_alloc_base<_Tp,
_Alloc, _Alloc_traits<_Tp, _Alloc>::_S_instanceless> _Base;
typedef typename _Base::allocator_type allocator_type;
_Rb_tree_base(const allocator_type& __a)
: _Base(__a) { _M_header = _M_get_node(); }
~_Rb_tree_base() { _M_put_node(_M_header); }
};
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc = allocator<_Val> >
class _Rb_tree : protected _Rb_tree_base<_Val, _Alloc>
{
typedef _Rb_tree_base<_Val, _Alloc> _Base;
protected:
typedef _Rb_tree_node_base* _Base_ptr;
typedef _Rb_tree_node<_Val> _Rb_tree_node;
public:
typedef _Key key_type;
typedef _Val value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef _Rb_tree_node* _Link_type;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef typename _Base::allocator_type allocator_type;
allocator_type get_allocator() const { return _Base::get_allocator(); }
protected:
using _Base::_M_get_node;
using _Base::_M_put_node;
using _Base::_M_header;
_Link_type
_M_create_node(const value_type& __x)
{
_Link_type __tmp = _M_get_node();
try
{ _Construct(&__tmp->_M_value_field, __x); }
catch(...)
{
_M_put_node(__tmp);
__throw_exception_again;
}
return __tmp;
}
else {
if (__x == __x->_M_parent->_M_right) {
__x = __x->_M_parent;
_Rb_tree_rotate_left(__x, __root);
}
__x->_M_parent->_M_color = _S_rb_tree_black;
__x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
_Rb_tree_rotate_right(__x->_M_parent->_M_parent, __root);
_Link_type
_M_clone_node(_Link_type __x)
{
_Link_type __tmp = _M_create_node(__x->_M_value_field);
__tmp->_M_color = __x->_M_color;
__tmp->_M_left = 0;
__tmp->_M_right = 0;
return __tmp;
}
}
else {
_Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_left;
if (__y && __y->_M_color == _S_rb_tree_red) {
__x->_M_parent->_M_color = _S_rb_tree_black;
__y->_M_color = _S_rb_tree_black;
__x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
__x = __x->_M_parent->_M_parent;
void
destroy_node(_Link_type __p)
{
_Destroy(&__p->_M_value_field);
_M_put_node(__p);
}
size_type _M_node_count; // keeps track of size of tree
_Compare _M_key_compare;
_Link_type&
_M_root() const { return (_Link_type&) _M_header->_M_parent; }
_Link_type&
_M_leftmost() const { return (_Link_type&) _M_header->_M_left; }
_Link_type&
_M_rightmost() const { return (_Link_type&) _M_header->_M_right; }
static _Link_type&
_S_left(_Link_type __x) { return (_Link_type&)(__x->_M_left); }
static _Link_type&
_S_right(_Link_type __x) { return (_Link_type&)(__x->_M_right); }
static _Link_type&
_S_parent(_Link_type __x) { return (_Link_type&)(__x->_M_parent); }
static reference
_S_value(_Link_type __x) { return __x->_M_value_field; }
static const _Key&
_S_key(_Link_type __x) { return _KeyOfValue()(_S_value(__x)); }
static _Rb_tree_color&
_S_color(_Link_type __x) { return __x->_M_color; }
static _Link_type&
_S_left(_Base_ptr __x) { return (_Link_type&)(__x->_M_left); }
static _Link_type&
_S_right(_Base_ptr __x) { return (_Link_type&)(__x->_M_right); }
static _Link_type&
_S_parent(_Base_ptr __x) { return (_Link_type&)(__x->_M_parent); }
static reference
_S_value(_Base_ptr __x) { return ((_Link_type)__x)->_M_value_field; }
static const _Key&
_S_key(_Base_ptr __x) { return _KeyOfValue()(_S_value(_Link_type(__x)));}
static _Rb_tree_color&
_S_color(_Base_ptr __x) { return (_Link_type(__x)->_M_color); }
static _Link_type
_S_minimum(_Link_type __x)
{ return (_Link_type) _Rb_tree_node_base::_S_minimum(__x); }
static _Link_type
_S_maximum(_Link_type __x)
{ return (_Link_type) _Rb_tree_node_base::_S_maximum(__x); }
public:
typedef _Rb_tree_iterator<value_type, reference, pointer> iterator;
typedef _Rb_tree_iterator<value_type, const_reference, const_pointer>
const_iterator;
typedef reverse_iterator<const_iterator> const_reverse_iterator;
typedef reverse_iterator<iterator> reverse_iterator;
private:
iterator
_M_insert(_Base_ptr __x, _Base_ptr __y, const value_type& __v);
_Link_type
_M_copy(_Link_type __x, _Link_type __p);
void
_M_erase(_Link_type __x);
public:
// allocation/deallocation
_Rb_tree()
: _Base(allocator_type()), _M_node_count(0), _M_key_compare()
{ _M_empty_initialize(); }
_Rb_tree(const _Compare& __comp)
: _Base(allocator_type()), _M_node_count(0), _M_key_compare(__comp)
{ _M_empty_initialize(); }
_Rb_tree(const _Compare& __comp, const allocator_type& __a)
: _Base(__a), _M_node_count(0), _M_key_compare(__comp)
{ _M_empty_initialize(); }
_Rb_tree(const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __x)
: _Base(__x.get_allocator()), _M_node_count(0),
_M_key_compare(__x._M_key_compare)
{
if (__x._M_root() == 0)
_M_empty_initialize();
else
{
_S_color(_M_header) = _M_red;
_M_root() = _M_copy(__x._M_root(), _M_header);
_M_leftmost() = _S_minimum(_M_root());
_M_rightmost() = _S_maximum(_M_root());
}
_M_node_count = __x._M_node_count;
}
else {
if (__x == __x->_M_parent->_M_left) {
__x = __x->_M_parent;
_Rb_tree_rotate_right(__x, __root);
}
__x->_M_parent->_M_color = _S_rb_tree_black;
__x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
_Rb_tree_rotate_left(__x->_M_parent->_M_parent, __root);
~_Rb_tree() { clear(); }
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>&
operator=(const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __x);
private:
void _M_empty_initialize()
{
_S_color(_M_header) = _M_red; // used to distinguish header from
// __root, in iterator.operator++
_M_root() = 0;
_M_leftmost() = _M_header;
_M_rightmost() = _M_header;
}
public:
// Accessors.
_Compare
key_comp() const { return _M_key_compare; }
iterator
begin() { return _M_leftmost(); }
const_iterator
begin() const { return _M_leftmost(); }
iterator
end() { return _M_header; }
const_iterator
end() const { return _M_header; }
reverse_iterator
rbegin() { return reverse_iterator(end()); }
const_reverse_iterator
rbegin() const { return const_reverse_iterator(end()); }
reverse_iterator
rend() { return reverse_iterator(begin()); }
const_reverse_iterator
rend() const { return const_reverse_iterator(begin()); }
bool
empty() const { return _M_node_count == 0; }
size_type
size() const { return _M_node_count; }
size_type
max_size() const { return size_type(-1); }
void
swap(_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __t)
{
std::swap(_M_header, __t._M_header);
std::swap(_M_node_count, __t._M_node_count);
std::swap(_M_key_compare, __t._M_key_compare);
}
// Insert/erase.
pair<iterator,bool>
insert_unique(const value_type& __x);
iterator
insert_equal(const value_type& __x);
iterator
insert_unique(iterator __position, const value_type& __x);
iterator
insert_equal(iterator __position, const value_type& __x);
template<typename _InputIterator>
void
insert_unique(_InputIterator __first, _InputIterator __last);
template<typename _InputIterator>
void
insert_equal(_InputIterator __first, _InputIterator __last);
void
erase(iterator __position);
size_type
erase(const key_type& __x);
void
erase(iterator __first, iterator __last);
void
erase(const key_type* __first, const key_type* __last);
void
clear()
{
if (_M_node_count != 0)
{
_M_erase(_M_root());
_M_leftmost() = _M_header;
_M_root() = 0;
_M_rightmost() = _M_header;
_M_node_count = 0;
}
}
// Set operations.
iterator
find(const key_type& __x);
const_iterator
find(const key_type& __x) const;
size_type
count(const key_type& __x) const;
iterator
lower_bound(const key_type& __x);
const_iterator
lower_bound(const key_type& __x) const;
iterator
upper_bound(const key_type& __x);
const_iterator
upper_bound(const key_type& __x) const;
pair<iterator,iterator>
equal_range(const key_type& __x);
pair<const_iterator, const_iterator>
equal_range(const key_type& __x) const;
// Debugging.
bool
__rb_verify() const;
};
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
inline bool
operator==(const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __x,
const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __y)
{
return __x.size() == __y.size() &&
equal(__x.begin(), __x.end(), __y.begin());
}
}
__root->_M_color = _S_rb_tree_black;
}
inline _Rb_tree_node_base*
_Rb_tree_rebalance_for_erase(_Rb_tree_node_base* __z,
_Rb_tree_node_base*& __root,
_Rb_tree_node_base*& __leftmost,
_Rb_tree_node_base*& __rightmost)
{
_Rb_tree_node_base* __y = __z;
_Rb_tree_node_base* __x = 0;
_Rb_tree_node_base* __x_parent = 0;
if (__y->_M_left == 0) // __z has at most one non-null child. y == z.
__x = __y->_M_right; // __x might be null.
else
if (__y->_M_right == 0) // __z has exactly one non-null child. y == z.
__x = __y->_M_left; // __x is not null.
else { // __z has two non-null children. Set __y to
__y = __y->_M_right; // __z's successor. __x might be null.
while (__y->_M_left != 0)
__y = __y->_M_left;
__x = __y->_M_right;
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
inline bool
operator<(const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __x,
const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __y)
{
return lexicographical_compare(__x.begin(), __x.end(),
__y.begin(), __y.end());
}
if (__y != __z) { // relink y in place of z. y is z's successor
__z->_M_left->_M_parent = __y;
__y->_M_left = __z->_M_left;
if (__y != __z->_M_right) {
__x_parent = __y->_M_parent;
if (__x) __x->_M_parent = __y->_M_parent;
__y->_M_parent->_M_left = __x; // __y must be a child of _M_left
__y->_M_right = __z->_M_right;
__z->_M_right->_M_parent = __y;
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
inline bool
operator!=(const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __x,
const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __y)
{ return !(__x == __y); }
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
inline bool
operator>(const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __x,
const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __y)
{ return __y < __x; }
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
inline bool
operator<=(const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __x,
const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __y)
{ return !(__y < __x); }
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
inline bool
operator>=(const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __x,
const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __y)
{ return !(__x < __y); }
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
inline void
swap(_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __x,
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __y)
{ __x.swap(__y); }
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>&
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::
operator=(const _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>& __x)
{
if (this != &__x)
{
// Note that _Key may be a constant type.
clear();
_M_node_count = 0;
_M_key_compare = __x._M_key_compare;
if (__x._M_root() == 0)
{
_M_root() = 0;
_M_leftmost() = _M_header;
_M_rightmost() = _M_header;
}
else
{
_M_root() = _M_copy(__x._M_root(), _M_header);
_M_leftmost() = _S_minimum(_M_root());
_M_rightmost() = _S_maximum(_M_root());
_M_node_count = __x._M_node_count;
}
}
return *this;
}
else
__x_parent = __y;
if (__root == __z)
__root = __y;
else if (__z->_M_parent->_M_left == __z)
__z->_M_parent->_M_left = __y;
else
__z->_M_parent->_M_right = __y;
__y->_M_parent = __z->_M_parent;
std::swap(__y->_M_color, __z->_M_color);
__y = __z;
// __y now points to node to be actually deleted
}
else { // __y == __z
__x_parent = __y->_M_parent;
if (__x) __x->_M_parent = __y->_M_parent;
if (__root == __z)
__root = __x;
else
if (__z->_M_parent->_M_left == __z)
__z->_M_parent->_M_left = __x;
else
__z->_M_parent->_M_right = __x;
if (__leftmost == __z)
if (__z->_M_right == 0) // __z->_M_left must be null also
__leftmost = __z->_M_parent;
// makes __leftmost == _M_header if __z == __root
else
__leftmost = _Rb_tree_node_base::_S_minimum(__x);
if (__rightmost == __z)
if (__z->_M_left == 0) // __z->_M_right must be null also
__rightmost = __z->_M_parent;
// makes __rightmost == _M_header if __z == __root
else // __x == __z->_M_left
__rightmost = _Rb_tree_node_base::_S_maximum(__x);
}
if (__y->_M_color != _S_rb_tree_red) {
while (__x != __root && (__x == 0 || __x->_M_color == _S_rb_tree_black))
if (__x == __x_parent->_M_left) {
_Rb_tree_node_base* __w = __x_parent->_M_right;
if (__w->_M_color == _S_rb_tree_red) {
__w->_M_color = _S_rb_tree_black;
__x_parent->_M_color = _S_rb_tree_red;
_Rb_tree_rotate_left(__x_parent, __root);
__w = __x_parent->_M_right;
}
if ((__w->_M_left == 0 ||
__w->_M_left->_M_color == _S_rb_tree_black) &&
(__w->_M_right == 0 ||
__w->_M_right->_M_color == _S_rb_tree_black)) {
__w->_M_color = _S_rb_tree_red;
__x = __x_parent;
__x_parent = __x_parent->_M_parent;
} else {
if (__w->_M_right == 0 ||
__w->_M_right->_M_color == _S_rb_tree_black) {
if (__w->_M_left) __w->_M_left->_M_color = _S_rb_tree_black;
__w->_M_color = _S_rb_tree_red;
_Rb_tree_rotate_right(__w, __root);
__w = __x_parent->_M_right;
}
__w->_M_color = __x_parent->_M_color;
__x_parent->_M_color = _S_rb_tree_black;
if (__w->_M_right) __w->_M_right->_M_color = _S_rb_tree_black;
_Rb_tree_rotate_left(__x_parent, __root);
break;
}
} else { // same as above, with _M_right <-> _M_left.
_Rb_tree_node_base* __w = __x_parent->_M_left;
if (__w->_M_color == _S_rb_tree_red) {
__w->_M_color = _S_rb_tree_black;
__x_parent->_M_color = _S_rb_tree_red;
_Rb_tree_rotate_right(__x_parent, __root);
__w = __x_parent->_M_left;
}
if ((__w->_M_right == 0 ||
__w->_M_right->_M_color == _S_rb_tree_black) &&
(__w->_M_left == 0 ||
__w->_M_left->_M_color == _S_rb_tree_black)) {
__w->_M_color = _S_rb_tree_red;
__x = __x_parent;
__x_parent = __x_parent->_M_parent;
} else {
if (__w->_M_left == 0 ||
__w->_M_left->_M_color == _S_rb_tree_black) {
if (__w->_M_right) __w->_M_right->_M_color = _S_rb_tree_black;
__w->_M_color = _S_rb_tree_red;
_Rb_tree_rotate_left(__w, __root);
__w = __x_parent->_M_left;
}
__w->_M_color = __x_parent->_M_color;
__x_parent->_M_color = _S_rb_tree_black;
if (__w->_M_left) __w->_M_left->_M_color = _S_rb_tree_black;
_Rb_tree_rotate_right(__x_parent, __root);
break;
}
}
if (__x) __x->_M_color = _S_rb_tree_black;
}
return __y;
}
// Base class to encapsulate the differences between old SGI-style
// allocators and standard-conforming allocators. In order to avoid
// having an empty base class, we arbitrarily move one of rb_tree's
// data members into the base class.
// _Base for general standard-conforming allocators.
template <class _Tp, class _Alloc, bool _S_instanceless>
class _Rb_tree_alloc_base {
public:
typedef typename _Alloc_traits<_Tp, _Alloc>::allocator_type allocator_type;
allocator_type get_allocator() const { return _M_node_allocator; }
_Rb_tree_alloc_base(const allocator_type& __a)
: _M_node_allocator(__a), _M_header(0) {}
protected:
typename _Alloc_traits<_Rb_tree_node<_Tp>, _Alloc>::allocator_type
_M_node_allocator;
_Rb_tree_node<_Tp>* _M_header;
_Rb_tree_node<_Tp>* _M_get_node()
{ return _M_node_allocator.allocate(1); }
void _M_put_node(_Rb_tree_node<_Tp>* __p)
{ _M_node_allocator.deallocate(__p, 1); }
};
// Specialization for instanceless allocators.
template <class _Tp, class _Alloc>
class _Rb_tree_alloc_base<_Tp, _Alloc, true> {
public:
typedef typename _Alloc_traits<_Tp, _Alloc>::allocator_type allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
_Rb_tree_alloc_base(const allocator_type&) : _M_header(0) {}
protected:
_Rb_tree_node<_Tp>* _M_header;
typedef typename _Alloc_traits<_Rb_tree_node<_Tp>, _Alloc>::_Alloc_type
_Alloc_type;
_Rb_tree_node<_Tp>* _M_get_node()
{ return _Alloc_type::allocate(1); }
void _M_put_node(_Rb_tree_node<_Tp>* __p)
{ _Alloc_type::deallocate(__p, 1); }
};
template <class _Tp, class _Alloc>
struct _Rb_tree_base
: public _Rb_tree_alloc_base<_Tp, _Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
{
typedef _Rb_tree_alloc_base<_Tp, _Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
_Base;
typedef typename _Base::allocator_type allocator_type;
_Rb_tree_base(const allocator_type& __a)
: _Base(__a) { _M_header = _M_get_node(); }
~_Rb_tree_base() { _M_put_node(_M_header); }
};
template <class _Key, class _Value, class _KeyOfValue, class _Compare,
class _Alloc = allocator<_Value> >
class _Rb_tree : protected _Rb_tree_base<_Value, _Alloc> {
typedef _Rb_tree_base<_Value, _Alloc> _Base;
protected:
typedef _Rb_tree_node_base* _Base_ptr;
typedef _Rb_tree_node<_Value> _Rb_tree_node;
typedef _Rb_tree_Color_type _Color_type;
public:
typedef _Key key_type;
typedef _Value value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef _Rb_tree_node* _Link_type;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef typename _Base::allocator_type allocator_type;
allocator_type get_allocator() const { return _Base::get_allocator(); }
protected:
using _Base::_M_get_node;
using _Base::_M_put_node;
using _Base::_M_header;
protected:
_Link_type
_M_create_node(const value_type& __x)
{
_Link_type __tmp = _M_get_node();
try {
_Construct(&__tmp->_M_value_field, __x);
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::
_M_insert(_Base_ptr __x_, _Base_ptr __y_, const _Val& __v)
{
_Link_type __x = (_Link_type) __x_;
_Link_type __y = (_Link_type) __y_;
_Link_type __z;
if (__y == _M_header || __x != 0 ||
_M_key_compare(_KeyOfValue()(__v), _S_key(__y)))
{
__z = _M_create_node(__v);
_S_left(__y) = __z; // also makes _M_leftmost() = __z
// when __y == _M_header
if (__y == _M_header)
{
_M_root() = __z;
_M_rightmost() = __z;
}
else if (__y == _M_leftmost())
_M_leftmost() = __z; // maintain _M_leftmost() pointing to min node
}
else
{
__z = _M_create_node(__v);
_S_right(__y) = __z;
// Maintain _M_rightmost() pointing to max node.
if (__y == _M_rightmost())
_M_rightmost() = __z;
}
_S_parent(__z) = __y;
_S_left(__z) = 0;
_S_right(__z) = 0;
_Rb_tree_rebalance(__z, _M_header->_M_parent);
++_M_node_count;
return iterator(__z);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::
insert_equal(const _Val& __v)
{
_Link_type __y = _M_header;
_Link_type __x = _M_root();
while (__x != 0)
{
__y = __x;
__x = _M_key_compare(_KeyOfValue()(__v), _S_key(__x)) ?
_S_left(__x) : _S_right(__x);
}
return _M_insert(__x, __y, __v);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
pair<typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::iterator,
bool>
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::
insert_unique(const _Val& __v)
{
_Link_type __y = _M_header;
_Link_type __x = _M_root();
bool __comp = true;
while (__x != 0)
{
__y = __x;
__comp = _M_key_compare(_KeyOfValue()(__v), _S_key(__x));
__x = __comp ? _S_left(__x) : _S_right(__x);
}
iterator __j = iterator(__y);
if (__comp)
if (__j == begin())
return pair<iterator,bool>(_M_insert(__x, __y, __v), true);
else
--__j;
if (_M_key_compare(_S_key(__j._M_node), _KeyOfValue()(__v)))
return pair<iterator,bool>(_M_insert(__x, __y, __v), true);
return pair<iterator,bool>(__j, false);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
insert_unique(iterator __position, const _Val& __v)
{
if (__position._M_node == _M_header->_M_left)
{
// begin()
if (size() > 0 &&
_M_key_compare(_KeyOfValue()(__v), _S_key(__position._M_node)))
return _M_insert(__position._M_node, __position._M_node, __v);
// first argument just needs to be non-null
else
return insert_unique(__v).first;
}
else if (__position._M_node == _M_header)
{
// end()
if (_M_key_compare(_S_key(_M_rightmost()), _KeyOfValue()(__v)))
return _M_insert(0, _M_rightmost(), __v);
else
return insert_unique(__v).first;
}
else
{
iterator __before = __position;
--__before;
if (_M_key_compare(_S_key(__before._M_node), _KeyOfValue()(__v))
&& _M_key_compare(_KeyOfValue()(__v),_S_key(__position._M_node)))
{
if (_S_right(__before._M_node) == 0)
return _M_insert(0, __before._M_node, __v);
else
return _M_insert(__position._M_node, __position._M_node, __v);
// first argument just needs to be non-null
}
else
return insert_unique(__v).first;
}
}
catch(...)
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::
insert_equal(iterator __position, const _Val& __v)
{
if (__position._M_node == _M_header->_M_left)
{
// begin()
if (size() > 0 &&
!_M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__v)))
return _M_insert(__position._M_node, __position._M_node, __v);
// first argument just needs to be non-null
else
return insert_equal(__v);
}
else if (__position._M_node == _M_header)
{
// end()
if (!_M_key_compare(_KeyOfValue()(__v), _S_key(_M_rightmost())))
return _M_insert(0, _M_rightmost(), __v);
else
return insert_equal(__v);
}
else
{
iterator __before = __position;
--__before;
if (!_M_key_compare(_KeyOfValue()(__v), _S_key(__before._M_node))
&& !_M_key_compare(_S_key(__position._M_node),
_KeyOfValue()(__v)))
{
if (_S_right(__before._M_node) == 0)
return _M_insert(0, __before._M_node, __v);
else
return _M_insert(__position._M_node, __position._M_node, __v);
// first argument just needs to be non-null
}
else
return insert_equal(__v);
}
}
template<typename _Key, typename _Val, typename _KoV,
typename _Cmp, typename _Alloc>
template<class _II>
void
_Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>::
insert_equal(_II __first, _II __last)
{
_M_put_node(__tmp);
__throw_exception_again;
for ( ; __first != __last; ++__first)
insert_equal(*__first);
}
return __tmp;
}
_Link_type _M_clone_node(_Link_type __x)
{
_Link_type __tmp = _M_create_node(__x->_M_value_field);
__tmp->_M_color = __x->_M_color;
__tmp->_M_left = 0;
__tmp->_M_right = 0;
return __tmp;
}
template<typename _Key, typename _Val, typename _KoV,
typename _Cmp, typename _Alloc>
template<class _II>
void
_Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>::
insert_unique(_II __first, _II __last)
{
for ( ; __first != __last; ++__first)
insert_unique(*__first);
}
void
destroy_node(_Link_type __p)
{
_Destroy(&__p->_M_value_field);
_M_put_node(__p);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
inline void
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::erase(iterator __position)
{
_Link_type __y =
(_Link_type) _Rb_tree_rebalance_for_erase(__position._M_node,
_M_header->_M_parent,
_M_header->_M_left,
_M_header->_M_right);
destroy_node(__y);
--_M_node_count;
}
protected:
size_type _M_node_count; // keeps track of size of tree
_Compare _M_key_compare;
_Link_type& _M_root() const
{ return (_Link_type&) _M_header->_M_parent; }
_Link_type& _M_leftmost() const
{ return (_Link_type&) _M_header->_M_left; }
_Link_type& _M_rightmost() const
{ return (_Link_type&) _M_header->_M_right; }
static _Link_type& _S_left(_Link_type __x)
{ return (_Link_type&)(__x->_M_left); }
static _Link_type& _S_right(_Link_type __x)
{ return (_Link_type&)(__x->_M_right); }
static _Link_type& _S_parent(_Link_type __x)
{ return (_Link_type&)(__x->_M_parent); }
static reference _S_value(_Link_type __x)
{ return __x->_M_value_field; }
static const _Key& _S_key(_Link_type __x)
{ return _KeyOfValue()(_S_value(__x)); }
static _Color_type& _S_color(_Link_type __x)
{ return (_Color_type&)(__x->_M_color); }
static _Link_type& _S_left(_Base_ptr __x)
{ return (_Link_type&)(__x->_M_left); }
static _Link_type& _S_right(_Base_ptr __x)
{ return (_Link_type&)(__x->_M_right); }
static _Link_type& _S_parent(_Base_ptr __x)
{ return (_Link_type&)(__x->_M_parent); }
static reference _S_value(_Base_ptr __x)
{ return ((_Link_type)__x)->_M_value_field; }
static const _Key& _S_key(_Base_ptr __x)
{ return _KeyOfValue()(_S_value(_Link_type(__x)));}
static _Color_type& _S_color(_Base_ptr __x)
{ return (_Color_type&)(_Link_type(__x)->_M_color); }
static _Link_type _S_minimum(_Link_type __x)
{ return (_Link_type) _Rb_tree_node_base::_S_minimum(__x); }
static _Link_type _S_maximum(_Link_type __x)
{ return (_Link_type) _Rb_tree_node_base::_S_maximum(__x); }
public:
typedef _Rb_tree_iterator<value_type, reference, pointer> iterator;
typedef _Rb_tree_iterator<value_type, const_reference, const_pointer>
const_iterator;
typedef reverse_iterator<const_iterator> const_reverse_iterator;
typedef reverse_iterator<iterator> reverse_iterator;
private:
iterator _M_insert(_Base_ptr __x, _Base_ptr __y, const value_type& __v);
_Link_type _M_copy(_Link_type __x, _Link_type __p);
void _M_erase(_Link_type __x);
public:
// allocation/deallocation
_Rb_tree()
: _Base(allocator_type()), _M_node_count(0), _M_key_compare()
{ _M_empty_initialize(); }
_Rb_tree(const _Compare& __comp)
: _Base(allocator_type()), _M_node_count(0), _M_key_compare(__comp)
{ _M_empty_initialize(); }
_Rb_tree(const _Compare& __comp, const allocator_type& __a)
: _Base(__a), _M_node_count(0), _M_key_compare(__comp)
{ _M_empty_initialize(); }
_Rb_tree(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x)
: _Base(__x.get_allocator()),
_M_node_count(0), _M_key_compare(__x._M_key_compare)
{
if (__x._M_root() == 0)
_M_empty_initialize();
else {
_S_color(_M_header) = _S_rb_tree_red;
_M_root() = _M_copy(__x._M_root(), _M_header);
_M_leftmost() = _S_minimum(_M_root());
_M_rightmost() = _S_maximum(_M_root());
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::size_type
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::erase(const _Key& __x)
{
pair<iterator,iterator> __p = equal_range(__x);
size_type __n = distance(__p.first, __p.second);
erase(__p.first, __p.second);
return __n;
}
_M_node_count = __x._M_node_count;
}
~_Rb_tree() { clear(); }
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>&
operator=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x);
private:
void _M_empty_initialize() {
_S_color(_M_header) = _S_rb_tree_red; // used to distinguish header from
// __root, in iterator.operator++
_M_root() = 0;
_M_leftmost() = _M_header;
_M_rightmost() = _M_header;
}
public:
// accessors:
_Compare key_comp() const { return _M_key_compare; }
iterator begin() { return _M_leftmost(); }
const_iterator begin() const { return _M_leftmost(); }
iterator end() { return _M_header; }
const_iterator end() const { return _M_header; }
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
bool empty() const { return _M_node_count == 0; }
size_type size() const { return _M_node_count; }
size_type max_size() const { return size_type(-1); }
void swap(_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __t) {
std::swap(_M_header, __t._M_header);
std::swap(_M_node_count, __t._M_node_count);
std::swap(_M_key_compare, __t._M_key_compare);
}
public:
// insert/erase
pair<iterator,bool> insert_unique(const value_type& __x);
iterator insert_equal(const value_type& __x);
iterator insert_unique(iterator __position, const value_type& __x);
iterator insert_equal(iterator __position, const value_type& __x);
template <class _InputIterator>
void insert_unique(_InputIterator __first, _InputIterator __last);
template <class _InputIterator>
void insert_equal(_InputIterator __first, _InputIterator __last);
void erase(iterator __position);
size_type erase(const key_type& __x);
void erase(iterator __first, iterator __last);
void erase(const key_type* __first, const key_type* __last);
void clear() {
if (_M_node_count != 0) {
_M_erase(_M_root());
_M_leftmost() = _M_header;
_M_root() = 0;
_M_rightmost() = _M_header;
_M_node_count = 0;
template<typename _Key, typename _Val, typename _KoV,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key, _Val, _KoV, _Compare, _Alloc>::_Link_type
_Rb_tree<_Key,_Val,_KoV,_Compare,_Alloc>::
_M_copy(_Link_type __x, _Link_type __p)
{
// Structural copy. __x and __p must be non-null.
_Link_type __top = _M_clone_node(__x);
__top->_M_parent = __p;
try
{
if (__x->_M_right)
__top->_M_right = _M_copy(_S_right(__x), __top);
__p = __top;
__x = _S_left(__x);
while (__x != 0)
{
_Link_type __y = _M_clone_node(__x);
__p->_M_left = __y;
__y->_M_parent = __p;
if (__x->_M_right)
__y->_M_right = _M_copy(_S_right(__x), __y);
__p = __y;
__x = _S_left(__x);
}
}
catch(...)
{
_M_erase(__top);
__throw_exception_again;
}
return __top;
}
}
public:
// set operations:
iterator find(const key_type& __x);
const_iterator find(const key_type& __x) const;
size_type count(const key_type& __x) const;
iterator lower_bound(const key_type& __x);
const_iterator lower_bound(const key_type& __x) const;
iterator upper_bound(const key_type& __x);
const_iterator upper_bound(const key_type& __x) const;
pair<iterator,iterator> equal_range(const key_type& __x);
pair<const_iterator, const_iterator> equal_range(const key_type& __x) const;
public:
// Debugging.
bool __rb_verify() const;
};
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline bool
operator==(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x,
const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y)
{
return __x.size() == __y.size() &&
equal(__x.begin(), __x.end(), __y.begin());
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline bool
operator<(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x,
const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y)
{
return lexicographical_compare(__x.begin(), __x.end(),
__y.begin(), __y.end());
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline bool
operator!=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x,
const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y) {
return !(__x == __y);
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline bool
operator>(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x,
const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y) {
return __y < __x;
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline bool
operator<=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x,
const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y) {
return !(__y < __x);
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline bool
operator>=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x,
const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y) {
return !(__x < __y);
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline void
swap(_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x,
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y)
{
__x.swap(__y);
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>&
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::operator=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x)
{
if (this != &__x) {
// Note that _Key may be a constant type.
clear();
_M_node_count = 0;
_M_key_compare = __x._M_key_compare;
if (__x._M_root() == 0) {
_M_root() = 0;
_M_leftmost() = _M_header;
_M_rightmost() = _M_header;
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
void
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::_M_erase(_Link_type __x)
{
// Erase without rebalancing.
while (__x != 0)
{
_M_erase(_S_right(__x));
_Link_type __y = _S_left(__x);
destroy_node(__x);
__x = __y;
}
}
else {
_M_root() = _M_copy(__x._M_root(), _M_header);
_M_leftmost() = _S_minimum(_M_root());
_M_rightmost() = _S_maximum(_M_root());
_M_node_count = __x._M_node_count;
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
void
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::
erase(iterator __first, iterator __last)
{
if (__first == begin() && __last == end())
clear();
else
while (__first != __last) erase(__first++);
}
}
return *this;
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::_M_insert(_Base_ptr __x_, _Base_ptr __y_, const _Value& __v)
{
_Link_type __x = (_Link_type) __x_;
_Link_type __y = (_Link_type) __y_;
_Link_type __z;
if (__y == _M_header || __x != 0 ||
_M_key_compare(_KeyOfValue()(__v), _S_key(__y))) {
__z = _M_create_node(__v);
_S_left(__y) = __z; // also makes _M_leftmost() = __z
// when __y == _M_header
if (__y == _M_header) {
_M_root() = __z;
_M_rightmost() = __z;
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
void
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::
erase(const _Key* __first, const _Key* __last)
{
while (__first != __last)
erase(*__first++);
}
else if (__y == _M_leftmost())
_M_leftmost() = __z; // maintain _M_leftmost() pointing to min node
}
else {
__z = _M_create_node(__v);
_S_right(__y) = __z;
if (__y == _M_rightmost())
_M_rightmost() = __z; // maintain _M_rightmost() pointing to max node
}
_S_parent(__z) = __y;
_S_left(__z) = 0;
_S_right(__z) = 0;
_Rb_tree_rebalance(__z, _M_header->_M_parent);
++_M_node_count;
return iterator(__z);
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::insert_equal(const _Value& __v)
{
_Link_type __y = _M_header;
_Link_type __x = _M_root();
while (__x != 0) {
__y = __x;
__x = _M_key_compare(_KeyOfValue()(__v), _S_key(__x)) ?
_S_left(__x) : _S_right(__x);
}
return _M_insert(__x, __y, __v);
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
pair<typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator,
bool>
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::insert_unique(const _Value& __v)
{
_Link_type __y = _M_header;
_Link_type __x = _M_root();
bool __comp = true;
while (__x != 0) {
__y = __x;
__comp = _M_key_compare(_KeyOfValue()(__v), _S_key(__x));
__x = __comp ? _S_left(__x) : _S_right(__x);
}
iterator __j = iterator(__y);
if (__comp)
if (__j == begin())
return pair<iterator,bool>(_M_insert(__x, __y, __v), true);
else
--__j;
if (_M_key_compare(_S_key(__j._M_node), _KeyOfValue()(__v)))
return pair<iterator,bool>(_M_insert(__x, __y, __v), true);
return pair<iterator,bool>(__j, false);
}
template <class _Key, class _Val, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>
::insert_unique(iterator __position, const _Val& __v)
{
if (__position._M_node == _M_header->_M_left) { // begin()
if (size() > 0 &&
_M_key_compare(_KeyOfValue()(__v), _S_key(__position._M_node)))
return _M_insert(__position._M_node, __position._M_node, __v);
// first argument just needs to be non-null
else
return insert_unique(__v).first;
} else if (__position._M_node == _M_header) { // end()
if (_M_key_compare(_S_key(_M_rightmost()), _KeyOfValue()(__v)))
return _M_insert(0, _M_rightmost(), __v);
else
return insert_unique(__v).first;
} else {
iterator __before = __position;
--__before;
if (_M_key_compare(_S_key(__before._M_node), _KeyOfValue()(__v))
&& _M_key_compare(_KeyOfValue()(__v), _S_key(__position._M_node))) {
if (_S_right(__before._M_node) == 0)
return _M_insert(0, __before._M_node, __v);
else
return _M_insert(__position._M_node, __position._M_node, __v);
// first argument just needs to be non-null
} else
return insert_unique(__v).first;
}
}
template <class _Key, class _Val, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>
::insert_equal(iterator __position, const _Val& __v)
{
if (__position._M_node == _M_header->_M_left) { // begin()
if (size() > 0 &&
!_M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__v)))
return _M_insert(__position._M_node, __position._M_node, __v);
// first argument just needs to be non-null
else
return insert_equal(__v);
} else if (__position._M_node == _M_header) {// end()
if (!_M_key_compare(_KeyOfValue()(__v), _S_key(_M_rightmost())))
return _M_insert(0, _M_rightmost(), __v);
else
return insert_equal(__v);
} else {
iterator __before = __position;
--__before;
if (!_M_key_compare(_KeyOfValue()(__v), _S_key(__before._M_node))
&& !_M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__v))) {
if (_S_right(__before._M_node) == 0)
return _M_insert(0, __before._M_node, __v);
else
return _M_insert(__position._M_node, __position._M_node, __v);
// first argument just needs to be non-null
} else
return insert_equal(__v);
}
}
template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc>
template<class _II>
void _Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
::insert_equal(_II __first, _II __last)
{
for ( ; __first != __last; ++__first)
insert_equal(*__first);
}
template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc>
template<class _II>
void _Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
::insert_unique(_II __first, _II __last) {
for ( ; __first != __last; ++__first)
insert_unique(*__first);
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline void _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::erase(iterator __position)
{
_Link_type __y =
(_Link_type) _Rb_tree_rebalance_for_erase(__position._M_node,
_M_header->_M_parent,
_M_header->_M_left,
_M_header->_M_right);
destroy_node(__y);
--_M_node_count;
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::size_type
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::erase(const _Key& __x)
{
pair<iterator,iterator> __p = equal_range(__x);
size_type __n = distance(__p.first, __p.second);
erase(__p.first, __p.second);
return __n;
}
template <class _Key, class _Val, class _KoV, class _Compare, class _Alloc>
typename _Rb_tree<_Key, _Val, _KoV, _Compare, _Alloc>::_Link_type
_Rb_tree<_Key,_Val,_KoV,_Compare,_Alloc>
::_M_copy(_Link_type __x, _Link_type __p)
{
// structural copy. __x and __p must be non-null.
_Link_type __top = _M_clone_node(__x);
__top->_M_parent = __p;
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::find(const _Key& __k)
{
_Link_type __y = _M_header; // Last node which is not less than __k.
_Link_type __x = _M_root(); // Current node.
while (__x != 0)
if (!_M_key_compare(_S_key(__x), __k))
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x);
iterator __j = iterator(__y);
return (__j == end() || _M_key_compare(__k, _S_key(__j._M_node))) ?
end() : __j;
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::const_iterator
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::
find(const _Key& __k) const
{
_Link_type __y = _M_header; // Last node which is not less than __k.
_Link_type __x = _M_root(); // Current node.
try {
if (__x->_M_right)
__top->_M_right = _M_copy(_S_right(__x), __top);
__p = __top;
__x = _S_left(__x);
while (__x != 0) {
_Link_type __y = _M_clone_node(__x);
__p->_M_left = __y;
__y->_M_parent = __p;
if (__x->_M_right)
__y->_M_right = _M_copy(_S_right(__x), __y);
__p = __y;
__x = _S_left(__x);
while (__x != 0)
{
if (!_M_key_compare(_S_key(__x), __k))
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x);
}
const_iterator __j = const_iterator(__y);
return (__j == end() || _M_key_compare(__k, _S_key(__j._M_node))) ?
end() : __j;
}
}
catch(...)
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::size_type
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::
count(const _Key& __k) const
{
_M_erase(__top);
__throw_exception_again;
pair<const_iterator, const_iterator> __p = equal_range(__k);
size_type __n = distance(__p.first, __p.second);
return __n;
}
return __top;
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
void _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::_M_erase(_Link_type __x)
{
// erase without rebalancing
while (__x != 0) {
_M_erase(_S_right(__x));
_Link_type __y = _S_left(__x);
destroy_node(__x);
__x = __y;
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::
lower_bound(const _Key& __k)
{
_Link_type __y = _M_header; /* Last node which is not less than __k. */
_Link_type __x = _M_root(); /* Current node. */
while (__x != 0)
if (!_M_key_compare(_S_key(__x), __k))
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x);
return iterator(__y);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::const_iterator
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::
lower_bound(const _Key& __k) const
{
_Link_type __y = _M_header; /* Last node which is not less than __k. */
_Link_type __x = _M_root(); /* Current node. */
while (__x != 0)
if (!_M_key_compare(_S_key(__x), __k))
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x);
return const_iterator(__y);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::
upper_bound(const _Key& __k)
{
_Link_type __y = _M_header; /* Last node which is greater than __k. */
_Link_type __x = _M_root(); /* Current node. */
while (__x != 0)
if (_M_key_compare(__k, _S_key(__x)))
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x);
return iterator(__y);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::const_iterator
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::
upper_bound(const _Key& __k) const
{
_Link_type __y = _M_header; /* Last node which is greater than __k. */
_Link_type __x = _M_root(); /* Current node. */
while (__x != 0)
if (_M_key_compare(__k, _S_key(__x)))
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x);
return const_iterator(__y);
}
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
inline
pair<typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::iterator,
typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::iterator>
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::
equal_range(const _Key& __k)
{ return pair<iterator, iterator>(lower_bound(__k), upper_bound(__k)); }
template<typename _Key, typename _Val, typename _KoV,
typename _Compare, typename _Alloc>
inline
pair<typename _Rb_tree<_Key, _Val, _KoV, _Compare, _Alloc>::const_iterator,
typename _Rb_tree<_Key, _Val, _KoV, _Compare, _Alloc>::const_iterator>
_Rb_tree<_Key, _Val, _KoV, _Compare, _Alloc>
::equal_range(const _Key& __k) const
{
return pair<const_iterator,const_iterator>(lower_bound(__k),
upper_bound(__k));
}
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
void _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::erase(iterator __first, iterator __last)
{
if (__first == begin() && __last == end())
clear();
else
while (__first != __last) erase(__first++);
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
void _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::erase(const _Key* __first, const _Key* __last)
{
while (__first != __last) erase(*__first++);
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::find(const _Key& __k)
{
_Link_type __y = _M_header; // Last node which is not less than __k.
_Link_type __x = _M_root(); // Current node.
while (__x != 0)
if (!_M_key_compare(_S_key(__x), __k))
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x);
iterator __j = iterator(__y);
return (__j == end() || _M_key_compare(__k, _S_key(__j._M_node))) ?
end() : __j;
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::const_iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::find(const _Key& __k) const
{
_Link_type __y = _M_header; /* Last node which is not less than __k. */
_Link_type __x = _M_root(); /* Current node. */
while (__x != 0) {
if (!_M_key_compare(_S_key(__x), __k))
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x);
inline int
__black_count(_Rb_tree_node_base* __node, _Rb_tree_node_base* __root)
{
if (__node == 0)
return 0;
int __sum = 0;
do
{
if (__node->_M_color == _M_black)
++__sum;
if (__node == __root)
break;
__node = __node->_M_parent;
}
while (1);
return __sum;
}
const_iterator __j = const_iterator(__y);
return (__j == end() || _M_key_compare(__k, _S_key(__j._M_node))) ?
end() : __j;
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::size_type
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::count(const _Key& __k) const
{
pair<const_iterator, const_iterator> __p = equal_range(__k);
size_type __n = distance(__p.first, __p.second);
return __n;
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::lower_bound(const _Key& __k)
{
_Link_type __y = _M_header; /* Last node which is not less than __k. */
_Link_type __x = _M_root(); /* Current node. */
while (__x != 0)
if (!_M_key_compare(_S_key(__x), __k))
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x);
return iterator(__y);
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::const_iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::lower_bound(const _Key& __k) const
{
_Link_type __y = _M_header; /* Last node which is not less than __k. */
_Link_type __x = _M_root(); /* Current node. */
while (__x != 0)
if (!_M_key_compare(_S_key(__x), __k))
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x);
return const_iterator(__y);
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::upper_bound(const _Key& __k)
{
_Link_type __y = _M_header; /* Last node which is greater than __k. */
_Link_type __x = _M_root(); /* Current node. */
while (__x != 0)
if (_M_key_compare(__k, _S_key(__x)))
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x);
return iterator(__y);
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::const_iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::upper_bound(const _Key& __k) const
{
_Link_type __y = _M_header; /* Last node which is greater than __k. */
_Link_type __x = _M_root(); /* Current node. */
while (__x != 0)
if (_M_key_compare(__k, _S_key(__x)))
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x);
return const_iterator(__y);
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline
pair<typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator,
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator>
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::equal_range(const _Key& __k)
{
return pair<iterator, iterator>(lower_bound(__k), upper_bound(__k));
}
template <class _Key, class _Value, class _KoV, class _Compare, class _Alloc>
inline
pair<typename _Rb_tree<_Key, _Value, _KoV, _Compare, _Alloc>::const_iterator,
typename _Rb_tree<_Key, _Value, _KoV, _Compare, _Alloc>::const_iterator>
_Rb_tree<_Key, _Value, _KoV, _Compare, _Alloc>
::equal_range(const _Key& __k) const
{
return pair<const_iterator,const_iterator>(lower_bound(__k),
upper_bound(__k));
}
inline int
__black_count(_Rb_tree_node_base* __node, _Rb_tree_node_base* __root)
{
if (__node == 0)
return 0;
int __sum = 0;
do {
if (__node->_M_color == _S_rb_tree_black)
++__sum;
if (__node == __root)
break;
__node = __node->_M_parent;
} while (1);
return __sum;
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
bool _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::__rb_verify() const
{
if (_M_node_count == 0 || begin() == end())
return _M_node_count == 0 && begin() == end() &&
_M_header->_M_left == _M_header && _M_header->_M_right == _M_header;
template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc>
bool
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::__rb_verify() const
{
if (_M_node_count == 0 || begin() == end())
return _M_node_count == 0 && begin() == end() &&
_M_header->_M_left == _M_header && _M_header->_M_right == _M_header;
int __len = __black_count(_M_leftmost(), _M_root());
for (const_iterator __it = begin(); __it != end(); ++__it) {
_Link_type __x = (_Link_type) __it._M_node;
_Link_type __L = _S_left(__x);
_Link_type __R = _S_right(__x);
if (__x->_M_color == _S_rb_tree_red)
if ((__L && __L->_M_color == _S_rb_tree_red) ||
(__R && __R->_M_color == _S_rb_tree_red))
return false;
if (__L && _M_key_compare(_S_key(__x), _S_key(__L)))
return false;
if (__R && _M_key_compare(_S_key(__R), _S_key(__x)))
int __len = __black_count(_M_leftmost(), _M_root());
for (const_iterator __it = begin(); __it != end(); ++__it)
{
_Link_type __x = (_Link_type) __it._M_node;
_Link_type __L = _S_left(__x);
_Link_type __R = _S_right(__x);
if (__x->_M_color == _M_red)
if ((__L && __L->_M_color == _M_red)
|| (__R && __R->_M_color == _M_red))
return false;
if (__L && _M_key_compare(_S_key(__x), _S_key(__L)))
return false;
if (__R && _M_key_compare(_S_key(__R), _S_key(__x)))
return false;
if (!__L && !__R && __black_count(__x, _M_root()) != __len)
return false;
}
if (_M_leftmost() != _Rb_tree_node_base::_S_minimum(_M_root()))
return false;
if (!__L && !__R && __black_count(__x, _M_root()) != __len)
if (_M_rightmost() != _Rb_tree_node_base::_S_maximum(_M_root()))
return false;
}
if (_M_leftmost() != _Rb_tree_node_base::_S_minimum(_M_root()))
return false;
if (_M_rightmost() != _Rb_tree_node_base::_S_maximum(_M_root()))
return false;
return true;
}
return true;
}
} // namespace std
#endif /* __GLIBCPP_INTERNAL_TREE_H */
// Local Variables:
// mode:C++
// End:
#endif
......@@ -39,12 +39,6 @@
namespace std
{
const int __stl_threshold = 16;
const int __stl_chunk_size = 7;
const int __WORD_BIT = int(CHAR_BIT*sizeof(unsigned int));
const _Rb_tree_Color_type _S_rb_tree_red = false;
const _Rb_tree_Color_type _S_rb_tree_black = true;
template class __malloc_alloc_template<0>;
#ifndef __USE_MALLOC
......@@ -55,5 +49,4 @@ namespace std
void
vector<unsigned int>::
_M_insert_aux(vector<unsigned int>::iterator, unsigned int const &);
} // namespace std
// 2002-03-05 Stephen M. Webb <stephen.webb@bregmasoft.com>
// Copyright (C) 2002 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// 23.2.5 class vector<bool>
#include <vector>
#include <testsuite_hooks.h>
void test01()
{
std::vector<bool>::iterator i;
++i;
}
int main()
{
test01();
return 0;
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment