Commit cca78449 by Aldy Hernandez Committed by Aldy Hernandez

Move plain value_range things to value-range.[hc]*.

From-SVN: r278153
parent 425ea30f
2019-11-13 Aldy Hernandez <aldyh@redhat.com>
* Makefile.in (OBJS): Add value-range.o.
(GTFILES): Add value-range.h.
* gengtype.c (open_base_files): Add value-range.h to list of
header files.
* tree-vrp.c: Move the following value_range related functions:
ranges_from_anti_range, value_range, check, equal_p, symbolic_p,
constant_p, set_undefined, set_varying, may_contain_p,
singleton_p, type, dump, dump_value_range, debug, vrp_val_max,
vrp_val_min, vrp_val_is_min, vrp_val_is_max, set, set_nonzero,
set_zero, vrp_operand_equal_p, range_has_numeric_bounds_p,
value_inside_range, ranges_from_anti_range, union_ranges,
intersect_ranges, intersect_helper, union_helper, union_,
normalize_addresses, normalize_symbolics, num_pairs, lower_bound,
upper_bound, contains_p, invert, intersect...
* value-range.cc: ...to here.
* tree-vrp.h: Move class value_range, enum_value_range_kind, and
associated inline methods from here...
* value-range.h: ...to here.
2019-11-13 Dragan Mladjenovic <dmladjenovic@wavecomp.com> 2019-11-13 Dragan Mladjenovic <dmladjenovic@wavecomp.com>
* config/mips/mips.md (rotr<mode>3): Sanitize the constant argument * config/mips/mips.md (rotr<mode>3): Sanitize the constant argument
instead of asserting its value. instead of asserting its value.
2019-11-13 Aldy Hernandez <aldyh@redhat.com> (2019-11-13 Aldy Hernandez <aldyh@redhat.com>
* gimple-fold.c (size_must_be_zero_p): Rewrite use of value_range * gimple-fold.c (size_must_be_zero_p): Rewrite use of value_range
constructors and set methods so value_range_kind is the last constructors and set methods so value_range_kind is the last
...@@ -1602,6 +1602,7 @@ OBJS = \ ...@@ -1602,6 +1602,7 @@ OBJS = \
typed-splay-tree.o \ typed-splay-tree.o \
unique-ptr-tests.o \ unique-ptr-tests.o \
valtrack.o \ valtrack.o \
value-range.o \
value-prof.o \ value-prof.o \
var-tracking.o \ var-tracking.o \
varasm.o \ varasm.o \
...@@ -2589,6 +2590,7 @@ GTFILES = $(CPPLIB_H) $(srcdir)/input.h $(srcdir)/coretypes.h \ ...@@ -2589,6 +2590,7 @@ GTFILES = $(CPPLIB_H) $(srcdir)/input.h $(srcdir)/coretypes.h \
$(srcdir)/target-globals.h \ $(srcdir)/target-globals.h \
$(srcdir)/ipa-predicate.h \ $(srcdir)/ipa-predicate.h \
$(srcdir)/ipa-fnsummary.h \ $(srcdir)/ipa-fnsummary.h \
$(srcdir)/value-range.h \
$(srcdir)/vtable-verify.c \ $(srcdir)/vtable-verify.c \
$(srcdir)/asan.c \ $(srcdir)/asan.c \
$(srcdir)/ubsan.c \ $(srcdir)/ubsan.c \
......
...@@ -1717,6 +1717,7 @@ open_base_files (void) ...@@ -1717,6 +1717,7 @@ open_base_files (void)
"explow.h", "calls.h", "memmodel.h", "emit-rtl.h", "varasm.h", "explow.h", "calls.h", "memmodel.h", "emit-rtl.h", "varasm.h",
"stmt.h", "expr.h", "alloc-pool.h", "cselib.h", "insn-addr.h", "stmt.h", "expr.h", "alloc-pool.h", "cselib.h", "insn-addr.h",
"optabs.h", "libfuncs.h", "debug.h", "internal-fn.h", "gimple-fold.h", "optabs.h", "libfuncs.h", "debug.h", "internal-fn.h", "gimple-fold.h",
"value-range.h",
"tree-eh.h", "gimple-iterator.h", "gimple-ssa.h", "tree-cfg.h", "tree-eh.h", "gimple-iterator.h", "gimple-ssa.h", "tree-cfg.h",
"tree-vrp.h", "tree-phinodes.h", "ssa-iterators.h", "stringpool.h", "tree-vrp.h", "tree-phinodes.h", "ssa-iterators.h", "stringpool.h",
"tree-ssanames.h", "tree-ssa-loop.h", "tree-ssa-loop-ivopts.h", "tree-ssanames.h", "tree-ssa-loop.h", "tree-ssa-loop-ivopts.h",
......
...@@ -68,10 +68,6 @@ along with GCC; see the file COPYING3. If not see ...@@ -68,10 +68,6 @@ along with GCC; see the file COPYING3. If not see
#include "builtins.h" #include "builtins.h"
#include "range-op.h" #include "range-op.h"
static bool
ranges_from_anti_range (const value_range *ar,
value_range *vr0, value_range *vr1);
/* Set of SSA names found live during the RPO traversal of the function /* Set of SSA names found live during the RPO traversal of the function
for still active basic-blocks. */ for still active basic-blocks. */
static sbitmap *live; static sbitmap *live;
...@@ -111,11 +107,6 @@ value_range_equiv::set (tree min, tree max, bitmap equiv, ...@@ -111,11 +107,6 @@ value_range_equiv::set (tree min, tree max, bitmap equiv,
check (); check ();
} }
value_range::value_range (tree min, tree max, value_range_kind kind)
{
set (min, max, kind);
}
value_range_equiv::value_range_equiv (tree min, tree max, bitmap equiv, value_range_equiv::value_range_equiv (tree min, tree max, bitmap equiv,
value_range_kind kind) value_range_kind kind)
{ {
...@@ -129,21 +120,6 @@ value_range_equiv::value_range_equiv (const value_range &other) ...@@ -129,21 +120,6 @@ value_range_equiv::value_range_equiv (const value_range &other)
set (other.min(), other.max (), NULL, other.kind ()); set (other.min(), other.max (), NULL, other.kind ());
} }
value_range::value_range (tree type)
{
set_varying (type);
}
value_range::value_range (tree type,
const wide_int &wmin, const wide_int &wmax,
enum value_range_kind kind)
{
tree min = wide_int_to_tree (type, wmin);
tree max = wide_int_to_tree (type, wmax);
gcc_checking_assert (kind == VR_RANGE || kind == VR_ANTI_RANGE);
set (min, max, kind);
}
/* Like set, but keep the equivalences in place. */ /* Like set, but keep the equivalences in place. */
void void
...@@ -173,42 +149,6 @@ value_range_equiv::move (value_range_equiv *from) ...@@ -173,42 +149,6 @@ value_range_equiv::move (value_range_equiv *from)
from->m_equiv = NULL; from->m_equiv = NULL;
} }
/* Check the validity of the range. */
void
value_range::check ()
{
switch (m_kind)
{
case VR_RANGE:
case VR_ANTI_RANGE:
{
int cmp;
gcc_assert (m_min && m_max);
gcc_assert (!TREE_OVERFLOW_P (m_min) && !TREE_OVERFLOW_P (m_max));
/* Creating ~[-MIN, +MAX] is stupid because that would be
the empty set. */
if (INTEGRAL_TYPE_P (TREE_TYPE (m_min)) && m_kind == VR_ANTI_RANGE)
gcc_assert (!vrp_val_is_min (m_min) || !vrp_val_is_max (m_max));
cmp = compare_values (m_min, m_max);
gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
break;
}
case VR_UNDEFINED:
gcc_assert (!min () && !max ());
break;
case VR_VARYING:
gcc_assert (m_min && m_max);
break;
default:
gcc_unreachable ();
}
}
void void
value_range_equiv::check () value_range_equiv::check ()
{ {
...@@ -222,22 +162,6 @@ value_range_equiv::check () ...@@ -222,22 +162,6 @@ value_range_equiv::check ()
} }
} }
/* Equality operator. We purposely do not overload ==, to avoid
confusion with the equality bitmap in the derived value_range
class. */
bool
value_range::equal_p (const value_range &other) const
{
/* Ignore types for undefined. All undefines are equal. */
if (undefined_p ())
return m_kind == other.m_kind;
return (m_kind == other.m_kind
&& vrp_operand_equal_p (m_min, other.m_min)
&& vrp_operand_equal_p (m_max, other.m_max));
}
/* Return true if the bitmaps B1 and B2 are equal. */ /* Return true if the bitmaps B1 and B2 are equal. */
static bool static bool
...@@ -262,38 +186,6 @@ value_range_equiv::equal_p (const value_range_equiv &other, ...@@ -262,38 +186,6 @@ value_range_equiv::equal_p (const value_range_equiv &other,
|| vrp_bitmap_equal_p (m_equiv, other.m_equiv))); || vrp_bitmap_equal_p (m_equiv, other.m_equiv)));
} }
/* Return TRUE if this is a symbolic range. */
bool
value_range::symbolic_p () const
{
return (!varying_p ()
&& !undefined_p ()
&& (!is_gimple_min_invariant (m_min)
|| !is_gimple_min_invariant (m_max)));
}
/* NOTE: This is not the inverse of symbolic_p because the range
could also be varying or undefined. Ideally they should be inverse
of each other, with varying only applying to symbolics. Varying of
constants would be represented as [-MIN, +MAX]. */
bool
value_range::constant_p () const
{
return (!varying_p ()
&& !undefined_p ()
&& TREE_CODE (m_min) == INTEGER_CST
&& TREE_CODE (m_max) == INTEGER_CST);
}
void
value_range::set_undefined ()
{
m_kind = VR_UNDEFINED;
m_min = m_max = NULL;
}
void void
value_range_equiv::set_undefined () value_range_equiv::set_undefined ()
{ {
...@@ -301,34 +193,12 @@ value_range_equiv::set_undefined () ...@@ -301,34 +193,12 @@ value_range_equiv::set_undefined ()
} }
void void
value_range::set_varying (tree type)
{
m_kind = VR_VARYING;
if (supports_type_p (type))
{
m_min = vrp_val_min (type);
m_max = vrp_val_max (type);
}
else
/* We can't do anything range-wise with these types. */
m_min = m_max = error_mark_node;
}
void
value_range_equiv::set_varying (tree type) value_range_equiv::set_varying (tree type)
{ {
value_range::set_varying (type); value_range::set_varying (type);
equiv_clear (); equiv_clear ();
} }
/* Return TRUE if it is possible that range contains VAL. */
bool
value_range::may_contain_p (tree val) const
{
return value_inside_range (val) != 0;
}
void void
value_range_equiv::equiv_clear () value_range_equiv::equiv_clear ()
{ {
...@@ -356,98 +226,6 @@ value_range_equiv::equiv_add (const_tree var, ...@@ -356,98 +226,6 @@ value_range_equiv::equiv_add (const_tree var,
bitmap_ior_into (m_equiv, var_vr->m_equiv); bitmap_ior_into (m_equiv, var_vr->m_equiv);
} }
/* If range is a singleton, place it in RESULT and return TRUE.
Note: A singleton can be any gimple invariant, not just constants.
So, [&x, &x] counts as a singleton. */
bool
value_range::singleton_p (tree *result) const
{
if (m_kind == VR_ANTI_RANGE)
{
if (nonzero_p ())
{
if (TYPE_PRECISION (type ()) == 1)
{
if (result)
*result = m_max;
return true;
}
return false;
}
if (num_pairs () == 1)
{
value_range vr0, vr1;
ranges_from_anti_range (this, &vr0, &vr1);
return vr0.singleton_p (result);
}
}
if (m_kind == VR_RANGE
&& vrp_operand_equal_p (min (), max ())
&& is_gimple_min_invariant (min ()))
{
if (result)
*result = min ();
return true;
}
return false;
}
tree
value_range::type () const
{
gcc_checking_assert (m_min);
return TREE_TYPE (min ());
}
void
value_range::dump (FILE *file) const
{
if (undefined_p ())
fprintf (file, "UNDEFINED");
else if (m_kind == VR_RANGE || m_kind == VR_ANTI_RANGE)
{
tree ttype = type ();
print_generic_expr (file, ttype);
fprintf (file, " ");
fprintf (file, "%s[", (m_kind == VR_ANTI_RANGE) ? "~" : "");
if (INTEGRAL_TYPE_P (ttype)
&& !TYPE_UNSIGNED (ttype)
&& vrp_val_is_min (min ())
&& TYPE_PRECISION (ttype) != 1)
fprintf (file, "-INF");
else
print_generic_expr (file, min ());
fprintf (file, ", ");
if (supports_type_p (ttype)
&& vrp_val_is_max (max ())
&& TYPE_PRECISION (ttype) != 1)
fprintf (file, "+INF");
else
print_generic_expr (file, max ());
fprintf (file, "]");
}
else if (varying_p ())
{
print_generic_expr (file, type ());
fprintf (file, " VARYING");
}
else
gcc_unreachable ();
}
void
value_range::dump () const
{
dump (stderr);
}
void void
value_range_equiv::dump (FILE *file) const value_range_equiv::dump (FILE *file) const
{ {
...@@ -486,27 +264,6 @@ dump_value_range (FILE *file, const value_range_equiv *vr) ...@@ -486,27 +264,6 @@ dump_value_range (FILE *file, const value_range_equiv *vr)
vr->dump (file); vr->dump (file);
} }
void
dump_value_range (FILE *file, const value_range *vr)
{
if (!vr)
fprintf (file, "[]");
else
vr->dump (file);
}
DEBUG_FUNCTION void
debug (const value_range *vr)
{
dump_value_range (stderr, vr);
}
DEBUG_FUNCTION void
debug (const value_range &vr)
{
dump_value_range (stderr, &vr);
}
DEBUG_FUNCTION void DEBUG_FUNCTION void
debug (const value_range_equiv *vr) debug (const value_range_equiv *vr)
{ {
...@@ -567,58 +324,6 @@ static bitmap need_assert_for; ...@@ -567,58 +324,6 @@ static bitmap need_assert_for;
ASSERT_EXPRs for SSA name N_I should be inserted. */ ASSERT_EXPRs for SSA name N_I should be inserted. */
static assert_locus **asserts_for; static assert_locus **asserts_for;
/* Return the maximum value for TYPE. */
tree
vrp_val_max (const_tree type)
{
if (INTEGRAL_TYPE_P (type))
return TYPE_MAX_VALUE (type);
if (POINTER_TYPE_P (type))
{
wide_int max = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
return wide_int_to_tree (const_cast<tree> (type), max);
}
return NULL_TREE;
}
/* Return the minimum value for TYPE. */
tree
vrp_val_min (const_tree type)
{
if (INTEGRAL_TYPE_P (type))
return TYPE_MIN_VALUE (type);
if (POINTER_TYPE_P (type))
return build_zero_cst (const_cast<tree> (type));
return NULL_TREE;
}
/* Return whether VAL is equal to the maximum value of its type.
We can't do a simple equality comparison with TYPE_MAX_VALUE because
C typedefs and Ada subtypes can produce types whose TYPE_MAX_VALUE
is not == to the integer constant with the same value in the type. */
bool
vrp_val_is_max (const_tree val)
{
tree type_max = vrp_val_max (TREE_TYPE (val));
return (val == type_max
|| (type_max != NULL_TREE
&& operand_equal_p (val, type_max, 0)));
}
/* Return whether VAL is equal to the minimum value of its type. */
bool
vrp_val_is_min (const_tree val)
{
tree type_min = vrp_val_min (TREE_TYPE (val));
return (val == type_min
|| (type_min != NULL_TREE
&& operand_equal_p (val, type_min, 0)));
}
/* VR_TYPE describes a range with mininum value *MIN and maximum /* VR_TYPE describes a range with mininum value *MIN and maximum
value *MAX. Restrict the range to the set of values that have value *MAX. Restrict the range to the set of values that have
no bits set outside NONZERO_BITS. Update *MIN and *MAX and no bits set outside NONZERO_BITS. Update *MIN and *MAX and
...@@ -691,184 +396,6 @@ intersect_range_with_nonzero_bits (enum value_range_kind vr_type, ...@@ -691,184 +396,6 @@ intersect_range_with_nonzero_bits (enum value_range_kind vr_type,
return vr_type; return vr_type;
} }
/* Set value range to the canonical form of {VRTYPE, MIN, MAX, EQUIV}.
This means adjusting VRTYPE, MIN and MAX representing the case of a
wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
In corner cases where MAX+1 or MIN-1 wraps this will fall back
to varying.
This routine exists to ease canonicalization in the case where we
extract ranges from var + CST op limit. */
void
value_range::set (tree min, tree max, value_range_kind kind)
{
/* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
if (kind == VR_UNDEFINED)
{
set_undefined ();
return;
}
else if (kind == VR_VARYING)
{
gcc_assert (TREE_TYPE (min) == TREE_TYPE (max));
tree typ = TREE_TYPE (min);
if (supports_type_p (typ))
{
gcc_assert (vrp_val_min (typ));
gcc_assert (vrp_val_max (typ));
}
set_varying (typ);
return;
}
/* Convert POLY_INT_CST bounds into worst-case INTEGER_CST bounds. */
if (POLY_INT_CST_P (min))
{
tree type_min = vrp_val_min (TREE_TYPE (min));
widest_int lb
= constant_lower_bound_with_limit (wi::to_poly_widest (min),
wi::to_widest (type_min));
min = wide_int_to_tree (TREE_TYPE (min), lb);
}
if (POLY_INT_CST_P (max))
{
tree type_max = vrp_val_max (TREE_TYPE (max));
widest_int ub
= constant_upper_bound_with_limit (wi::to_poly_widest (max),
wi::to_widest (type_max));
max = wide_int_to_tree (TREE_TYPE (max), ub);
}
/* Nothing to canonicalize for symbolic ranges. */
if (TREE_CODE (min) != INTEGER_CST
|| TREE_CODE (max) != INTEGER_CST)
{
m_kind = kind;
m_min = min;
m_max = max;
return;
}
/* Wrong order for min and max, to swap them and the VR type we need
to adjust them. */
if (tree_int_cst_lt (max, min))
{
tree one, tmp;
/* For one bit precision if max < min, then the swapped
range covers all values, so for VR_RANGE it is varying and
for VR_ANTI_RANGE empty range, so drop to varying as well. */
if (TYPE_PRECISION (TREE_TYPE (min)) == 1)
{
set_varying (TREE_TYPE (min));
return;
}
one = build_int_cst (TREE_TYPE (min), 1);
tmp = int_const_binop (PLUS_EXPR, max, one);
max = int_const_binop (MINUS_EXPR, min, one);
min = tmp;
/* There's one corner case, if we had [C+1, C] before we now have
that again. But this represents an empty value range, so drop
to varying in this case. */
if (tree_int_cst_lt (max, min))
{
set_varying (TREE_TYPE (min));
return;
}
kind = kind == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
}
tree type = TREE_TYPE (min);
/* Anti-ranges that can be represented as ranges should be so. */
if (kind == VR_ANTI_RANGE)
{
/* For -fstrict-enums we may receive out-of-range ranges so consider
values < -INF and values > INF as -INF/INF as well. */
bool is_min = vrp_val_is_min (min);
bool is_max = vrp_val_is_max (max);
if (is_min && is_max)
{
/* We cannot deal with empty ranges, drop to varying.
??? This could be VR_UNDEFINED instead. */
set_varying (type);
return;
}
else if (TYPE_PRECISION (TREE_TYPE (min)) == 1
&& (is_min || is_max))
{
/* Non-empty boolean ranges can always be represented
as a singleton range. */
if (is_min)
min = max = vrp_val_max (TREE_TYPE (min));
else
min = max = vrp_val_min (TREE_TYPE (min));
kind = VR_RANGE;
}
else if (is_min)
{
tree one = build_int_cst (TREE_TYPE (max), 1);
min = int_const_binop (PLUS_EXPR, max, one);
max = vrp_val_max (TREE_TYPE (max));
kind = VR_RANGE;
}
else if (is_max)
{
tree one = build_int_cst (TREE_TYPE (min), 1);
max = int_const_binop (MINUS_EXPR, min, one);
min = vrp_val_min (TREE_TYPE (min));
kind = VR_RANGE;
}
}
/* Normalize [MIN, MAX] into VARYING and ~[MIN, MAX] into UNDEFINED.
Avoid using TYPE_{MIN,MAX}_VALUE because -fstrict-enums can
restrict those to a subset of what actually fits in the type.
Instead use the extremes of the type precision which will allow
compare_range_with_value() to check if a value is inside a range,
whereas if we used TYPE_*_VAL, said function would just punt
upon seeing a VARYING. */
unsigned prec = TYPE_PRECISION (type);
signop sign = TYPE_SIGN (type);
if (wi::eq_p (wi::to_wide (min), wi::min_value (prec, sign))
&& wi::eq_p (wi::to_wide (max), wi::max_value (prec, sign)))
{
if (kind == VR_RANGE)
set_varying (type);
else if (kind == VR_ANTI_RANGE)
set_undefined ();
else
gcc_unreachable ();
return;
}
/* Do not drop [-INF(OVF), +INF(OVF)] to varying. (OVF) has to be sticky
to make sure VRP iteration terminates, otherwise we can get into
oscillations. */
m_kind = kind;
m_min = min;
m_max = max;
if (flag_checking)
check ();
}
void
value_range::set (tree val)
{
gcc_assert (TREE_CODE (val) == SSA_NAME || is_gimple_min_invariant (val));
if (TREE_OVERFLOW_P (val))
val = drop_tree_overflow (val);
set (val, val);
}
void void
value_range_equiv::set (tree val) value_range_equiv::set (tree val)
{ {
...@@ -878,43 +405,6 @@ value_range_equiv::set (tree val) ...@@ -878,43 +405,6 @@ value_range_equiv::set (tree val)
set (val, val); set (val, val);
} }
/* Set value range VR to a nonzero range of type TYPE. */
void
value_range::set_nonzero (tree type)
{
tree zero = build_int_cst (type, 0);
set (zero, zero, VR_ANTI_RANGE);
}
/* Set value range VR to a ZERO range of type TYPE. */
void
value_range::set_zero (tree type)
{
set (build_int_cst (type, 0));
}
/* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
bool
vrp_operand_equal_p (const_tree val1, const_tree val2)
{
if (val1 == val2)
return true;
if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
return false;
return true;
}
static bool
range_has_numeric_bounds_p (const value_range *vr)
{
return (vr->min ()
&& TREE_CODE (vr->min ()) == INTEGER_CST
&& TREE_CODE (vr->max ()) == INTEGER_CST);
}
/* Return true if max and min of VR are INTEGER_CST. It's not necessary /* Return true if max and min of VR are INTEGER_CST. It's not necessary
a singleton. */ a singleton. */
...@@ -1210,91 +700,17 @@ compare_values (tree val1, tree val2) ...@@ -1210,91 +700,17 @@ compare_values (tree val1, tree val2)
return compare_values_warnv (val1, val2, &sop); return compare_values_warnv (val1, val2, &sop);
} }
/* If BOUND will include a symbolic bound, adjust it accordingly,
otherwise leave it as is.
/* Return 1 if VAL is inside value range. CODE is the original operation that combined the bounds (PLUS_EXPR
0 if VAL is not inside value range. or MINUS_EXPR).
-2 if we cannot tell either way.
Benchmark compile/20001226-1.c compilation time after changing this
function. */
int
value_range::value_inside_range (tree val) const
{
int cmp1, cmp2;
if (varying_p ()) TYPE is the type of the original operation.
return 1;
if (undefined_p ()) SYM_OPn is the symbolic for OPn if it has a symbolic.
return 0;
cmp1 = operand_less_p (val, m_min); NEG_OPn is TRUE if the OPn was negated. */
if (cmp1 == -2)
return -2;
if (cmp1 == 1)
return m_kind != VR_RANGE;
cmp2 = operand_less_p (m_max, val);
if (cmp2 == -2)
return -2;
if (m_kind == VR_RANGE)
return !cmp2;
else
return !!cmp2;
}
/* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
so that *VR0 U *VR1 == *AR. Returns true if that is possible,
false otherwise. If *AR can be represented with a single range
*VR1 will be VR_UNDEFINED. */
static bool
ranges_from_anti_range (const value_range *ar,
value_range *vr0, value_range *vr1)
{
tree type = ar->type ();
vr0->set_undefined ();
vr1->set_undefined ();
/* As a future improvement, we could handle ~[0, A] as: [-INF, -1] U
[A+1, +INF]. Not sure if this helps in practice, though. */
if (ar->kind () != VR_ANTI_RANGE
|| TREE_CODE (ar->min ()) != INTEGER_CST
|| TREE_CODE (ar->max ()) != INTEGER_CST
|| !vrp_val_min (type)
|| !vrp_val_max (type))
return false;
if (tree_int_cst_lt (vrp_val_min (type), ar->min ()))
vr0->set (vrp_val_min (type),
wide_int_to_tree (type, wi::to_wide (ar->min ()) - 1));
if (tree_int_cst_lt (ar->max (), vrp_val_max (type)))
vr1->set (wide_int_to_tree (type, wi::to_wide (ar->max ()) + 1),
vrp_val_max (type));
if (vr0->undefined_p ())
{
*vr0 = *vr1;
vr1->set_undefined ();
}
return !vr0->undefined_p ();
}
/* If BOUND will include a symbolic bound, adjust it accordingly,
otherwise leave it as is.
CODE is the original operation that combined the bounds (PLUS_EXPR
or MINUS_EXPR).
TYPE is the type of the original operation.
SYM_OPn is the symbolic for OPn if it has a symbolic.
NEG_OPn is TRUE if the OPn was negated. */
static void static void
adjust_symbolic_bound (tree &bound, enum tree_code code, tree type, adjust_symbolic_bound (tree &bound, enum tree_code code, tree type,
...@@ -5224,669 +4640,6 @@ vrp_prop::visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p) ...@@ -5224,669 +4640,6 @@ vrp_prop::visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING; return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
} }
/* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
{ VR1TYPE, VR0MIN, VR0MAX } and store the result
in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
possible such range. The resulting range is not canonicalized. */
static void
union_ranges (enum value_range_kind *vr0type,
tree *vr0min, tree *vr0max,
enum value_range_kind vr1type,
tree vr1min, tree vr1max)
{
int cmpmin = compare_values (*vr0min, vr1min);
int cmpmax = compare_values (*vr0max, vr1max);
bool mineq = cmpmin == 0;
bool maxeq = cmpmax == 0;
/* [] is vr0, () is vr1 in the following classification comments. */
if (mineq && maxeq)
{
/* [( )] */
if (*vr0type == vr1type)
/* Nothing to do for equal ranges. */
;
else if ((*vr0type == VR_RANGE
&& vr1type == VR_ANTI_RANGE)
|| (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_RANGE))
{
/* For anti-range with range union the result is varying. */
goto give_up;
}
else
gcc_unreachable ();
}
else if (operand_less_p (*vr0max, vr1min) == 1
|| operand_less_p (vr1max, *vr0min) == 1)
{
/* [ ] ( ) or ( ) [ ]
If the ranges have an empty intersection, result of the union
operation is the anti-range or if both are anti-ranges
it covers all. */
if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_ANTI_RANGE)
goto give_up;
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_RANGE)
;
else if (*vr0type == VR_RANGE
&& vr1type == VR_ANTI_RANGE)
{
*vr0type = vr1type;
*vr0min = vr1min;
*vr0max = vr1max;
}
else if (*vr0type == VR_RANGE
&& vr1type == VR_RANGE)
{
/* The result is the convex hull of both ranges. */
if (operand_less_p (*vr0max, vr1min) == 1)
{
/* If the result can be an anti-range, create one. */
if (TREE_CODE (*vr0max) == INTEGER_CST
&& TREE_CODE (vr1min) == INTEGER_CST
&& vrp_val_is_min (*vr0min)
&& vrp_val_is_max (vr1max))
{
tree min = int_const_binop (PLUS_EXPR,
*vr0max,
build_int_cst (TREE_TYPE (*vr0max), 1));
tree max = int_const_binop (MINUS_EXPR,
vr1min,
build_int_cst (TREE_TYPE (vr1min), 1));
if (!operand_less_p (max, min))
{
*vr0type = VR_ANTI_RANGE;
*vr0min = min;
*vr0max = max;
}
else
*vr0max = vr1max;
}
else
*vr0max = vr1max;
}
else
{
/* If the result can be an anti-range, create one. */
if (TREE_CODE (vr1max) == INTEGER_CST
&& TREE_CODE (*vr0min) == INTEGER_CST
&& vrp_val_is_min (vr1min)
&& vrp_val_is_max (*vr0max))
{
tree min = int_const_binop (PLUS_EXPR,
vr1max,
build_int_cst (TREE_TYPE (vr1max), 1));
tree max = int_const_binop (MINUS_EXPR,
*vr0min,
build_int_cst (TREE_TYPE (*vr0min), 1));
if (!operand_less_p (max, min))
{
*vr0type = VR_ANTI_RANGE;
*vr0min = min;
*vr0max = max;
}
else
*vr0min = vr1min;
}
else
*vr0min = vr1min;
}
}
else
gcc_unreachable ();
}
else if ((maxeq || cmpmax == 1)
&& (mineq || cmpmin == -1))
{
/* [ ( ) ] or [( ) ] or [ ( )] */
if (*vr0type == VR_RANGE
&& vr1type == VR_RANGE)
;
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_ANTI_RANGE)
{
*vr0type = vr1type;
*vr0min = vr1min;
*vr0max = vr1max;
}
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_RANGE)
{
/* Arbitrarily choose the right or left gap. */
if (!mineq && TREE_CODE (vr1min) == INTEGER_CST)
*vr0max = int_const_binop (MINUS_EXPR, vr1min,
build_int_cst (TREE_TYPE (vr1min), 1));
else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST)
*vr0min = int_const_binop (PLUS_EXPR, vr1max,
build_int_cst (TREE_TYPE (vr1max), 1));
else
goto give_up;
}
else if (*vr0type == VR_RANGE
&& vr1type == VR_ANTI_RANGE)
/* The result covers everything. */
goto give_up;
else
gcc_unreachable ();
}
else if ((maxeq || cmpmax == -1)
&& (mineq || cmpmin == 1))
{
/* ( [ ] ) or ([ ] ) or ( [ ]) */
if (*vr0type == VR_RANGE
&& vr1type == VR_RANGE)
{
*vr0type = vr1type;
*vr0min = vr1min;
*vr0max = vr1max;
}
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_ANTI_RANGE)
;
else if (*vr0type == VR_RANGE
&& vr1type == VR_ANTI_RANGE)
{
*vr0type = VR_ANTI_RANGE;
if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST)
{
*vr0max = int_const_binop (MINUS_EXPR, *vr0min,
build_int_cst (TREE_TYPE (*vr0min), 1));
*vr0min = vr1min;
}
else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST)
{
*vr0min = int_const_binop (PLUS_EXPR, *vr0max,
build_int_cst (TREE_TYPE (*vr0max), 1));
*vr0max = vr1max;
}
else
goto give_up;
}
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_RANGE)
/* The result covers everything. */
goto give_up;
else
gcc_unreachable ();
}
else if (cmpmin == -1
&& cmpmax == -1
&& (operand_less_p (vr1min, *vr0max) == 1
|| operand_equal_p (vr1min, *vr0max, 0)))
{
/* [ ( ] ) or [ ]( ) */
if (*vr0type == VR_RANGE
&& vr1type == VR_RANGE)
*vr0max = vr1max;
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_ANTI_RANGE)
*vr0min = vr1min;
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_RANGE)
{
if (TREE_CODE (vr1min) == INTEGER_CST)
*vr0max = int_const_binop (MINUS_EXPR, vr1min,
build_int_cst (TREE_TYPE (vr1min), 1));
else
goto give_up;
}
else if (*vr0type == VR_RANGE
&& vr1type == VR_ANTI_RANGE)
{
if (TREE_CODE (*vr0max) == INTEGER_CST)
{
*vr0type = vr1type;
*vr0min = int_const_binop (PLUS_EXPR, *vr0max,
build_int_cst (TREE_TYPE (*vr0max), 1));
*vr0max = vr1max;
}
else
goto give_up;
}
else
gcc_unreachable ();
}
else if (cmpmin == 1
&& cmpmax == 1
&& (operand_less_p (*vr0min, vr1max) == 1
|| operand_equal_p (*vr0min, vr1max, 0)))
{
/* ( [ ) ] or ( )[ ] */
if (*vr0type == VR_RANGE
&& vr1type == VR_RANGE)
*vr0min = vr1min;
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_ANTI_RANGE)
*vr0max = vr1max;
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_RANGE)
{
if (TREE_CODE (vr1max) == INTEGER_CST)
*vr0min = int_const_binop (PLUS_EXPR, vr1max,
build_int_cst (TREE_TYPE (vr1max), 1));
else
goto give_up;
}
else if (*vr0type == VR_RANGE
&& vr1type == VR_ANTI_RANGE)
{
if (TREE_CODE (*vr0min) == INTEGER_CST)
{
*vr0type = vr1type;
*vr0max = int_const_binop (MINUS_EXPR, *vr0min,
build_int_cst (TREE_TYPE (*vr0min), 1));
*vr0min = vr1min;
}
else
goto give_up;
}
else
gcc_unreachable ();
}
else
goto give_up;
return;
give_up:
*vr0type = VR_VARYING;
*vr0min = NULL_TREE;
*vr0max = NULL_TREE;
}
/* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
{ VR1TYPE, VR0MIN, VR0MAX } and store the result
in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
possible such range. The resulting range is not canonicalized. */
static void
intersect_ranges (enum value_range_kind *vr0type,
tree *vr0min, tree *vr0max,
enum value_range_kind vr1type,
tree vr1min, tree vr1max)
{
bool mineq = vrp_operand_equal_p (*vr0min, vr1min);
bool maxeq = vrp_operand_equal_p (*vr0max, vr1max);
/* [] is vr0, () is vr1 in the following classification comments. */
if (mineq && maxeq)
{
/* [( )] */
if (*vr0type == vr1type)
/* Nothing to do for equal ranges. */
;
else if ((*vr0type == VR_RANGE
&& vr1type == VR_ANTI_RANGE)
|| (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_RANGE))
{
/* For anti-range with range intersection the result is empty. */
*vr0type = VR_UNDEFINED;
*vr0min = NULL_TREE;
*vr0max = NULL_TREE;
}
else
gcc_unreachable ();
}
else if (operand_less_p (*vr0max, vr1min) == 1
|| operand_less_p (vr1max, *vr0min) == 1)
{
/* [ ] ( ) or ( ) [ ]
If the ranges have an empty intersection, the result of the
intersect operation is the range for intersecting an
anti-range with a range or empty when intersecting two ranges. */
if (*vr0type == VR_RANGE
&& vr1type == VR_ANTI_RANGE)
;
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_RANGE)
{
*vr0type = vr1type;
*vr0min = vr1min;
*vr0max = vr1max;
}
else if (*vr0type == VR_RANGE
&& vr1type == VR_RANGE)
{
*vr0type = VR_UNDEFINED;
*vr0min = NULL_TREE;
*vr0max = NULL_TREE;
}
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_ANTI_RANGE)
{
/* If the anti-ranges are adjacent to each other merge them. */
if (TREE_CODE (*vr0max) == INTEGER_CST
&& TREE_CODE (vr1min) == INTEGER_CST
&& operand_less_p (*vr0max, vr1min) == 1
&& integer_onep (int_const_binop (MINUS_EXPR,
vr1min, *vr0max)))
*vr0max = vr1max;
else if (TREE_CODE (vr1max) == INTEGER_CST
&& TREE_CODE (*vr0min) == INTEGER_CST
&& operand_less_p (vr1max, *vr0min) == 1
&& integer_onep (int_const_binop (MINUS_EXPR,
*vr0min, vr1max)))
*vr0min = vr1min;
/* Else arbitrarily take VR0. */
}
}
else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
&& (mineq || operand_less_p (*vr0min, vr1min) == 1))
{
/* [ ( ) ] or [( ) ] or [ ( )] */
if (*vr0type == VR_RANGE
&& vr1type == VR_RANGE)
{
/* If both are ranges the result is the inner one. */
*vr0type = vr1type;
*vr0min = vr1min;
*vr0max = vr1max;
}
else if (*vr0type == VR_RANGE
&& vr1type == VR_ANTI_RANGE)
{
/* Choose the right gap if the left one is empty. */
if (mineq)
{
if (TREE_CODE (vr1max) != INTEGER_CST)
*vr0min = vr1max;
else if (TYPE_PRECISION (TREE_TYPE (vr1max)) == 1
&& !TYPE_UNSIGNED (TREE_TYPE (vr1max)))
*vr0min
= int_const_binop (MINUS_EXPR, vr1max,
build_int_cst (TREE_TYPE (vr1max), -1));
else
*vr0min
= int_const_binop (PLUS_EXPR, vr1max,
build_int_cst (TREE_TYPE (vr1max), 1));
}
/* Choose the left gap if the right one is empty. */
else if (maxeq)
{
if (TREE_CODE (vr1min) != INTEGER_CST)
*vr0max = vr1min;
else if (TYPE_PRECISION (TREE_TYPE (vr1min)) == 1
&& !TYPE_UNSIGNED (TREE_TYPE (vr1min)))
*vr0max
= int_const_binop (PLUS_EXPR, vr1min,
build_int_cst (TREE_TYPE (vr1min), -1));
else
*vr0max
= int_const_binop (MINUS_EXPR, vr1min,
build_int_cst (TREE_TYPE (vr1min), 1));
}
/* Choose the anti-range if the range is effectively varying. */
else if (vrp_val_is_min (*vr0min)
&& vrp_val_is_max (*vr0max))
{
*vr0type = vr1type;
*vr0min = vr1min;
*vr0max = vr1max;
}
/* Else choose the range. */
}
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_ANTI_RANGE)
/* If both are anti-ranges the result is the outer one. */
;
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_RANGE)
{
/* The intersection is empty. */
*vr0type = VR_UNDEFINED;
*vr0min = NULL_TREE;
*vr0max = NULL_TREE;
}
else
gcc_unreachable ();
}
else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
&& (mineq || operand_less_p (vr1min, *vr0min) == 1))
{
/* ( [ ] ) or ([ ] ) or ( [ ]) */
if (*vr0type == VR_RANGE
&& vr1type == VR_RANGE)
/* Choose the inner range. */
;
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_RANGE)
{
/* Choose the right gap if the left is empty. */
if (mineq)
{
*vr0type = VR_RANGE;
if (TREE_CODE (*vr0max) != INTEGER_CST)
*vr0min = *vr0max;
else if (TYPE_PRECISION (TREE_TYPE (*vr0max)) == 1
&& !TYPE_UNSIGNED (TREE_TYPE (*vr0max)))
*vr0min
= int_const_binop (MINUS_EXPR, *vr0max,
build_int_cst (TREE_TYPE (*vr0max), -1));
else
*vr0min
= int_const_binop (PLUS_EXPR, *vr0max,
build_int_cst (TREE_TYPE (*vr0max), 1));
*vr0max = vr1max;
}
/* Choose the left gap if the right is empty. */
else if (maxeq)
{
*vr0type = VR_RANGE;
if (TREE_CODE (*vr0min) != INTEGER_CST)
*vr0max = *vr0min;
else if (TYPE_PRECISION (TREE_TYPE (*vr0min)) == 1
&& !TYPE_UNSIGNED (TREE_TYPE (*vr0min)))
*vr0max
= int_const_binop (PLUS_EXPR, *vr0min,
build_int_cst (TREE_TYPE (*vr0min), -1));
else
*vr0max
= int_const_binop (MINUS_EXPR, *vr0min,
build_int_cst (TREE_TYPE (*vr0min), 1));
*vr0min = vr1min;
}
/* Choose the anti-range if the range is effectively varying. */
else if (vrp_val_is_min (vr1min)
&& vrp_val_is_max (vr1max))
;
/* Choose the anti-range if it is ~[0,0], that range is special
enough to special case when vr1's range is relatively wide.
At least for types bigger than int - this covers pointers
and arguments to functions like ctz. */
else if (*vr0min == *vr0max
&& integer_zerop (*vr0min)
&& ((TYPE_PRECISION (TREE_TYPE (*vr0min))
>= TYPE_PRECISION (integer_type_node))
|| POINTER_TYPE_P (TREE_TYPE (*vr0min)))
&& TREE_CODE (vr1max) == INTEGER_CST
&& TREE_CODE (vr1min) == INTEGER_CST
&& (wi::clz (wi::to_wide (vr1max) - wi::to_wide (vr1min))
< TYPE_PRECISION (TREE_TYPE (*vr0min)) / 2))
;
/* Else choose the range. */
else
{
*vr0type = vr1type;
*vr0min = vr1min;
*vr0max = vr1max;
}
}
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_ANTI_RANGE)
{
/* If both are anti-ranges the result is the outer one. */
*vr0type = vr1type;
*vr0min = vr1min;
*vr0max = vr1max;
}
else if (vr1type == VR_ANTI_RANGE
&& *vr0type == VR_RANGE)
{
/* The intersection is empty. */
*vr0type = VR_UNDEFINED;
*vr0min = NULL_TREE;
*vr0max = NULL_TREE;
}
else
gcc_unreachable ();
}
else if ((operand_less_p (vr1min, *vr0max) == 1
|| operand_equal_p (vr1min, *vr0max, 0))
&& operand_less_p (*vr0min, vr1min) == 1)
{
/* [ ( ] ) or [ ]( ) */
if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_ANTI_RANGE)
*vr0max = vr1max;
else if (*vr0type == VR_RANGE
&& vr1type == VR_RANGE)
*vr0min = vr1min;
else if (*vr0type == VR_RANGE
&& vr1type == VR_ANTI_RANGE)
{
if (TREE_CODE (vr1min) == INTEGER_CST)
*vr0max = int_const_binop (MINUS_EXPR, vr1min,
build_int_cst (TREE_TYPE (vr1min), 1));
else
*vr0max = vr1min;
}
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_RANGE)
{
*vr0type = VR_RANGE;
if (TREE_CODE (*vr0max) == INTEGER_CST)
*vr0min = int_const_binop (PLUS_EXPR, *vr0max,
build_int_cst (TREE_TYPE (*vr0max), 1));
else
*vr0min = *vr0max;
*vr0max = vr1max;
}
else
gcc_unreachable ();
}
else if ((operand_less_p (*vr0min, vr1max) == 1
|| operand_equal_p (*vr0min, vr1max, 0))
&& operand_less_p (vr1min, *vr0min) == 1)
{
/* ( [ ) ] or ( )[ ] */
if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_ANTI_RANGE)
*vr0min = vr1min;
else if (*vr0type == VR_RANGE
&& vr1type == VR_RANGE)
*vr0max = vr1max;
else if (*vr0type == VR_RANGE
&& vr1type == VR_ANTI_RANGE)
{
if (TREE_CODE (vr1max) == INTEGER_CST)
*vr0min = int_const_binop (PLUS_EXPR, vr1max,
build_int_cst (TREE_TYPE (vr1max), 1));
else
*vr0min = vr1max;
}
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_RANGE)
{
*vr0type = VR_RANGE;
if (TREE_CODE (*vr0min) == INTEGER_CST)
*vr0max = int_const_binop (MINUS_EXPR, *vr0min,
build_int_cst (TREE_TYPE (*vr0min), 1));
else
*vr0max = *vr0min;
*vr0min = vr1min;
}
else
gcc_unreachable ();
}
/* If we know the intersection is empty, there's no need to
conservatively add anything else to the set. */
if (*vr0type == VR_UNDEFINED)
return;
/* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
result for the intersection. That's always a conservative
correct estimate unless VR1 is a constant singleton range
in which case we choose that. */
if (vr1type == VR_RANGE
&& is_gimple_min_invariant (vr1min)
&& vrp_operand_equal_p (vr1min, vr1max))
{
*vr0type = vr1type;
*vr0min = vr1min;
*vr0max = vr1max;
}
}
/* Helper for the intersection operation for value ranges. Given two
value ranges VR0 and VR1, return the intersection of the two
ranges. This may not be the smallest possible such range. */
value_range
value_range::intersect_helper (const value_range *vr0, const value_range *vr1)
{
/* If either range is VR_VARYING the other one wins. */
if (vr1->varying_p ())
return *vr0;
if (vr0->varying_p ())
return *vr1;
/* When either range is VR_UNDEFINED the resulting range is
VR_UNDEFINED, too. */
if (vr0->undefined_p ())
return *vr0;
if (vr1->undefined_p ())
return *vr1;
value_range_kind vr0kind = vr0->kind ();
tree vr0min = vr0->min ();
tree vr0max = vr0->max ();
intersect_ranges (&vr0kind, &vr0min, &vr0max,
vr1->kind (), vr1->min (), vr1->max ());
/* Make sure to canonicalize the result though as the inversion of a
VR_RANGE can still be a VR_RANGE. Work on a temporary so we can
fall back to vr0 when this turns things to varying. */
value_range tem;
if (vr0kind == VR_UNDEFINED)
tem.set_undefined ();
else if (vr0kind == VR_VARYING)
tem.set_varying (vr0->type ());
else
tem.set (vr0min, vr0max, vr0kind);
/* If that failed, use the saved original VR0. */
if (tem.varying_p ())
return *vr0;
return tem;
}
void
value_range::intersect (const value_range *other)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Intersecting\n ");
dump_value_range (dump_file, this);
fprintf (dump_file, "\nand\n ");
dump_value_range (dump_file, other);
fprintf (dump_file, "\n");
}
*this = intersect_helper (this, other);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "to\n ");
dump_value_range (dump_file, this);
fprintf (dump_file, "\n");
}
}
void void
value_range_equiv::intersect (const value_range_equiv *other) value_range_equiv::intersect (const value_range_equiv *other)
{ {
...@@ -5936,79 +4689,6 @@ value_range_equiv::intersect (const value_range_equiv *other) ...@@ -5936,79 +4689,6 @@ value_range_equiv::intersect (const value_range_equiv *other)
} }
} }
/* Helper for meet operation for value ranges. Given two value ranges VR0 and
VR1, return a range that contains both VR0 and VR1. This may not be the
smallest possible such range. */
value_range
value_range::union_helper (const value_range *vr0, const value_range *vr1)
{
/* VR0 has the resulting range if VR1 is undefined or VR0 is varying. */
if (vr1->undefined_p ()
|| vr0->varying_p ())
return *vr0;
/* VR1 has the resulting range if VR0 is undefined or VR1 is varying. */
if (vr0->undefined_p ()
|| vr1->varying_p ())
return *vr1;
value_range_kind vr0kind = vr0->kind ();
tree vr0min = vr0->min ();
tree vr0max = vr0->max ();
union_ranges (&vr0kind, &vr0min, &vr0max,
vr1->kind (), vr1->min (), vr1->max ());
/* Work on a temporary so we can still use vr0 when union returns varying. */
value_range tem;
if (vr0kind == VR_UNDEFINED)
tem.set_undefined ();
else if (vr0kind == VR_VARYING)
tem.set_varying (vr0->type ());
else
tem.set (vr0min, vr0max, vr0kind);
/* Failed to find an efficient meet. Before giving up and setting
the result to VARYING, see if we can at least derive a useful
anti-range. */
if (tem.varying_p ()
&& range_includes_zero_p (vr0) == 0
&& range_includes_zero_p (vr1) == 0)
{
tem.set_nonzero (vr0->type ());
return tem;
}
return tem;
}
/* Meet operation for value ranges. Given two value ranges VR0 and
VR1, store in VR0 a range that contains both VR0 and VR1. This
may not be the smallest possible such range. */
void
value_range::union_ (const value_range *other)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Meeting\n ");
dump_value_range (dump_file, this);
fprintf (dump_file, "\nand\n ");
dump_value_range (dump_file, other);
fprintf (dump_file, "\n");
}
*this = union_helper (this, other);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "to\n ");
dump_value_range (dump_file, this);
fprintf (dump_file, "\n");
}
}
void void
value_range_equiv::union_ (const value_range_equiv *other) value_range_equiv::union_ (const value_range_equiv *other)
{ {
...@@ -6046,222 +4726,6 @@ value_range_equiv::union_ (const value_range_equiv *other) ...@@ -6046,222 +4726,6 @@ value_range_equiv::union_ (const value_range_equiv *other)
} }
} }
/* Normalize addresses into constants. */
value_range
value_range::normalize_addresses () const
{
if (undefined_p ())
return *this;
if (!POINTER_TYPE_P (type ()) || range_has_numeric_bounds_p (this))
return *this;
if (!range_includes_zero_p (this))
{
gcc_checking_assert (TREE_CODE (m_min) == ADDR_EXPR
|| TREE_CODE (m_max) == ADDR_EXPR);
return range_nonzero (type ());
}
return value_range (type ());
}
/* Normalize symbolics and addresses into constants. */
value_range
value_range::normalize_symbolics () const
{
if (varying_p () || undefined_p ())
return *this;
tree ttype = type ();
bool min_symbolic = !is_gimple_min_invariant (min ());
bool max_symbolic = !is_gimple_min_invariant (max ());
if (!min_symbolic && !max_symbolic)
return normalize_addresses ();
// [SYM, SYM] -> VARYING
if (min_symbolic && max_symbolic)
{
value_range var;
var.set_varying (ttype);
return var;
}
if (kind () == VR_RANGE)
{
// [SYM, NUM] -> [-MIN, NUM]
if (min_symbolic)
return value_range (vrp_val_min (ttype), max ());
// [NUM, SYM] -> [NUM, +MAX]
return value_range (min (), vrp_val_max (ttype));
}
gcc_checking_assert (kind () == VR_ANTI_RANGE);
// ~[SYM, NUM] -> [NUM + 1, +MAX]
if (min_symbolic)
{
if (!vrp_val_is_max (max ()))
{
tree n = wide_int_to_tree (ttype, wi::to_wide (max ()) + 1);
return value_range (n, vrp_val_max (ttype));
}
value_range var;
var.set_varying (ttype);
return var;
}
// ~[NUM, SYM] -> [-MIN, NUM - 1]
if (!vrp_val_is_min (min ()))
{
tree n = wide_int_to_tree (ttype, wi::to_wide (min ()) - 1);
return value_range (vrp_val_min (ttype), n);
}
value_range var;
var.set_varying (ttype);
return var;
}
/* Return the number of sub-ranges in a range. */
unsigned
value_range::num_pairs () const
{
if (undefined_p ())
return 0;
if (varying_p ())
return 1;
if (symbolic_p ())
return normalize_symbolics ().num_pairs ();
if (m_kind == VR_ANTI_RANGE)
{
// ~[MIN, X] has one sub-range of [X+1, MAX], and
// ~[X, MAX] has one sub-range of [MIN, X-1].
if (vrp_val_is_min (m_min) || vrp_val_is_max (m_max))
return 1;
return 2;
}
return 1;
}
/* Return the lower bound for a sub-range. PAIR is the sub-range in
question. */
wide_int
value_range::lower_bound (unsigned pair) const
{
if (symbolic_p ())
return normalize_symbolics ().lower_bound (pair);
gcc_checking_assert (!undefined_p ());
gcc_checking_assert (pair + 1 <= num_pairs ());
tree t = NULL;
if (m_kind == VR_ANTI_RANGE)
{
tree typ = type ();
if (pair == 1 || vrp_val_is_min (m_min))
t = wide_int_to_tree (typ, wi::to_wide (m_max) + 1);
else
t = vrp_val_min (typ);
}
else
t = m_min;
return wi::to_wide (t);
}
/* Return the upper bound for a sub-range. PAIR is the sub-range in
question. */
wide_int
value_range::upper_bound (unsigned pair) const
{
if (symbolic_p ())
return normalize_symbolics ().upper_bound (pair);
gcc_checking_assert (!undefined_p ());
gcc_checking_assert (pair + 1 <= num_pairs ());
tree t = NULL;
if (m_kind == VR_ANTI_RANGE)
{
tree typ = type ();
if (pair == 1 || vrp_val_is_min (m_min))
t = vrp_val_max (typ);
else
t = wide_int_to_tree (typ, wi::to_wide (m_min) - 1);
}
else
t = m_max;
return wi::to_wide (t);
}
/* Return the highest bound in a range. */
wide_int
value_range::upper_bound () const
{
unsigned pairs = num_pairs ();
gcc_checking_assert (pairs > 0);
return upper_bound (pairs - 1);
}
/* Return TRUE if range contains INTEGER_CST. */
bool
value_range::contains_p (tree cst) const
{
gcc_checking_assert (TREE_CODE (cst) == INTEGER_CST);
if (symbolic_p ())
return normalize_symbolics ().contains_p (cst);
return value_inside_range (cst) == 1;
}
/* Return the inverse of a range. */
void
value_range::invert ()
{
/* We can't just invert VR_RANGE and VR_ANTI_RANGE because we may
create non-canonical ranges. Use the constructors instead. */
if (m_kind == VR_RANGE)
*this = value_range (m_min, m_max, VR_ANTI_RANGE);
else if (m_kind == VR_ANTI_RANGE)
*this = value_range (m_min, m_max);
else
gcc_unreachable ();
}
/* Range union, but for references. */
void
value_range::union_ (const value_range &r)
{
/* Disable details for now, because it makes the ranger dump
unnecessarily verbose. */
bool details = dump_flags & TDF_DETAILS;
if (details)
dump_flags &= ~TDF_DETAILS;
union_ (&r);
if (details)
dump_flags |= TDF_DETAILS;
}
/* Range intersect, but for references. */
void
value_range::intersect (const value_range &r)
{
/* Disable details for now, because it makes the ranger dump
unnecessarily verbose. */
bool details = dump_flags & TDF_DETAILS;
if (details)
dump_flags &= ~TDF_DETAILS;
intersect (&r);
if (details)
dump_flags |= TDF_DETAILS;
}
bool
value_range::operator== (const value_range &r) const
{
return equal_p (r);
}
/* Visit all arguments for PHI node PHI that flow through executable /* Visit all arguments for PHI node PHI that flow through executable
edges. If a valid value range can be derived from all the incoming edges. If a valid value range can be derived from all the incoming
value ranges, set a new range for the LHS of PHI. */ value ranges, set a new range for the LHS of PHI. */
......
...@@ -20,103 +20,7 @@ along with GCC; see the file COPYING3. If not see ...@@ -20,103 +20,7 @@ along with GCC; see the file COPYING3. If not see
#ifndef GCC_TREE_VRP_H #ifndef GCC_TREE_VRP_H
#define GCC_TREE_VRP_H #define GCC_TREE_VRP_H
/* Types of value ranges. */ #include "value-range.h"
enum value_range_kind
{
/* Empty range. */
VR_UNDEFINED,
/* Range spans the entire domain. */
VR_VARYING,
/* Range is [MIN, MAX]. */
VR_RANGE,
/* Range is ~[MIN, MAX]. */
VR_ANTI_RANGE,
/* Range is a nice guy. */
VR_LAST
};
/* Range of values that can be associated with an SSA_NAME after VRP
has executed. */
class GTY((for_user)) value_range
{
friend void range_tests ();
public:
value_range ();
value_range (tree, tree, value_range_kind = VR_RANGE);
value_range (tree type, const wide_int &, const wide_int &,
value_range_kind = VR_RANGE);
value_range (tree type);
void set (tree, tree, value_range_kind = VR_RANGE);
void set (tree);
void set_nonzero (tree);
void set_zero (tree);
enum value_range_kind kind () const;
tree min () const;
tree max () const;
/* Types of value ranges. */
bool symbolic_p () const;
bool constant_p () const;
bool undefined_p () const;
bool varying_p () const;
void set_varying (tree type);
void set_undefined ();
void union_ (const value_range *);
void intersect (const value_range *);
void union_ (const value_range &);
void intersect (const value_range &);
bool operator== (const value_range &) const;
bool operator!= (const value_range &) const /* = delete */;
bool equal_p (const value_range &) const;
/* Misc methods. */
tree type () const;
bool may_contain_p (tree) const;
bool zero_p () const;
bool nonzero_p () const;
bool singleton_p (tree *result = NULL) const;
void dump (FILE *) const;
void dump () const;
static bool supports_type_p (tree);
value_range normalize_symbolics () const;
value_range normalize_addresses () const;
static const unsigned int m_max_pairs = 2;
bool contains_p (tree) const;
unsigned num_pairs () const;
wide_int lower_bound (unsigned = 0) const;
wide_int upper_bound (unsigned) const;
wide_int upper_bound () const;
void invert ();
protected:
void check ();
static value_range union_helper (const value_range *, const value_range *);
static value_range intersect_helper (const value_range *,
const value_range *);
enum value_range_kind m_kind;
tree m_min;
tree m_max;
friend void gt_ggc_mx_value_range (void *);
friend void gt_pch_p_11value_range (void *, void *,
gt_pointer_operator, void *);
friend void gt_pch_nx_value_range (void *);
friend void gt_ggc_mx (value_range &);
friend void gt_ggc_mx (value_range *&);
friend void gt_pch_nx (value_range &);
friend void gt_pch_nx (value_range *, gt_pointer_operator, void *);
private:
int value_inside_range (tree) const;
};
/* Note value_range_equiv cannot currently be used with GC memory, /* Note value_range_equiv cannot currently be used with GC memory,
only value_range is fully set up for this. */ only value_range is fully set up for this. */
...@@ -174,77 +78,19 @@ class GTY((user)) value_range_equiv : public value_range ...@@ -174,77 +78,19 @@ class GTY((user)) value_range_equiv : public value_range
}; };
inline inline
value_range::value_range ()
{
m_kind = VR_UNDEFINED;
m_min = m_max = NULL;
}
inline
value_range_equiv::value_range_equiv () value_range_equiv::value_range_equiv ()
: value_range () : value_range ()
{ {
m_equiv = NULL; m_equiv = NULL;
} }
/* Return the kind of this range. */
inline value_range_kind
value_range::kind () const
{
return m_kind;
}
inline bitmap inline bitmap
value_range_equiv::equiv () const value_range_equiv::equiv () const
{ {
return m_equiv; return m_equiv;
} }
/* Return the lower bound. */
inline tree
value_range::min () const
{
return m_min;
}
/* Return the upper bound. */
inline tree
value_range::max () const
{
return m_max;
}
/* Return TRUE if range spans the entire possible domain. */
inline bool
value_range::varying_p () const
{
return m_kind == VR_VARYING;
}
/* Return TRUE if range is undefined (essentially the empty set). */
inline bool
value_range::undefined_p () const
{
return m_kind == VR_UNDEFINED;
}
/* Return TRUE if range is the constant zero. */
inline bool
value_range::zero_p () const
{
return (m_kind == VR_RANGE
&& integer_zerop (m_min)
&& integer_zerop (m_max));
}
extern void dump_value_range (FILE *, const value_range_equiv *); extern void dump_value_range (FILE *, const value_range_equiv *);
extern void dump_value_range (FILE *, const value_range *);
struct assert_info struct assert_info
{ {
...@@ -261,17 +107,6 @@ struct assert_info ...@@ -261,17 +107,6 @@ struct assert_info
tree expr; tree expr;
}; };
// Return true if TYPE is a valid type for value_range to operate on.
// Otherwise return FALSE.
inline bool
value_range::supports_type_p (tree type)
{
if (type && (INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type)))
return type;
return false;
}
extern void register_edge_assert_for (tree, edge, enum tree_code, extern void register_edge_assert_for (tree, edge, enum tree_code,
tree, tree, vec<assert_info> &); tree, tree, vec<assert_info> &);
extern bool stmt_interesting_for_vrp (gimple *); extern bool stmt_interesting_for_vrp (gimple *);
...@@ -282,18 +117,12 @@ extern bool range_int_cst_p (const value_range *); ...@@ -282,18 +117,12 @@ extern bool range_int_cst_p (const value_range *);
extern int compare_values (tree, tree); extern int compare_values (tree, tree);
extern int compare_values_warnv (tree, tree, bool *); extern int compare_values_warnv (tree, tree, bool *);
extern int operand_less_p (tree, tree); extern int operand_less_p (tree, tree);
extern bool vrp_val_is_min (const_tree);
extern bool vrp_val_is_max (const_tree);
extern tree vrp_val_min (const_tree);
extern tree vrp_val_max (const_tree);
void range_fold_unary_expr (value_range *, enum tree_code, tree type, void range_fold_unary_expr (value_range *, enum tree_code, tree type,
const value_range *, tree op0_type); const value_range *, tree op0_type);
void range_fold_binary_expr (value_range *, enum tree_code, tree type, void range_fold_binary_expr (value_range *, enum tree_code, tree type,
const value_range *, const value_range *); const value_range *, const value_range *);
extern bool vrp_operand_equal_p (const_tree, const_tree);
extern enum value_range_kind intersect_range_with_nonzero_bits extern enum value_range_kind intersect_range_with_nonzero_bits
(enum value_range_kind, wide_int *, wide_int *, const wide_int &, signop); (enum value_range_kind, wide_int *, wide_int *, const wide_int &, signop);
...@@ -304,35 +133,4 @@ extern tree get_single_symbol (tree, bool *, tree *); ...@@ -304,35 +133,4 @@ extern tree get_single_symbol (tree, bool *, tree *);
extern void maybe_set_nonzero_bits (edge, tree); extern void maybe_set_nonzero_bits (edge, tree);
extern value_range_kind determine_value_range (tree, wide_int *, wide_int *); extern value_range_kind determine_value_range (tree, wide_int *, wide_int *);
/* Return TRUE if range is nonzero. */
inline bool
value_range::nonzero_p () const
{
if (m_kind == VR_ANTI_RANGE
&& !TYPE_UNSIGNED (type ())
&& integer_zerop (m_min)
&& integer_zerop (m_max))
return true;
return (m_kind == VR_RANGE
&& TYPE_UNSIGNED (type ())
&& integer_onep (m_min)
&& vrp_val_is_max (m_max));
}
/* Return TRUE if *VR includes the value zero. */
inline bool
range_includes_zero_p (const value_range *vr)
{
if (vr->undefined_p ())
return false;
if (vr->varying_p ())
return true;
return vr->may_contain_p (build_zero_cst (vr->type ()));
}
#endif /* GCC_TREE_VRP_H */ #endif /* GCC_TREE_VRP_H */
/* Support routines for value ranges.
Copyright (C) 2019 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "tree-pretty-print.h"
#include "fold-const.h"
value_range::value_range (tree min, tree max, value_range_kind kind)
{
set (min, max, kind);
}
value_range::value_range (tree type)
{
set_varying (type);
}
value_range::value_range (tree type,
const wide_int &wmin, const wide_int &wmax,
enum value_range_kind kind)
{
tree min = wide_int_to_tree (type, wmin);
tree max = wide_int_to_tree (type, wmax);
gcc_checking_assert (kind == VR_RANGE || kind == VR_ANTI_RANGE);
set (min, max, kind);
}
void
value_range::set_undefined ()
{
m_kind = VR_UNDEFINED;
m_min = m_max = NULL;
}
void
value_range::set_varying (tree type)
{
m_kind = VR_VARYING;
if (supports_type_p (type))
{
m_min = vrp_val_min (type);
m_max = vrp_val_max (type);
}
else
/* We can't do anything range-wise with these types. */
m_min = m_max = error_mark_node;
}
/* Set value range to the canonical form of {VRTYPE, MIN, MAX, EQUIV}.
This means adjusting VRTYPE, MIN and MAX representing the case of a
wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
In corner cases where MAX+1 or MIN-1 wraps this will fall back
to varying.
This routine exists to ease canonicalization in the case where we
extract ranges from var + CST op limit. */
void
value_range::set (tree min, tree max, value_range_kind kind)
{
/* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
if (kind == VR_UNDEFINED)
{
set_undefined ();
return;
}
else if (kind == VR_VARYING)
{
gcc_assert (TREE_TYPE (min) == TREE_TYPE (max));
tree typ = TREE_TYPE (min);
if (supports_type_p (typ))
{
gcc_assert (vrp_val_min (typ));
gcc_assert (vrp_val_max (typ));
}
set_varying (typ);
return;
}
/* Convert POLY_INT_CST bounds into worst-case INTEGER_CST bounds. */
if (POLY_INT_CST_P (min))
{
tree type_min = vrp_val_min (TREE_TYPE (min));
widest_int lb
= constant_lower_bound_with_limit (wi::to_poly_widest (min),
wi::to_widest (type_min));
min = wide_int_to_tree (TREE_TYPE (min), lb);
}
if (POLY_INT_CST_P (max))
{
tree type_max = vrp_val_max (TREE_TYPE (max));
widest_int ub
= constant_upper_bound_with_limit (wi::to_poly_widest (max),
wi::to_widest (type_max));
max = wide_int_to_tree (TREE_TYPE (max), ub);
}
/* Nothing to canonicalize for symbolic ranges. */
if (TREE_CODE (min) != INTEGER_CST
|| TREE_CODE (max) != INTEGER_CST)
{
m_kind = kind;
m_min = min;
m_max = max;
return;
}
/* Wrong order for min and max, to swap them and the VR type we need
to adjust them. */
if (tree_int_cst_lt (max, min))
{
tree one, tmp;
/* For one bit precision if max < min, then the swapped
range covers all values, so for VR_RANGE it is varying and
for VR_ANTI_RANGE empty range, so drop to varying as well. */
if (TYPE_PRECISION (TREE_TYPE (min)) == 1)
{
set_varying (TREE_TYPE (min));
return;
}
one = build_int_cst (TREE_TYPE (min), 1);
tmp = int_const_binop (PLUS_EXPR, max, one);
max = int_const_binop (MINUS_EXPR, min, one);
min = tmp;
/* There's one corner case, if we had [C+1, C] before we now have
that again. But this represents an empty value range, so drop
to varying in this case. */
if (tree_int_cst_lt (max, min))
{
set_varying (TREE_TYPE (min));
return;
}
kind = kind == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
}
tree type = TREE_TYPE (min);
/* Anti-ranges that can be represented as ranges should be so. */
if (kind == VR_ANTI_RANGE)
{
/* For -fstrict-enums we may receive out-of-range ranges so consider
values < -INF and values > INF as -INF/INF as well. */
bool is_min = vrp_val_is_min (min);
bool is_max = vrp_val_is_max (max);
if (is_min && is_max)
{
/* We cannot deal with empty ranges, drop to varying.
??? This could be VR_UNDEFINED instead. */
set_varying (type);
return;
}
else if (TYPE_PRECISION (TREE_TYPE (min)) == 1
&& (is_min || is_max))
{
/* Non-empty boolean ranges can always be represented
as a singleton range. */
if (is_min)
min = max = vrp_val_max (TREE_TYPE (min));
else
min = max = vrp_val_min (TREE_TYPE (min));
kind = VR_RANGE;
}
else if (is_min)
{
tree one = build_int_cst (TREE_TYPE (max), 1);
min = int_const_binop (PLUS_EXPR, max, one);
max = vrp_val_max (TREE_TYPE (max));
kind = VR_RANGE;
}
else if (is_max)
{
tree one = build_int_cst (TREE_TYPE (min), 1);
max = int_const_binop (MINUS_EXPR, min, one);
min = vrp_val_min (TREE_TYPE (min));
kind = VR_RANGE;
}
}
/* Normalize [MIN, MAX] into VARYING and ~[MIN, MAX] into UNDEFINED.
Avoid using TYPE_{MIN,MAX}_VALUE because -fstrict-enums can
restrict those to a subset of what actually fits in the type.
Instead use the extremes of the type precision which will allow
compare_range_with_value() to check if a value is inside a range,
whereas if we used TYPE_*_VAL, said function would just punt
upon seeing a VARYING. */
unsigned prec = TYPE_PRECISION (type);
signop sign = TYPE_SIGN (type);
if (wi::eq_p (wi::to_wide (min), wi::min_value (prec, sign))
&& wi::eq_p (wi::to_wide (max), wi::max_value (prec, sign)))
{
if (kind == VR_RANGE)
set_varying (type);
else if (kind == VR_ANTI_RANGE)
set_undefined ();
else
gcc_unreachable ();
return;
}
/* Do not drop [-INF(OVF), +INF(OVF)] to varying. (OVF) has to be sticky
to make sure VRP iteration terminates, otherwise we can get into
oscillations. */
m_kind = kind;
m_min = min;
m_max = max;
if (flag_checking)
check ();
}
void
value_range::set (tree val)
{
gcc_assert (TREE_CODE (val) == SSA_NAME || is_gimple_min_invariant (val));
if (TREE_OVERFLOW_P (val))
val = drop_tree_overflow (val);
set (val, val);
}
/* Set value range VR to a nonzero range of type TYPE. */
void
value_range::set_nonzero (tree type)
{
tree zero = build_int_cst (type, 0);
set (zero, zero, VR_ANTI_RANGE);
}
/* Set value range VR to a ZERO range of type TYPE. */
void
value_range::set_zero (tree type)
{
set (build_int_cst (type, 0));
}
/* Check the validity of the range. */
void
value_range::check ()
{
switch (m_kind)
{
case VR_RANGE:
case VR_ANTI_RANGE:
{
gcc_assert (m_min && m_max);
gcc_assert (!TREE_OVERFLOW_P (m_min) && !TREE_OVERFLOW_P (m_max));
/* Creating ~[-MIN, +MAX] is stupid because that would be
the empty set. */
if (INTEGRAL_TYPE_P (TREE_TYPE (m_min)) && m_kind == VR_ANTI_RANGE)
gcc_assert (!vrp_val_is_min (m_min) || !vrp_val_is_max (m_max));
int cmp = compare_values (m_min, m_max);
gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
break;
}
case VR_UNDEFINED:
gcc_assert (!min () && !max ());
break;
case VR_VARYING:
gcc_assert (m_min && m_max);
break;
default:
gcc_unreachable ();
}
}
/* Return the number of sub-ranges in a range. */
unsigned
value_range::num_pairs () const
{
if (undefined_p ())
return 0;
if (varying_p ())
return 1;
if (symbolic_p ())
return normalize_symbolics ().num_pairs ();
if (m_kind == VR_ANTI_RANGE)
{
// ~[MIN, X] has one sub-range of [X+1, MAX], and
// ~[X, MAX] has one sub-range of [MIN, X-1].
if (vrp_val_is_min (m_min) || vrp_val_is_max (m_max))
return 1;
return 2;
}
return 1;
}
/* Return the lower bound for a sub-range. PAIR is the sub-range in
question. */
wide_int
value_range::lower_bound (unsigned pair) const
{
if (symbolic_p ())
return normalize_symbolics ().lower_bound (pair);
gcc_checking_assert (!undefined_p ());
gcc_checking_assert (pair + 1 <= num_pairs ());
tree t = NULL;
if (m_kind == VR_ANTI_RANGE)
{
tree typ = type ();
if (pair == 1 || vrp_val_is_min (m_min))
t = wide_int_to_tree (typ, wi::to_wide (m_max) + 1);
else
t = vrp_val_min (typ);
}
else
t = m_min;
return wi::to_wide (t);
}
/* Return the upper bound for a sub-range. PAIR is the sub-range in
question. */
wide_int
value_range::upper_bound (unsigned pair) const
{
if (symbolic_p ())
return normalize_symbolics ().upper_bound (pair);
gcc_checking_assert (!undefined_p ());
gcc_checking_assert (pair + 1 <= num_pairs ());
tree t = NULL;
if (m_kind == VR_ANTI_RANGE)
{
tree typ = type ();
if (pair == 1 || vrp_val_is_min (m_min))
t = vrp_val_max (typ);
else
t = wide_int_to_tree (typ, wi::to_wide (m_min) - 1);
}
else
t = m_max;
return wi::to_wide (t);
}
/* Return the highest bound in a range. */
wide_int
value_range::upper_bound () const
{
unsigned pairs = num_pairs ();
gcc_checking_assert (pairs > 0);
return upper_bound (pairs - 1);
}
bool
value_range::equal_p (const value_range &other) const
{
/* Ignore types for undefined. All undefines are equal. */
if (undefined_p ())
return m_kind == other.m_kind;
return (m_kind == other.m_kind
&& vrp_operand_equal_p (m_min, other.m_min)
&& vrp_operand_equal_p (m_max, other.m_max));
}
bool
value_range::operator== (const value_range &r) const
{
return equal_p (r);
}
/* If range is a singleton, place it in RESULT and return TRUE.
Note: A singleton can be any gimple invariant, not just constants.
So, [&x, &x] counts as a singleton. */
/* Return TRUE if this is a symbolic range. */
bool
value_range::symbolic_p () const
{
return (!varying_p ()
&& !undefined_p ()
&& (!is_gimple_min_invariant (m_min)
|| !is_gimple_min_invariant (m_max)));
}
/* NOTE: This is not the inverse of symbolic_p because the range
could also be varying or undefined. Ideally they should be inverse
of each other, with varying only applying to symbolics. Varying of
constants would be represented as [-MIN, +MAX]. */
bool
value_range::constant_p () const
{
return (!varying_p ()
&& !undefined_p ()
&& TREE_CODE (m_min) == INTEGER_CST
&& TREE_CODE (m_max) == INTEGER_CST);
}
bool
value_range::singleton_p (tree *result) const
{
if (m_kind == VR_ANTI_RANGE)
{
if (nonzero_p ())
{
if (TYPE_PRECISION (type ()) == 1)
{
if (result)
*result = m_max;
return true;
}
return false;
}
if (num_pairs () == 1)
{
value_range vr0, vr1;
ranges_from_anti_range (this, &vr0, &vr1);
return vr0.singleton_p (result);
}
}
if (m_kind == VR_RANGE
&& vrp_operand_equal_p (min (), max ())
&& is_gimple_min_invariant (min ()))
{
if (result)
*result = min ();
return true;
}
return false;
}
/* Return 1 if VAL is inside value range.
0 if VAL is not inside value range.
-2 if we cannot tell either way.
Benchmark compile/20001226-1.c compilation time after changing this
function. */
int
value_range::value_inside_range (tree val) const
{
int cmp1, cmp2;
if (varying_p ())
return 1;
if (undefined_p ())
return 0;
cmp1 = operand_less_p (val, m_min);
if (cmp1 == -2)
return -2;
if (cmp1 == 1)
return m_kind != VR_RANGE;
cmp2 = operand_less_p (m_max, val);
if (cmp2 == -2)
return -2;
if (m_kind == VR_RANGE)
return !cmp2;
else
return !!cmp2;
}
/* Return TRUE if it is possible that range contains VAL. */
bool
value_range::may_contain_p (tree val) const
{
return value_inside_range (val) != 0;
}
/* Return TRUE if range contains INTEGER_CST. */
bool
value_range::contains_p (tree cst) const
{
gcc_checking_assert (TREE_CODE (cst) == INTEGER_CST);
if (symbolic_p ())
return normalize_symbolics ().contains_p (cst);
return value_inside_range (cst) == 1;
}
/* Normalize addresses into constants. */
value_range
value_range::normalize_addresses () const
{
if (undefined_p ())
return *this;
if (!POINTER_TYPE_P (type ()) || range_has_numeric_bounds_p (this))
return *this;
if (!range_includes_zero_p (this))
{
gcc_checking_assert (TREE_CODE (m_min) == ADDR_EXPR
|| TREE_CODE (m_max) == ADDR_EXPR);
return range_nonzero (type ());
}
return value_range (type ());
}
/* Normalize symbolics and addresses into constants. */
value_range
value_range::normalize_symbolics () const
{
if (varying_p () || undefined_p ())
return *this;
tree ttype = type ();
bool min_symbolic = !is_gimple_min_invariant (min ());
bool max_symbolic = !is_gimple_min_invariant (max ());
if (!min_symbolic && !max_symbolic)
return normalize_addresses ();
// [SYM, SYM] -> VARYING
if (min_symbolic && max_symbolic)
{
value_range var;
var.set_varying (ttype);
return var;
}
if (kind () == VR_RANGE)
{
// [SYM, NUM] -> [-MIN, NUM]
if (min_symbolic)
return value_range (vrp_val_min (ttype), max ());
// [NUM, SYM] -> [NUM, +MAX]
return value_range (min (), vrp_val_max (ttype));
}
gcc_checking_assert (kind () == VR_ANTI_RANGE);
// ~[SYM, NUM] -> [NUM + 1, +MAX]
if (min_symbolic)
{
if (!vrp_val_is_max (max ()))
{
tree n = wide_int_to_tree (ttype, wi::to_wide (max ()) + 1);
return value_range (n, vrp_val_max (ttype));
}
value_range var;
var.set_varying (ttype);
return var;
}
// ~[NUM, SYM] -> [-MIN, NUM - 1]
if (!vrp_val_is_min (min ()))
{
tree n = wide_int_to_tree (ttype, wi::to_wide (min ()) - 1);
return value_range (vrp_val_min (ttype), n);
}
value_range var;
var.set_varying (ttype);
return var;
}
/* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
{ VR1TYPE, VR0MIN, VR0MAX } and store the result
in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
possible such range. The resulting range is not canonicalized. */
static void
intersect_ranges (enum value_range_kind *vr0type,
tree *vr0min, tree *vr0max,
enum value_range_kind vr1type,
tree vr1min, tree vr1max)
{
bool mineq = vrp_operand_equal_p (*vr0min, vr1min);
bool maxeq = vrp_operand_equal_p (*vr0max, vr1max);
/* [] is vr0, () is vr1 in the following classification comments. */
if (mineq && maxeq)
{
/* [( )] */
if (*vr0type == vr1type)
/* Nothing to do for equal ranges. */
;
else if ((*vr0type == VR_RANGE
&& vr1type == VR_ANTI_RANGE)
|| (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_RANGE))
{
/* For anti-range with range intersection the result is empty. */
*vr0type = VR_UNDEFINED;
*vr0min = NULL_TREE;
*vr0max = NULL_TREE;
}
else
gcc_unreachable ();
}
else if (operand_less_p (*vr0max, vr1min) == 1
|| operand_less_p (vr1max, *vr0min) == 1)
{
/* [ ] ( ) or ( ) [ ]
If the ranges have an empty intersection, the result of the
intersect operation is the range for intersecting an
anti-range with a range or empty when intersecting two ranges. */
if (*vr0type == VR_RANGE
&& vr1type == VR_ANTI_RANGE)
;
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_RANGE)
{
*vr0type = vr1type;
*vr0min = vr1min;
*vr0max = vr1max;
}
else if (*vr0type == VR_RANGE
&& vr1type == VR_RANGE)
{
*vr0type = VR_UNDEFINED;
*vr0min = NULL_TREE;
*vr0max = NULL_TREE;
}
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_ANTI_RANGE)
{
/* If the anti-ranges are adjacent to each other merge them. */
if (TREE_CODE (*vr0max) == INTEGER_CST
&& TREE_CODE (vr1min) == INTEGER_CST
&& operand_less_p (*vr0max, vr1min) == 1
&& integer_onep (int_const_binop (MINUS_EXPR,
vr1min, *vr0max)))
*vr0max = vr1max;
else if (TREE_CODE (vr1max) == INTEGER_CST
&& TREE_CODE (*vr0min) == INTEGER_CST
&& operand_less_p (vr1max, *vr0min) == 1
&& integer_onep (int_const_binop (MINUS_EXPR,
*vr0min, vr1max)))
*vr0min = vr1min;
/* Else arbitrarily take VR0. */
}
}
else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
&& (mineq || operand_less_p (*vr0min, vr1min) == 1))
{
/* [ ( ) ] or [( ) ] or [ ( )] */
if (*vr0type == VR_RANGE
&& vr1type == VR_RANGE)
{
/* If both are ranges the result is the inner one. */
*vr0type = vr1type;
*vr0min = vr1min;
*vr0max = vr1max;
}
else if (*vr0type == VR_RANGE
&& vr1type == VR_ANTI_RANGE)
{
/* Choose the right gap if the left one is empty. */
if (mineq)
{
if (TREE_CODE (vr1max) != INTEGER_CST)
*vr0min = vr1max;
else if (TYPE_PRECISION (TREE_TYPE (vr1max)) == 1
&& !TYPE_UNSIGNED (TREE_TYPE (vr1max)))
*vr0min
= int_const_binop (MINUS_EXPR, vr1max,
build_int_cst (TREE_TYPE (vr1max), -1));
else
*vr0min
= int_const_binop (PLUS_EXPR, vr1max,
build_int_cst (TREE_TYPE (vr1max), 1));
}
/* Choose the left gap if the right one is empty. */
else if (maxeq)
{
if (TREE_CODE (vr1min) != INTEGER_CST)
*vr0max = vr1min;
else if (TYPE_PRECISION (TREE_TYPE (vr1min)) == 1
&& !TYPE_UNSIGNED (TREE_TYPE (vr1min)))
*vr0max
= int_const_binop (PLUS_EXPR, vr1min,
build_int_cst (TREE_TYPE (vr1min), -1));
else
*vr0max
= int_const_binop (MINUS_EXPR, vr1min,
build_int_cst (TREE_TYPE (vr1min), 1));
}
/* Choose the anti-range if the range is effectively varying. */
else if (vrp_val_is_min (*vr0min)
&& vrp_val_is_max (*vr0max))
{
*vr0type = vr1type;
*vr0min = vr1min;
*vr0max = vr1max;
}
/* Else choose the range. */
}
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_ANTI_RANGE)
/* If both are anti-ranges the result is the outer one. */
;
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_RANGE)
{
/* The intersection is empty. */
*vr0type = VR_UNDEFINED;
*vr0min = NULL_TREE;
*vr0max = NULL_TREE;
}
else
gcc_unreachable ();
}
else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
&& (mineq || operand_less_p (vr1min, *vr0min) == 1))
{
/* ( [ ] ) or ([ ] ) or ( [ ]) */
if (*vr0type == VR_RANGE
&& vr1type == VR_RANGE)
/* Choose the inner range. */
;
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_RANGE)
{
/* Choose the right gap if the left is empty. */
if (mineq)
{
*vr0type = VR_RANGE;
if (TREE_CODE (*vr0max) != INTEGER_CST)
*vr0min = *vr0max;
else if (TYPE_PRECISION (TREE_TYPE (*vr0max)) == 1
&& !TYPE_UNSIGNED (TREE_TYPE (*vr0max)))
*vr0min
= int_const_binop (MINUS_EXPR, *vr0max,
build_int_cst (TREE_TYPE (*vr0max), -1));
else
*vr0min
= int_const_binop (PLUS_EXPR, *vr0max,
build_int_cst (TREE_TYPE (*vr0max), 1));
*vr0max = vr1max;
}
/* Choose the left gap if the right is empty. */
else if (maxeq)
{
*vr0type = VR_RANGE;
if (TREE_CODE (*vr0min) != INTEGER_CST)
*vr0max = *vr0min;
else if (TYPE_PRECISION (TREE_TYPE (*vr0min)) == 1
&& !TYPE_UNSIGNED (TREE_TYPE (*vr0min)))
*vr0max
= int_const_binop (PLUS_EXPR, *vr0min,
build_int_cst (TREE_TYPE (*vr0min), -1));
else
*vr0max
= int_const_binop (MINUS_EXPR, *vr0min,
build_int_cst (TREE_TYPE (*vr0min), 1));
*vr0min = vr1min;
}
/* Choose the anti-range if the range is effectively varying. */
else if (vrp_val_is_min (vr1min)
&& vrp_val_is_max (vr1max))
;
/* Choose the anti-range if it is ~[0,0], that range is special
enough to special case when vr1's range is relatively wide.
At least for types bigger than int - this covers pointers
and arguments to functions like ctz. */
else if (*vr0min == *vr0max
&& integer_zerop (*vr0min)
&& ((TYPE_PRECISION (TREE_TYPE (*vr0min))
>= TYPE_PRECISION (integer_type_node))
|| POINTER_TYPE_P (TREE_TYPE (*vr0min)))
&& TREE_CODE (vr1max) == INTEGER_CST
&& TREE_CODE (vr1min) == INTEGER_CST
&& (wi::clz (wi::to_wide (vr1max) - wi::to_wide (vr1min))
< TYPE_PRECISION (TREE_TYPE (*vr0min)) / 2))
;
/* Else choose the range. */
else
{
*vr0type = vr1type;
*vr0min = vr1min;
*vr0max = vr1max;
}
}
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_ANTI_RANGE)
{
/* If both are anti-ranges the result is the outer one. */
*vr0type = vr1type;
*vr0min = vr1min;
*vr0max = vr1max;
}
else if (vr1type == VR_ANTI_RANGE
&& *vr0type == VR_RANGE)
{
/* The intersection is empty. */
*vr0type = VR_UNDEFINED;
*vr0min = NULL_TREE;
*vr0max = NULL_TREE;
}
else
gcc_unreachable ();
}
else if ((operand_less_p (vr1min, *vr0max) == 1
|| operand_equal_p (vr1min, *vr0max, 0))
&& operand_less_p (*vr0min, vr1min) == 1)
{
/* [ ( ] ) or [ ]( ) */
if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_ANTI_RANGE)
*vr0max = vr1max;
else if (*vr0type == VR_RANGE
&& vr1type == VR_RANGE)
*vr0min = vr1min;
else if (*vr0type == VR_RANGE
&& vr1type == VR_ANTI_RANGE)
{
if (TREE_CODE (vr1min) == INTEGER_CST)
*vr0max = int_const_binop (MINUS_EXPR, vr1min,
build_int_cst (TREE_TYPE (vr1min), 1));
else
*vr0max = vr1min;
}
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_RANGE)
{
*vr0type = VR_RANGE;
if (TREE_CODE (*vr0max) == INTEGER_CST)
*vr0min = int_const_binop (PLUS_EXPR, *vr0max,
build_int_cst (TREE_TYPE (*vr0max), 1));
else
*vr0min = *vr0max;
*vr0max = vr1max;
}
else
gcc_unreachable ();
}
else if ((operand_less_p (*vr0min, vr1max) == 1
|| operand_equal_p (*vr0min, vr1max, 0))
&& operand_less_p (vr1min, *vr0min) == 1)
{
/* ( [ ) ] or ( )[ ] */
if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_ANTI_RANGE)
*vr0min = vr1min;
else if (*vr0type == VR_RANGE
&& vr1type == VR_RANGE)
*vr0max = vr1max;
else if (*vr0type == VR_RANGE
&& vr1type == VR_ANTI_RANGE)
{
if (TREE_CODE (vr1max) == INTEGER_CST)
*vr0min = int_const_binop (PLUS_EXPR, vr1max,
build_int_cst (TREE_TYPE (vr1max), 1));
else
*vr0min = vr1max;
}
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_RANGE)
{
*vr0type = VR_RANGE;
if (TREE_CODE (*vr0min) == INTEGER_CST)
*vr0max = int_const_binop (MINUS_EXPR, *vr0min,
build_int_cst (TREE_TYPE (*vr0min), 1));
else
*vr0max = *vr0min;
*vr0min = vr1min;
}
else
gcc_unreachable ();
}
/* If we know the intersection is empty, there's no need to
conservatively add anything else to the set. */
if (*vr0type == VR_UNDEFINED)
return;
/* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
result for the intersection. That's always a conservative
correct estimate unless VR1 is a constant singleton range
in which case we choose that. */
if (vr1type == VR_RANGE
&& is_gimple_min_invariant (vr1min)
&& vrp_operand_equal_p (vr1min, vr1max))
{
*vr0type = vr1type;
*vr0min = vr1min;
*vr0max = vr1max;
}
}
/* Helper for the intersection operation for value ranges. Given two
value ranges VR0 and VR1, return the intersection of the two
ranges. This may not be the smallest possible such range. */
value_range
value_range::intersect_helper (const value_range *vr0, const value_range *vr1)
{
/* If either range is VR_VARYING the other one wins. */
if (vr1->varying_p ())
return *vr0;
if (vr0->varying_p ())
return *vr1;
/* When either range is VR_UNDEFINED the resulting range is
VR_UNDEFINED, too. */
if (vr0->undefined_p ())
return *vr0;
if (vr1->undefined_p ())
return *vr1;
value_range_kind vr0kind = vr0->kind ();
tree vr0min = vr0->min ();
tree vr0max = vr0->max ();
intersect_ranges (&vr0kind, &vr0min, &vr0max,
vr1->kind (), vr1->min (), vr1->max ());
/* Make sure to canonicalize the result though as the inversion of a
VR_RANGE can still be a VR_RANGE. Work on a temporary so we can
fall back to vr0 when this turns things to varying. */
value_range tem;
if (vr0kind == VR_UNDEFINED)
tem.set_undefined ();
else if (vr0kind == VR_VARYING)
tem.set_varying (vr0->type ());
else
tem.set (vr0min, vr0max, vr0kind);
/* If that failed, use the saved original VR0. */
if (tem.varying_p ())
return *vr0;
return tem;
}
/* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
{ VR1TYPE, VR0MIN, VR0MAX } and store the result
in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
possible such range. The resulting range is not canonicalized. */
static void
union_ranges (enum value_range_kind *vr0type,
tree *vr0min, tree *vr0max,
enum value_range_kind vr1type,
tree vr1min, tree vr1max)
{
int cmpmin = compare_values (*vr0min, vr1min);
int cmpmax = compare_values (*vr0max, vr1max);
bool mineq = cmpmin == 0;
bool maxeq = cmpmax == 0;
/* [] is vr0, () is vr1 in the following classification comments. */
if (mineq && maxeq)
{
/* [( )] */
if (*vr0type == vr1type)
/* Nothing to do for equal ranges. */
;
else if ((*vr0type == VR_RANGE
&& vr1type == VR_ANTI_RANGE)
|| (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_RANGE))
{
/* For anti-range with range union the result is varying. */
goto give_up;
}
else
gcc_unreachable ();
}
else if (operand_less_p (*vr0max, vr1min) == 1
|| operand_less_p (vr1max, *vr0min) == 1)
{
/* [ ] ( ) or ( ) [ ]
If the ranges have an empty intersection, result of the union
operation is the anti-range or if both are anti-ranges
it covers all. */
if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_ANTI_RANGE)
goto give_up;
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_RANGE)
;
else if (*vr0type == VR_RANGE
&& vr1type == VR_ANTI_RANGE)
{
*vr0type = vr1type;
*vr0min = vr1min;
*vr0max = vr1max;
}
else if (*vr0type == VR_RANGE
&& vr1type == VR_RANGE)
{
/* The result is the convex hull of both ranges. */
if (operand_less_p (*vr0max, vr1min) == 1)
{
/* If the result can be an anti-range, create one. */
if (TREE_CODE (*vr0max) == INTEGER_CST
&& TREE_CODE (vr1min) == INTEGER_CST
&& vrp_val_is_min (*vr0min)
&& vrp_val_is_max (vr1max))
{
tree min = int_const_binop (PLUS_EXPR,
*vr0max,
build_int_cst (TREE_TYPE (*vr0max), 1));
tree max = int_const_binop (MINUS_EXPR,
vr1min,
build_int_cst (TREE_TYPE (vr1min), 1));
if (!operand_less_p (max, min))
{
*vr0type = VR_ANTI_RANGE;
*vr0min = min;
*vr0max = max;
}
else
*vr0max = vr1max;
}
else
*vr0max = vr1max;
}
else
{
/* If the result can be an anti-range, create one. */
if (TREE_CODE (vr1max) == INTEGER_CST
&& TREE_CODE (*vr0min) == INTEGER_CST
&& vrp_val_is_min (vr1min)
&& vrp_val_is_max (*vr0max))
{
tree min = int_const_binop (PLUS_EXPR,
vr1max,
build_int_cst (TREE_TYPE (vr1max), 1));
tree max = int_const_binop (MINUS_EXPR,
*vr0min,
build_int_cst (TREE_TYPE (*vr0min), 1));
if (!operand_less_p (max, min))
{
*vr0type = VR_ANTI_RANGE;
*vr0min = min;
*vr0max = max;
}
else
*vr0min = vr1min;
}
else
*vr0min = vr1min;
}
}
else
gcc_unreachable ();
}
else if ((maxeq || cmpmax == 1)
&& (mineq || cmpmin == -1))
{
/* [ ( ) ] or [( ) ] or [ ( )] */
if (*vr0type == VR_RANGE
&& vr1type == VR_RANGE)
;
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_ANTI_RANGE)
{
*vr0type = vr1type;
*vr0min = vr1min;
*vr0max = vr1max;
}
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_RANGE)
{
/* Arbitrarily choose the right or left gap. */
if (!mineq && TREE_CODE (vr1min) == INTEGER_CST)
*vr0max = int_const_binop (MINUS_EXPR, vr1min,
build_int_cst (TREE_TYPE (vr1min), 1));
else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST)
*vr0min = int_const_binop (PLUS_EXPR, vr1max,
build_int_cst (TREE_TYPE (vr1max), 1));
else
goto give_up;
}
else if (*vr0type == VR_RANGE
&& vr1type == VR_ANTI_RANGE)
/* The result covers everything. */
goto give_up;
else
gcc_unreachable ();
}
else if ((maxeq || cmpmax == -1)
&& (mineq || cmpmin == 1))
{
/* ( [ ] ) or ([ ] ) or ( [ ]) */
if (*vr0type == VR_RANGE
&& vr1type == VR_RANGE)
{
*vr0type = vr1type;
*vr0min = vr1min;
*vr0max = vr1max;
}
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_ANTI_RANGE)
;
else if (*vr0type == VR_RANGE
&& vr1type == VR_ANTI_RANGE)
{
*vr0type = VR_ANTI_RANGE;
if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST)
{
*vr0max = int_const_binop (MINUS_EXPR, *vr0min,
build_int_cst (TREE_TYPE (*vr0min), 1));
*vr0min = vr1min;
}
else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST)
{
*vr0min = int_const_binop (PLUS_EXPR, *vr0max,
build_int_cst (TREE_TYPE (*vr0max), 1));
*vr0max = vr1max;
}
else
goto give_up;
}
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_RANGE)
/* The result covers everything. */
goto give_up;
else
gcc_unreachable ();
}
else if (cmpmin == -1
&& cmpmax == -1
&& (operand_less_p (vr1min, *vr0max) == 1
|| operand_equal_p (vr1min, *vr0max, 0)))
{
/* [ ( ] ) or [ ]( ) */
if (*vr0type == VR_RANGE
&& vr1type == VR_RANGE)
*vr0max = vr1max;
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_ANTI_RANGE)
*vr0min = vr1min;
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_RANGE)
{
if (TREE_CODE (vr1min) == INTEGER_CST)
*vr0max = int_const_binop (MINUS_EXPR, vr1min,
build_int_cst (TREE_TYPE (vr1min), 1));
else
goto give_up;
}
else if (*vr0type == VR_RANGE
&& vr1type == VR_ANTI_RANGE)
{
if (TREE_CODE (*vr0max) == INTEGER_CST)
{
*vr0type = vr1type;
*vr0min = int_const_binop (PLUS_EXPR, *vr0max,
build_int_cst (TREE_TYPE (*vr0max), 1));
*vr0max = vr1max;
}
else
goto give_up;
}
else
gcc_unreachable ();
}
else if (cmpmin == 1
&& cmpmax == 1
&& (operand_less_p (*vr0min, vr1max) == 1
|| operand_equal_p (*vr0min, vr1max, 0)))
{
/* ( [ ) ] or ( )[ ] */
if (*vr0type == VR_RANGE
&& vr1type == VR_RANGE)
*vr0min = vr1min;
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_ANTI_RANGE)
*vr0max = vr1max;
else if (*vr0type == VR_ANTI_RANGE
&& vr1type == VR_RANGE)
{
if (TREE_CODE (vr1max) == INTEGER_CST)
*vr0min = int_const_binop (PLUS_EXPR, vr1max,
build_int_cst (TREE_TYPE (vr1max), 1));
else
goto give_up;
}
else if (*vr0type == VR_RANGE
&& vr1type == VR_ANTI_RANGE)
{
if (TREE_CODE (*vr0min) == INTEGER_CST)
{
*vr0type = vr1type;
*vr0max = int_const_binop (MINUS_EXPR, *vr0min,
build_int_cst (TREE_TYPE (*vr0min), 1));
*vr0min = vr1min;
}
else
goto give_up;
}
else
gcc_unreachable ();
}
else
goto give_up;
return;
give_up:
*vr0type = VR_VARYING;
*vr0min = NULL_TREE;
*vr0max = NULL_TREE;
}
/* Helper for meet operation for value ranges. Given two value ranges VR0 and
VR1, return a range that contains both VR0 and VR1. This may not be the
smallest possible such range. */
value_range
value_range::union_helper (const value_range *vr0, const value_range *vr1)
{
/* VR0 has the resulting range if VR1 is undefined or VR0 is varying. */
if (vr1->undefined_p ()
|| vr0->varying_p ())
return *vr0;
/* VR1 has the resulting range if VR0 is undefined or VR1 is varying. */
if (vr0->undefined_p ()
|| vr1->varying_p ())
return *vr1;
value_range_kind vr0kind = vr0->kind ();
tree vr0min = vr0->min ();
tree vr0max = vr0->max ();
union_ranges (&vr0kind, &vr0min, &vr0max,
vr1->kind (), vr1->min (), vr1->max ());
/* Work on a temporary so we can still use vr0 when union returns varying. */
value_range tem;
if (vr0kind == VR_UNDEFINED)
tem.set_undefined ();
else if (vr0kind == VR_VARYING)
tem.set_varying (vr0->type ());
else
tem.set (vr0min, vr0max, vr0kind);
/* Failed to find an efficient meet. Before giving up and setting
the result to VARYING, see if we can at least derive a useful
anti-range. */
if (tem.varying_p ()
&& range_includes_zero_p (vr0) == 0
&& range_includes_zero_p (vr1) == 0)
{
tem.set_nonzero (vr0->type ());
return tem;
}
return tem;
}
/* Meet operation for value ranges. Given two value ranges VR0 and
VR1, store in VR0 a range that contains both VR0 and VR1. This
may not be the smallest possible such range. */
void
value_range::union_ (const value_range *other)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Meeting\n ");
dump_value_range (dump_file, this);
fprintf (dump_file, "\nand\n ");
dump_value_range (dump_file, other);
fprintf (dump_file, "\n");
}
*this = union_helper (this, other);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "to\n ");
dump_value_range (dump_file, this);
fprintf (dump_file, "\n");
}
}
/* Range union, but for references. */
void
value_range::union_ (const value_range &r)
{
/* Disable details for now, because it makes the ranger dump
unnecessarily verbose. */
bool details = dump_flags & TDF_DETAILS;
if (details)
dump_flags &= ~TDF_DETAILS;
union_ (&r);
if (details)
dump_flags |= TDF_DETAILS;
}
void
value_range::intersect (const value_range *other)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Intersecting\n ");
dump_value_range (dump_file, this);
fprintf (dump_file, "\nand\n ");
dump_value_range (dump_file, other);
fprintf (dump_file, "\n");
}
*this = intersect_helper (this, other);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "to\n ");
dump_value_range (dump_file, this);
fprintf (dump_file, "\n");
}
}
/* Range intersect, but for references. */
void
value_range::intersect (const value_range &r)
{
/* Disable details for now, because it makes the ranger dump
unnecessarily verbose. */
bool details = dump_flags & TDF_DETAILS;
if (details)
dump_flags &= ~TDF_DETAILS;
intersect (&r);
if (details)
dump_flags |= TDF_DETAILS;
}
/* Return the inverse of a range. */
void
value_range::invert ()
{
/* We can't just invert VR_RANGE and VR_ANTI_RANGE because we may
create non-canonical ranges. Use the constructors instead. */
if (m_kind == VR_RANGE)
*this = value_range (m_min, m_max, VR_ANTI_RANGE);
else if (m_kind == VR_ANTI_RANGE)
*this = value_range (m_min, m_max);
else
gcc_unreachable ();
}
void
value_range::dump (FILE *file) const
{
if (undefined_p ())
fprintf (file, "UNDEFINED");
else if (m_kind == VR_RANGE || m_kind == VR_ANTI_RANGE)
{
tree ttype = type ();
print_generic_expr (file, ttype);
fprintf (file, " ");
fprintf (file, "%s[", (m_kind == VR_ANTI_RANGE) ? "~" : "");
if (INTEGRAL_TYPE_P (ttype)
&& !TYPE_UNSIGNED (ttype)
&& vrp_val_is_min (min ())
&& TYPE_PRECISION (ttype) != 1)
fprintf (file, "-INF");
else
print_generic_expr (file, min ());
fprintf (file, ", ");
if (supports_type_p (ttype)
&& vrp_val_is_max (max ())
&& TYPE_PRECISION (ttype) != 1)
fprintf (file, "+INF");
else
print_generic_expr (file, max ());
fprintf (file, "]");
}
else if (varying_p ())
{
print_generic_expr (file, type ());
fprintf (file, " VARYING");
}
else
gcc_unreachable ();
}
void
value_range::dump () const
{
dump (stderr);
}
void
dump_value_range (FILE *file, const value_range *vr)
{
if (!vr)
fprintf (file, "[]");
else
vr->dump (file);
}
DEBUG_FUNCTION void
debug (const value_range *vr)
{
dump_value_range (stderr, vr);
}
DEBUG_FUNCTION void
debug (const value_range &vr)
{
dump_value_range (stderr, &vr);
}
/* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
so that *VR0 U *VR1 == *AR. Returns true if that is possible,
false otherwise. If *AR can be represented with a single range
*VR1 will be VR_UNDEFINED. */
bool
ranges_from_anti_range (const value_range *ar,
value_range *vr0, value_range *vr1)
{
tree type = ar->type ();
vr0->set_undefined ();
vr1->set_undefined ();
/* As a future improvement, we could handle ~[0, A] as: [-INF, -1] U
[A+1, +INF]. Not sure if this helps in practice, though. */
if (ar->kind () != VR_ANTI_RANGE
|| TREE_CODE (ar->min ()) != INTEGER_CST
|| TREE_CODE (ar->max ()) != INTEGER_CST
|| !vrp_val_min (type)
|| !vrp_val_max (type))
return false;
if (tree_int_cst_lt (vrp_val_min (type), ar->min ()))
vr0->set (vrp_val_min (type),
wide_int_to_tree (type, wi::to_wide (ar->min ()) - 1));
if (tree_int_cst_lt (ar->max (), vrp_val_max (type)))
vr1->set (wide_int_to_tree (type, wi::to_wide (ar->max ()) + 1),
vrp_val_max (type));
if (vr0->undefined_p ())
{
*vr0 = *vr1;
vr1->set_undefined ();
}
return !vr0->undefined_p ();
}
bool
range_has_numeric_bounds_p (const value_range *vr)
{
return (vr->min ()
&& TREE_CODE (vr->min ()) == INTEGER_CST
&& TREE_CODE (vr->max ()) == INTEGER_CST);
}
/* Return the maximum value for TYPE. */
tree
vrp_val_max (const_tree type)
{
if (INTEGRAL_TYPE_P (type))
return TYPE_MAX_VALUE (type);
if (POINTER_TYPE_P (type))
{
wide_int max = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
return wide_int_to_tree (const_cast<tree> (type), max);
}
return NULL_TREE;
}
/* Return the minimum value for TYPE. */
tree
vrp_val_min (const_tree type)
{
if (INTEGRAL_TYPE_P (type))
return TYPE_MIN_VALUE (type);
if (POINTER_TYPE_P (type))
return build_zero_cst (const_cast<tree> (type));
return NULL_TREE;
}
/* Return whether VAL is equal to the maximum value of its type.
We can't do a simple equality comparison with TYPE_MAX_VALUE because
C typedefs and Ada subtypes can produce types whose TYPE_MAX_VALUE
is not == to the integer constant with the same value in the type. */
bool
vrp_val_is_max (const_tree val)
{
tree type_max = vrp_val_max (TREE_TYPE (val));
return (val == type_max
|| (type_max != NULL_TREE
&& operand_equal_p (val, type_max, 0)));
}
/* Return whether VAL is equal to the minimum value of its type. */
bool
vrp_val_is_min (const_tree val)
{
tree type_min = vrp_val_min (TREE_TYPE (val));
return (val == type_min
|| (type_min != NULL_TREE
&& operand_equal_p (val, type_min, 0)));
}
/* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
bool
vrp_operand_equal_p (const_tree val1, const_tree val2)
{
if (val1 == val2)
return true;
if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
return false;
return true;
}
/* Support routines for value ranges.
Copyright (C) 2019 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_VALUE_RANGE_H
#define GCC_VALUE_RANGE_H
/* Types of value ranges. */
enum value_range_kind
{
/* Empty range. */
VR_UNDEFINED,
/* Range spans the entire domain. */
VR_VARYING,
/* Range is [MIN, MAX]. */
VR_RANGE,
/* Range is ~[MIN, MAX]. */
VR_ANTI_RANGE,
/* Range is a nice guy. */
VR_LAST
};
// Range of values that can be associated with an SSA_NAME.
class GTY((for_user)) value_range
{
friend void range_tests ();
public:
value_range ();
value_range (tree, tree, value_range_kind = VR_RANGE);
value_range (tree type, const wide_int &, const wide_int &,
value_range_kind = VR_RANGE);
value_range (tree type);
void set (tree, tree, value_range_kind = VR_RANGE);
void set (tree);
void set_nonzero (tree);
void set_zero (tree);
enum value_range_kind kind () const;
tree min () const;
tree max () const;
/* Types of value ranges. */
bool symbolic_p () const;
bool constant_p () const;
bool undefined_p () const;
bool varying_p () const;
void set_varying (tree type);
void set_undefined ();
void union_ (const value_range *);
void intersect (const value_range *);
void union_ (const value_range &);
void intersect (const value_range &);
bool operator== (const value_range &) const;
bool operator!= (const value_range &) const /* = delete */;
bool equal_p (const value_range &) const;
/* Misc methods. */
tree type () const;
bool may_contain_p (tree) const;
bool zero_p () const;
bool nonzero_p () const;
bool singleton_p (tree *result = NULL) const;
void dump (FILE *) const;
void dump () const;
static bool supports_type_p (tree);
value_range normalize_symbolics () const;
value_range normalize_addresses () const;
static const unsigned int m_max_pairs = 2;
bool contains_p (tree) const;
unsigned num_pairs () const;
wide_int lower_bound (unsigned = 0) const;
wide_int upper_bound (unsigned) const;
wide_int upper_bound () const;
void invert ();
protected:
void check ();
static value_range union_helper (const value_range *, const value_range *);
static value_range intersect_helper (const value_range *,
const value_range *);
friend void gt_ggc_mx_value_range (void *);
friend void gt_pch_p_11value_range (void *, void *,
gt_pointer_operator, void *);
friend void gt_pch_nx_value_range (void *);
friend void gt_ggc_mx (value_range &);
friend void gt_ggc_mx (value_range *&);
friend void gt_pch_nx (value_range &);
friend void gt_pch_nx (value_range *, gt_pointer_operator, void *);
enum value_range_kind m_kind;
tree m_min;
tree m_max;
private:
int value_inside_range (tree) const;
};
extern bool range_has_numeric_bounds_p (const value_range *);
extern bool ranges_from_anti_range (const value_range *,
value_range *, value_range *);
extern void dump_value_range (FILE *, const value_range *);
extern bool vrp_val_is_min (const_tree);
extern bool vrp_val_is_max (const_tree);
extern tree vrp_val_min (const_tree);
extern tree vrp_val_max (const_tree);
extern bool vrp_operand_equal_p (const_tree, const_tree);
inline
value_range::value_range ()
{
m_kind = VR_UNDEFINED;
m_min = m_max = NULL;
}
inline value_range_kind
value_range::kind () const
{
return m_kind;
}
inline tree
value_range::type () const
{
return TREE_TYPE (min ());
}
inline tree
value_range::min () const
{
return m_min;
}
inline tree
value_range::max () const
{
return m_max;
}
inline bool
value_range::varying_p () const
{
return m_kind == VR_VARYING;
}
inline bool
value_range::undefined_p () const
{
return m_kind == VR_UNDEFINED;
}
inline bool
value_range::zero_p () const
{
return (m_kind == VR_RANGE
&& integer_zerop (m_min)
&& integer_zerop (m_max));
}
inline bool
value_range::nonzero_p () const
{
if (m_kind == VR_ANTI_RANGE
&& !TYPE_UNSIGNED (type ())
&& integer_zerop (m_min)
&& integer_zerop (m_max))
return true;
return (m_kind == VR_RANGE
&& TYPE_UNSIGNED (type ())
&& integer_onep (m_min)
&& vrp_val_is_max (m_max));
}
inline bool
value_range::supports_type_p (tree type)
{
if (type && (INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type)))
return type;
return false;
}
inline bool
range_includes_zero_p (const value_range *vr)
{
if (vr->undefined_p ())
return false;
if (vr->varying_p ())
return true;
return vr->may_contain_p (build_zero_cst (vr->type ()));
}
#endif // GCC_VALUE_RANGE_H
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment