Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
R
riscv-gcc-1
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
lvzhengyang
riscv-gcc-1
Commits
c5986054
Commit
c5986054
authored
Feb 12, 1992
by
Richard Stallman
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Initial revision
From-SVN: r308
parent
4f64a10b
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
568 additions
and
0 deletions
+568
-0
gcc/caller-save.c
+568
-0
No files found.
gcc/caller-save.c
0 → 100644
View file @
c5986054
/* Save and restore call-clobbered registers which are live across a call.
Copyright (C) 1989, 1992 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "config.h"
#include "rtl.h"
#include "insn-config.h"
#include "flags.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "recog.h"
#include "basic-block.h"
#include "reload.h"
#include "expr.h"
/* A mode for each hard register that we can save. This mode is wide enough
to save the entire contents of the register and will be used whenever the
register must be saved because it is live. */
static
enum
machine_mode
regno_save_mode
[
FIRST_PSEUDO_REGISTER
];
/* For each hard register, a place on the stack where it can be saved,
if needed. */
static
rtx
regno_save_mem
[
FIRST_PSEUDO_REGISTER
];
/* We will only make a register eligible for caller-save if it can be
saved in its widest mode with a simple SET insn as long as the memory
address is valid. We record the INSN_CODE is those insns here since
when we emit them, the addresses might not be valid, so they might not
be recognized. */
static
enum
insn_code
reg_save_code
[
FIRST_PSEUDO_REGISTER
];
static
enum
insn_code
reg_restore_code
[
FIRST_PSEUDO_REGISTER
];
/* Set of hard regs currently live (during scan of all insns). */
static
HARD_REG_SET
hard_regs_live
;
/* Set of hard regs currently residing in save area (during insn scan). */
static
HARD_REG_SET
hard_regs_saved
;
/* Number of registers currently in hard_regs_saved. */
int
n_regs_saved
;
static
void
set_reg_live
();
static
void
clear_reg_live
();
static
void
restore_referenced_regs
();
static
void
insert_save_restore
();
/* Return a machine mode that is legitimate for hard reg REGNO and large
enough to save the whole register. If we can't find one,
return VOIDmode. */
static
enum
machine_mode
choose_hard_reg_mode
(
regno
)
int
regno
;
{
enum
machine_mode
found_mode
=
VOIDmode
,
mode
;
/* We first look for the largest integer mode that can be validly
held in REGNO. If none, we look for the largest floating-point mode.
If we still didn't find a valid mode, try CCmode. */
for
(
mode
=
GET_CLASS_NARROWEST_MODE
(
MODE_INT
);
mode
!=
VOIDmode
;
mode
=
GET_MODE_WIDER_MODE
(
mode
))
if
(
HARD_REGNO_NREGS
(
regno
,
mode
)
==
1
&&
HARD_REGNO_MODE_OK
(
regno
,
mode
))
found_mode
=
mode
;
if
(
found_mode
!=
VOIDmode
)
return
found_mode
;
for
(
mode
=
GET_CLASS_NARROWEST_MODE
(
MODE_FLOAT
);
mode
!=
VOIDmode
;
mode
=
GET_MODE_WIDER_MODE
(
mode
))
if
(
HARD_REGNO_NREGS
(
regno
,
mode
)
==
1
&&
HARD_REGNO_MODE_OK
(
regno
,
mode
))
found_mode
=
mode
;
if
(
found_mode
!=
VOIDmode
)
return
found_mode
;
if
(
HARD_REGNO_NREGS
(
regno
,
CCmode
)
==
1
&&
HARD_REGNO_MODE_OK
(
regno
,
CCmode
))
return
CCmode
;
/* We can't find a mode valid for this register. */
return
VOIDmode
;
}
/* Initialize for caller-save.
Look at all the hard registers that are used by a call and for which
regclass.c has not already excluded from being used across a call.
Ensure that we can find a mode to save the register and that there is a
simple insn to save and restore the register. This latter check avoids
problems that would occur if we tried to save the MQ register of some
machines directly into memory. */
void
init_caller_save
()
{
char
*
first_obj
=
(
char
*
)
oballoc
(
0
);
rtx
addr_reg
;
int
offset
;
rtx
address
;
int
i
;
/* First find all the registers that we need to deal with and all
the modes that they can have. If we can't find a mode to use,
we can't have the register live over calls. */
for
(
i
=
0
;
i
<
FIRST_PSEUDO_REGISTER
;
i
++
)
{
if
(
call_used_regs
[
i
]
&&
!
call_fixed_regs
[
i
])
{
regno_save_mode
[
i
]
=
choose_hard_reg_mode
(
i
);
if
(
regno_save_mode
[
i
]
==
VOIDmode
)
{
call_fixed_regs
[
i
]
=
1
;
SET_HARD_REG_BIT
(
call_fixed_reg_set
,
i
);
}
}
else
regno_save_mode
[
i
]
=
VOIDmode
;
}
/* The following code tries to approximate the conditions under which
we can easily save and restore a register without scratch registers or
other complexities. It will usually work, except under conditions where
the validity of an insn operand is dependent on the address offset.
No such cases are currently known.
We first find a typical offset from some BASE_REG_CLASS register.
This address is chosen by finding the first register in the class
and by finding the smallest power of two that is a valid offset from
that register in every mode we will use to save registers. */
for
(
i
=
0
;
i
<
FIRST_PSEUDO_REGISTER
;
i
++
)
if
(
TEST_HARD_REG_BIT
(
reg_class_contents
[(
int
)
BASE_REG_CLASS
],
i
))
break
;
if
(
i
==
FIRST_PSEUDO_REGISTER
)
abort
();
addr_reg
=
gen_rtx
(
REG
,
Pmode
,
i
);
for
(
offset
=
1
<<
(
HOST_BITS_PER_INT
/
2
);
offset
;
offset
>>=
1
)
{
address
=
gen_rtx
(
PLUS
,
Pmode
,
addr_reg
,
gen_rtx
(
CONST_INT
,
VOIDmode
,
offset
));
for
(
i
=
0
;
i
<
FIRST_PSEUDO_REGISTER
;
i
++
)
if
(
regno_save_mode
[
i
]
!=
VOIDmode
&&
!
strict_memory_address_p
(
regno_save_mode
[
i
],
address
))
break
;
if
(
i
==
FIRST_PSEUDO_REGISTER
)
break
;
}
/* If we didn't find a valid address, we must use register indirect. */
if
(
offset
==
0
)
address
=
addr_reg
;
/* Next we try to form an insn to save and restore the register. We
see if such an insn is recognized and meets its constraints. */
start_sequence
();
for
(
i
=
0
;
i
<
FIRST_PSEUDO_REGISTER
;
i
++
)
if
(
regno_save_mode
[
i
]
!=
VOIDmode
)
{
rtx
mem
=
gen_rtx
(
MEM
,
regno_save_mode
[
i
],
address
);
rtx
reg
=
gen_rtx
(
REG
,
regno_save_mode
[
i
],
i
);
rtx
savepat
=
gen_rtx
(
SET
,
VOIDmode
,
mem
,
reg
);
rtx
restpat
=
gen_rtx
(
SET
,
VOIDmode
,
reg
,
mem
);
rtx
saveinsn
=
emit_insn
(
savepat
);
rtx
restinsn
=
emit_insn
(
restpat
);
int
ok
;
reg_save_code
[
i
]
=
recog_memoized
(
saveinsn
);
reg_restore_code
[
i
]
=
recog_memoized
(
restinsn
);
/* Now extract both insns and see if we can meet their constraints. */
ok
=
(
reg_save_code
[
i
]
!=
-
1
&&
reg_restore_code
[
i
]
!=
-
1
);
if
(
ok
)
{
insn_extract
(
saveinsn
);
ok
=
constrain_operands
(
reg_save_code
[
i
],
1
);
insn_extract
(
restinsn
);
ok
&=
constrain_operands
(
reg_restore_code
[
i
],
1
);
}
if
(
!
ok
)
{
call_fixed_regs
[
i
]
=
1
;
SET_HARD_REG_BIT
(
call_fixed_reg_set
,
i
);
}
}
end_sequence
();
obfree
(
first_obj
);
}
/* Initialize save areas by showing that we haven't allocated any yet. */
void
init_save_areas
()
{
int
i
;
for
(
i
=
0
;
i
<
FIRST_PSEUDO_REGISTER
;
i
++
)
regno_save_mem
[
i
]
=
0
;
}
/* Allocate save areas for any hard registers that might need saving.
We take a conservative approach here and look for call-clobbered hard
registers that are assigned to pseudos that cross calls. This may
overestimate slightly (especially if some of these registers are later
used as spill registers), but it should not be significant.
Then perform register elimination in the addresses of the save area
locations; return 1 if all eliminated addresses are strictly valid.
We assume that our caller has set up the elimination table to the
worst (largest) possible offsets.
Set *PCHANGED to 1 if we had to allocate some memory for the save area. */
int
setup_save_areas
(
pchanged
)
int
*
pchanged
;
{
int
ok
=
1
;
int
i
;
for
(
i
=
FIRST_PSEUDO_REGISTER
;
i
<
max_regno
;
i
++
)
if
(
reg_renumber
[
i
]
>=
0
&&
reg_n_calls_crossed
[
i
]
>
0
)
{
int
regno
=
reg_renumber
[
i
];
int
endregno
=
regno
+
HARD_REGNO_NREGS
(
regno
,
GET_MODE
(
regno_reg_rtx
[
i
]));
int
j
;
for
(
j
=
regno
;
j
<
endregno
;
j
++
)
if
(
call_used_regs
[
j
]
&&
regno_save_mem
[
j
]
==
0
)
{
regno_save_mem
[
j
]
=
assign_stack_local
(
regno_save_mode
[
j
],
GET_MODE_SIZE
(
regno_save_mode
[
j
]),
0
);
*
pchanged
=
1
;
}
}
for
(
i
=
0
;
i
<
FIRST_PSEUDO_REGISTER
;
i
++
)
if
(
regno_save_mem
[
i
]
!=
0
)
ok
&=
strict_memory_address_p
(
regno_save_mode
[
i
],
XEXP
(
eliminate_regs
(
regno_save_mem
[
i
],
0
,
0
),
0
));
return
ok
;
}
/* Find the places where hard regs are live across calls and save them.
INSN_MODE is the mode to assign to any insns that we add. This is used
by reload to determine whether or not reloads or register eliminations
need be done on these insns. */
void
save_call_clobbered_regs
(
insn_mode
)
enum
machine_mode
insn_mode
;
{
rtx
insn
;
int
b
;
for
(
b
=
0
;
b
<
n_basic_blocks
;
b
++
)
{
regset
regs_live
=
basic_block_live_at_start
[
b
];
int
offset
,
bit
,
i
,
j
;
int
regno
;
/* Compute hard regs live at start of block -- this is the
real hard regs marked live, plus live pseudo regs that
have been renumbered to hard regs. No registers have yet been
saved because we restore all of them before the end of the basic
block. */
#ifdef HARD_REG_SET
hard_regs_live
=
*
regs_live
;
#else
COPY_HARD_REG_SET
(
hard_regs_live
,
regs_live
);
#endif
CLEAR_HARD_REG_SET
(
hard_regs_saved
);
n_regs_saved
=
0
;
for
(
offset
=
0
,
i
=
0
;
offset
<
regset_size
;
offset
++
)
{
if
(
regs_live
[
offset
]
==
0
)
i
+=
HOST_BITS_PER_INT
;
else
for
(
bit
=
1
;
bit
&&
i
<
max_regno
;
bit
<<=
1
,
i
++
)
if
((
regs_live
[
offset
]
&
bit
)
&&
(
regno
=
reg_renumber
[
i
])
>=
0
)
for
(
j
=
regno
;
j
<
regno
+
HARD_REGNO_NREGS
(
regno
,
PSEUDO_REGNO_MODE
(
i
));
j
++
)
SET_HARD_REG_BIT
(
hard_regs_live
,
j
);
}
/* Now scan the insns in the block, keeping track of what hard
regs are live as we go. When we see a call, save the live
call-clobbered hard regs. */
for
(
insn
=
basic_block_head
[
b
];
;
insn
=
NEXT_INSN
(
insn
))
{
RTX_CODE
code
=
GET_CODE
(
insn
);
if
(
GET_RTX_CLASS
(
code
)
==
'i'
)
{
rtx
link
;
/* If some registers have been saved, see if INSN references
any of them. We must restore them before the insn if so. */
if
(
n_regs_saved
)
restore_referenced_regs
(
PATTERN
(
insn
),
insn
,
insn_mode
);
/* NB: the normal procedure is to first enliven any
registers set by insn, then deaden any registers that
had their last use at insn. This is incorrect now,
since multiple pseudos may have been mapped to the
same hard reg, and the death notes are ambiguous. So
it must be done in the other, safe, order. */
for
(
link
=
REG_NOTES
(
insn
);
link
;
link
=
XEXP
(
link
,
1
))
if
(
REG_NOTE_KIND
(
link
)
==
REG_DEAD
)
clear_reg_live
(
XEXP
(
link
,
0
));
/* When we reach a call, we need to save all registers that are
live, call-used, not fixed, and not already saved. We must
test at this point because registers that die in a CALL_INSN
are not live across the call and likewise for registers that
are born in the CALL_INSN. */
if
(
code
==
CALL_INSN
)
for
(
regno
=
0
;
regno
<
FIRST_PSEUDO_REGISTER
;
regno
++
)
if
(
call_used_regs
[
regno
]
&&
!
call_fixed_regs
[
regno
]
&&
TEST_HARD_REG_BIT
(
hard_regs_live
,
regno
)
&&
!
TEST_HARD_REG_BIT
(
hard_regs_saved
,
regno
))
insert_save_restore
(
insn
,
1
,
regno
,
insn_mode
);
note_stores
(
PATTERN
(
insn
),
set_reg_live
);
for
(
link
=
REG_NOTES
(
insn
);
link
;
link
=
XEXP
(
link
,
1
))
if
(
REG_NOTE_KIND
(
link
)
==
REG_UNUSED
)
clear_reg_live
(
XEXP
(
link
,
0
));
}
if
(
insn
==
basic_block_end
[
b
])
break
;
}
/* At the end of the basic block, we must restore any registers that
remain saved. If the last insn in the block is a JUMP_INSN, put
the restore before the insn, otherwise, put it after the insn. */
if
(
n_regs_saved
)
for
(
regno
=
0
;
regno
<
FIRST_PSEUDO_REGISTER
;
regno
++
)
if
(
TEST_HARD_REG_BIT
(
hard_regs_saved
,
regno
))
insert_save_restore
((
GET_CODE
(
insn
)
==
JUMP_INSN
?
insn
:
NEXT_INSN
(
insn
)),
0
,
regno
,
insn_mode
);
}
}
/* Here from note_stores when an insn stores a value in a register.
Set the proper bit or bits in hard_regs_live. All pseudos that have
been assigned hard regs have had their register number changed already,
so we can ignore pseudos. */
static
void
set_reg_live
(
reg
,
setter
)
rtx
reg
,
setter
;
{
register
int
regno
,
endregno
,
i
;
int
word
=
0
;
if
(
GET_CODE
(
reg
)
==
SUBREG
)
{
word
=
SUBREG_WORD
(
reg
);
reg
=
SUBREG_REG
(
reg
);
}
if
(
GET_CODE
(
reg
)
!=
REG
||
REGNO
(
reg
)
>=
FIRST_PSEUDO_REGISTER
)
return
;
regno
=
REGNO
(
reg
)
+
word
;
endregno
=
regno
+
HARD_REGNO_NREGS
(
regno
,
GET_MODE
(
reg
));
for
(
i
=
regno
;
i
<
endregno
;
i
++
)
SET_HARD_REG_BIT
(
hard_regs_live
,
i
);
}
/* Here when a REG_DEAD note records the last use of a reg. Clear
the appropriate bit or bits in hard_regs_live. Again we can ignore
pseudos. */
static
void
clear_reg_live
(
reg
)
rtx
reg
;
{
register
int
regno
,
endregno
,
i
;
if
(
GET_CODE
(
reg
)
!=
REG
||
REGNO
(
reg
)
>=
FIRST_PSEUDO_REGISTER
)
return
;
regno
=
REGNO
(
reg
);
endregno
=
regno
+
HARD_REGNO_NREGS
(
regno
,
GET_MODE
(
reg
));
for
(
i
=
regno
;
i
<
endregno
;
i
++
)
CLEAR_HARD_REG_BIT
(
hard_regs_live
,
i
);
}
/* If any register currently residing in the save area is referenced in X,
which is part of INSN, emit code to restore the register in front of INSN.
INSN_MODE is the mode to assign to any insns that we add. */
static
void
restore_referenced_regs
(
x
,
insn
,
insn_mode
)
rtx
x
;
rtx
insn
;
enum
machine_mode
insn_mode
;
{
enum
rtx_code
code
=
GET_CODE
(
x
);
char
*
fmt
;
int
i
,
j
;
if
(
code
==
REG
)
{
int
regno
=
REGNO
(
x
);
/* If this is a pseudo, scan its memory location, since it might
involve the use of another register, which might be saved. */
if
(
regno
>=
FIRST_PSEUDO_REGISTER
&&
reg_equiv_mem
[
regno
]
!=
0
)
restore_referenced_regs
(
XEXP
(
reg_equiv_mem
[
regno
],
0
),
insn
,
insn_mode
);
else
if
(
regno
>=
FIRST_PSEUDO_REGISTER
&&
reg_equiv_address
[
regno
]
!=
0
)
restore_referenced_regs
(
XEXP
(
reg_equiv_address
[
regno
],
0
),
insn
,
insn_mode
);
/* Otherwise if this is a hard register, restore any piece of it that
is currently saved. */
else
if
(
regno
<
FIRST_PSEUDO_REGISTER
)
{
int
endregno
=
regno
+
HARD_REGNO_NREGS
(
regno
,
GET_MODE
(
x
));
for
(
i
=
regno
;
i
<
endregno
;
i
++
)
if
(
TEST_HARD_REG_BIT
(
hard_regs_saved
,
i
))
insert_save_restore
(
insn
,
0
,
i
,
insn_mode
);
}
return
;
}
fmt
=
GET_RTX_FORMAT
(
code
);
for
(
i
=
GET_RTX_LENGTH
(
code
)
-
1
;
i
>=
0
;
i
--
)
{
if
(
fmt
[
i
]
==
'e'
)
restore_referenced_regs
(
XEXP
(
x
,
i
),
insn
,
insn_mode
);
else
if
(
fmt
[
i
]
==
'E'
)
for
(
j
=
XVECLEN
(
x
,
i
)
-
1
;
j
>=
0
;
j
--
)
restore_referenced_regs
(
XVECEXP
(
x
,
i
,
j
),
insn
,
insn_mode
);
}
}
/* Insert a sequence of insns to save or restore, SAVE_P says which,
REGNO. Place these insns in front of INSN. INSN_MODE is the mode
to assign to these insns.
Note that we have verified in init_caller_save that we can do this
with a simple SET, so use it. Set INSN_CODE to what we save there
since the address might not be valid so the insn might not be recognized.
These insns will be reloaded and have register elimination done by
find_reload, so we need not worry about that here. */
static
void
insert_save_restore
(
insn
,
save_p
,
regno
,
insn_mode
)
rtx
insn
;
int
save_p
;
int
regno
;
enum
machine_mode
insn_mode
;
{
rtx
pat
;
enum
insn_code
code
;
int
i
;
/* If INSN is a CALL_INSN, we must insert our insns before any
USE insns in front of the CALL_INSN. */
if
(
GET_CODE
(
insn
)
==
CALL_INSN
)
while
(
GET_CODE
(
PREV_INSN
(
insn
))
==
INSN
&&
GET_CODE
(
PATTERN
(
PREV_INSN
(
insn
)))
==
USE
)
insn
=
PREV_INSN
(
insn
);
#ifdef HAVE_cc0
/* If INSN references CC0, put our insns in front of the insn that sets
CC0. This is always safe, since the only way we could be passed an
insn that references CC0 is for a restore, and doing a restore earlier
isn't a problem. We do, however, assume here that CALL_INSNs don't
reference CC0. Guard against non-INSN's like CODE_LABEL. */
if
((
GET_CODE
(
insn
)
==
INSN
||
GET_CODE
(
insn
)
==
JUMP_INSN
)
&&
reg_referenced_p
(
cc0_rtx
,
PATTERN
(
insn
)))
insn
=
prev_nonnote_insn
(
insn
);
#endif
/* Get the pattern to emit and update our status. */
if
(
save_p
)
{
pat
=
gen_rtx
(
SET
,
VOIDmode
,
regno_save_mem
[
regno
],
gen_rtx
(
REG
,
regno_save_mode
[
regno
],
regno
));
code
=
reg_save_code
[
regno
];
SET_HARD_REG_BIT
(
hard_regs_saved
,
regno
);
n_regs_saved
++
;
}
else
{
pat
=
gen_rtx
(
SET
,
VOIDmode
,
gen_rtx
(
REG
,
regno_save_mode
[
regno
],
regno
),
regno_save_mem
[
regno
]);
code
=
reg_restore_code
[
regno
];
CLEAR_HARD_REG_BIT
(
hard_regs_saved
,
regno
);
n_regs_saved
--
;
}
/* Emit the insn and set the code and mode. */
insn
=
emit_insn_before
(
pat
,
insn
);
PUT_MODE
(
insn
,
insn_mode
);
INSN_CODE
(
insn
)
=
code
;
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment