Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
R
riscv-gcc-1
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
lvzhengyang
riscv-gcc-1
Commits
cca78449
Commit
cca78449
authored
Nov 13, 2019
by
Aldy Hernandez
Committed by
Aldy Hernandez
Nov 13, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Move plain value_range things to value-range.[hc]*.
From-SVN: r278153
parent
425ea30f
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
1790 additions
and
1747 deletions
+1790
-1747
gcc/ChangeLog
+22
-1
gcc/Makefile.in
+2
-0
gcc/gengtype.c
+1
-0
gcc/tree-vrp.c
+7
-1543
gcc/tree-vrp.h
+1
-203
gcc/value-range.cc
+1541
-0
gcc/value-range.h
+216
-0
No files found.
gcc/ChangeLog
View file @
cca78449
2019-11-13 Aldy Hernandez <aldyh@redhat.com>
* Makefile.in (OBJS): Add value-range.o.
(GTFILES): Add value-range.h.
* gengtype.c (open_base_files): Add value-range.h to list of
header files.
* tree-vrp.c: Move the following value_range related functions:
ranges_from_anti_range, value_range, check, equal_p, symbolic_p,
constant_p, set_undefined, set_varying, may_contain_p,
singleton_p, type, dump, dump_value_range, debug, vrp_val_max,
vrp_val_min, vrp_val_is_min, vrp_val_is_max, set, set_nonzero,
set_zero, vrp_operand_equal_p, range_has_numeric_bounds_p,
value_inside_range, ranges_from_anti_range, union_ranges,
intersect_ranges, intersect_helper, union_helper, union_,
normalize_addresses, normalize_symbolics, num_pairs, lower_bound,
upper_bound, contains_p, invert, intersect...
* value-range.cc: ...to here.
* tree-vrp.h: Move class value_range, enum_value_range_kind, and
associated inline methods from here...
* value-range.h: ...to here.
2019-11-13 Dragan Mladjenovic <dmladjenovic@wavecomp.com>
2019-11-13 Dragan Mladjenovic <dmladjenovic@wavecomp.com>
* config/mips/mips.md (rotr<mode>3): Sanitize the constant argument
* config/mips/mips.md (rotr<mode>3): Sanitize the constant argument
instead of asserting its value.
instead of asserting its value.
2019-11-13 Aldy Hernandez <aldyh@redhat.com>
(
2019-11-13 Aldy Hernandez <aldyh@redhat.com>
* gimple-fold.c (size_must_be_zero_p): Rewrite use of value_range
* gimple-fold.c (size_must_be_zero_p): Rewrite use of value_range
constructors and set methods so value_range_kind is the last
constructors and set methods so value_range_kind is the last
gcc/Makefile.in
View file @
cca78449
...
@@ -1602,6 +1602,7 @@ OBJS = \
...
@@ -1602,6 +1602,7 @@ OBJS = \
typed-splay-tree.o
\
typed-splay-tree.o
\
unique-ptr-tests.o
\
unique-ptr-tests.o
\
valtrack.o
\
valtrack.o
\
value-range.o
\
value-prof.o
\
value-prof.o
\
var-tracking.o
\
var-tracking.o
\
varasm.o
\
varasm.o
\
...
@@ -2589,6 +2590,7 @@ GTFILES = $(CPPLIB_H) $(srcdir)/input.h $(srcdir)/coretypes.h \
...
@@ -2589,6 +2590,7 @@ GTFILES = $(CPPLIB_H) $(srcdir)/input.h $(srcdir)/coretypes.h \
$(srcdir)
/target-globals.h
\
$(srcdir)
/target-globals.h
\
$(srcdir)
/ipa-predicate.h
\
$(srcdir)
/ipa-predicate.h
\
$(srcdir)
/ipa-fnsummary.h
\
$(srcdir)
/ipa-fnsummary.h
\
$(srcdir)
/value-range.h
\
$(srcdir)
/vtable-verify.c
\
$(srcdir)
/vtable-verify.c
\
$(srcdir)
/asan.c
\
$(srcdir)
/asan.c
\
$(srcdir)
/ubsan.c
\
$(srcdir)
/ubsan.c
\
...
...
gcc/gengtype.c
View file @
cca78449
...
@@ -1717,6 +1717,7 @@ open_base_files (void)
...
@@ -1717,6 +1717,7 @@ open_base_files (void)
"explow.h"
,
"calls.h"
,
"memmodel.h"
,
"emit-rtl.h"
,
"varasm.h"
,
"explow.h"
,
"calls.h"
,
"memmodel.h"
,
"emit-rtl.h"
,
"varasm.h"
,
"stmt.h"
,
"expr.h"
,
"alloc-pool.h"
,
"cselib.h"
,
"insn-addr.h"
,
"stmt.h"
,
"expr.h"
,
"alloc-pool.h"
,
"cselib.h"
,
"insn-addr.h"
,
"optabs.h"
,
"libfuncs.h"
,
"debug.h"
,
"internal-fn.h"
,
"gimple-fold.h"
,
"optabs.h"
,
"libfuncs.h"
,
"debug.h"
,
"internal-fn.h"
,
"gimple-fold.h"
,
"value-range.h"
,
"tree-eh.h"
,
"gimple-iterator.h"
,
"gimple-ssa.h"
,
"tree-cfg.h"
,
"tree-eh.h"
,
"gimple-iterator.h"
,
"gimple-ssa.h"
,
"tree-cfg.h"
,
"tree-vrp.h"
,
"tree-phinodes.h"
,
"ssa-iterators.h"
,
"stringpool.h"
,
"tree-vrp.h"
,
"tree-phinodes.h"
,
"ssa-iterators.h"
,
"stringpool.h"
,
"tree-ssanames.h"
,
"tree-ssa-loop.h"
,
"tree-ssa-loop-ivopts.h"
,
"tree-ssanames.h"
,
"tree-ssa-loop.h"
,
"tree-ssa-loop-ivopts.h"
,
...
...
gcc/tree-vrp.c
View file @
cca78449
...
@@ -68,10 +68,6 @@ along with GCC; see the file COPYING3. If not see
...
@@ -68,10 +68,6 @@ along with GCC; see the file COPYING3. If not see
#include "builtins.h"
#include "builtins.h"
#include "range-op.h"
#include "range-op.h"
static
bool
ranges_from_anti_range
(
const
value_range
*
ar
,
value_range
*
vr0
,
value_range
*
vr1
);
/* Set of SSA names found live during the RPO traversal of the function
/* Set of SSA names found live during the RPO traversal of the function
for still active basic-blocks. */
for still active basic-blocks. */
static
sbitmap
*
live
;
static
sbitmap
*
live
;
...
@@ -111,11 +107,6 @@ value_range_equiv::set (tree min, tree max, bitmap equiv,
...
@@ -111,11 +107,6 @@ value_range_equiv::set (tree min, tree max, bitmap equiv,
check
();
check
();
}
}
value_range
::
value_range
(
tree
min
,
tree
max
,
value_range_kind
kind
)
{
set
(
min
,
max
,
kind
);
}
value_range_equiv
::
value_range_equiv
(
tree
min
,
tree
max
,
bitmap
equiv
,
value_range_equiv
::
value_range_equiv
(
tree
min
,
tree
max
,
bitmap
equiv
,
value_range_kind
kind
)
value_range_kind
kind
)
{
{
...
@@ -129,21 +120,6 @@ value_range_equiv::value_range_equiv (const value_range &other)
...
@@ -129,21 +120,6 @@ value_range_equiv::value_range_equiv (const value_range &other)
set
(
other
.
min
(),
other
.
max
(),
NULL
,
other
.
kind
());
set
(
other
.
min
(),
other
.
max
(),
NULL
,
other
.
kind
());
}
}
value_range
::
value_range
(
tree
type
)
{
set_varying
(
type
);
}
value_range
::
value_range
(
tree
type
,
const
wide_int
&
wmin
,
const
wide_int
&
wmax
,
enum
value_range_kind
kind
)
{
tree
min
=
wide_int_to_tree
(
type
,
wmin
);
tree
max
=
wide_int_to_tree
(
type
,
wmax
);
gcc_checking_assert
(
kind
==
VR_RANGE
||
kind
==
VR_ANTI_RANGE
);
set
(
min
,
max
,
kind
);
}
/* Like set, but keep the equivalences in place. */
/* Like set, but keep the equivalences in place. */
void
void
...
@@ -173,42 +149,6 @@ value_range_equiv::move (value_range_equiv *from)
...
@@ -173,42 +149,6 @@ value_range_equiv::move (value_range_equiv *from)
from
->
m_equiv
=
NULL
;
from
->
m_equiv
=
NULL
;
}
}
/* Check the validity of the range. */
void
value_range
::
check
()
{
switch
(
m_kind
)
{
case
VR_RANGE
:
case
VR_ANTI_RANGE
:
{
int
cmp
;
gcc_assert
(
m_min
&&
m_max
);
gcc_assert
(
!
TREE_OVERFLOW_P
(
m_min
)
&&
!
TREE_OVERFLOW_P
(
m_max
));
/* Creating ~[-MIN, +MAX] is stupid because that would be
the empty set. */
if
(
INTEGRAL_TYPE_P
(
TREE_TYPE
(
m_min
))
&&
m_kind
==
VR_ANTI_RANGE
)
gcc_assert
(
!
vrp_val_is_min
(
m_min
)
||
!
vrp_val_is_max
(
m_max
));
cmp
=
compare_values
(
m_min
,
m_max
);
gcc_assert
(
cmp
==
0
||
cmp
==
-
1
||
cmp
==
-
2
);
break
;
}
case
VR_UNDEFINED
:
gcc_assert
(
!
min
()
&&
!
max
());
break
;
case
VR_VARYING
:
gcc_assert
(
m_min
&&
m_max
);
break
;
default
:
gcc_unreachable
();
}
}
void
void
value_range_equiv
::
check
()
value_range_equiv
::
check
()
{
{
...
@@ -222,22 +162,6 @@ value_range_equiv::check ()
...
@@ -222,22 +162,6 @@ value_range_equiv::check ()
}
}
}
}
/* Equality operator. We purposely do not overload ==, to avoid
confusion with the equality bitmap in the derived value_range
class. */
bool
value_range
::
equal_p
(
const
value_range
&
other
)
const
{
/* Ignore types for undefined. All undefines are equal. */
if
(
undefined_p
())
return
m_kind
==
other
.
m_kind
;
return
(
m_kind
==
other
.
m_kind
&&
vrp_operand_equal_p
(
m_min
,
other
.
m_min
)
&&
vrp_operand_equal_p
(
m_max
,
other
.
m_max
));
}
/* Return true if the bitmaps B1 and B2 are equal. */
/* Return true if the bitmaps B1 and B2 are equal. */
static
bool
static
bool
...
@@ -262,38 +186,6 @@ value_range_equiv::equal_p (const value_range_equiv &other,
...
@@ -262,38 +186,6 @@ value_range_equiv::equal_p (const value_range_equiv &other,
||
vrp_bitmap_equal_p
(
m_equiv
,
other
.
m_equiv
)));
||
vrp_bitmap_equal_p
(
m_equiv
,
other
.
m_equiv
)));
}
}
/* Return TRUE if this is a symbolic range. */
bool
value_range
::
symbolic_p
()
const
{
return
(
!
varying_p
()
&&
!
undefined_p
()
&&
(
!
is_gimple_min_invariant
(
m_min
)
||
!
is_gimple_min_invariant
(
m_max
)));
}
/* NOTE: This is not the inverse of symbolic_p because the range
could also be varying or undefined. Ideally they should be inverse
of each other, with varying only applying to symbolics. Varying of
constants would be represented as [-MIN, +MAX]. */
bool
value_range
::
constant_p
()
const
{
return
(
!
varying_p
()
&&
!
undefined_p
()
&&
TREE_CODE
(
m_min
)
==
INTEGER_CST
&&
TREE_CODE
(
m_max
)
==
INTEGER_CST
);
}
void
value_range
::
set_undefined
()
{
m_kind
=
VR_UNDEFINED
;
m_min
=
m_max
=
NULL
;
}
void
void
value_range_equiv
::
set_undefined
()
value_range_equiv
::
set_undefined
()
{
{
...
@@ -301,34 +193,12 @@ value_range_equiv::set_undefined ()
...
@@ -301,34 +193,12 @@ value_range_equiv::set_undefined ()
}
}
void
void
value_range
::
set_varying
(
tree
type
)
{
m_kind
=
VR_VARYING
;
if
(
supports_type_p
(
type
))
{
m_min
=
vrp_val_min
(
type
);
m_max
=
vrp_val_max
(
type
);
}
else
/* We can't do anything range-wise with these types. */
m_min
=
m_max
=
error_mark_node
;
}
void
value_range_equiv
::
set_varying
(
tree
type
)
value_range_equiv
::
set_varying
(
tree
type
)
{
{
value_range
::
set_varying
(
type
);
value_range
::
set_varying
(
type
);
equiv_clear
();
equiv_clear
();
}
}
/* Return TRUE if it is possible that range contains VAL. */
bool
value_range
::
may_contain_p
(
tree
val
)
const
{
return
value_inside_range
(
val
)
!=
0
;
}
void
void
value_range_equiv
::
equiv_clear
()
value_range_equiv
::
equiv_clear
()
{
{
...
@@ -356,98 +226,6 @@ value_range_equiv::equiv_add (const_tree var,
...
@@ -356,98 +226,6 @@ value_range_equiv::equiv_add (const_tree var,
bitmap_ior_into
(
m_equiv
,
var_vr
->
m_equiv
);
bitmap_ior_into
(
m_equiv
,
var_vr
->
m_equiv
);
}
}
/* If range is a singleton, place it in RESULT and return TRUE.
Note: A singleton can be any gimple invariant, not just constants.
So, [&x, &x] counts as a singleton. */
bool
value_range
::
singleton_p
(
tree
*
result
)
const
{
if
(
m_kind
==
VR_ANTI_RANGE
)
{
if
(
nonzero_p
())
{
if
(
TYPE_PRECISION
(
type
())
==
1
)
{
if
(
result
)
*
result
=
m_max
;
return
true
;
}
return
false
;
}
if
(
num_pairs
()
==
1
)
{
value_range
vr0
,
vr1
;
ranges_from_anti_range
(
this
,
&
vr0
,
&
vr1
);
return
vr0
.
singleton_p
(
result
);
}
}
if
(
m_kind
==
VR_RANGE
&&
vrp_operand_equal_p
(
min
(),
max
())
&&
is_gimple_min_invariant
(
min
()))
{
if
(
result
)
*
result
=
min
();
return
true
;
}
return
false
;
}
tree
value_range
::
type
()
const
{
gcc_checking_assert
(
m_min
);
return
TREE_TYPE
(
min
());
}
void
value_range
::
dump
(
FILE
*
file
)
const
{
if
(
undefined_p
())
fprintf
(
file
,
"UNDEFINED"
);
else
if
(
m_kind
==
VR_RANGE
||
m_kind
==
VR_ANTI_RANGE
)
{
tree
ttype
=
type
();
print_generic_expr
(
file
,
ttype
);
fprintf
(
file
,
" "
);
fprintf
(
file
,
"%s["
,
(
m_kind
==
VR_ANTI_RANGE
)
?
"~"
:
""
);
if
(
INTEGRAL_TYPE_P
(
ttype
)
&&
!
TYPE_UNSIGNED
(
ttype
)
&&
vrp_val_is_min
(
min
())
&&
TYPE_PRECISION
(
ttype
)
!=
1
)
fprintf
(
file
,
"-INF"
);
else
print_generic_expr
(
file
,
min
());
fprintf
(
file
,
", "
);
if
(
supports_type_p
(
ttype
)
&&
vrp_val_is_max
(
max
())
&&
TYPE_PRECISION
(
ttype
)
!=
1
)
fprintf
(
file
,
"+INF"
);
else
print_generic_expr
(
file
,
max
());
fprintf
(
file
,
"]"
);
}
else
if
(
varying_p
())
{
print_generic_expr
(
file
,
type
());
fprintf
(
file
,
" VARYING"
);
}
else
gcc_unreachable
();
}
void
value_range
::
dump
()
const
{
dump
(
stderr
);
}
void
void
value_range_equiv
::
dump
(
FILE
*
file
)
const
value_range_equiv
::
dump
(
FILE
*
file
)
const
{
{
...
@@ -486,27 +264,6 @@ dump_value_range (FILE *file, const value_range_equiv *vr)
...
@@ -486,27 +264,6 @@ dump_value_range (FILE *file, const value_range_equiv *vr)
vr
->
dump
(
file
);
vr
->
dump
(
file
);
}
}
void
dump_value_range
(
FILE
*
file
,
const
value_range
*
vr
)
{
if
(
!
vr
)
fprintf
(
file
,
"[]"
);
else
vr
->
dump
(
file
);
}
DEBUG_FUNCTION
void
debug
(
const
value_range
*
vr
)
{
dump_value_range
(
stderr
,
vr
);
}
DEBUG_FUNCTION
void
debug
(
const
value_range
&
vr
)
{
dump_value_range
(
stderr
,
&
vr
);
}
DEBUG_FUNCTION
void
DEBUG_FUNCTION
void
debug
(
const
value_range_equiv
*
vr
)
debug
(
const
value_range_equiv
*
vr
)
{
{
...
@@ -567,58 +324,6 @@ static bitmap need_assert_for;
...
@@ -567,58 +324,6 @@ static bitmap need_assert_for;
ASSERT_EXPRs for SSA name N_I should be inserted. */
ASSERT_EXPRs for SSA name N_I should be inserted. */
static
assert_locus
**
asserts_for
;
static
assert_locus
**
asserts_for
;
/* Return the maximum value for TYPE. */
tree
vrp_val_max
(
const_tree
type
)
{
if
(
INTEGRAL_TYPE_P
(
type
))
return
TYPE_MAX_VALUE
(
type
);
if
(
POINTER_TYPE_P
(
type
))
{
wide_int
max
=
wi
::
max_value
(
TYPE_PRECISION
(
type
),
TYPE_SIGN
(
type
));
return
wide_int_to_tree
(
const_cast
<
tree
>
(
type
),
max
);
}
return
NULL_TREE
;
}
/* Return the minimum value for TYPE. */
tree
vrp_val_min
(
const_tree
type
)
{
if
(
INTEGRAL_TYPE_P
(
type
))
return
TYPE_MIN_VALUE
(
type
);
if
(
POINTER_TYPE_P
(
type
))
return
build_zero_cst
(
const_cast
<
tree
>
(
type
));
return
NULL_TREE
;
}
/* Return whether VAL is equal to the maximum value of its type.
We can't do a simple equality comparison with TYPE_MAX_VALUE because
C typedefs and Ada subtypes can produce types whose TYPE_MAX_VALUE
is not == to the integer constant with the same value in the type. */
bool
vrp_val_is_max
(
const_tree
val
)
{
tree
type_max
=
vrp_val_max
(
TREE_TYPE
(
val
));
return
(
val
==
type_max
||
(
type_max
!=
NULL_TREE
&&
operand_equal_p
(
val
,
type_max
,
0
)));
}
/* Return whether VAL is equal to the minimum value of its type. */
bool
vrp_val_is_min
(
const_tree
val
)
{
tree
type_min
=
vrp_val_min
(
TREE_TYPE
(
val
));
return
(
val
==
type_min
||
(
type_min
!=
NULL_TREE
&&
operand_equal_p
(
val
,
type_min
,
0
)));
}
/* VR_TYPE describes a range with mininum value *MIN and maximum
/* VR_TYPE describes a range with mininum value *MIN and maximum
value *MAX. Restrict the range to the set of values that have
value *MAX. Restrict the range to the set of values that have
no bits set outside NONZERO_BITS. Update *MIN and *MAX and
no bits set outside NONZERO_BITS. Update *MIN and *MAX and
...
@@ -691,184 +396,6 @@ intersect_range_with_nonzero_bits (enum value_range_kind vr_type,
...
@@ -691,184 +396,6 @@ intersect_range_with_nonzero_bits (enum value_range_kind vr_type,
return
vr_type
;
return
vr_type
;
}
}
/* Set value range to the canonical form of {VRTYPE, MIN, MAX, EQUIV}.
This means adjusting VRTYPE, MIN and MAX representing the case of a
wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
In corner cases where MAX+1 or MIN-1 wraps this will fall back
to varying.
This routine exists to ease canonicalization in the case where we
extract ranges from var + CST op limit. */
void
value_range
::
set
(
tree
min
,
tree
max
,
value_range_kind
kind
)
{
/* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
if
(
kind
==
VR_UNDEFINED
)
{
set_undefined
();
return
;
}
else
if
(
kind
==
VR_VARYING
)
{
gcc_assert
(
TREE_TYPE
(
min
)
==
TREE_TYPE
(
max
));
tree
typ
=
TREE_TYPE
(
min
);
if
(
supports_type_p
(
typ
))
{
gcc_assert
(
vrp_val_min
(
typ
));
gcc_assert
(
vrp_val_max
(
typ
));
}
set_varying
(
typ
);
return
;
}
/* Convert POLY_INT_CST bounds into worst-case INTEGER_CST bounds. */
if
(
POLY_INT_CST_P
(
min
))
{
tree
type_min
=
vrp_val_min
(
TREE_TYPE
(
min
));
widest_int
lb
=
constant_lower_bound_with_limit
(
wi
::
to_poly_widest
(
min
),
wi
::
to_widest
(
type_min
));
min
=
wide_int_to_tree
(
TREE_TYPE
(
min
),
lb
);
}
if
(
POLY_INT_CST_P
(
max
))
{
tree
type_max
=
vrp_val_max
(
TREE_TYPE
(
max
));
widest_int
ub
=
constant_upper_bound_with_limit
(
wi
::
to_poly_widest
(
max
),
wi
::
to_widest
(
type_max
));
max
=
wide_int_to_tree
(
TREE_TYPE
(
max
),
ub
);
}
/* Nothing to canonicalize for symbolic ranges. */
if
(
TREE_CODE
(
min
)
!=
INTEGER_CST
||
TREE_CODE
(
max
)
!=
INTEGER_CST
)
{
m_kind
=
kind
;
m_min
=
min
;
m_max
=
max
;
return
;
}
/* Wrong order for min and max, to swap them and the VR type we need
to adjust them. */
if
(
tree_int_cst_lt
(
max
,
min
))
{
tree
one
,
tmp
;
/* For one bit precision if max < min, then the swapped
range covers all values, so for VR_RANGE it is varying and
for VR_ANTI_RANGE empty range, so drop to varying as well. */
if
(
TYPE_PRECISION
(
TREE_TYPE
(
min
))
==
1
)
{
set_varying
(
TREE_TYPE
(
min
));
return
;
}
one
=
build_int_cst
(
TREE_TYPE
(
min
),
1
);
tmp
=
int_const_binop
(
PLUS_EXPR
,
max
,
one
);
max
=
int_const_binop
(
MINUS_EXPR
,
min
,
one
);
min
=
tmp
;
/* There's one corner case, if we had [C+1, C] before we now have
that again. But this represents an empty value range, so drop
to varying in this case. */
if
(
tree_int_cst_lt
(
max
,
min
))
{
set_varying
(
TREE_TYPE
(
min
));
return
;
}
kind
=
kind
==
VR_RANGE
?
VR_ANTI_RANGE
:
VR_RANGE
;
}
tree
type
=
TREE_TYPE
(
min
);
/* Anti-ranges that can be represented as ranges should be so. */
if
(
kind
==
VR_ANTI_RANGE
)
{
/* For -fstrict-enums we may receive out-of-range ranges so consider
values < -INF and values > INF as -INF/INF as well. */
bool
is_min
=
vrp_val_is_min
(
min
);
bool
is_max
=
vrp_val_is_max
(
max
);
if
(
is_min
&&
is_max
)
{
/* We cannot deal with empty ranges, drop to varying.
??? This could be VR_UNDEFINED instead. */
set_varying
(
type
);
return
;
}
else
if
(
TYPE_PRECISION
(
TREE_TYPE
(
min
))
==
1
&&
(
is_min
||
is_max
))
{
/* Non-empty boolean ranges can always be represented
as a singleton range. */
if
(
is_min
)
min
=
max
=
vrp_val_max
(
TREE_TYPE
(
min
));
else
min
=
max
=
vrp_val_min
(
TREE_TYPE
(
min
));
kind
=
VR_RANGE
;
}
else
if
(
is_min
)
{
tree
one
=
build_int_cst
(
TREE_TYPE
(
max
),
1
);
min
=
int_const_binop
(
PLUS_EXPR
,
max
,
one
);
max
=
vrp_val_max
(
TREE_TYPE
(
max
));
kind
=
VR_RANGE
;
}
else
if
(
is_max
)
{
tree
one
=
build_int_cst
(
TREE_TYPE
(
min
),
1
);
max
=
int_const_binop
(
MINUS_EXPR
,
min
,
one
);
min
=
vrp_val_min
(
TREE_TYPE
(
min
));
kind
=
VR_RANGE
;
}
}
/* Normalize [MIN, MAX] into VARYING and ~[MIN, MAX] into UNDEFINED.
Avoid using TYPE_{MIN,MAX}_VALUE because -fstrict-enums can
restrict those to a subset of what actually fits in the type.
Instead use the extremes of the type precision which will allow
compare_range_with_value() to check if a value is inside a range,
whereas if we used TYPE_*_VAL, said function would just punt
upon seeing a VARYING. */
unsigned
prec
=
TYPE_PRECISION
(
type
);
signop
sign
=
TYPE_SIGN
(
type
);
if
(
wi
::
eq_p
(
wi
::
to_wide
(
min
),
wi
::
min_value
(
prec
,
sign
))
&&
wi
::
eq_p
(
wi
::
to_wide
(
max
),
wi
::
max_value
(
prec
,
sign
)))
{
if
(
kind
==
VR_RANGE
)
set_varying
(
type
);
else
if
(
kind
==
VR_ANTI_RANGE
)
set_undefined
();
else
gcc_unreachable
();
return
;
}
/* Do not drop [-INF(OVF), +INF(OVF)] to varying. (OVF) has to be sticky
to make sure VRP iteration terminates, otherwise we can get into
oscillations. */
m_kind
=
kind
;
m_min
=
min
;
m_max
=
max
;
if
(
flag_checking
)
check
();
}
void
value_range
::
set
(
tree
val
)
{
gcc_assert
(
TREE_CODE
(
val
)
==
SSA_NAME
||
is_gimple_min_invariant
(
val
));
if
(
TREE_OVERFLOW_P
(
val
))
val
=
drop_tree_overflow
(
val
);
set
(
val
,
val
);
}
void
void
value_range_equiv
::
set
(
tree
val
)
value_range_equiv
::
set
(
tree
val
)
{
{
...
@@ -878,43 +405,6 @@ value_range_equiv::set (tree val)
...
@@ -878,43 +405,6 @@ value_range_equiv::set (tree val)
set
(
val
,
val
);
set
(
val
,
val
);
}
}
/* Set value range VR to a nonzero range of type TYPE. */
void
value_range
::
set_nonzero
(
tree
type
)
{
tree
zero
=
build_int_cst
(
type
,
0
);
set
(
zero
,
zero
,
VR_ANTI_RANGE
);
}
/* Set value range VR to a ZERO range of type TYPE. */
void
value_range
::
set_zero
(
tree
type
)
{
set
(
build_int_cst
(
type
,
0
));
}
/* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
bool
vrp_operand_equal_p
(
const_tree
val1
,
const_tree
val2
)
{
if
(
val1
==
val2
)
return
true
;
if
(
!
val1
||
!
val2
||
!
operand_equal_p
(
val1
,
val2
,
0
))
return
false
;
return
true
;
}
static
bool
range_has_numeric_bounds_p
(
const
value_range
*
vr
)
{
return
(
vr
->
min
()
&&
TREE_CODE
(
vr
->
min
())
==
INTEGER_CST
&&
TREE_CODE
(
vr
->
max
())
==
INTEGER_CST
);
}
/* Return true if max and min of VR are INTEGER_CST. It's not necessary
/* Return true if max and min of VR are INTEGER_CST. It's not necessary
a singleton. */
a singleton. */
...
@@ -1210,91 +700,17 @@ compare_values (tree val1, tree val2)
...
@@ -1210,91 +700,17 @@ compare_values (tree val1, tree val2)
return
compare_values_warnv
(
val1
,
val2
,
&
sop
);
return
compare_values_warnv
(
val1
,
val2
,
&
sop
);
}
}
/* If BOUND will include a symbolic bound, adjust it accordingly,
otherwise leave it as is.
/* Return 1 if VAL is inside value range.
CODE is the original operation that combined the bounds (PLUS_EXPR
0 if VAL is not inside value range.
or MINUS_EXPR).
-2 if we cannot tell either way.
Benchmark compile/20001226-1.c compilation time after changing this
function. */
int
value_range
::
value_inside_range
(
tree
val
)
const
{
int
cmp1
,
cmp2
;
if
(
varying_p
())
TYPE is the type of the original operation.
return
1
;
if
(
undefined_p
())
SYM_OPn is the symbolic for OPn if it has a symbolic.
return
0
;
cmp1
=
operand_less_p
(
val
,
m_min
);
NEG_OPn is TRUE if the OPn was negated. */
if
(
cmp1
==
-
2
)
return
-
2
;
if
(
cmp1
==
1
)
return
m_kind
!=
VR_RANGE
;
cmp2
=
operand_less_p
(
m_max
,
val
);
if
(
cmp2
==
-
2
)
return
-
2
;
if
(
m_kind
==
VR_RANGE
)
return
!
cmp2
;
else
return
!!
cmp2
;
}
/* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
so that *VR0 U *VR1 == *AR. Returns true if that is possible,
false otherwise. If *AR can be represented with a single range
*VR1 will be VR_UNDEFINED. */
static
bool
ranges_from_anti_range
(
const
value_range
*
ar
,
value_range
*
vr0
,
value_range
*
vr1
)
{
tree
type
=
ar
->
type
();
vr0
->
set_undefined
();
vr1
->
set_undefined
();
/* As a future improvement, we could handle ~[0, A] as: [-INF, -1] U
[A+1, +INF]. Not sure if this helps in practice, though. */
if
(
ar
->
kind
()
!=
VR_ANTI_RANGE
||
TREE_CODE
(
ar
->
min
())
!=
INTEGER_CST
||
TREE_CODE
(
ar
->
max
())
!=
INTEGER_CST
||
!
vrp_val_min
(
type
)
||
!
vrp_val_max
(
type
))
return
false
;
if
(
tree_int_cst_lt
(
vrp_val_min
(
type
),
ar
->
min
()))
vr0
->
set
(
vrp_val_min
(
type
),
wide_int_to_tree
(
type
,
wi
::
to_wide
(
ar
->
min
())
-
1
));
if
(
tree_int_cst_lt
(
ar
->
max
(),
vrp_val_max
(
type
)))
vr1
->
set
(
wide_int_to_tree
(
type
,
wi
::
to_wide
(
ar
->
max
())
+
1
),
vrp_val_max
(
type
));
if
(
vr0
->
undefined_p
())
{
*
vr0
=
*
vr1
;
vr1
->
set_undefined
();
}
return
!
vr0
->
undefined_p
();
}
/* If BOUND will include a symbolic bound, adjust it accordingly,
otherwise leave it as is.
CODE is the original operation that combined the bounds (PLUS_EXPR
or MINUS_EXPR).
TYPE is the type of the original operation.
SYM_OPn is the symbolic for OPn if it has a symbolic.
NEG_OPn is TRUE if the OPn was negated. */
static
void
static
void
adjust_symbolic_bound
(
tree
&
bound
,
enum
tree_code
code
,
tree
type
,
adjust_symbolic_bound
(
tree
&
bound
,
enum
tree_code
code
,
tree
type
,
...
@@ -5224,669 +4640,6 @@ vrp_prop::visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
...
@@ -5224,669 +4640,6 @@ vrp_prop::visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
return
(
*
taken_edge_p
)
?
SSA_PROP_INTERESTING
:
SSA_PROP_VARYING
;
return
(
*
taken_edge_p
)
?
SSA_PROP_INTERESTING
:
SSA_PROP_VARYING
;
}
}
/* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
{ VR1TYPE, VR0MIN, VR0MAX } and store the result
in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
possible such range. The resulting range is not canonicalized. */
static
void
union_ranges
(
enum
value_range_kind
*
vr0type
,
tree
*
vr0min
,
tree
*
vr0max
,
enum
value_range_kind
vr1type
,
tree
vr1min
,
tree
vr1max
)
{
int
cmpmin
=
compare_values
(
*
vr0min
,
vr1min
);
int
cmpmax
=
compare_values
(
*
vr0max
,
vr1max
);
bool
mineq
=
cmpmin
==
0
;
bool
maxeq
=
cmpmax
==
0
;
/* [] is vr0, () is vr1 in the following classification comments. */
if
(
mineq
&&
maxeq
)
{
/* [( )] */
if
(
*
vr0type
==
vr1type
)
/* Nothing to do for equal ranges. */
;
else
if
((
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
||
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_RANGE
))
{
/* For anti-range with range union the result is varying. */
goto
give_up
;
}
else
gcc_unreachable
();
}
else
if
(
operand_less_p
(
*
vr0max
,
vr1min
)
==
1
||
operand_less_p
(
vr1max
,
*
vr0min
)
==
1
)
{
/* [ ] ( ) or ( ) [ ]
If the ranges have an empty intersection, result of the union
operation is the anti-range or if both are anti-ranges
it covers all. */
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
goto
give_up
;
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_RANGE
)
;
else
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
{
*
vr0type
=
vr1type
;
*
vr0min
=
vr1min
;
*
vr0max
=
vr1max
;
}
else
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_RANGE
)
{
/* The result is the convex hull of both ranges. */
if
(
operand_less_p
(
*
vr0max
,
vr1min
)
==
1
)
{
/* If the result can be an anti-range, create one. */
if
(
TREE_CODE
(
*
vr0max
)
==
INTEGER_CST
&&
TREE_CODE
(
vr1min
)
==
INTEGER_CST
&&
vrp_val_is_min
(
*
vr0min
)
&&
vrp_val_is_max
(
vr1max
))
{
tree
min
=
int_const_binop
(
PLUS_EXPR
,
*
vr0max
,
build_int_cst
(
TREE_TYPE
(
*
vr0max
),
1
));
tree
max
=
int_const_binop
(
MINUS_EXPR
,
vr1min
,
build_int_cst
(
TREE_TYPE
(
vr1min
),
1
));
if
(
!
operand_less_p
(
max
,
min
))
{
*
vr0type
=
VR_ANTI_RANGE
;
*
vr0min
=
min
;
*
vr0max
=
max
;
}
else
*
vr0max
=
vr1max
;
}
else
*
vr0max
=
vr1max
;
}
else
{
/* If the result can be an anti-range, create one. */
if
(
TREE_CODE
(
vr1max
)
==
INTEGER_CST
&&
TREE_CODE
(
*
vr0min
)
==
INTEGER_CST
&&
vrp_val_is_min
(
vr1min
)
&&
vrp_val_is_max
(
*
vr0max
))
{
tree
min
=
int_const_binop
(
PLUS_EXPR
,
vr1max
,
build_int_cst
(
TREE_TYPE
(
vr1max
),
1
));
tree
max
=
int_const_binop
(
MINUS_EXPR
,
*
vr0min
,
build_int_cst
(
TREE_TYPE
(
*
vr0min
),
1
));
if
(
!
operand_less_p
(
max
,
min
))
{
*
vr0type
=
VR_ANTI_RANGE
;
*
vr0min
=
min
;
*
vr0max
=
max
;
}
else
*
vr0min
=
vr1min
;
}
else
*
vr0min
=
vr1min
;
}
}
else
gcc_unreachable
();
}
else
if
((
maxeq
||
cmpmax
==
1
)
&&
(
mineq
||
cmpmin
==
-
1
))
{
/* [ ( ) ] or [( ) ] or [ ( )] */
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_RANGE
)
;
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
{
*
vr0type
=
vr1type
;
*
vr0min
=
vr1min
;
*
vr0max
=
vr1max
;
}
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_RANGE
)
{
/* Arbitrarily choose the right or left gap. */
if
(
!
mineq
&&
TREE_CODE
(
vr1min
)
==
INTEGER_CST
)
*
vr0max
=
int_const_binop
(
MINUS_EXPR
,
vr1min
,
build_int_cst
(
TREE_TYPE
(
vr1min
),
1
));
else
if
(
!
maxeq
&&
TREE_CODE
(
vr1max
)
==
INTEGER_CST
)
*
vr0min
=
int_const_binop
(
PLUS_EXPR
,
vr1max
,
build_int_cst
(
TREE_TYPE
(
vr1max
),
1
));
else
goto
give_up
;
}
else
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
/* The result covers everything. */
goto
give_up
;
else
gcc_unreachable
();
}
else
if
((
maxeq
||
cmpmax
==
-
1
)
&&
(
mineq
||
cmpmin
==
1
))
{
/* ( [ ] ) or ([ ] ) or ( [ ]) */
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_RANGE
)
{
*
vr0type
=
vr1type
;
*
vr0min
=
vr1min
;
*
vr0max
=
vr1max
;
}
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
;
else
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
{
*
vr0type
=
VR_ANTI_RANGE
;
if
(
!
mineq
&&
TREE_CODE
(
*
vr0min
)
==
INTEGER_CST
)
{
*
vr0max
=
int_const_binop
(
MINUS_EXPR
,
*
vr0min
,
build_int_cst
(
TREE_TYPE
(
*
vr0min
),
1
));
*
vr0min
=
vr1min
;
}
else
if
(
!
maxeq
&&
TREE_CODE
(
*
vr0max
)
==
INTEGER_CST
)
{
*
vr0min
=
int_const_binop
(
PLUS_EXPR
,
*
vr0max
,
build_int_cst
(
TREE_TYPE
(
*
vr0max
),
1
));
*
vr0max
=
vr1max
;
}
else
goto
give_up
;
}
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_RANGE
)
/* The result covers everything. */
goto
give_up
;
else
gcc_unreachable
();
}
else
if
(
cmpmin
==
-
1
&&
cmpmax
==
-
1
&&
(
operand_less_p
(
vr1min
,
*
vr0max
)
==
1
||
operand_equal_p
(
vr1min
,
*
vr0max
,
0
)))
{
/* [ ( ] ) or [ ]( ) */
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_RANGE
)
*
vr0max
=
vr1max
;
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
*
vr0min
=
vr1min
;
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_RANGE
)
{
if
(
TREE_CODE
(
vr1min
)
==
INTEGER_CST
)
*
vr0max
=
int_const_binop
(
MINUS_EXPR
,
vr1min
,
build_int_cst
(
TREE_TYPE
(
vr1min
),
1
));
else
goto
give_up
;
}
else
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
{
if
(
TREE_CODE
(
*
vr0max
)
==
INTEGER_CST
)
{
*
vr0type
=
vr1type
;
*
vr0min
=
int_const_binop
(
PLUS_EXPR
,
*
vr0max
,
build_int_cst
(
TREE_TYPE
(
*
vr0max
),
1
));
*
vr0max
=
vr1max
;
}
else
goto
give_up
;
}
else
gcc_unreachable
();
}
else
if
(
cmpmin
==
1
&&
cmpmax
==
1
&&
(
operand_less_p
(
*
vr0min
,
vr1max
)
==
1
||
operand_equal_p
(
*
vr0min
,
vr1max
,
0
)))
{
/* ( [ ) ] or ( )[ ] */
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_RANGE
)
*
vr0min
=
vr1min
;
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
*
vr0max
=
vr1max
;
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_RANGE
)
{
if
(
TREE_CODE
(
vr1max
)
==
INTEGER_CST
)
*
vr0min
=
int_const_binop
(
PLUS_EXPR
,
vr1max
,
build_int_cst
(
TREE_TYPE
(
vr1max
),
1
));
else
goto
give_up
;
}
else
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
{
if
(
TREE_CODE
(
*
vr0min
)
==
INTEGER_CST
)
{
*
vr0type
=
vr1type
;
*
vr0max
=
int_const_binop
(
MINUS_EXPR
,
*
vr0min
,
build_int_cst
(
TREE_TYPE
(
*
vr0min
),
1
));
*
vr0min
=
vr1min
;
}
else
goto
give_up
;
}
else
gcc_unreachable
();
}
else
goto
give_up
;
return
;
give_up
:
*
vr0type
=
VR_VARYING
;
*
vr0min
=
NULL_TREE
;
*
vr0max
=
NULL_TREE
;
}
/* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
{ VR1TYPE, VR0MIN, VR0MAX } and store the result
in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
possible such range. The resulting range is not canonicalized. */
static
void
intersect_ranges
(
enum
value_range_kind
*
vr0type
,
tree
*
vr0min
,
tree
*
vr0max
,
enum
value_range_kind
vr1type
,
tree
vr1min
,
tree
vr1max
)
{
bool
mineq
=
vrp_operand_equal_p
(
*
vr0min
,
vr1min
);
bool
maxeq
=
vrp_operand_equal_p
(
*
vr0max
,
vr1max
);
/* [] is vr0, () is vr1 in the following classification comments. */
if
(
mineq
&&
maxeq
)
{
/* [( )] */
if
(
*
vr0type
==
vr1type
)
/* Nothing to do for equal ranges. */
;
else
if
((
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
||
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_RANGE
))
{
/* For anti-range with range intersection the result is empty. */
*
vr0type
=
VR_UNDEFINED
;
*
vr0min
=
NULL_TREE
;
*
vr0max
=
NULL_TREE
;
}
else
gcc_unreachable
();
}
else
if
(
operand_less_p
(
*
vr0max
,
vr1min
)
==
1
||
operand_less_p
(
vr1max
,
*
vr0min
)
==
1
)
{
/* [ ] ( ) or ( ) [ ]
If the ranges have an empty intersection, the result of the
intersect operation is the range for intersecting an
anti-range with a range or empty when intersecting two ranges. */
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
;
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_RANGE
)
{
*
vr0type
=
vr1type
;
*
vr0min
=
vr1min
;
*
vr0max
=
vr1max
;
}
else
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_RANGE
)
{
*
vr0type
=
VR_UNDEFINED
;
*
vr0min
=
NULL_TREE
;
*
vr0max
=
NULL_TREE
;
}
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
{
/* If the anti-ranges are adjacent to each other merge them. */
if
(
TREE_CODE
(
*
vr0max
)
==
INTEGER_CST
&&
TREE_CODE
(
vr1min
)
==
INTEGER_CST
&&
operand_less_p
(
*
vr0max
,
vr1min
)
==
1
&&
integer_onep
(
int_const_binop
(
MINUS_EXPR
,
vr1min
,
*
vr0max
)))
*
vr0max
=
vr1max
;
else
if
(
TREE_CODE
(
vr1max
)
==
INTEGER_CST
&&
TREE_CODE
(
*
vr0min
)
==
INTEGER_CST
&&
operand_less_p
(
vr1max
,
*
vr0min
)
==
1
&&
integer_onep
(
int_const_binop
(
MINUS_EXPR
,
*
vr0min
,
vr1max
)))
*
vr0min
=
vr1min
;
/* Else arbitrarily take VR0. */
}
}
else
if
((
maxeq
||
operand_less_p
(
vr1max
,
*
vr0max
)
==
1
)
&&
(
mineq
||
operand_less_p
(
*
vr0min
,
vr1min
)
==
1
))
{
/* [ ( ) ] or [( ) ] or [ ( )] */
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_RANGE
)
{
/* If both are ranges the result is the inner one. */
*
vr0type
=
vr1type
;
*
vr0min
=
vr1min
;
*
vr0max
=
vr1max
;
}
else
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
{
/* Choose the right gap if the left one is empty. */
if
(
mineq
)
{
if
(
TREE_CODE
(
vr1max
)
!=
INTEGER_CST
)
*
vr0min
=
vr1max
;
else
if
(
TYPE_PRECISION
(
TREE_TYPE
(
vr1max
))
==
1
&&
!
TYPE_UNSIGNED
(
TREE_TYPE
(
vr1max
)))
*
vr0min
=
int_const_binop
(
MINUS_EXPR
,
vr1max
,
build_int_cst
(
TREE_TYPE
(
vr1max
),
-
1
));
else
*
vr0min
=
int_const_binop
(
PLUS_EXPR
,
vr1max
,
build_int_cst
(
TREE_TYPE
(
vr1max
),
1
));
}
/* Choose the left gap if the right one is empty. */
else
if
(
maxeq
)
{
if
(
TREE_CODE
(
vr1min
)
!=
INTEGER_CST
)
*
vr0max
=
vr1min
;
else
if
(
TYPE_PRECISION
(
TREE_TYPE
(
vr1min
))
==
1
&&
!
TYPE_UNSIGNED
(
TREE_TYPE
(
vr1min
)))
*
vr0max
=
int_const_binop
(
PLUS_EXPR
,
vr1min
,
build_int_cst
(
TREE_TYPE
(
vr1min
),
-
1
));
else
*
vr0max
=
int_const_binop
(
MINUS_EXPR
,
vr1min
,
build_int_cst
(
TREE_TYPE
(
vr1min
),
1
));
}
/* Choose the anti-range if the range is effectively varying. */
else
if
(
vrp_val_is_min
(
*
vr0min
)
&&
vrp_val_is_max
(
*
vr0max
))
{
*
vr0type
=
vr1type
;
*
vr0min
=
vr1min
;
*
vr0max
=
vr1max
;
}
/* Else choose the range. */
}
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
/* If both are anti-ranges the result is the outer one. */
;
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_RANGE
)
{
/* The intersection is empty. */
*
vr0type
=
VR_UNDEFINED
;
*
vr0min
=
NULL_TREE
;
*
vr0max
=
NULL_TREE
;
}
else
gcc_unreachable
();
}
else
if
((
maxeq
||
operand_less_p
(
*
vr0max
,
vr1max
)
==
1
)
&&
(
mineq
||
operand_less_p
(
vr1min
,
*
vr0min
)
==
1
))
{
/* ( [ ] ) or ([ ] ) or ( [ ]) */
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_RANGE
)
/* Choose the inner range. */
;
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_RANGE
)
{
/* Choose the right gap if the left is empty. */
if
(
mineq
)
{
*
vr0type
=
VR_RANGE
;
if
(
TREE_CODE
(
*
vr0max
)
!=
INTEGER_CST
)
*
vr0min
=
*
vr0max
;
else
if
(
TYPE_PRECISION
(
TREE_TYPE
(
*
vr0max
))
==
1
&&
!
TYPE_UNSIGNED
(
TREE_TYPE
(
*
vr0max
)))
*
vr0min
=
int_const_binop
(
MINUS_EXPR
,
*
vr0max
,
build_int_cst
(
TREE_TYPE
(
*
vr0max
),
-
1
));
else
*
vr0min
=
int_const_binop
(
PLUS_EXPR
,
*
vr0max
,
build_int_cst
(
TREE_TYPE
(
*
vr0max
),
1
));
*
vr0max
=
vr1max
;
}
/* Choose the left gap if the right is empty. */
else
if
(
maxeq
)
{
*
vr0type
=
VR_RANGE
;
if
(
TREE_CODE
(
*
vr0min
)
!=
INTEGER_CST
)
*
vr0max
=
*
vr0min
;
else
if
(
TYPE_PRECISION
(
TREE_TYPE
(
*
vr0min
))
==
1
&&
!
TYPE_UNSIGNED
(
TREE_TYPE
(
*
vr0min
)))
*
vr0max
=
int_const_binop
(
PLUS_EXPR
,
*
vr0min
,
build_int_cst
(
TREE_TYPE
(
*
vr0min
),
-
1
));
else
*
vr0max
=
int_const_binop
(
MINUS_EXPR
,
*
vr0min
,
build_int_cst
(
TREE_TYPE
(
*
vr0min
),
1
));
*
vr0min
=
vr1min
;
}
/* Choose the anti-range if the range is effectively varying. */
else
if
(
vrp_val_is_min
(
vr1min
)
&&
vrp_val_is_max
(
vr1max
))
;
/* Choose the anti-range if it is ~[0,0], that range is special
enough to special case when vr1's range is relatively wide.
At least for types bigger than int - this covers pointers
and arguments to functions like ctz. */
else
if
(
*
vr0min
==
*
vr0max
&&
integer_zerop
(
*
vr0min
)
&&
((
TYPE_PRECISION
(
TREE_TYPE
(
*
vr0min
))
>=
TYPE_PRECISION
(
integer_type_node
))
||
POINTER_TYPE_P
(
TREE_TYPE
(
*
vr0min
)))
&&
TREE_CODE
(
vr1max
)
==
INTEGER_CST
&&
TREE_CODE
(
vr1min
)
==
INTEGER_CST
&&
(
wi
::
clz
(
wi
::
to_wide
(
vr1max
)
-
wi
::
to_wide
(
vr1min
))
<
TYPE_PRECISION
(
TREE_TYPE
(
*
vr0min
))
/
2
))
;
/* Else choose the range. */
else
{
*
vr0type
=
vr1type
;
*
vr0min
=
vr1min
;
*
vr0max
=
vr1max
;
}
}
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
{
/* If both are anti-ranges the result is the outer one. */
*
vr0type
=
vr1type
;
*
vr0min
=
vr1min
;
*
vr0max
=
vr1max
;
}
else
if
(
vr1type
==
VR_ANTI_RANGE
&&
*
vr0type
==
VR_RANGE
)
{
/* The intersection is empty. */
*
vr0type
=
VR_UNDEFINED
;
*
vr0min
=
NULL_TREE
;
*
vr0max
=
NULL_TREE
;
}
else
gcc_unreachable
();
}
else
if
((
operand_less_p
(
vr1min
,
*
vr0max
)
==
1
||
operand_equal_p
(
vr1min
,
*
vr0max
,
0
))
&&
operand_less_p
(
*
vr0min
,
vr1min
)
==
1
)
{
/* [ ( ] ) or [ ]( ) */
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
*
vr0max
=
vr1max
;
else
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_RANGE
)
*
vr0min
=
vr1min
;
else
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
{
if
(
TREE_CODE
(
vr1min
)
==
INTEGER_CST
)
*
vr0max
=
int_const_binop
(
MINUS_EXPR
,
vr1min
,
build_int_cst
(
TREE_TYPE
(
vr1min
),
1
));
else
*
vr0max
=
vr1min
;
}
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_RANGE
)
{
*
vr0type
=
VR_RANGE
;
if
(
TREE_CODE
(
*
vr0max
)
==
INTEGER_CST
)
*
vr0min
=
int_const_binop
(
PLUS_EXPR
,
*
vr0max
,
build_int_cst
(
TREE_TYPE
(
*
vr0max
),
1
));
else
*
vr0min
=
*
vr0max
;
*
vr0max
=
vr1max
;
}
else
gcc_unreachable
();
}
else
if
((
operand_less_p
(
*
vr0min
,
vr1max
)
==
1
||
operand_equal_p
(
*
vr0min
,
vr1max
,
0
))
&&
operand_less_p
(
vr1min
,
*
vr0min
)
==
1
)
{
/* ( [ ) ] or ( )[ ] */
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
*
vr0min
=
vr1min
;
else
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_RANGE
)
*
vr0max
=
vr1max
;
else
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
{
if
(
TREE_CODE
(
vr1max
)
==
INTEGER_CST
)
*
vr0min
=
int_const_binop
(
PLUS_EXPR
,
vr1max
,
build_int_cst
(
TREE_TYPE
(
vr1max
),
1
));
else
*
vr0min
=
vr1max
;
}
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_RANGE
)
{
*
vr0type
=
VR_RANGE
;
if
(
TREE_CODE
(
*
vr0min
)
==
INTEGER_CST
)
*
vr0max
=
int_const_binop
(
MINUS_EXPR
,
*
vr0min
,
build_int_cst
(
TREE_TYPE
(
*
vr0min
),
1
));
else
*
vr0max
=
*
vr0min
;
*
vr0min
=
vr1min
;
}
else
gcc_unreachable
();
}
/* If we know the intersection is empty, there's no need to
conservatively add anything else to the set. */
if
(
*
vr0type
==
VR_UNDEFINED
)
return
;
/* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
result for the intersection. That's always a conservative
correct estimate unless VR1 is a constant singleton range
in which case we choose that. */
if
(
vr1type
==
VR_RANGE
&&
is_gimple_min_invariant
(
vr1min
)
&&
vrp_operand_equal_p
(
vr1min
,
vr1max
))
{
*
vr0type
=
vr1type
;
*
vr0min
=
vr1min
;
*
vr0max
=
vr1max
;
}
}
/* Helper for the intersection operation for value ranges. Given two
value ranges VR0 and VR1, return the intersection of the two
ranges. This may not be the smallest possible such range. */
value_range
value_range
::
intersect_helper
(
const
value_range
*
vr0
,
const
value_range
*
vr1
)
{
/* If either range is VR_VARYING the other one wins. */
if
(
vr1
->
varying_p
())
return
*
vr0
;
if
(
vr0
->
varying_p
())
return
*
vr1
;
/* When either range is VR_UNDEFINED the resulting range is
VR_UNDEFINED, too. */
if
(
vr0
->
undefined_p
())
return
*
vr0
;
if
(
vr1
->
undefined_p
())
return
*
vr1
;
value_range_kind
vr0kind
=
vr0
->
kind
();
tree
vr0min
=
vr0
->
min
();
tree
vr0max
=
vr0
->
max
();
intersect_ranges
(
&
vr0kind
,
&
vr0min
,
&
vr0max
,
vr1
->
kind
(),
vr1
->
min
(),
vr1
->
max
());
/* Make sure to canonicalize the result though as the inversion of a
VR_RANGE can still be a VR_RANGE. Work on a temporary so we can
fall back to vr0 when this turns things to varying. */
value_range
tem
;
if
(
vr0kind
==
VR_UNDEFINED
)
tem
.
set_undefined
();
else
if
(
vr0kind
==
VR_VARYING
)
tem
.
set_varying
(
vr0
->
type
());
else
tem
.
set
(
vr0min
,
vr0max
,
vr0kind
);
/* If that failed, use the saved original VR0. */
if
(
tem
.
varying_p
())
return
*
vr0
;
return
tem
;
}
void
value_range
::
intersect
(
const
value_range
*
other
)
{
if
(
dump_file
&&
(
dump_flags
&
TDF_DETAILS
))
{
fprintf
(
dump_file
,
"Intersecting
\n
"
);
dump_value_range
(
dump_file
,
this
);
fprintf
(
dump_file
,
"
\n
and
\n
"
);
dump_value_range
(
dump_file
,
other
);
fprintf
(
dump_file
,
"
\n
"
);
}
*
this
=
intersect_helper
(
this
,
other
);
if
(
dump_file
&&
(
dump_flags
&
TDF_DETAILS
))
{
fprintf
(
dump_file
,
"to
\n
"
);
dump_value_range
(
dump_file
,
this
);
fprintf
(
dump_file
,
"
\n
"
);
}
}
void
void
value_range_equiv
::
intersect
(
const
value_range_equiv
*
other
)
value_range_equiv
::
intersect
(
const
value_range_equiv
*
other
)
{
{
...
@@ -5936,79 +4689,6 @@ value_range_equiv::intersect (const value_range_equiv *other)
...
@@ -5936,79 +4689,6 @@ value_range_equiv::intersect (const value_range_equiv *other)
}
}
}
}
/* Helper for meet operation for value ranges. Given two value ranges VR0 and
VR1, return a range that contains both VR0 and VR1. This may not be the
smallest possible such range. */
value_range
value_range
::
union_helper
(
const
value_range
*
vr0
,
const
value_range
*
vr1
)
{
/* VR0 has the resulting range if VR1 is undefined or VR0 is varying. */
if
(
vr1
->
undefined_p
()
||
vr0
->
varying_p
())
return
*
vr0
;
/* VR1 has the resulting range if VR0 is undefined or VR1 is varying. */
if
(
vr0
->
undefined_p
()
||
vr1
->
varying_p
())
return
*
vr1
;
value_range_kind
vr0kind
=
vr0
->
kind
();
tree
vr0min
=
vr0
->
min
();
tree
vr0max
=
vr0
->
max
();
union_ranges
(
&
vr0kind
,
&
vr0min
,
&
vr0max
,
vr1
->
kind
(),
vr1
->
min
(),
vr1
->
max
());
/* Work on a temporary so we can still use vr0 when union returns varying. */
value_range
tem
;
if
(
vr0kind
==
VR_UNDEFINED
)
tem
.
set_undefined
();
else
if
(
vr0kind
==
VR_VARYING
)
tem
.
set_varying
(
vr0
->
type
());
else
tem
.
set
(
vr0min
,
vr0max
,
vr0kind
);
/* Failed to find an efficient meet. Before giving up and setting
the result to VARYING, see if we can at least derive a useful
anti-range. */
if
(
tem
.
varying_p
()
&&
range_includes_zero_p
(
vr0
)
==
0
&&
range_includes_zero_p
(
vr1
)
==
0
)
{
tem
.
set_nonzero
(
vr0
->
type
());
return
tem
;
}
return
tem
;
}
/* Meet operation for value ranges. Given two value ranges VR0 and
VR1, store in VR0 a range that contains both VR0 and VR1. This
may not be the smallest possible such range. */
void
value_range
::
union_
(
const
value_range
*
other
)
{
if
(
dump_file
&&
(
dump_flags
&
TDF_DETAILS
))
{
fprintf
(
dump_file
,
"Meeting
\n
"
);
dump_value_range
(
dump_file
,
this
);
fprintf
(
dump_file
,
"
\n
and
\n
"
);
dump_value_range
(
dump_file
,
other
);
fprintf
(
dump_file
,
"
\n
"
);
}
*
this
=
union_helper
(
this
,
other
);
if
(
dump_file
&&
(
dump_flags
&
TDF_DETAILS
))
{
fprintf
(
dump_file
,
"to
\n
"
);
dump_value_range
(
dump_file
,
this
);
fprintf
(
dump_file
,
"
\n
"
);
}
}
void
void
value_range_equiv
::
union_
(
const
value_range_equiv
*
other
)
value_range_equiv
::
union_
(
const
value_range_equiv
*
other
)
{
{
...
@@ -6046,222 +4726,6 @@ value_range_equiv::union_ (const value_range_equiv *other)
...
@@ -6046,222 +4726,6 @@ value_range_equiv::union_ (const value_range_equiv *other)
}
}
}
}
/* Normalize addresses into constants. */
value_range
value_range
::
normalize_addresses
()
const
{
if
(
undefined_p
())
return
*
this
;
if
(
!
POINTER_TYPE_P
(
type
())
||
range_has_numeric_bounds_p
(
this
))
return
*
this
;
if
(
!
range_includes_zero_p
(
this
))
{
gcc_checking_assert
(
TREE_CODE
(
m_min
)
==
ADDR_EXPR
||
TREE_CODE
(
m_max
)
==
ADDR_EXPR
);
return
range_nonzero
(
type
());
}
return
value_range
(
type
());
}
/* Normalize symbolics and addresses into constants. */
value_range
value_range
::
normalize_symbolics
()
const
{
if
(
varying_p
()
||
undefined_p
())
return
*
this
;
tree
ttype
=
type
();
bool
min_symbolic
=
!
is_gimple_min_invariant
(
min
());
bool
max_symbolic
=
!
is_gimple_min_invariant
(
max
());
if
(
!
min_symbolic
&&
!
max_symbolic
)
return
normalize_addresses
();
// [SYM, SYM] -> VARYING
if
(
min_symbolic
&&
max_symbolic
)
{
value_range
var
;
var
.
set_varying
(
ttype
);
return
var
;
}
if
(
kind
()
==
VR_RANGE
)
{
// [SYM, NUM] -> [-MIN, NUM]
if
(
min_symbolic
)
return
value_range
(
vrp_val_min
(
ttype
),
max
());
// [NUM, SYM] -> [NUM, +MAX]
return
value_range
(
min
(),
vrp_val_max
(
ttype
));
}
gcc_checking_assert
(
kind
()
==
VR_ANTI_RANGE
);
// ~[SYM, NUM] -> [NUM + 1, +MAX]
if
(
min_symbolic
)
{
if
(
!
vrp_val_is_max
(
max
()))
{
tree
n
=
wide_int_to_tree
(
ttype
,
wi
::
to_wide
(
max
())
+
1
);
return
value_range
(
n
,
vrp_val_max
(
ttype
));
}
value_range
var
;
var
.
set_varying
(
ttype
);
return
var
;
}
// ~[NUM, SYM] -> [-MIN, NUM - 1]
if
(
!
vrp_val_is_min
(
min
()))
{
tree
n
=
wide_int_to_tree
(
ttype
,
wi
::
to_wide
(
min
())
-
1
);
return
value_range
(
vrp_val_min
(
ttype
),
n
);
}
value_range
var
;
var
.
set_varying
(
ttype
);
return
var
;
}
/* Return the number of sub-ranges in a range. */
unsigned
value_range
::
num_pairs
()
const
{
if
(
undefined_p
())
return
0
;
if
(
varying_p
())
return
1
;
if
(
symbolic_p
())
return
normalize_symbolics
().
num_pairs
();
if
(
m_kind
==
VR_ANTI_RANGE
)
{
// ~[MIN, X] has one sub-range of [X+1, MAX], and
// ~[X, MAX] has one sub-range of [MIN, X-1].
if
(
vrp_val_is_min
(
m_min
)
||
vrp_val_is_max
(
m_max
))
return
1
;
return
2
;
}
return
1
;
}
/* Return the lower bound for a sub-range. PAIR is the sub-range in
question. */
wide_int
value_range
::
lower_bound
(
unsigned
pair
)
const
{
if
(
symbolic_p
())
return
normalize_symbolics
().
lower_bound
(
pair
);
gcc_checking_assert
(
!
undefined_p
());
gcc_checking_assert
(
pair
+
1
<=
num_pairs
());
tree
t
=
NULL
;
if
(
m_kind
==
VR_ANTI_RANGE
)
{
tree
typ
=
type
();
if
(
pair
==
1
||
vrp_val_is_min
(
m_min
))
t
=
wide_int_to_tree
(
typ
,
wi
::
to_wide
(
m_max
)
+
1
);
else
t
=
vrp_val_min
(
typ
);
}
else
t
=
m_min
;
return
wi
::
to_wide
(
t
);
}
/* Return the upper bound for a sub-range. PAIR is the sub-range in
question. */
wide_int
value_range
::
upper_bound
(
unsigned
pair
)
const
{
if
(
symbolic_p
())
return
normalize_symbolics
().
upper_bound
(
pair
);
gcc_checking_assert
(
!
undefined_p
());
gcc_checking_assert
(
pair
+
1
<=
num_pairs
());
tree
t
=
NULL
;
if
(
m_kind
==
VR_ANTI_RANGE
)
{
tree
typ
=
type
();
if
(
pair
==
1
||
vrp_val_is_min
(
m_min
))
t
=
vrp_val_max
(
typ
);
else
t
=
wide_int_to_tree
(
typ
,
wi
::
to_wide
(
m_min
)
-
1
);
}
else
t
=
m_max
;
return
wi
::
to_wide
(
t
);
}
/* Return the highest bound in a range. */
wide_int
value_range
::
upper_bound
()
const
{
unsigned
pairs
=
num_pairs
();
gcc_checking_assert
(
pairs
>
0
);
return
upper_bound
(
pairs
-
1
);
}
/* Return TRUE if range contains INTEGER_CST. */
bool
value_range
::
contains_p
(
tree
cst
)
const
{
gcc_checking_assert
(
TREE_CODE
(
cst
)
==
INTEGER_CST
);
if
(
symbolic_p
())
return
normalize_symbolics
().
contains_p
(
cst
);
return
value_inside_range
(
cst
)
==
1
;
}
/* Return the inverse of a range. */
void
value_range
::
invert
()
{
/* We can't just invert VR_RANGE and VR_ANTI_RANGE because we may
create non-canonical ranges. Use the constructors instead. */
if
(
m_kind
==
VR_RANGE
)
*
this
=
value_range
(
m_min
,
m_max
,
VR_ANTI_RANGE
);
else
if
(
m_kind
==
VR_ANTI_RANGE
)
*
this
=
value_range
(
m_min
,
m_max
);
else
gcc_unreachable
();
}
/* Range union, but for references. */
void
value_range
::
union_
(
const
value_range
&
r
)
{
/* Disable details for now, because it makes the ranger dump
unnecessarily verbose. */
bool
details
=
dump_flags
&
TDF_DETAILS
;
if
(
details
)
dump_flags
&=
~
TDF_DETAILS
;
union_
(
&
r
);
if
(
details
)
dump_flags
|=
TDF_DETAILS
;
}
/* Range intersect, but for references. */
void
value_range
::
intersect
(
const
value_range
&
r
)
{
/* Disable details for now, because it makes the ranger dump
unnecessarily verbose. */
bool
details
=
dump_flags
&
TDF_DETAILS
;
if
(
details
)
dump_flags
&=
~
TDF_DETAILS
;
intersect
(
&
r
);
if
(
details
)
dump_flags
|=
TDF_DETAILS
;
}
bool
value_range
::
operator
==
(
const
value_range
&
r
)
const
{
return
equal_p
(
r
);
}
/* Visit all arguments for PHI node PHI that flow through executable
/* Visit all arguments for PHI node PHI that flow through executable
edges. If a valid value range can be derived from all the incoming
edges. If a valid value range can be derived from all the incoming
value ranges, set a new range for the LHS of PHI. */
value ranges, set a new range for the LHS of PHI. */
...
...
gcc/tree-vrp.h
View file @
cca78449
...
@@ -20,103 +20,7 @@ along with GCC; see the file COPYING3. If not see
...
@@ -20,103 +20,7 @@ along with GCC; see the file COPYING3. If not see
#ifndef GCC_TREE_VRP_H
#ifndef GCC_TREE_VRP_H
#define GCC_TREE_VRP_H
#define GCC_TREE_VRP_H
/* Types of value ranges. */
#include "value-range.h"
enum
value_range_kind
{
/* Empty range. */
VR_UNDEFINED
,
/* Range spans the entire domain. */
VR_VARYING
,
/* Range is [MIN, MAX]. */
VR_RANGE
,
/* Range is ~[MIN, MAX]. */
VR_ANTI_RANGE
,
/* Range is a nice guy. */
VR_LAST
};
/* Range of values that can be associated with an SSA_NAME after VRP
has executed. */
class
GTY
((
for_user
))
value_range
{
friend
void
range_tests
();
public
:
value_range
();
value_range
(
tree
,
tree
,
value_range_kind
=
VR_RANGE
);
value_range
(
tree
type
,
const
wide_int
&
,
const
wide_int
&
,
value_range_kind
=
VR_RANGE
);
value_range
(
tree
type
);
void
set
(
tree
,
tree
,
value_range_kind
=
VR_RANGE
);
void
set
(
tree
);
void
set_nonzero
(
tree
);
void
set_zero
(
tree
);
enum
value_range_kind
kind
()
const
;
tree
min
()
const
;
tree
max
()
const
;
/* Types of value ranges. */
bool
symbolic_p
()
const
;
bool
constant_p
()
const
;
bool
undefined_p
()
const
;
bool
varying_p
()
const
;
void
set_varying
(
tree
type
);
void
set_undefined
();
void
union_
(
const
value_range
*
);
void
intersect
(
const
value_range
*
);
void
union_
(
const
value_range
&
);
void
intersect
(
const
value_range
&
);
bool
operator
==
(
const
value_range
&
)
const
;
bool
operator
!=
(
const
value_range
&
)
const
/* = delete */
;
bool
equal_p
(
const
value_range
&
)
const
;
/* Misc methods. */
tree
type
()
const
;
bool
may_contain_p
(
tree
)
const
;
bool
zero_p
()
const
;
bool
nonzero_p
()
const
;
bool
singleton_p
(
tree
*
result
=
NULL
)
const
;
void
dump
(
FILE
*
)
const
;
void
dump
()
const
;
static
bool
supports_type_p
(
tree
);
value_range
normalize_symbolics
()
const
;
value_range
normalize_addresses
()
const
;
static
const
unsigned
int
m_max_pairs
=
2
;
bool
contains_p
(
tree
)
const
;
unsigned
num_pairs
()
const
;
wide_int
lower_bound
(
unsigned
=
0
)
const
;
wide_int
upper_bound
(
unsigned
)
const
;
wide_int
upper_bound
()
const
;
void
invert
();
protected
:
void
check
();
static
value_range
union_helper
(
const
value_range
*
,
const
value_range
*
);
static
value_range
intersect_helper
(
const
value_range
*
,
const
value_range
*
);
enum
value_range_kind
m_kind
;
tree
m_min
;
tree
m_max
;
friend
void
gt_ggc_mx_value_range
(
void
*
);
friend
void
gt_pch_p_11value_range
(
void
*
,
void
*
,
gt_pointer_operator
,
void
*
);
friend
void
gt_pch_nx_value_range
(
void
*
);
friend
void
gt_ggc_mx
(
value_range
&
);
friend
void
gt_ggc_mx
(
value_range
*&
);
friend
void
gt_pch_nx
(
value_range
&
);
friend
void
gt_pch_nx
(
value_range
*
,
gt_pointer_operator
,
void
*
);
private
:
int
value_inside_range
(
tree
)
const
;
};
/* Note value_range_equiv cannot currently be used with GC memory,
/* Note value_range_equiv cannot currently be used with GC memory,
only value_range is fully set up for this. */
only value_range is fully set up for this. */
...
@@ -174,77 +78,19 @@ class GTY((user)) value_range_equiv : public value_range
...
@@ -174,77 +78,19 @@ class GTY((user)) value_range_equiv : public value_range
};
};
inline
inline
value_range
::
value_range
()
{
m_kind
=
VR_UNDEFINED
;
m_min
=
m_max
=
NULL
;
}
inline
value_range_equiv
::
value_range_equiv
()
value_range_equiv
::
value_range_equiv
()
:
value_range
()
:
value_range
()
{
{
m_equiv
=
NULL
;
m_equiv
=
NULL
;
}
}
/* Return the kind of this range. */
inline
value_range_kind
value_range
::
kind
()
const
{
return
m_kind
;
}
inline
bitmap
inline
bitmap
value_range_equiv
::
equiv
()
const
value_range_equiv
::
equiv
()
const
{
{
return
m_equiv
;
return
m_equiv
;
}
}
/* Return the lower bound. */
inline
tree
value_range
::
min
()
const
{
return
m_min
;
}
/* Return the upper bound. */
inline
tree
value_range
::
max
()
const
{
return
m_max
;
}
/* Return TRUE if range spans the entire possible domain. */
inline
bool
value_range
::
varying_p
()
const
{
return
m_kind
==
VR_VARYING
;
}
/* Return TRUE if range is undefined (essentially the empty set). */
inline
bool
value_range
::
undefined_p
()
const
{
return
m_kind
==
VR_UNDEFINED
;
}
/* Return TRUE if range is the constant zero. */
inline
bool
value_range
::
zero_p
()
const
{
return
(
m_kind
==
VR_RANGE
&&
integer_zerop
(
m_min
)
&&
integer_zerop
(
m_max
));
}
extern
void
dump_value_range
(
FILE
*
,
const
value_range_equiv
*
);
extern
void
dump_value_range
(
FILE
*
,
const
value_range_equiv
*
);
extern
void
dump_value_range
(
FILE
*
,
const
value_range
*
);
struct
assert_info
struct
assert_info
{
{
...
@@ -261,17 +107,6 @@ struct assert_info
...
@@ -261,17 +107,6 @@ struct assert_info
tree
expr
;
tree
expr
;
};
};
// Return true if TYPE is a valid type for value_range to operate on.
// Otherwise return FALSE.
inline
bool
value_range
::
supports_type_p
(
tree
type
)
{
if
(
type
&&
(
INTEGRAL_TYPE_P
(
type
)
||
POINTER_TYPE_P
(
type
)))
return
type
;
return
false
;
}
extern
void
register_edge_assert_for
(
tree
,
edge
,
enum
tree_code
,
extern
void
register_edge_assert_for
(
tree
,
edge
,
enum
tree_code
,
tree
,
tree
,
vec
<
assert_info
>
&
);
tree
,
tree
,
vec
<
assert_info
>
&
);
extern
bool
stmt_interesting_for_vrp
(
gimple
*
);
extern
bool
stmt_interesting_for_vrp
(
gimple
*
);
...
@@ -282,18 +117,12 @@ extern bool range_int_cst_p (const value_range *);
...
@@ -282,18 +117,12 @@ extern bool range_int_cst_p (const value_range *);
extern
int
compare_values
(
tree
,
tree
);
extern
int
compare_values
(
tree
,
tree
);
extern
int
compare_values_warnv
(
tree
,
tree
,
bool
*
);
extern
int
compare_values_warnv
(
tree
,
tree
,
bool
*
);
extern
int
operand_less_p
(
tree
,
tree
);
extern
int
operand_less_p
(
tree
,
tree
);
extern
bool
vrp_val_is_min
(
const_tree
);
extern
bool
vrp_val_is_max
(
const_tree
);
extern
tree
vrp_val_min
(
const_tree
);
extern
tree
vrp_val_max
(
const_tree
);
void
range_fold_unary_expr
(
value_range
*
,
enum
tree_code
,
tree
type
,
void
range_fold_unary_expr
(
value_range
*
,
enum
tree_code
,
tree
type
,
const
value_range
*
,
tree
op0_type
);
const
value_range
*
,
tree
op0_type
);
void
range_fold_binary_expr
(
value_range
*
,
enum
tree_code
,
tree
type
,
void
range_fold_binary_expr
(
value_range
*
,
enum
tree_code
,
tree
type
,
const
value_range
*
,
const
value_range
*
);
const
value_range
*
,
const
value_range
*
);
extern
bool
vrp_operand_equal_p
(
const_tree
,
const_tree
);
extern
enum
value_range_kind
intersect_range_with_nonzero_bits
extern
enum
value_range_kind
intersect_range_with_nonzero_bits
(
enum
value_range_kind
,
wide_int
*
,
wide_int
*
,
const
wide_int
&
,
signop
);
(
enum
value_range_kind
,
wide_int
*
,
wide_int
*
,
const
wide_int
&
,
signop
);
...
@@ -304,35 +133,4 @@ extern tree get_single_symbol (tree, bool *, tree *);
...
@@ -304,35 +133,4 @@ extern tree get_single_symbol (tree, bool *, tree *);
extern
void
maybe_set_nonzero_bits
(
edge
,
tree
);
extern
void
maybe_set_nonzero_bits
(
edge
,
tree
);
extern
value_range_kind
determine_value_range
(
tree
,
wide_int
*
,
wide_int
*
);
extern
value_range_kind
determine_value_range
(
tree
,
wide_int
*
,
wide_int
*
);
/* Return TRUE if range is nonzero. */
inline
bool
value_range
::
nonzero_p
()
const
{
if
(
m_kind
==
VR_ANTI_RANGE
&&
!
TYPE_UNSIGNED
(
type
())
&&
integer_zerop
(
m_min
)
&&
integer_zerop
(
m_max
))
return
true
;
return
(
m_kind
==
VR_RANGE
&&
TYPE_UNSIGNED
(
type
())
&&
integer_onep
(
m_min
)
&&
vrp_val_is_max
(
m_max
));
}
/* Return TRUE if *VR includes the value zero. */
inline
bool
range_includes_zero_p
(
const
value_range
*
vr
)
{
if
(
vr
->
undefined_p
())
return
false
;
if
(
vr
->
varying_p
())
return
true
;
return
vr
->
may_contain_p
(
build_zero_cst
(
vr
->
type
()));
}
#endif
/* GCC_TREE_VRP_H */
#endif
/* GCC_TREE_VRP_H */
gcc/value-range.cc
0 → 100644
View file @
cca78449
/* Support routines for value ranges.
Copyright (C) 2019 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "tree-pretty-print.h"
#include "fold-const.h"
value_range
::
value_range
(
tree
min
,
tree
max
,
value_range_kind
kind
)
{
set
(
min
,
max
,
kind
);
}
value_range
::
value_range
(
tree
type
)
{
set_varying
(
type
);
}
value_range
::
value_range
(
tree
type
,
const
wide_int
&
wmin
,
const
wide_int
&
wmax
,
enum
value_range_kind
kind
)
{
tree
min
=
wide_int_to_tree
(
type
,
wmin
);
tree
max
=
wide_int_to_tree
(
type
,
wmax
);
gcc_checking_assert
(
kind
==
VR_RANGE
||
kind
==
VR_ANTI_RANGE
);
set
(
min
,
max
,
kind
);
}
void
value_range
::
set_undefined
()
{
m_kind
=
VR_UNDEFINED
;
m_min
=
m_max
=
NULL
;
}
void
value_range
::
set_varying
(
tree
type
)
{
m_kind
=
VR_VARYING
;
if
(
supports_type_p
(
type
))
{
m_min
=
vrp_val_min
(
type
);
m_max
=
vrp_val_max
(
type
);
}
else
/* We can't do anything range-wise with these types. */
m_min
=
m_max
=
error_mark_node
;
}
/* Set value range to the canonical form of {VRTYPE, MIN, MAX, EQUIV}.
This means adjusting VRTYPE, MIN and MAX representing the case of a
wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
In corner cases where MAX+1 or MIN-1 wraps this will fall back
to varying.
This routine exists to ease canonicalization in the case where we
extract ranges from var + CST op limit. */
void
value_range
::
set
(
tree
min
,
tree
max
,
value_range_kind
kind
)
{
/* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
if
(
kind
==
VR_UNDEFINED
)
{
set_undefined
();
return
;
}
else
if
(
kind
==
VR_VARYING
)
{
gcc_assert
(
TREE_TYPE
(
min
)
==
TREE_TYPE
(
max
));
tree
typ
=
TREE_TYPE
(
min
);
if
(
supports_type_p
(
typ
))
{
gcc_assert
(
vrp_val_min
(
typ
));
gcc_assert
(
vrp_val_max
(
typ
));
}
set_varying
(
typ
);
return
;
}
/* Convert POLY_INT_CST bounds into worst-case INTEGER_CST bounds. */
if
(
POLY_INT_CST_P
(
min
))
{
tree
type_min
=
vrp_val_min
(
TREE_TYPE
(
min
));
widest_int
lb
=
constant_lower_bound_with_limit
(
wi
::
to_poly_widest
(
min
),
wi
::
to_widest
(
type_min
));
min
=
wide_int_to_tree
(
TREE_TYPE
(
min
),
lb
);
}
if
(
POLY_INT_CST_P
(
max
))
{
tree
type_max
=
vrp_val_max
(
TREE_TYPE
(
max
));
widest_int
ub
=
constant_upper_bound_with_limit
(
wi
::
to_poly_widest
(
max
),
wi
::
to_widest
(
type_max
));
max
=
wide_int_to_tree
(
TREE_TYPE
(
max
),
ub
);
}
/* Nothing to canonicalize for symbolic ranges. */
if
(
TREE_CODE
(
min
)
!=
INTEGER_CST
||
TREE_CODE
(
max
)
!=
INTEGER_CST
)
{
m_kind
=
kind
;
m_min
=
min
;
m_max
=
max
;
return
;
}
/* Wrong order for min and max, to swap them and the VR type we need
to adjust them. */
if
(
tree_int_cst_lt
(
max
,
min
))
{
tree
one
,
tmp
;
/* For one bit precision if max < min, then the swapped
range covers all values, so for VR_RANGE it is varying and
for VR_ANTI_RANGE empty range, so drop to varying as well. */
if
(
TYPE_PRECISION
(
TREE_TYPE
(
min
))
==
1
)
{
set_varying
(
TREE_TYPE
(
min
));
return
;
}
one
=
build_int_cst
(
TREE_TYPE
(
min
),
1
);
tmp
=
int_const_binop
(
PLUS_EXPR
,
max
,
one
);
max
=
int_const_binop
(
MINUS_EXPR
,
min
,
one
);
min
=
tmp
;
/* There's one corner case, if we had [C+1, C] before we now have
that again. But this represents an empty value range, so drop
to varying in this case. */
if
(
tree_int_cst_lt
(
max
,
min
))
{
set_varying
(
TREE_TYPE
(
min
));
return
;
}
kind
=
kind
==
VR_RANGE
?
VR_ANTI_RANGE
:
VR_RANGE
;
}
tree
type
=
TREE_TYPE
(
min
);
/* Anti-ranges that can be represented as ranges should be so. */
if
(
kind
==
VR_ANTI_RANGE
)
{
/* For -fstrict-enums we may receive out-of-range ranges so consider
values < -INF and values > INF as -INF/INF as well. */
bool
is_min
=
vrp_val_is_min
(
min
);
bool
is_max
=
vrp_val_is_max
(
max
);
if
(
is_min
&&
is_max
)
{
/* We cannot deal with empty ranges, drop to varying.
??? This could be VR_UNDEFINED instead. */
set_varying
(
type
);
return
;
}
else
if
(
TYPE_PRECISION
(
TREE_TYPE
(
min
))
==
1
&&
(
is_min
||
is_max
))
{
/* Non-empty boolean ranges can always be represented
as a singleton range. */
if
(
is_min
)
min
=
max
=
vrp_val_max
(
TREE_TYPE
(
min
));
else
min
=
max
=
vrp_val_min
(
TREE_TYPE
(
min
));
kind
=
VR_RANGE
;
}
else
if
(
is_min
)
{
tree
one
=
build_int_cst
(
TREE_TYPE
(
max
),
1
);
min
=
int_const_binop
(
PLUS_EXPR
,
max
,
one
);
max
=
vrp_val_max
(
TREE_TYPE
(
max
));
kind
=
VR_RANGE
;
}
else
if
(
is_max
)
{
tree
one
=
build_int_cst
(
TREE_TYPE
(
min
),
1
);
max
=
int_const_binop
(
MINUS_EXPR
,
min
,
one
);
min
=
vrp_val_min
(
TREE_TYPE
(
min
));
kind
=
VR_RANGE
;
}
}
/* Normalize [MIN, MAX] into VARYING and ~[MIN, MAX] into UNDEFINED.
Avoid using TYPE_{MIN,MAX}_VALUE because -fstrict-enums can
restrict those to a subset of what actually fits in the type.
Instead use the extremes of the type precision which will allow
compare_range_with_value() to check if a value is inside a range,
whereas if we used TYPE_*_VAL, said function would just punt
upon seeing a VARYING. */
unsigned
prec
=
TYPE_PRECISION
(
type
);
signop
sign
=
TYPE_SIGN
(
type
);
if
(
wi
::
eq_p
(
wi
::
to_wide
(
min
),
wi
::
min_value
(
prec
,
sign
))
&&
wi
::
eq_p
(
wi
::
to_wide
(
max
),
wi
::
max_value
(
prec
,
sign
)))
{
if
(
kind
==
VR_RANGE
)
set_varying
(
type
);
else
if
(
kind
==
VR_ANTI_RANGE
)
set_undefined
();
else
gcc_unreachable
();
return
;
}
/* Do not drop [-INF(OVF), +INF(OVF)] to varying. (OVF) has to be sticky
to make sure VRP iteration terminates, otherwise we can get into
oscillations. */
m_kind
=
kind
;
m_min
=
min
;
m_max
=
max
;
if
(
flag_checking
)
check
();
}
void
value_range
::
set
(
tree
val
)
{
gcc_assert
(
TREE_CODE
(
val
)
==
SSA_NAME
||
is_gimple_min_invariant
(
val
));
if
(
TREE_OVERFLOW_P
(
val
))
val
=
drop_tree_overflow
(
val
);
set
(
val
,
val
);
}
/* Set value range VR to a nonzero range of type TYPE. */
void
value_range
::
set_nonzero
(
tree
type
)
{
tree
zero
=
build_int_cst
(
type
,
0
);
set
(
zero
,
zero
,
VR_ANTI_RANGE
);
}
/* Set value range VR to a ZERO range of type TYPE. */
void
value_range
::
set_zero
(
tree
type
)
{
set
(
build_int_cst
(
type
,
0
));
}
/* Check the validity of the range. */
void
value_range
::
check
()
{
switch
(
m_kind
)
{
case
VR_RANGE
:
case
VR_ANTI_RANGE
:
{
gcc_assert
(
m_min
&&
m_max
);
gcc_assert
(
!
TREE_OVERFLOW_P
(
m_min
)
&&
!
TREE_OVERFLOW_P
(
m_max
));
/* Creating ~[-MIN, +MAX] is stupid because that would be
the empty set. */
if
(
INTEGRAL_TYPE_P
(
TREE_TYPE
(
m_min
))
&&
m_kind
==
VR_ANTI_RANGE
)
gcc_assert
(
!
vrp_val_is_min
(
m_min
)
||
!
vrp_val_is_max
(
m_max
));
int
cmp
=
compare_values
(
m_min
,
m_max
);
gcc_assert
(
cmp
==
0
||
cmp
==
-
1
||
cmp
==
-
2
);
break
;
}
case
VR_UNDEFINED
:
gcc_assert
(
!
min
()
&&
!
max
());
break
;
case
VR_VARYING
:
gcc_assert
(
m_min
&&
m_max
);
break
;
default
:
gcc_unreachable
();
}
}
/* Return the number of sub-ranges in a range. */
unsigned
value_range
::
num_pairs
()
const
{
if
(
undefined_p
())
return
0
;
if
(
varying_p
())
return
1
;
if
(
symbolic_p
())
return
normalize_symbolics
().
num_pairs
();
if
(
m_kind
==
VR_ANTI_RANGE
)
{
// ~[MIN, X] has one sub-range of [X+1, MAX], and
// ~[X, MAX] has one sub-range of [MIN, X-1].
if
(
vrp_val_is_min
(
m_min
)
||
vrp_val_is_max
(
m_max
))
return
1
;
return
2
;
}
return
1
;
}
/* Return the lower bound for a sub-range. PAIR is the sub-range in
question. */
wide_int
value_range
::
lower_bound
(
unsigned
pair
)
const
{
if
(
symbolic_p
())
return
normalize_symbolics
().
lower_bound
(
pair
);
gcc_checking_assert
(
!
undefined_p
());
gcc_checking_assert
(
pair
+
1
<=
num_pairs
());
tree
t
=
NULL
;
if
(
m_kind
==
VR_ANTI_RANGE
)
{
tree
typ
=
type
();
if
(
pair
==
1
||
vrp_val_is_min
(
m_min
))
t
=
wide_int_to_tree
(
typ
,
wi
::
to_wide
(
m_max
)
+
1
);
else
t
=
vrp_val_min
(
typ
);
}
else
t
=
m_min
;
return
wi
::
to_wide
(
t
);
}
/* Return the upper bound for a sub-range. PAIR is the sub-range in
question. */
wide_int
value_range
::
upper_bound
(
unsigned
pair
)
const
{
if
(
symbolic_p
())
return
normalize_symbolics
().
upper_bound
(
pair
);
gcc_checking_assert
(
!
undefined_p
());
gcc_checking_assert
(
pair
+
1
<=
num_pairs
());
tree
t
=
NULL
;
if
(
m_kind
==
VR_ANTI_RANGE
)
{
tree
typ
=
type
();
if
(
pair
==
1
||
vrp_val_is_min
(
m_min
))
t
=
vrp_val_max
(
typ
);
else
t
=
wide_int_to_tree
(
typ
,
wi
::
to_wide
(
m_min
)
-
1
);
}
else
t
=
m_max
;
return
wi
::
to_wide
(
t
);
}
/* Return the highest bound in a range. */
wide_int
value_range
::
upper_bound
()
const
{
unsigned
pairs
=
num_pairs
();
gcc_checking_assert
(
pairs
>
0
);
return
upper_bound
(
pairs
-
1
);
}
bool
value_range
::
equal_p
(
const
value_range
&
other
)
const
{
/* Ignore types for undefined. All undefines are equal. */
if
(
undefined_p
())
return
m_kind
==
other
.
m_kind
;
return
(
m_kind
==
other
.
m_kind
&&
vrp_operand_equal_p
(
m_min
,
other
.
m_min
)
&&
vrp_operand_equal_p
(
m_max
,
other
.
m_max
));
}
bool
value_range
::
operator
==
(
const
value_range
&
r
)
const
{
return
equal_p
(
r
);
}
/* If range is a singleton, place it in RESULT and return TRUE.
Note: A singleton can be any gimple invariant, not just constants.
So, [&x, &x] counts as a singleton. */
/* Return TRUE if this is a symbolic range. */
bool
value_range
::
symbolic_p
()
const
{
return
(
!
varying_p
()
&&
!
undefined_p
()
&&
(
!
is_gimple_min_invariant
(
m_min
)
||
!
is_gimple_min_invariant
(
m_max
)));
}
/* NOTE: This is not the inverse of symbolic_p because the range
could also be varying or undefined. Ideally they should be inverse
of each other, with varying only applying to symbolics. Varying of
constants would be represented as [-MIN, +MAX]. */
bool
value_range
::
constant_p
()
const
{
return
(
!
varying_p
()
&&
!
undefined_p
()
&&
TREE_CODE
(
m_min
)
==
INTEGER_CST
&&
TREE_CODE
(
m_max
)
==
INTEGER_CST
);
}
bool
value_range
::
singleton_p
(
tree
*
result
)
const
{
if
(
m_kind
==
VR_ANTI_RANGE
)
{
if
(
nonzero_p
())
{
if
(
TYPE_PRECISION
(
type
())
==
1
)
{
if
(
result
)
*
result
=
m_max
;
return
true
;
}
return
false
;
}
if
(
num_pairs
()
==
1
)
{
value_range
vr0
,
vr1
;
ranges_from_anti_range
(
this
,
&
vr0
,
&
vr1
);
return
vr0
.
singleton_p
(
result
);
}
}
if
(
m_kind
==
VR_RANGE
&&
vrp_operand_equal_p
(
min
(),
max
())
&&
is_gimple_min_invariant
(
min
()))
{
if
(
result
)
*
result
=
min
();
return
true
;
}
return
false
;
}
/* Return 1 if VAL is inside value range.
0 if VAL is not inside value range.
-2 if we cannot tell either way.
Benchmark compile/20001226-1.c compilation time after changing this
function. */
int
value_range
::
value_inside_range
(
tree
val
)
const
{
int
cmp1
,
cmp2
;
if
(
varying_p
())
return
1
;
if
(
undefined_p
())
return
0
;
cmp1
=
operand_less_p
(
val
,
m_min
);
if
(
cmp1
==
-
2
)
return
-
2
;
if
(
cmp1
==
1
)
return
m_kind
!=
VR_RANGE
;
cmp2
=
operand_less_p
(
m_max
,
val
);
if
(
cmp2
==
-
2
)
return
-
2
;
if
(
m_kind
==
VR_RANGE
)
return
!
cmp2
;
else
return
!!
cmp2
;
}
/* Return TRUE if it is possible that range contains VAL. */
bool
value_range
::
may_contain_p
(
tree
val
)
const
{
return
value_inside_range
(
val
)
!=
0
;
}
/* Return TRUE if range contains INTEGER_CST. */
bool
value_range
::
contains_p
(
tree
cst
)
const
{
gcc_checking_assert
(
TREE_CODE
(
cst
)
==
INTEGER_CST
);
if
(
symbolic_p
())
return
normalize_symbolics
().
contains_p
(
cst
);
return
value_inside_range
(
cst
)
==
1
;
}
/* Normalize addresses into constants. */
value_range
value_range
::
normalize_addresses
()
const
{
if
(
undefined_p
())
return
*
this
;
if
(
!
POINTER_TYPE_P
(
type
())
||
range_has_numeric_bounds_p
(
this
))
return
*
this
;
if
(
!
range_includes_zero_p
(
this
))
{
gcc_checking_assert
(
TREE_CODE
(
m_min
)
==
ADDR_EXPR
||
TREE_CODE
(
m_max
)
==
ADDR_EXPR
);
return
range_nonzero
(
type
());
}
return
value_range
(
type
());
}
/* Normalize symbolics and addresses into constants. */
value_range
value_range
::
normalize_symbolics
()
const
{
if
(
varying_p
()
||
undefined_p
())
return
*
this
;
tree
ttype
=
type
();
bool
min_symbolic
=
!
is_gimple_min_invariant
(
min
());
bool
max_symbolic
=
!
is_gimple_min_invariant
(
max
());
if
(
!
min_symbolic
&&
!
max_symbolic
)
return
normalize_addresses
();
// [SYM, SYM] -> VARYING
if
(
min_symbolic
&&
max_symbolic
)
{
value_range
var
;
var
.
set_varying
(
ttype
);
return
var
;
}
if
(
kind
()
==
VR_RANGE
)
{
// [SYM, NUM] -> [-MIN, NUM]
if
(
min_symbolic
)
return
value_range
(
vrp_val_min
(
ttype
),
max
());
// [NUM, SYM] -> [NUM, +MAX]
return
value_range
(
min
(),
vrp_val_max
(
ttype
));
}
gcc_checking_assert
(
kind
()
==
VR_ANTI_RANGE
);
// ~[SYM, NUM] -> [NUM + 1, +MAX]
if
(
min_symbolic
)
{
if
(
!
vrp_val_is_max
(
max
()))
{
tree
n
=
wide_int_to_tree
(
ttype
,
wi
::
to_wide
(
max
())
+
1
);
return
value_range
(
n
,
vrp_val_max
(
ttype
));
}
value_range
var
;
var
.
set_varying
(
ttype
);
return
var
;
}
// ~[NUM, SYM] -> [-MIN, NUM - 1]
if
(
!
vrp_val_is_min
(
min
()))
{
tree
n
=
wide_int_to_tree
(
ttype
,
wi
::
to_wide
(
min
())
-
1
);
return
value_range
(
vrp_val_min
(
ttype
),
n
);
}
value_range
var
;
var
.
set_varying
(
ttype
);
return
var
;
}
/* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
{ VR1TYPE, VR0MIN, VR0MAX } and store the result
in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
possible such range. The resulting range is not canonicalized. */
static
void
intersect_ranges
(
enum
value_range_kind
*
vr0type
,
tree
*
vr0min
,
tree
*
vr0max
,
enum
value_range_kind
vr1type
,
tree
vr1min
,
tree
vr1max
)
{
bool
mineq
=
vrp_operand_equal_p
(
*
vr0min
,
vr1min
);
bool
maxeq
=
vrp_operand_equal_p
(
*
vr0max
,
vr1max
);
/* [] is vr0, () is vr1 in the following classification comments. */
if
(
mineq
&&
maxeq
)
{
/* [( )] */
if
(
*
vr0type
==
vr1type
)
/* Nothing to do for equal ranges. */
;
else
if
((
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
||
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_RANGE
))
{
/* For anti-range with range intersection the result is empty. */
*
vr0type
=
VR_UNDEFINED
;
*
vr0min
=
NULL_TREE
;
*
vr0max
=
NULL_TREE
;
}
else
gcc_unreachable
();
}
else
if
(
operand_less_p
(
*
vr0max
,
vr1min
)
==
1
||
operand_less_p
(
vr1max
,
*
vr0min
)
==
1
)
{
/* [ ] ( ) or ( ) [ ]
If the ranges have an empty intersection, the result of the
intersect operation is the range for intersecting an
anti-range with a range or empty when intersecting two ranges. */
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
;
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_RANGE
)
{
*
vr0type
=
vr1type
;
*
vr0min
=
vr1min
;
*
vr0max
=
vr1max
;
}
else
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_RANGE
)
{
*
vr0type
=
VR_UNDEFINED
;
*
vr0min
=
NULL_TREE
;
*
vr0max
=
NULL_TREE
;
}
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
{
/* If the anti-ranges are adjacent to each other merge them. */
if
(
TREE_CODE
(
*
vr0max
)
==
INTEGER_CST
&&
TREE_CODE
(
vr1min
)
==
INTEGER_CST
&&
operand_less_p
(
*
vr0max
,
vr1min
)
==
1
&&
integer_onep
(
int_const_binop
(
MINUS_EXPR
,
vr1min
,
*
vr0max
)))
*
vr0max
=
vr1max
;
else
if
(
TREE_CODE
(
vr1max
)
==
INTEGER_CST
&&
TREE_CODE
(
*
vr0min
)
==
INTEGER_CST
&&
operand_less_p
(
vr1max
,
*
vr0min
)
==
1
&&
integer_onep
(
int_const_binop
(
MINUS_EXPR
,
*
vr0min
,
vr1max
)))
*
vr0min
=
vr1min
;
/* Else arbitrarily take VR0. */
}
}
else
if
((
maxeq
||
operand_less_p
(
vr1max
,
*
vr0max
)
==
1
)
&&
(
mineq
||
operand_less_p
(
*
vr0min
,
vr1min
)
==
1
))
{
/* [ ( ) ] or [( ) ] or [ ( )] */
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_RANGE
)
{
/* If both are ranges the result is the inner one. */
*
vr0type
=
vr1type
;
*
vr0min
=
vr1min
;
*
vr0max
=
vr1max
;
}
else
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
{
/* Choose the right gap if the left one is empty. */
if
(
mineq
)
{
if
(
TREE_CODE
(
vr1max
)
!=
INTEGER_CST
)
*
vr0min
=
vr1max
;
else
if
(
TYPE_PRECISION
(
TREE_TYPE
(
vr1max
))
==
1
&&
!
TYPE_UNSIGNED
(
TREE_TYPE
(
vr1max
)))
*
vr0min
=
int_const_binop
(
MINUS_EXPR
,
vr1max
,
build_int_cst
(
TREE_TYPE
(
vr1max
),
-
1
));
else
*
vr0min
=
int_const_binop
(
PLUS_EXPR
,
vr1max
,
build_int_cst
(
TREE_TYPE
(
vr1max
),
1
));
}
/* Choose the left gap if the right one is empty. */
else
if
(
maxeq
)
{
if
(
TREE_CODE
(
vr1min
)
!=
INTEGER_CST
)
*
vr0max
=
vr1min
;
else
if
(
TYPE_PRECISION
(
TREE_TYPE
(
vr1min
))
==
1
&&
!
TYPE_UNSIGNED
(
TREE_TYPE
(
vr1min
)))
*
vr0max
=
int_const_binop
(
PLUS_EXPR
,
vr1min
,
build_int_cst
(
TREE_TYPE
(
vr1min
),
-
1
));
else
*
vr0max
=
int_const_binop
(
MINUS_EXPR
,
vr1min
,
build_int_cst
(
TREE_TYPE
(
vr1min
),
1
));
}
/* Choose the anti-range if the range is effectively varying. */
else
if
(
vrp_val_is_min
(
*
vr0min
)
&&
vrp_val_is_max
(
*
vr0max
))
{
*
vr0type
=
vr1type
;
*
vr0min
=
vr1min
;
*
vr0max
=
vr1max
;
}
/* Else choose the range. */
}
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
/* If both are anti-ranges the result is the outer one. */
;
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_RANGE
)
{
/* The intersection is empty. */
*
vr0type
=
VR_UNDEFINED
;
*
vr0min
=
NULL_TREE
;
*
vr0max
=
NULL_TREE
;
}
else
gcc_unreachable
();
}
else
if
((
maxeq
||
operand_less_p
(
*
vr0max
,
vr1max
)
==
1
)
&&
(
mineq
||
operand_less_p
(
vr1min
,
*
vr0min
)
==
1
))
{
/* ( [ ] ) or ([ ] ) or ( [ ]) */
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_RANGE
)
/* Choose the inner range. */
;
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_RANGE
)
{
/* Choose the right gap if the left is empty. */
if
(
mineq
)
{
*
vr0type
=
VR_RANGE
;
if
(
TREE_CODE
(
*
vr0max
)
!=
INTEGER_CST
)
*
vr0min
=
*
vr0max
;
else
if
(
TYPE_PRECISION
(
TREE_TYPE
(
*
vr0max
))
==
1
&&
!
TYPE_UNSIGNED
(
TREE_TYPE
(
*
vr0max
)))
*
vr0min
=
int_const_binop
(
MINUS_EXPR
,
*
vr0max
,
build_int_cst
(
TREE_TYPE
(
*
vr0max
),
-
1
));
else
*
vr0min
=
int_const_binop
(
PLUS_EXPR
,
*
vr0max
,
build_int_cst
(
TREE_TYPE
(
*
vr0max
),
1
));
*
vr0max
=
vr1max
;
}
/* Choose the left gap if the right is empty. */
else
if
(
maxeq
)
{
*
vr0type
=
VR_RANGE
;
if
(
TREE_CODE
(
*
vr0min
)
!=
INTEGER_CST
)
*
vr0max
=
*
vr0min
;
else
if
(
TYPE_PRECISION
(
TREE_TYPE
(
*
vr0min
))
==
1
&&
!
TYPE_UNSIGNED
(
TREE_TYPE
(
*
vr0min
)))
*
vr0max
=
int_const_binop
(
PLUS_EXPR
,
*
vr0min
,
build_int_cst
(
TREE_TYPE
(
*
vr0min
),
-
1
));
else
*
vr0max
=
int_const_binop
(
MINUS_EXPR
,
*
vr0min
,
build_int_cst
(
TREE_TYPE
(
*
vr0min
),
1
));
*
vr0min
=
vr1min
;
}
/* Choose the anti-range if the range is effectively varying. */
else
if
(
vrp_val_is_min
(
vr1min
)
&&
vrp_val_is_max
(
vr1max
))
;
/* Choose the anti-range if it is ~[0,0], that range is special
enough to special case when vr1's range is relatively wide.
At least for types bigger than int - this covers pointers
and arguments to functions like ctz. */
else
if
(
*
vr0min
==
*
vr0max
&&
integer_zerop
(
*
vr0min
)
&&
((
TYPE_PRECISION
(
TREE_TYPE
(
*
vr0min
))
>=
TYPE_PRECISION
(
integer_type_node
))
||
POINTER_TYPE_P
(
TREE_TYPE
(
*
vr0min
)))
&&
TREE_CODE
(
vr1max
)
==
INTEGER_CST
&&
TREE_CODE
(
vr1min
)
==
INTEGER_CST
&&
(
wi
::
clz
(
wi
::
to_wide
(
vr1max
)
-
wi
::
to_wide
(
vr1min
))
<
TYPE_PRECISION
(
TREE_TYPE
(
*
vr0min
))
/
2
))
;
/* Else choose the range. */
else
{
*
vr0type
=
vr1type
;
*
vr0min
=
vr1min
;
*
vr0max
=
vr1max
;
}
}
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
{
/* If both are anti-ranges the result is the outer one. */
*
vr0type
=
vr1type
;
*
vr0min
=
vr1min
;
*
vr0max
=
vr1max
;
}
else
if
(
vr1type
==
VR_ANTI_RANGE
&&
*
vr0type
==
VR_RANGE
)
{
/* The intersection is empty. */
*
vr0type
=
VR_UNDEFINED
;
*
vr0min
=
NULL_TREE
;
*
vr0max
=
NULL_TREE
;
}
else
gcc_unreachable
();
}
else
if
((
operand_less_p
(
vr1min
,
*
vr0max
)
==
1
||
operand_equal_p
(
vr1min
,
*
vr0max
,
0
))
&&
operand_less_p
(
*
vr0min
,
vr1min
)
==
1
)
{
/* [ ( ] ) or [ ]( ) */
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
*
vr0max
=
vr1max
;
else
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_RANGE
)
*
vr0min
=
vr1min
;
else
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
{
if
(
TREE_CODE
(
vr1min
)
==
INTEGER_CST
)
*
vr0max
=
int_const_binop
(
MINUS_EXPR
,
vr1min
,
build_int_cst
(
TREE_TYPE
(
vr1min
),
1
));
else
*
vr0max
=
vr1min
;
}
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_RANGE
)
{
*
vr0type
=
VR_RANGE
;
if
(
TREE_CODE
(
*
vr0max
)
==
INTEGER_CST
)
*
vr0min
=
int_const_binop
(
PLUS_EXPR
,
*
vr0max
,
build_int_cst
(
TREE_TYPE
(
*
vr0max
),
1
));
else
*
vr0min
=
*
vr0max
;
*
vr0max
=
vr1max
;
}
else
gcc_unreachable
();
}
else
if
((
operand_less_p
(
*
vr0min
,
vr1max
)
==
1
||
operand_equal_p
(
*
vr0min
,
vr1max
,
0
))
&&
operand_less_p
(
vr1min
,
*
vr0min
)
==
1
)
{
/* ( [ ) ] or ( )[ ] */
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
*
vr0min
=
vr1min
;
else
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_RANGE
)
*
vr0max
=
vr1max
;
else
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
{
if
(
TREE_CODE
(
vr1max
)
==
INTEGER_CST
)
*
vr0min
=
int_const_binop
(
PLUS_EXPR
,
vr1max
,
build_int_cst
(
TREE_TYPE
(
vr1max
),
1
));
else
*
vr0min
=
vr1max
;
}
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_RANGE
)
{
*
vr0type
=
VR_RANGE
;
if
(
TREE_CODE
(
*
vr0min
)
==
INTEGER_CST
)
*
vr0max
=
int_const_binop
(
MINUS_EXPR
,
*
vr0min
,
build_int_cst
(
TREE_TYPE
(
*
vr0min
),
1
));
else
*
vr0max
=
*
vr0min
;
*
vr0min
=
vr1min
;
}
else
gcc_unreachable
();
}
/* If we know the intersection is empty, there's no need to
conservatively add anything else to the set. */
if
(
*
vr0type
==
VR_UNDEFINED
)
return
;
/* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
result for the intersection. That's always a conservative
correct estimate unless VR1 is a constant singleton range
in which case we choose that. */
if
(
vr1type
==
VR_RANGE
&&
is_gimple_min_invariant
(
vr1min
)
&&
vrp_operand_equal_p
(
vr1min
,
vr1max
))
{
*
vr0type
=
vr1type
;
*
vr0min
=
vr1min
;
*
vr0max
=
vr1max
;
}
}
/* Helper for the intersection operation for value ranges. Given two
value ranges VR0 and VR1, return the intersection of the two
ranges. This may not be the smallest possible such range. */
value_range
value_range
::
intersect_helper
(
const
value_range
*
vr0
,
const
value_range
*
vr1
)
{
/* If either range is VR_VARYING the other one wins. */
if
(
vr1
->
varying_p
())
return
*
vr0
;
if
(
vr0
->
varying_p
())
return
*
vr1
;
/* When either range is VR_UNDEFINED the resulting range is
VR_UNDEFINED, too. */
if
(
vr0
->
undefined_p
())
return
*
vr0
;
if
(
vr1
->
undefined_p
())
return
*
vr1
;
value_range_kind
vr0kind
=
vr0
->
kind
();
tree
vr0min
=
vr0
->
min
();
tree
vr0max
=
vr0
->
max
();
intersect_ranges
(
&
vr0kind
,
&
vr0min
,
&
vr0max
,
vr1
->
kind
(),
vr1
->
min
(),
vr1
->
max
());
/* Make sure to canonicalize the result though as the inversion of a
VR_RANGE can still be a VR_RANGE. Work on a temporary so we can
fall back to vr0 when this turns things to varying. */
value_range
tem
;
if
(
vr0kind
==
VR_UNDEFINED
)
tem
.
set_undefined
();
else
if
(
vr0kind
==
VR_VARYING
)
tem
.
set_varying
(
vr0
->
type
());
else
tem
.
set
(
vr0min
,
vr0max
,
vr0kind
);
/* If that failed, use the saved original VR0. */
if
(
tem
.
varying_p
())
return
*
vr0
;
return
tem
;
}
/* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
{ VR1TYPE, VR0MIN, VR0MAX } and store the result
in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
possible such range. The resulting range is not canonicalized. */
static
void
union_ranges
(
enum
value_range_kind
*
vr0type
,
tree
*
vr0min
,
tree
*
vr0max
,
enum
value_range_kind
vr1type
,
tree
vr1min
,
tree
vr1max
)
{
int
cmpmin
=
compare_values
(
*
vr0min
,
vr1min
);
int
cmpmax
=
compare_values
(
*
vr0max
,
vr1max
);
bool
mineq
=
cmpmin
==
0
;
bool
maxeq
=
cmpmax
==
0
;
/* [] is vr0, () is vr1 in the following classification comments. */
if
(
mineq
&&
maxeq
)
{
/* [( )] */
if
(
*
vr0type
==
vr1type
)
/* Nothing to do for equal ranges. */
;
else
if
((
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
||
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_RANGE
))
{
/* For anti-range with range union the result is varying. */
goto
give_up
;
}
else
gcc_unreachable
();
}
else
if
(
operand_less_p
(
*
vr0max
,
vr1min
)
==
1
||
operand_less_p
(
vr1max
,
*
vr0min
)
==
1
)
{
/* [ ] ( ) or ( ) [ ]
If the ranges have an empty intersection, result of the union
operation is the anti-range or if both are anti-ranges
it covers all. */
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
goto
give_up
;
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_RANGE
)
;
else
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
{
*
vr0type
=
vr1type
;
*
vr0min
=
vr1min
;
*
vr0max
=
vr1max
;
}
else
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_RANGE
)
{
/* The result is the convex hull of both ranges. */
if
(
operand_less_p
(
*
vr0max
,
vr1min
)
==
1
)
{
/* If the result can be an anti-range, create one. */
if
(
TREE_CODE
(
*
vr0max
)
==
INTEGER_CST
&&
TREE_CODE
(
vr1min
)
==
INTEGER_CST
&&
vrp_val_is_min
(
*
vr0min
)
&&
vrp_val_is_max
(
vr1max
))
{
tree
min
=
int_const_binop
(
PLUS_EXPR
,
*
vr0max
,
build_int_cst
(
TREE_TYPE
(
*
vr0max
),
1
));
tree
max
=
int_const_binop
(
MINUS_EXPR
,
vr1min
,
build_int_cst
(
TREE_TYPE
(
vr1min
),
1
));
if
(
!
operand_less_p
(
max
,
min
))
{
*
vr0type
=
VR_ANTI_RANGE
;
*
vr0min
=
min
;
*
vr0max
=
max
;
}
else
*
vr0max
=
vr1max
;
}
else
*
vr0max
=
vr1max
;
}
else
{
/* If the result can be an anti-range, create one. */
if
(
TREE_CODE
(
vr1max
)
==
INTEGER_CST
&&
TREE_CODE
(
*
vr0min
)
==
INTEGER_CST
&&
vrp_val_is_min
(
vr1min
)
&&
vrp_val_is_max
(
*
vr0max
))
{
tree
min
=
int_const_binop
(
PLUS_EXPR
,
vr1max
,
build_int_cst
(
TREE_TYPE
(
vr1max
),
1
));
tree
max
=
int_const_binop
(
MINUS_EXPR
,
*
vr0min
,
build_int_cst
(
TREE_TYPE
(
*
vr0min
),
1
));
if
(
!
operand_less_p
(
max
,
min
))
{
*
vr0type
=
VR_ANTI_RANGE
;
*
vr0min
=
min
;
*
vr0max
=
max
;
}
else
*
vr0min
=
vr1min
;
}
else
*
vr0min
=
vr1min
;
}
}
else
gcc_unreachable
();
}
else
if
((
maxeq
||
cmpmax
==
1
)
&&
(
mineq
||
cmpmin
==
-
1
))
{
/* [ ( ) ] or [( ) ] or [ ( )] */
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_RANGE
)
;
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
{
*
vr0type
=
vr1type
;
*
vr0min
=
vr1min
;
*
vr0max
=
vr1max
;
}
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_RANGE
)
{
/* Arbitrarily choose the right or left gap. */
if
(
!
mineq
&&
TREE_CODE
(
vr1min
)
==
INTEGER_CST
)
*
vr0max
=
int_const_binop
(
MINUS_EXPR
,
vr1min
,
build_int_cst
(
TREE_TYPE
(
vr1min
),
1
));
else
if
(
!
maxeq
&&
TREE_CODE
(
vr1max
)
==
INTEGER_CST
)
*
vr0min
=
int_const_binop
(
PLUS_EXPR
,
vr1max
,
build_int_cst
(
TREE_TYPE
(
vr1max
),
1
));
else
goto
give_up
;
}
else
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
/* The result covers everything. */
goto
give_up
;
else
gcc_unreachable
();
}
else
if
((
maxeq
||
cmpmax
==
-
1
)
&&
(
mineq
||
cmpmin
==
1
))
{
/* ( [ ] ) or ([ ] ) or ( [ ]) */
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_RANGE
)
{
*
vr0type
=
vr1type
;
*
vr0min
=
vr1min
;
*
vr0max
=
vr1max
;
}
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
;
else
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
{
*
vr0type
=
VR_ANTI_RANGE
;
if
(
!
mineq
&&
TREE_CODE
(
*
vr0min
)
==
INTEGER_CST
)
{
*
vr0max
=
int_const_binop
(
MINUS_EXPR
,
*
vr0min
,
build_int_cst
(
TREE_TYPE
(
*
vr0min
),
1
));
*
vr0min
=
vr1min
;
}
else
if
(
!
maxeq
&&
TREE_CODE
(
*
vr0max
)
==
INTEGER_CST
)
{
*
vr0min
=
int_const_binop
(
PLUS_EXPR
,
*
vr0max
,
build_int_cst
(
TREE_TYPE
(
*
vr0max
),
1
));
*
vr0max
=
vr1max
;
}
else
goto
give_up
;
}
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_RANGE
)
/* The result covers everything. */
goto
give_up
;
else
gcc_unreachable
();
}
else
if
(
cmpmin
==
-
1
&&
cmpmax
==
-
1
&&
(
operand_less_p
(
vr1min
,
*
vr0max
)
==
1
||
operand_equal_p
(
vr1min
,
*
vr0max
,
0
)))
{
/* [ ( ] ) or [ ]( ) */
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_RANGE
)
*
vr0max
=
vr1max
;
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
*
vr0min
=
vr1min
;
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_RANGE
)
{
if
(
TREE_CODE
(
vr1min
)
==
INTEGER_CST
)
*
vr0max
=
int_const_binop
(
MINUS_EXPR
,
vr1min
,
build_int_cst
(
TREE_TYPE
(
vr1min
),
1
));
else
goto
give_up
;
}
else
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
{
if
(
TREE_CODE
(
*
vr0max
)
==
INTEGER_CST
)
{
*
vr0type
=
vr1type
;
*
vr0min
=
int_const_binop
(
PLUS_EXPR
,
*
vr0max
,
build_int_cst
(
TREE_TYPE
(
*
vr0max
),
1
));
*
vr0max
=
vr1max
;
}
else
goto
give_up
;
}
else
gcc_unreachable
();
}
else
if
(
cmpmin
==
1
&&
cmpmax
==
1
&&
(
operand_less_p
(
*
vr0min
,
vr1max
)
==
1
||
operand_equal_p
(
*
vr0min
,
vr1max
,
0
)))
{
/* ( [ ) ] or ( )[ ] */
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_RANGE
)
*
vr0min
=
vr1min
;
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
*
vr0max
=
vr1max
;
else
if
(
*
vr0type
==
VR_ANTI_RANGE
&&
vr1type
==
VR_RANGE
)
{
if
(
TREE_CODE
(
vr1max
)
==
INTEGER_CST
)
*
vr0min
=
int_const_binop
(
PLUS_EXPR
,
vr1max
,
build_int_cst
(
TREE_TYPE
(
vr1max
),
1
));
else
goto
give_up
;
}
else
if
(
*
vr0type
==
VR_RANGE
&&
vr1type
==
VR_ANTI_RANGE
)
{
if
(
TREE_CODE
(
*
vr0min
)
==
INTEGER_CST
)
{
*
vr0type
=
vr1type
;
*
vr0max
=
int_const_binop
(
MINUS_EXPR
,
*
vr0min
,
build_int_cst
(
TREE_TYPE
(
*
vr0min
),
1
));
*
vr0min
=
vr1min
;
}
else
goto
give_up
;
}
else
gcc_unreachable
();
}
else
goto
give_up
;
return
;
give_up
:
*
vr0type
=
VR_VARYING
;
*
vr0min
=
NULL_TREE
;
*
vr0max
=
NULL_TREE
;
}
/* Helper for meet operation for value ranges. Given two value ranges VR0 and
VR1, return a range that contains both VR0 and VR1. This may not be the
smallest possible such range. */
value_range
value_range
::
union_helper
(
const
value_range
*
vr0
,
const
value_range
*
vr1
)
{
/* VR0 has the resulting range if VR1 is undefined or VR0 is varying. */
if
(
vr1
->
undefined_p
()
||
vr0
->
varying_p
())
return
*
vr0
;
/* VR1 has the resulting range if VR0 is undefined or VR1 is varying. */
if
(
vr0
->
undefined_p
()
||
vr1
->
varying_p
())
return
*
vr1
;
value_range_kind
vr0kind
=
vr0
->
kind
();
tree
vr0min
=
vr0
->
min
();
tree
vr0max
=
vr0
->
max
();
union_ranges
(
&
vr0kind
,
&
vr0min
,
&
vr0max
,
vr1
->
kind
(),
vr1
->
min
(),
vr1
->
max
());
/* Work on a temporary so we can still use vr0 when union returns varying. */
value_range
tem
;
if
(
vr0kind
==
VR_UNDEFINED
)
tem
.
set_undefined
();
else
if
(
vr0kind
==
VR_VARYING
)
tem
.
set_varying
(
vr0
->
type
());
else
tem
.
set
(
vr0min
,
vr0max
,
vr0kind
);
/* Failed to find an efficient meet. Before giving up and setting
the result to VARYING, see if we can at least derive a useful
anti-range. */
if
(
tem
.
varying_p
()
&&
range_includes_zero_p
(
vr0
)
==
0
&&
range_includes_zero_p
(
vr1
)
==
0
)
{
tem
.
set_nonzero
(
vr0
->
type
());
return
tem
;
}
return
tem
;
}
/* Meet operation for value ranges. Given two value ranges VR0 and
VR1, store in VR0 a range that contains both VR0 and VR1. This
may not be the smallest possible such range. */
void
value_range
::
union_
(
const
value_range
*
other
)
{
if
(
dump_file
&&
(
dump_flags
&
TDF_DETAILS
))
{
fprintf
(
dump_file
,
"Meeting
\n
"
);
dump_value_range
(
dump_file
,
this
);
fprintf
(
dump_file
,
"
\n
and
\n
"
);
dump_value_range
(
dump_file
,
other
);
fprintf
(
dump_file
,
"
\n
"
);
}
*
this
=
union_helper
(
this
,
other
);
if
(
dump_file
&&
(
dump_flags
&
TDF_DETAILS
))
{
fprintf
(
dump_file
,
"to
\n
"
);
dump_value_range
(
dump_file
,
this
);
fprintf
(
dump_file
,
"
\n
"
);
}
}
/* Range union, but for references. */
void
value_range
::
union_
(
const
value_range
&
r
)
{
/* Disable details for now, because it makes the ranger dump
unnecessarily verbose. */
bool
details
=
dump_flags
&
TDF_DETAILS
;
if
(
details
)
dump_flags
&=
~
TDF_DETAILS
;
union_
(
&
r
);
if
(
details
)
dump_flags
|=
TDF_DETAILS
;
}
void
value_range
::
intersect
(
const
value_range
*
other
)
{
if
(
dump_file
&&
(
dump_flags
&
TDF_DETAILS
))
{
fprintf
(
dump_file
,
"Intersecting
\n
"
);
dump_value_range
(
dump_file
,
this
);
fprintf
(
dump_file
,
"
\n
and
\n
"
);
dump_value_range
(
dump_file
,
other
);
fprintf
(
dump_file
,
"
\n
"
);
}
*
this
=
intersect_helper
(
this
,
other
);
if
(
dump_file
&&
(
dump_flags
&
TDF_DETAILS
))
{
fprintf
(
dump_file
,
"to
\n
"
);
dump_value_range
(
dump_file
,
this
);
fprintf
(
dump_file
,
"
\n
"
);
}
}
/* Range intersect, but for references. */
void
value_range
::
intersect
(
const
value_range
&
r
)
{
/* Disable details for now, because it makes the ranger dump
unnecessarily verbose. */
bool
details
=
dump_flags
&
TDF_DETAILS
;
if
(
details
)
dump_flags
&=
~
TDF_DETAILS
;
intersect
(
&
r
);
if
(
details
)
dump_flags
|=
TDF_DETAILS
;
}
/* Return the inverse of a range. */
void
value_range
::
invert
()
{
/* We can't just invert VR_RANGE and VR_ANTI_RANGE because we may
create non-canonical ranges. Use the constructors instead. */
if
(
m_kind
==
VR_RANGE
)
*
this
=
value_range
(
m_min
,
m_max
,
VR_ANTI_RANGE
);
else
if
(
m_kind
==
VR_ANTI_RANGE
)
*
this
=
value_range
(
m_min
,
m_max
);
else
gcc_unreachable
();
}
void
value_range
::
dump
(
FILE
*
file
)
const
{
if
(
undefined_p
())
fprintf
(
file
,
"UNDEFINED"
);
else
if
(
m_kind
==
VR_RANGE
||
m_kind
==
VR_ANTI_RANGE
)
{
tree
ttype
=
type
();
print_generic_expr
(
file
,
ttype
);
fprintf
(
file
,
" "
);
fprintf
(
file
,
"%s["
,
(
m_kind
==
VR_ANTI_RANGE
)
?
"~"
:
""
);
if
(
INTEGRAL_TYPE_P
(
ttype
)
&&
!
TYPE_UNSIGNED
(
ttype
)
&&
vrp_val_is_min
(
min
())
&&
TYPE_PRECISION
(
ttype
)
!=
1
)
fprintf
(
file
,
"-INF"
);
else
print_generic_expr
(
file
,
min
());
fprintf
(
file
,
", "
);
if
(
supports_type_p
(
ttype
)
&&
vrp_val_is_max
(
max
())
&&
TYPE_PRECISION
(
ttype
)
!=
1
)
fprintf
(
file
,
"+INF"
);
else
print_generic_expr
(
file
,
max
());
fprintf
(
file
,
"]"
);
}
else
if
(
varying_p
())
{
print_generic_expr
(
file
,
type
());
fprintf
(
file
,
" VARYING"
);
}
else
gcc_unreachable
();
}
void
value_range
::
dump
()
const
{
dump
(
stderr
);
}
void
dump_value_range
(
FILE
*
file
,
const
value_range
*
vr
)
{
if
(
!
vr
)
fprintf
(
file
,
"[]"
);
else
vr
->
dump
(
file
);
}
DEBUG_FUNCTION
void
debug
(
const
value_range
*
vr
)
{
dump_value_range
(
stderr
,
vr
);
}
DEBUG_FUNCTION
void
debug
(
const
value_range
&
vr
)
{
dump_value_range
(
stderr
,
&
vr
);
}
/* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
so that *VR0 U *VR1 == *AR. Returns true if that is possible,
false otherwise. If *AR can be represented with a single range
*VR1 will be VR_UNDEFINED. */
bool
ranges_from_anti_range
(
const
value_range
*
ar
,
value_range
*
vr0
,
value_range
*
vr1
)
{
tree
type
=
ar
->
type
();
vr0
->
set_undefined
();
vr1
->
set_undefined
();
/* As a future improvement, we could handle ~[0, A] as: [-INF, -1] U
[A+1, +INF]. Not sure if this helps in practice, though. */
if
(
ar
->
kind
()
!=
VR_ANTI_RANGE
||
TREE_CODE
(
ar
->
min
())
!=
INTEGER_CST
||
TREE_CODE
(
ar
->
max
())
!=
INTEGER_CST
||
!
vrp_val_min
(
type
)
||
!
vrp_val_max
(
type
))
return
false
;
if
(
tree_int_cst_lt
(
vrp_val_min
(
type
),
ar
->
min
()))
vr0
->
set
(
vrp_val_min
(
type
),
wide_int_to_tree
(
type
,
wi
::
to_wide
(
ar
->
min
())
-
1
));
if
(
tree_int_cst_lt
(
ar
->
max
(),
vrp_val_max
(
type
)))
vr1
->
set
(
wide_int_to_tree
(
type
,
wi
::
to_wide
(
ar
->
max
())
+
1
),
vrp_val_max
(
type
));
if
(
vr0
->
undefined_p
())
{
*
vr0
=
*
vr1
;
vr1
->
set_undefined
();
}
return
!
vr0
->
undefined_p
();
}
bool
range_has_numeric_bounds_p
(
const
value_range
*
vr
)
{
return
(
vr
->
min
()
&&
TREE_CODE
(
vr
->
min
())
==
INTEGER_CST
&&
TREE_CODE
(
vr
->
max
())
==
INTEGER_CST
);
}
/* Return the maximum value for TYPE. */
tree
vrp_val_max
(
const_tree
type
)
{
if
(
INTEGRAL_TYPE_P
(
type
))
return
TYPE_MAX_VALUE
(
type
);
if
(
POINTER_TYPE_P
(
type
))
{
wide_int
max
=
wi
::
max_value
(
TYPE_PRECISION
(
type
),
TYPE_SIGN
(
type
));
return
wide_int_to_tree
(
const_cast
<
tree
>
(
type
),
max
);
}
return
NULL_TREE
;
}
/* Return the minimum value for TYPE. */
tree
vrp_val_min
(
const_tree
type
)
{
if
(
INTEGRAL_TYPE_P
(
type
))
return
TYPE_MIN_VALUE
(
type
);
if
(
POINTER_TYPE_P
(
type
))
return
build_zero_cst
(
const_cast
<
tree
>
(
type
));
return
NULL_TREE
;
}
/* Return whether VAL is equal to the maximum value of its type.
We can't do a simple equality comparison with TYPE_MAX_VALUE because
C typedefs and Ada subtypes can produce types whose TYPE_MAX_VALUE
is not == to the integer constant with the same value in the type. */
bool
vrp_val_is_max
(
const_tree
val
)
{
tree
type_max
=
vrp_val_max
(
TREE_TYPE
(
val
));
return
(
val
==
type_max
||
(
type_max
!=
NULL_TREE
&&
operand_equal_p
(
val
,
type_max
,
0
)));
}
/* Return whether VAL is equal to the minimum value of its type. */
bool
vrp_val_is_min
(
const_tree
val
)
{
tree
type_min
=
vrp_val_min
(
TREE_TYPE
(
val
));
return
(
val
==
type_min
||
(
type_min
!=
NULL_TREE
&&
operand_equal_p
(
val
,
type_min
,
0
)));
}
/* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
bool
vrp_operand_equal_p
(
const_tree
val1
,
const_tree
val2
)
{
if
(
val1
==
val2
)
return
true
;
if
(
!
val1
||
!
val2
||
!
operand_equal_p
(
val1
,
val2
,
0
))
return
false
;
return
true
;
}
gcc/value-range.h
0 → 100644
View file @
cca78449
/* Support routines for value ranges.
Copyright (C) 2019 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_VALUE_RANGE_H
#define GCC_VALUE_RANGE_H
/* Types of value ranges. */
enum
value_range_kind
{
/* Empty range. */
VR_UNDEFINED
,
/* Range spans the entire domain. */
VR_VARYING
,
/* Range is [MIN, MAX]. */
VR_RANGE
,
/* Range is ~[MIN, MAX]. */
VR_ANTI_RANGE
,
/* Range is a nice guy. */
VR_LAST
};
// Range of values that can be associated with an SSA_NAME.
class
GTY
((
for_user
))
value_range
{
friend
void
range_tests
();
public
:
value_range
();
value_range
(
tree
,
tree
,
value_range_kind
=
VR_RANGE
);
value_range
(
tree
type
,
const
wide_int
&
,
const
wide_int
&
,
value_range_kind
=
VR_RANGE
);
value_range
(
tree
type
);
void
set
(
tree
,
tree
,
value_range_kind
=
VR_RANGE
);
void
set
(
tree
);
void
set_nonzero
(
tree
);
void
set_zero
(
tree
);
enum
value_range_kind
kind
()
const
;
tree
min
()
const
;
tree
max
()
const
;
/* Types of value ranges. */
bool
symbolic_p
()
const
;
bool
constant_p
()
const
;
bool
undefined_p
()
const
;
bool
varying_p
()
const
;
void
set_varying
(
tree
type
);
void
set_undefined
();
void
union_
(
const
value_range
*
);
void
intersect
(
const
value_range
*
);
void
union_
(
const
value_range
&
);
void
intersect
(
const
value_range
&
);
bool
operator
==
(
const
value_range
&
)
const
;
bool
operator
!=
(
const
value_range
&
)
const
/* = delete */
;
bool
equal_p
(
const
value_range
&
)
const
;
/* Misc methods. */
tree
type
()
const
;
bool
may_contain_p
(
tree
)
const
;
bool
zero_p
()
const
;
bool
nonzero_p
()
const
;
bool
singleton_p
(
tree
*
result
=
NULL
)
const
;
void
dump
(
FILE
*
)
const
;
void
dump
()
const
;
static
bool
supports_type_p
(
tree
);
value_range
normalize_symbolics
()
const
;
value_range
normalize_addresses
()
const
;
static
const
unsigned
int
m_max_pairs
=
2
;
bool
contains_p
(
tree
)
const
;
unsigned
num_pairs
()
const
;
wide_int
lower_bound
(
unsigned
=
0
)
const
;
wide_int
upper_bound
(
unsigned
)
const
;
wide_int
upper_bound
()
const
;
void
invert
();
protected
:
void
check
();
static
value_range
union_helper
(
const
value_range
*
,
const
value_range
*
);
static
value_range
intersect_helper
(
const
value_range
*
,
const
value_range
*
);
friend
void
gt_ggc_mx_value_range
(
void
*
);
friend
void
gt_pch_p_11value_range
(
void
*
,
void
*
,
gt_pointer_operator
,
void
*
);
friend
void
gt_pch_nx_value_range
(
void
*
);
friend
void
gt_ggc_mx
(
value_range
&
);
friend
void
gt_ggc_mx
(
value_range
*&
);
friend
void
gt_pch_nx
(
value_range
&
);
friend
void
gt_pch_nx
(
value_range
*
,
gt_pointer_operator
,
void
*
);
enum
value_range_kind
m_kind
;
tree
m_min
;
tree
m_max
;
private
:
int
value_inside_range
(
tree
)
const
;
};
extern
bool
range_has_numeric_bounds_p
(
const
value_range
*
);
extern
bool
ranges_from_anti_range
(
const
value_range
*
,
value_range
*
,
value_range
*
);
extern
void
dump_value_range
(
FILE
*
,
const
value_range
*
);
extern
bool
vrp_val_is_min
(
const_tree
);
extern
bool
vrp_val_is_max
(
const_tree
);
extern
tree
vrp_val_min
(
const_tree
);
extern
tree
vrp_val_max
(
const_tree
);
extern
bool
vrp_operand_equal_p
(
const_tree
,
const_tree
);
inline
value_range
::
value_range
()
{
m_kind
=
VR_UNDEFINED
;
m_min
=
m_max
=
NULL
;
}
inline
value_range_kind
value_range
::
kind
()
const
{
return
m_kind
;
}
inline
tree
value_range
::
type
()
const
{
return
TREE_TYPE
(
min
());
}
inline
tree
value_range
::
min
()
const
{
return
m_min
;
}
inline
tree
value_range
::
max
()
const
{
return
m_max
;
}
inline
bool
value_range
::
varying_p
()
const
{
return
m_kind
==
VR_VARYING
;
}
inline
bool
value_range
::
undefined_p
()
const
{
return
m_kind
==
VR_UNDEFINED
;
}
inline
bool
value_range
::
zero_p
()
const
{
return
(
m_kind
==
VR_RANGE
&&
integer_zerop
(
m_min
)
&&
integer_zerop
(
m_max
));
}
inline
bool
value_range
::
nonzero_p
()
const
{
if
(
m_kind
==
VR_ANTI_RANGE
&&
!
TYPE_UNSIGNED
(
type
())
&&
integer_zerop
(
m_min
)
&&
integer_zerop
(
m_max
))
return
true
;
return
(
m_kind
==
VR_RANGE
&&
TYPE_UNSIGNED
(
type
())
&&
integer_onep
(
m_min
)
&&
vrp_val_is_max
(
m_max
));
}
inline
bool
value_range
::
supports_type_p
(
tree
type
)
{
if
(
type
&&
(
INTEGRAL_TYPE_P
(
type
)
||
POINTER_TYPE_P
(
type
)))
return
type
;
return
false
;
}
inline
bool
range_includes_zero_p
(
const
value_range
*
vr
)
{
if
(
vr
->
undefined_p
())
return
false
;
if
(
vr
->
varying_p
())
return
true
;
return
vr
->
may_contain_p
(
build_zero_cst
(
vr
->
type
()));
}
#endif // GCC_VALUE_RANGE_H
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment