Commit c4c81601 by Richard Kenner Committed by Richard Kenner

gcse.c: Cleanups throughout: mostly white-space, but also some minor rearrangement of code.

	* gcse.c: Cleanups throughout: mostly white-space, but also
	some minor rearrangement of code.

From-SVN: r32264
parent f701f77c
Tue Feb 29 14:07:04 2000 Richard Kenner <kenner@vlsi1.ultra.nyu.edu>
* gcse.c: Cleanups throughout: mostly white-space, but also
some minor rearrangement of code.
Tue Feb 29 10:45:59 2000 Jeffrey A Law (law@cygnus.com) Tue Feb 29 10:45:59 2000 Jeffrey A Law (law@cygnus.com)
* configure.in (hpux10, hpux11, PA32 mode): Use i128 float format. * configure.in (hpux10, hpux11, PA32 mode): Use i128 float format.
......
...@@ -307,9 +307,7 @@ static char can_copy_p[(int) NUM_MACHINE_MODES]; ...@@ -307,9 +307,7 @@ static char can_copy_p[(int) NUM_MACHINE_MODES];
/* Non-zero if can_copy_p has been initialized. */ /* Non-zero if can_copy_p has been initialized. */
static int can_copy_init_p; static int can_copy_init_p;
struct reg_use { struct reg_use {rtx reg_rtx; };
rtx reg_rtx;
};
/* Hash table of expressions. */ /* Hash table of expressions. */
...@@ -364,8 +362,7 @@ struct occr ...@@ -364,8 +362,7 @@ struct occr
not clear whether in the final analysis a sufficient amount of memory would not clear whether in the final analysis a sufficient amount of memory would
be saved as the size of the available expression bitmaps would be larger be saved as the size of the available expression bitmaps would be larger
[one could build a mapping table without holes afterwards though]. [one could build a mapping table without holes afterwards though].
Someday I'll perform the computation and figure it out. Someday I'll perform the computation and figure it out. */
*/
/* Total size of the expression hash table, in elements. */ /* Total size of the expression hash table, in elements. */
static int expr_hash_table_size; static int expr_hash_table_size;
...@@ -375,6 +372,7 @@ static struct expr **expr_hash_table; ...@@ -375,6 +372,7 @@ static struct expr **expr_hash_table;
/* Total size of the copy propagation hash table, in elements. */ /* Total size of the copy propagation hash table, in elements. */
static int set_hash_table_size; static int set_hash_table_size;
/* The table itself. /* The table itself.
This is an array of `set_hash_table_size' elements. */ This is an array of `set_hash_table_size' elements. */
static struct expr **set_hash_table; static struct expr **set_hash_table;
...@@ -405,10 +403,12 @@ static int max_gcse_regno; ...@@ -405,10 +403,12 @@ static int max_gcse_regno;
/* Maximum number of cse-able expressions found. */ /* Maximum number of cse-able expressions found. */
static int n_exprs; static int n_exprs;
/* Maximum number of assignments for copy propagation found. */ /* Maximum number of assignments for copy propagation found. */
static int n_sets; static int n_sets;
/* Table of registers that are modified. /* Table of registers that are modified.
For each register, each element is a list of places where the pseudo-reg For each register, each element is a list of places where the pseudo-reg
is set. is set.
...@@ -416,33 +416,35 @@ static int n_sets; ...@@ -416,33 +416,35 @@ static int n_sets;
requires knowledge of which blocks kill which regs [and thus could use requires knowledge of which blocks kill which regs [and thus could use
a bitmap instead of the lists `reg_set_table' uses]. a bitmap instead of the lists `reg_set_table' uses].
`reg_set_table' and could be turned into an array of bitmaps `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
(num-bbs x num-regs) num-regs) [however perhaps it may be useful to keep the data as is]. One
[however perhaps it may be useful to keep the data as is]. advantage of recording things this way is that `reg_set_table' is fairly
One advantage of recording things this way is that `reg_set_table' is sparse with respect to pseudo regs but for hard regs could be fairly dense
fairly sparse with respect to pseudo regs but for hard regs could be [relatively speaking]. And recording sets of pseudo-regs in lists speeds
fairly dense [relatively speaking].
And recording sets of pseudo-regs in lists speeds
up functions like compute_transp since in the case of pseudo-regs we only up functions like compute_transp since in the case of pseudo-regs we only
need to iterate over the number of times a pseudo-reg is set, not over the need to iterate over the number of times a pseudo-reg is set, not over the
number of basic blocks [clearly there is a bit of a slow down in the cases number of basic blocks [clearly there is a bit of a slow down in the cases
where a pseudo is set more than once in a block, however it is believed where a pseudo is set more than once in a block, however it is believed
that the net effect is to speed things up]. This isn't done for hard-regs that the net effect is to speed things up]. This isn't done for hard-regs
because recording call-clobbered hard-regs in `reg_set_table' at each because recording call-clobbered hard-regs in `reg_set_table' at each
function call can consume a fair bit of memory, and iterating over hard-regs function call can consume a fair bit of memory, and iterating over
stored this way in compute_transp will be more expensive. */ hard-regs stored this way in compute_transp will be more expensive. */
typedef struct reg_set { typedef struct reg_set
{
/* The next setting of this register. */ /* The next setting of this register. */
struct reg_set *next; struct reg_set *next;
/* The insn where it was set. */ /* The insn where it was set. */
rtx insn; rtx insn;
} reg_set; } reg_set;
static reg_set **reg_set_table; static reg_set **reg_set_table;
/* Size of `reg_set_table'. /* Size of `reg_set_table'.
The table starts out at max_gcse_regno + slop, and is enlarged as The table starts out at max_gcse_regno + slop, and is enlarged as
necessary. */ necessary. */
static int reg_set_table_size; static int reg_set_table_size;
/* Amount to grow `reg_set_table' by when it's full. */ /* Amount to grow `reg_set_table' by when it's full. */
#define REG_SET_TABLE_SLOP 100 #define REG_SET_TABLE_SLOP 100
...@@ -473,6 +475,7 @@ static char *mem_set_in_block; ...@@ -473,6 +475,7 @@ static char *mem_set_in_block;
This isn't intended to be absolutely precise. Its intent is only This isn't intended to be absolutely precise. Its intent is only
to keep an eye on memory usage. */ to keep an eye on memory usage. */
static int bytes_used; static int bytes_used;
/* GCSE substitutions made. */ /* GCSE substitutions made. */
static int gcse_subst_count; static int gcse_subst_count;
/* Number of copy instructions created. */ /* Number of copy instructions created. */
...@@ -501,8 +504,7 @@ static sbitmap u_bitmap; ...@@ -501,8 +504,7 @@ static sbitmap u_bitmap;
Thus we view the bitmaps as 2 dimensional arrays. i.e. Thus we view the bitmaps as 2 dimensional arrays. i.e.
rd_kill[block_num][cuid_num] rd_kill[block_num][cuid_num]
ae_kill[block_num][expr_num] ae_kill[block_num][expr_num] */
*/
/* For reaching defs */ /* For reaching defs */
static sbitmap *rd_kill, *rd_gen, *reaching_defs, *rd_out; static sbitmap *rd_kill, *rd_gen, *reaching_defs, *rd_out;
...@@ -512,7 +514,8 @@ static sbitmap *ae_kill, *ae_gen, *ae_in, *ae_out; ...@@ -512,7 +514,8 @@ static sbitmap *ae_kill, *ae_gen, *ae_in, *ae_out;
/* Objects of this type are passed around by the null-pointer check /* Objects of this type are passed around by the null-pointer check
removal routines. */ removal routines. */
struct null_pointer_info { struct null_pointer_info
{
/* The basic block being processed. */ /* The basic block being processed. */
int current_block; int current_block;
/* The first register to be handled in this pass. */ /* The first register to be handled in this pass. */
...@@ -524,7 +527,6 @@ struct null_pointer_info { ...@@ -524,7 +527,6 @@ struct null_pointer_info {
}; };
static void compute_can_copy PARAMS ((void)); static void compute_can_copy PARAMS ((void));
static char *gmalloc PARAMS ((unsigned int)); static char *gmalloc PARAMS ((unsigned int));
static char *grealloc PARAMS ((char *, unsigned int)); static char *grealloc PARAMS ((char *, unsigned int));
static char *gcse_alloc PARAMS ((unsigned long)); static char *gcse_alloc PARAMS ((unsigned long));
...@@ -536,7 +538,6 @@ static int get_bitmap_width PARAMS ((int, int, int)); ...@@ -536,7 +538,6 @@ static int get_bitmap_width PARAMS ((int, int, int));
static void record_one_set PARAMS ((int, rtx)); static void record_one_set PARAMS ((int, rtx));
static void record_set_info PARAMS ((rtx, rtx, void *)); static void record_set_info PARAMS ((rtx, rtx, void *));
static void compute_sets PARAMS ((rtx)); static void compute_sets PARAMS ((rtx));
static void hash_scan_insn PARAMS ((rtx, int, int)); static void hash_scan_insn PARAMS ((rtx, int, int));
static void hash_scan_set PARAMS ((rtx, rtx, int)); static void hash_scan_set PARAMS ((rtx, rtx, int));
static void hash_scan_clobber PARAMS ((rtx, rtx)); static void hash_scan_clobber PARAMS ((rtx, rtx));
...@@ -545,11 +546,10 @@ static int want_to_gcse_p PARAMS ((rtx)); ...@@ -545,11 +546,10 @@ static int want_to_gcse_p PARAMS ((rtx));
static int oprs_unchanged_p PARAMS ((rtx, rtx, int)); static int oprs_unchanged_p PARAMS ((rtx, rtx, int));
static int oprs_anticipatable_p PARAMS ((rtx, rtx)); static int oprs_anticipatable_p PARAMS ((rtx, rtx));
static int oprs_available_p PARAMS ((rtx, rtx)); static int oprs_available_p PARAMS ((rtx, rtx));
static void insert_expr_in_table PARAMS ((rtx, enum machine_mode, static void insert_expr_in_table PARAMS ((rtx, enum machine_mode, rtx,
rtx, int, int)); int, int));
static void insert_set_in_table PARAMS ((rtx, rtx)); static void insert_set_in_table PARAMS ((rtx, rtx));
static unsigned int hash_expr PARAMS ((rtx, enum machine_mode, static unsigned int hash_expr PARAMS ((rtx, enum machine_mode, int *, int));
int *, int));
static unsigned int hash_expr_1 PARAMS ((rtx, enum machine_mode, int *)); static unsigned int hash_expr_1 PARAMS ((rtx, enum machine_mode, int *));
static unsigned int hash_set PARAMS ((int, int)); static unsigned int hash_set PARAMS ((int, int));
static int expr_equiv_p PARAMS ((rtx, rtx)); static int expr_equiv_p PARAMS ((rtx, rtx));
...@@ -563,8 +563,8 @@ static void compute_set_hash_table PARAMS ((void)); ...@@ -563,8 +563,8 @@ static void compute_set_hash_table PARAMS ((void));
static void alloc_expr_hash_table PARAMS ((int)); static void alloc_expr_hash_table PARAMS ((int));
static void free_expr_hash_table PARAMS ((void)); static void free_expr_hash_table PARAMS ((void));
static void compute_expr_hash_table PARAMS ((void)); static void compute_expr_hash_table PARAMS ((void));
static void dump_hash_table PARAMS ((FILE *, const char *, static void dump_hash_table PARAMS ((FILE *, const char *, struct expr **,
struct expr **, int, int)); int, int));
static struct expr *lookup_expr PARAMS ((rtx)); static struct expr *lookup_expr PARAMS ((rtx));
static struct expr *lookup_set PARAMS ((int, rtx)); static struct expr *lookup_set PARAMS ((int, rtx));
static struct expr *next_set PARAMS ((int, struct expr *)); static struct expr *next_set PARAMS ((int, struct expr *));
...@@ -574,13 +574,12 @@ static void mark_call PARAMS ((rtx)); ...@@ -574,13 +574,12 @@ static void mark_call PARAMS ((rtx));
static void mark_set PARAMS ((rtx, rtx)); static void mark_set PARAMS ((rtx, rtx));
static void mark_clobber PARAMS ((rtx, rtx)); static void mark_clobber PARAMS ((rtx, rtx));
static void mark_oprs_set PARAMS ((rtx)); static void mark_oprs_set PARAMS ((rtx));
static void alloc_cprop_mem PARAMS ((int, int)); static void alloc_cprop_mem PARAMS ((int, int));
static void free_cprop_mem PARAMS ((void)); static void free_cprop_mem PARAMS ((void));
static void compute_transp PARAMS ((rtx, int, sbitmap *, int)); static void compute_transp PARAMS ((rtx, int, sbitmap *, int));
static void compute_transpout PARAMS ((void)); static void compute_transpout PARAMS ((void));
static void compute_local_properties PARAMS ((sbitmap *, sbitmap *, static void compute_local_properties PARAMS ((sbitmap *, sbitmap *, sbitmap *,
sbitmap *, int)); int));
static void compute_cprop_data PARAMS ((void)); static void compute_cprop_data PARAMS ((void));
static void find_used_regs PARAMS ((rtx)); static void find_used_regs PARAMS ((rtx));
static int try_replace_reg PARAMS ((rtx, rtx, rtx)); static int try_replace_reg PARAMS ((rtx, rtx, rtx));
...@@ -592,7 +591,6 @@ static int cprop_cc0_jump PARAMS ((rtx, struct reg_use *, rtx)); ...@@ -592,7 +591,6 @@ static int cprop_cc0_jump PARAMS ((rtx, struct reg_use *, rtx));
static int cprop_insn PARAMS ((rtx, int)); static int cprop_insn PARAMS ((rtx, int));
static int cprop PARAMS ((int)); static int cprop PARAMS ((int));
static int one_cprop_pass PARAMS ((int, int)); static int one_cprop_pass PARAMS ((int, int));
static void alloc_pre_mem PARAMS ((int, int)); static void alloc_pre_mem PARAMS ((int, int));
static void free_pre_mem PARAMS ((void)); static void free_pre_mem PARAMS ((void));
static void compute_pre_data PARAMS ((void)); static void compute_pre_data PARAMS ((void));
...@@ -603,9 +601,7 @@ static void pre_insert_copies PARAMS ((void)); ...@@ -603,9 +601,7 @@ static void pre_insert_copies PARAMS ((void));
static int pre_delete PARAMS ((void)); static int pre_delete PARAMS ((void));
static int pre_gcse PARAMS ((void)); static int pre_gcse PARAMS ((void));
static int one_pre_gcse_pass PARAMS ((int)); static int one_pre_gcse_pass PARAMS ((int));
static void add_label_notes PARAMS ((rtx, rtx)); static void add_label_notes PARAMS ((rtx, rtx));
static void alloc_code_hoist_mem PARAMS ((int, int)); static void alloc_code_hoist_mem PARAMS ((int, int));
static void free_code_hoist_mem PARAMS ((void)); static void free_code_hoist_mem PARAMS ((void));
static void compute_code_hoist_vbeinout PARAMS ((void)); static void compute_code_hoist_vbeinout PARAMS ((void));
...@@ -613,7 +609,6 @@ static void compute_code_hoist_data PARAMS ((void)); ...@@ -613,7 +609,6 @@ static void compute_code_hoist_data PARAMS ((void));
static int hoist_expr_reaches_here_p PARAMS ((int, int, int, char *)); static int hoist_expr_reaches_here_p PARAMS ((int, int, int, char *));
static void hoist_code PARAMS ((void)); static void hoist_code PARAMS ((void));
static int one_code_hoisting_pass PARAMS ((void)); static int one_code_hoisting_pass PARAMS ((void));
static void alloc_rd_mem PARAMS ((int, int)); static void alloc_rd_mem PARAMS ((int, int));
static void free_rd_mem PARAMS ((void)); static void free_rd_mem PARAMS ((void));
static void handle_rd_kill_set PARAMS ((rtx, int, int)); static void handle_rd_kill_set PARAMS ((rtx, int, int));
...@@ -682,7 +677,6 @@ gcse_main (f, file) ...@@ -682,7 +677,6 @@ gcse_main (f, file)
/* Return if there's nothing to do. */ /* Return if there's nothing to do. */
if (n_basic_blocks <= 1) if (n_basic_blocks <= 1)
{ {
/* Free storage allocated by find_basic_blocks. */
free_basic_block_vars (0); free_basic_block_vars (0);
return 0; return 0;
} }
...@@ -697,7 +691,6 @@ gcse_main (f, file) ...@@ -697,7 +691,6 @@ gcse_main (f, file)
of basic blocks and the ratio of edges to blocks to be high. */ of basic blocks and the ratio of edges to blocks to be high. */
if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20) if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
{ {
/* Free storage allocated by find_basic_blocks. */
free_basic_block_vars (0); free_basic_block_vars (0);
return 0; return 0;
} }
...@@ -712,14 +705,13 @@ gcse_main (f, file) ...@@ -712,14 +705,13 @@ gcse_main (f, file)
gcc_obstack_init (&gcse_obstack); gcc_obstack_init (&gcse_obstack);
bytes_used = 0; bytes_used = 0;
/* Record where pseudo-registers are set. /* Record where pseudo-registers are set. This data is kept accurate
This data is kept accurate during each pass. during each pass. ??? We could also record hard-reg information here
??? We could also record hard-reg information here [since it's unchanging], however it is currently done during hash table
[since it's unchanging], however it is currently done during computation.
hash table computation.
It may be tempting to compute MEM set information here too, but MEM It may be tempting to compute MEM set information here too, but MEM sets
sets will be subject to code motion one day and thus we need to compute will be subject to code motion one day and thus we need to compute
information about memory sets when we build the hash tables. */ information about memory sets when we build the hash tables. */
alloc_reg_set_mem (max_gcse_regno); alloc_reg_set_mem (max_gcse_regno);
...@@ -790,6 +782,7 @@ gcse_main (f, file) ...@@ -790,6 +782,7 @@ gcse_main (f, file)
fprintf (file, "\n"); fprintf (file, "\n");
fflush (file); fflush (file);
} }
obstack_free (&gcse_obstack, gcse_obstack_bottom); obstack_free (&gcse_obstack, gcse_obstack_bottom);
pass++; pass++;
} }
...@@ -811,11 +804,8 @@ gcse_main (f, file) ...@@ -811,11 +804,8 @@ gcse_main (f, file)
pass, pass > 1 ? "es" : "", max_pass_bytes); pass, pass > 1 ? "es" : "", max_pass_bytes);
} }
/* Free our obstack. */
obstack_free (&gcse_obstack, NULL_PTR); obstack_free (&gcse_obstack, NULL_PTR);
/* Free reg_set_table. */
free_reg_set_mem (); free_reg_set_mem ();
/* Free storage allocated by find_basic_blocks. */
free_basic_block_vars (0); free_basic_block_vars (0);
return run_jump_opt_after_gcse; return run_jump_opt_after_gcse;
} }
...@@ -837,10 +827,8 @@ compute_can_copy () ...@@ -837,10 +827,8 @@ compute_can_copy ()
start_sequence (); start_sequence ();
for (i = 0; i < NUM_MACHINE_MODES; i++) for (i = 0; i < NUM_MACHINE_MODES; i++)
if (GET_MODE_CLASS (i) == MODE_CC)
{ {
switch (GET_MODE_CLASS (i))
{
case MODE_CC :
#ifdef AVOID_CCMODE_COPIES #ifdef AVOID_CCMODE_COPIES
can_copy_p[i] = 0; can_copy_p[i] = 0;
#else #else
...@@ -849,12 +837,10 @@ compute_can_copy () ...@@ -849,12 +837,10 @@ compute_can_copy ()
if (recog (PATTERN (insn), insn, NULL_PTR) >= 0) if (recog (PATTERN (insn), insn, NULL_PTR) >= 0)
can_copy_p[i] = 1; can_copy_p[i] = 1;
#endif #endif
break; else
default :
can_copy_p[i] = 1; can_copy_p[i] = 1;
break;
}
} }
end_sequence (); end_sequence ();
/* Free the objects we just allocated. */ /* Free the objects we just allocated. */
...@@ -929,20 +915,13 @@ alloc_gcse_mem (f) ...@@ -929,20 +915,13 @@ alloc_gcse_mem (f)
cuid_insn = (rtx *) gmalloc (n); cuid_insn = (rtx *) gmalloc (n);
bzero ((char *) cuid_insn, n); bzero ((char *) cuid_insn, n);
for (insn = f, i = 0; insn; insn = NEXT_INSN (insn)) for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
{
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
{ CUID_INSN (i++) = insn;
CUID_INSN (i) = insn;
i++;
}
}
/* Allocate vars to track sets of regs. */ /* Allocate vars to track sets of regs. */
reg_set_bitmap = (sbitmap) sbitmap_alloc (max_gcse_regno); reg_set_bitmap = (sbitmap) sbitmap_alloc (max_gcse_regno);
/* Allocate vars to track sets of regs, memory per block. */ /* Allocate vars to track sets of regs, memory per block. */
reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks, reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks,
max_gcse_regno); max_gcse_regno);
mem_set_in_block = (char *) gmalloc (n_basic_blocks); mem_set_in_block = (char *) gmalloc (n_basic_blocks);
...@@ -964,21 +943,20 @@ free_gcse_mem () ...@@ -964,21 +943,20 @@ free_gcse_mem ()
/* Many of the global optimization algorithms work by solving dataflow /* Many of the global optimization algorithms work by solving dataflow
equations for various expressions. Initially, some local value is equations for various expressions. Initially, some local value is
computed for each expression in each block. Then, the values computed for each expression in each block. Then, the values across the
across the various blocks are combined (by following flow graph various blocks are combined (by following flow graph edges) to arrive at
edges) to arrive at global values. Conceptually, each set of global values. Conceptually, each set of equations is independent. We
equations is independent. We may therefore solve all the equations may therefore solve all the equations in parallel, solve them one at a
in parallel, solve them one at a time, or pick any intermediate time, or pick any intermediate approach.
approach.
When you're going to need N two-dimensional bitmaps, each X (say, the
When you're going to need N two-dimensional bitmaps, each X (say, number of blocks) by Y (say, the number of expressions), call this
the number of blocks) by Y (say, the number of expressions), call function. It's not important what X and Y represent; only that Y
this function. It's not important what X and Y represent; only correspond to the things that can be done in parallel. This function will
that Y correspond to the things that can be done in parallel. This return an appropriate chunking factor C; you should solve C sets of
function will return an appropriate chunking factor C; you should equations in parallel. By going through this function, we can easily
solve C sets of equations in parallel. By going through this trade space against time; by solving fewer equations in parallel we use
function, we can easily trade space against time; by solving fewer less space. */
equations in parallel we use less space. */
static int static int
get_bitmap_width (n, x, y) get_bitmap_width (n, x, y)
...@@ -1006,10 +984,10 @@ get_bitmap_width (n, x, y) ...@@ -1006,10 +984,10 @@ get_bitmap_width (n, x, y)
/ column_size); / column_size);
} }
/* Compute the local properties of each recorded expression. /* Compute the local properties of each recorded expression.
Local properties are those that are defined by the block, irrespective
of other blocks. Local properties are those that are defined by the block, irrespective of
other blocks.
An expression is transparent in a block if its operands are not modified An expression is transparent in a block if its operands are not modified
in the block. in the block.
...@@ -1022,18 +1000,17 @@ get_bitmap_width (n, x, y) ...@@ -1022,18 +1000,17 @@ get_bitmap_width (n, x, y)
least once and expression would contain the same value if the computation least once and expression would contain the same value if the computation
was moved to the beginning of the block. was moved to the beginning of the block.
We call this routine for cprop, pre and code hoisting. They all We call this routine for cprop, pre and code hoisting. They all compute
compute basically the same information and thus can easily share basically the same information and thus can easily share this code.
this code.
TRANSP, COMP, and ANTLOC are destination sbitmaps for recording TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
local properties. If NULL, then it is not necessary to compute properties. If NULL, then it is not necessary to compute or record that
or record that particular property. particular property.
SETP controls which hash table to look at. If zero, this routine SETP controls which hash table to look at. If zero, this routine looks at
looks at the expr hash table; if nonzero this routine looks at the expr hash table; if nonzero this routine looks at the set hash table.
the set hash table. Additionally, TRANSP is computed as ~TRANSP, Additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
since this is really cprop's ABSALTERED. */ ABSALTERED. */
static void static void
compute_local_properties (transp, comp, antloc, setp) compute_local_properties (transp, comp, antloc, setp)
...@@ -1053,6 +1030,7 @@ compute_local_properties (transp, comp, antloc, setp) ...@@ -1053,6 +1030,7 @@ compute_local_properties (transp, comp, antloc, setp)
else else
sbitmap_vector_ones (transp, n_basic_blocks); sbitmap_vector_ones (transp, n_basic_blocks);
} }
if (comp) if (comp)
sbitmap_vector_zero (comp, n_basic_blocks); sbitmap_vector_zero (comp, n_basic_blocks);
if (antloc) if (antloc)
...@@ -1070,47 +1048,38 @@ compute_local_properties (transp, comp, antloc, setp) ...@@ -1070,47 +1048,38 @@ compute_local_properties (transp, comp, antloc, setp)
for (expr = hash_table[i]; expr != NULL; expr = expr->next_same_hash) for (expr = hash_table[i]; expr != NULL; expr = expr->next_same_hash)
{ {
struct occr *occr;
int indx = expr->bitmap_index; int indx = expr->bitmap_index;
struct occr *occr;
/* The expression is transparent in this block if it is not killed. /* The expression is transparent in this block if it is not killed.
We start by assuming all are transparent [none are killed], and We start by assuming all are transparent [none are killed], and
then reset the bits for those that are. */ then reset the bits for those that are. */
if (transp) if (transp)
compute_transp (expr->expr, indx, transp, setp); compute_transp (expr->expr, indx, transp, setp);
/* The occurrences recorded in antic_occr are exactly those that /* The occurrences recorded in antic_occr are exactly those that
we want to set to non-zero in ANTLOC. */ we want to set to non-zero in ANTLOC. */
if (antloc) if (antloc)
{
for (occr = expr->antic_occr; occr != NULL; occr = occr->next) for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
{ {
int bb = BLOCK_NUM (occr->insn); SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
SET_BIT (antloc[bb], indx);
/* While we're scanning the table, this is a good place to /* While we're scanning the table, this is a good place to
initialize this. */ initialize this. */
occr->deleted_p = 0; occr->deleted_p = 0;
} }
}
/* The occurrences recorded in avail_occr are exactly those that /* The occurrences recorded in avail_occr are exactly those that
we want to set to non-zero in COMP. */ we want to set to non-zero in COMP. */
if (comp) if (comp)
{
for (occr = expr->avail_occr; occr != NULL; occr = occr->next) for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
{ {
int bb = BLOCK_NUM (occr->insn); SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
SET_BIT (comp[bb], indx);
/* While we're scanning the table, this is a good place to /* While we're scanning the table, this is a good place to
initialize this. */ initialize this. */
occr->copied_p = 0; occr->copied_p = 0;
} }
}
/* While we're scanning the table, this is a good place to /* While we're scanning the table, this is a good place to
initialize this. */ initialize this. */
...@@ -1119,7 +1088,6 @@ compute_local_properties (transp, comp, antloc, setp) ...@@ -1119,7 +1088,6 @@ compute_local_properties (transp, comp, antloc, setp)
} }
} }
/* Register set information. /* Register set information.
`reg_set_table' records where each register is set or otherwise `reg_set_table' records where each register is set or otherwise
...@@ -1131,7 +1099,7 @@ static void ...@@ -1131,7 +1099,7 @@ static void
alloc_reg_set_mem (n_regs) alloc_reg_set_mem (n_regs)
int n_regs; int n_regs;
{ {
int n; unsigned int n;
reg_set_table_size = n_regs + REG_SET_TABLE_SLOP; reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
n = reg_set_table_size * sizeof (struct reg_set *); n = reg_set_table_size * sizeof (struct reg_set *);
...@@ -1162,8 +1130,9 @@ record_one_set (regno, insn) ...@@ -1162,8 +1130,9 @@ record_one_set (regno, insn)
if (regno >= reg_set_table_size) if (regno >= reg_set_table_size)
{ {
int new_size = regno + REG_SET_TABLE_SLOP; int new_size = regno + REG_SET_TABLE_SLOP;
reg_set_table = (struct reg_set **)
grealloc ((char *) reg_set_table, reg_set_table
= (struct reg_set **) grealloc ((char *) reg_set_table,
new_size * sizeof (struct reg_set *)); new_size * sizeof (struct reg_set *));
bzero ((char *) (reg_set_table + reg_set_table_size), bzero ((char *) (reg_set_table + reg_set_table_size),
(new_size - reg_set_table_size) * sizeof (struct reg_set *)); (new_size - reg_set_table_size) * sizeof (struct reg_set *));
...@@ -1186,13 +1155,14 @@ record_one_set (regno, insn) ...@@ -1186,13 +1155,14 @@ record_one_set (regno, insn)
reg_info_ptr2 = reg_info_ptr1; reg_info_ptr2 = reg_info_ptr1;
reg_info_ptr1 = reg_info_ptr1->next; reg_info_ptr1 = reg_info_ptr1->next;
} }
reg_info_ptr2->next = new_reg_info; reg_info_ptr2->next = new_reg_info;
} }
} }
/* Called from compute_sets via note_stores to handle one /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
SET or CLOBBER in an insn. The DATA is really the instruction an insn. The DATA is really the instruction in which the SET is
in which the SET is occurring. */ occurring. */
static void static void
record_set_info (dest, setter, data) record_set_info (dest, setter, data)
...@@ -1201,41 +1171,31 @@ record_set_info (dest, setter, data) ...@@ -1201,41 +1171,31 @@ record_set_info (dest, setter, data)
{ {
rtx record_set_insn = (rtx) data; rtx record_set_insn = (rtx) data;
if (GET_CODE (dest) == SUBREG) if (GET_CODE (dest) == REG && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
dest = SUBREG_REG (dest);
if (GET_CODE (dest) == REG)
{
if (REGNO (dest) >= FIRST_PSEUDO_REGISTER)
record_one_set (REGNO (dest), record_set_insn); record_one_set (REGNO (dest), record_set_insn);
}
} }
/* Scan the function and record each set of each pseudo-register. /* Scan the function and record each set of each pseudo-register.
This is called once, at the start of the gcse pass. This is called once, at the start of the gcse pass. See the comments for
See the comments for `reg_set_table' for further docs. */ `reg_set_table' for further documenation. */
static void static void
compute_sets (f) compute_sets (f)
rtx f; rtx f;
{ {
rtx insn = f; rtx insn;
while (insn) for (insn = f; insn != 0; insn = NEXT_INSN (insn))
{
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
note_stores (PATTERN (insn), record_set_info, insn); note_stores (PATTERN (insn), record_set_info, insn);
insn = NEXT_INSN (insn);
}
} }
/* Hash table support. */ /* Hash table support. */
#define NEVER_SET -1
/* For each register, the cuid of the first/last insn in the block to set it, /* For each register, the cuid of the first/last insn in the block to set it,
or -1 if not set. */ or -1 if not set. */
#define NEVER_SET -1
static int *reg_first_set; static int *reg_first_set;
static int *reg_last_set; static int *reg_last_set;
...@@ -1243,6 +1203,7 @@ static int *reg_last_set; ...@@ -1243,6 +1203,7 @@ static int *reg_last_set;
to set memory or -1 if not set. `mem_last_set' is also used when to set memory or -1 if not set. `mem_last_set' is also used when
performing GCSE to record whether memory has been set since the beginning performing GCSE to record whether memory has been set since the beginning
of the block. of the block.
Note that handling of memory is very simple, we don't make any attempt Note that handling of memory is very simple, we don't make any attempt
to optimize things (later). */ to optimize things (later). */
static int mem_first_set; static int mem_first_set;
...@@ -1255,9 +1216,7 @@ static int ...@@ -1255,9 +1216,7 @@ static int
want_to_gcse_p (x) want_to_gcse_p (x)
rtx x; rtx x;
{ {
enum rtx_code code = GET_CODE (x); switch (GET_CODE (x))
switch (code)
{ {
case REG: case REG:
case SUBREG: case SUBREG:
...@@ -1282,13 +1241,10 @@ oprs_unchanged_p (x, insn, avail_p) ...@@ -1282,13 +1241,10 @@ oprs_unchanged_p (x, insn, avail_p)
rtx x, insn; rtx x, insn;
int avail_p; int avail_p;
{ {
int i; int i, j;
enum rtx_code code; enum rtx_code code;
const char *fmt; const char *fmt;
/* repeat is used to turn tail-recursion into iteration. */
repeat:
if (x == 0) if (x == 0)
return 1; return 1;
...@@ -1304,20 +1260,14 @@ oprs_unchanged_p (x, insn, avail_p) ...@@ -1304,20 +1260,14 @@ oprs_unchanged_p (x, insn, avail_p)
|| reg_first_set[REGNO (x)] >= INSN_CUID (insn)); || reg_first_set[REGNO (x)] >= INSN_CUID (insn));
case MEM: case MEM:
if (avail_p) if (avail_p && mem_last_set != NEVER_SET
{
if (mem_last_set != NEVER_SET
&& mem_last_set >= INSN_CUID (insn)) && mem_last_set >= INSN_CUID (insn))
return 0; return 0;
} else if (! avail_p && mem_first_set != NEVER_SET
else
{
if (mem_first_set != NEVER_SET
&& mem_first_set < INSN_CUID (insn)) && mem_first_set < INSN_CUID (insn))
return 0; return 0;
} else
x = XEXP (x, 0); return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
goto repeat;
case PRE_DEC: case PRE_DEC:
case PRE_INC: case PRE_INC:
...@@ -1340,35 +1290,24 @@ oprs_unchanged_p (x, insn, avail_p) ...@@ -1340,35 +1290,24 @@ oprs_unchanged_p (x, insn, avail_p)
break; break;
} }
i = GET_RTX_LENGTH (code) - 1; for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
fmt = GET_RTX_FORMAT (code);
for (; i >= 0; i--)
{ {
if (fmt[i] == 'e') if (fmt[i] == 'e')
{ {
rtx tem = XEXP (x, i); /* If we are about to do the last recursive call needed at this
level, change it into iteration. This function is called enough
/* If we are about to do the last recursive call to be worth it. */
needed at this level, change it into iteration.
This function is called enough to be worth it. */
if (i == 0) if (i == 0)
{ return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
x = tem;
goto repeat; else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
}
if (! oprs_unchanged_p (tem, insn, avail_p))
return 0; return 0;
} }
else if (fmt[i] == 'E') else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++) for (j = 0; j < XVECLEN (x, i); j++)
{
if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p)) if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
return 0; return 0;
} }
}
}
return 1; return 1;
} }
...@@ -1394,10 +1333,10 @@ oprs_available_p (x, insn) ...@@ -1394,10 +1333,10 @@ oprs_available_p (x, insn)
} }
/* Hash expression X. /* Hash expression X.
MODE is only used if X is a CONST_INT.
A boolean indicating if a volatile operand is found or if the expression MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
contains something we don't want to insert in the table is stored in indicating if a volatile operand is found or if the expression contains
DO_NOT_RECORD_P. something we don't want to insert in the table.
??? One might want to merge this with canon_hash. Later. */ ??? One might want to merge this with canon_hash. Later. */
...@@ -1429,49 +1368,44 @@ hash_expr_1 (x, mode, do_not_record_p) ...@@ -1429,49 +1368,44 @@ hash_expr_1 (x, mode, do_not_record_p)
enum rtx_code code; enum rtx_code code;
const char *fmt; const char *fmt;
/* repeat is used to turn tail-recursion into iteration. */ /* Used to turn recursion into iteration. We can't rely on GCC's
repeat: tail-recursion eliminatio since we need to keep accumulating values
in HASH. */
if (x == 0) if (x == 0)
return hash; return hash;
repeat:
code = GET_CODE (x); code = GET_CODE (x);
switch (code) switch (code)
{ {
case REG: case REG:
{ hash += ((unsigned int) REG << 7) + REGNO (x);
register int regno = REGNO (x);
hash += ((unsigned) REG << 7) + regno;
return hash; return hash;
}
case CONST_INT: case CONST_INT:
{ hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
unsigned HOST_WIDE_INT tem = INTVAL (x); + (unsigned int) INTVAL (x));
hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + tem;
return hash; return hash;
}
case CONST_DOUBLE: case CONST_DOUBLE:
/* This is like the general case, except that it only counts /* This is like the general case, except that it only counts
the integers representing the constant. */ the integers representing the constant. */
hash += (unsigned) code + (unsigned) GET_MODE (x); hash += (unsigned int) code + (unsigned int) GET_MODE (x);
if (GET_MODE (x) != VOIDmode) if (GET_MODE (x) != VOIDmode)
for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++) for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
{ hash += (unsigned int) XWINT (x, i);
unsigned tem = XWINT (x, i);
hash += tem;
}
else else
hash += ((unsigned) CONST_DOUBLE_LOW (x) hash += ((unsigned int) CONST_DOUBLE_LOW (x)
+ (unsigned) CONST_DOUBLE_HIGH (x)); + (unsigned int) CONST_DOUBLE_HIGH (x));
return hash; return hash;
/* Assume there is only one rtx object for any given label. */ /* Assume there is only one rtx object for any given label. */
case LABEL_REF: case LABEL_REF:
/* We don't hash on the address of the CODE_LABEL to avoid bootstrap /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
differences and differences between each stage's debugging dumps. */ differences and differences between each stage's debugging dumps. */
hash += ((unsigned) LABEL_REF << 7) + CODE_LABEL_NUMBER (XEXP (x, 0)); hash += (((unsigned int) LABEL_REF << 7)
+ CODE_LABEL_NUMBER (XEXP (x, 0)));
return hash; return hash;
case SYMBOL_REF: case SYMBOL_REF:
...@@ -1483,9 +1417,11 @@ hash_expr_1 (x, mode, do_not_record_p) ...@@ -1483,9 +1417,11 @@ hash_expr_1 (x, mode, do_not_record_p)
between various stages. */ between various stages. */
unsigned int h = 0; unsigned int h = 0;
unsigned char *p = (unsigned char *) XSTR (x, 0); unsigned char *p = (unsigned char *) XSTR (x, 0);
while (*p) while (*p)
h += (h << 7) + *p++; /* ??? revisit */ h += (h << 7) + *p++; /* ??? revisit */
hash += ((unsigned) SYMBOL_REF << 7) + h;
hash += ((unsigned int) SYMBOL_REF << 7) + h;
return hash; return hash;
} }
...@@ -1495,7 +1431,8 @@ hash_expr_1 (x, mode, do_not_record_p) ...@@ -1495,7 +1431,8 @@ hash_expr_1 (x, mode, do_not_record_p)
*do_not_record_p = 1; *do_not_record_p = 1;
return 0; return 0;
} }
hash += (unsigned) MEM;
hash += (unsigned int) MEM;
hash += MEM_ALIAS_SET (x); hash += MEM_ALIAS_SET (x);
x = XEXP (x, 0); x = XEXP (x, 0);
goto repeat; goto repeat;
...@@ -1522,27 +1459,25 @@ hash_expr_1 (x, mode, do_not_record_p) ...@@ -1522,27 +1459,25 @@ hash_expr_1 (x, mode, do_not_record_p)
break; break;
} }
i = GET_RTX_LENGTH (code) - 1;
hash += (unsigned) code + (unsigned) GET_MODE (x); hash += (unsigned) code + (unsigned) GET_MODE (x);
fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
for (; i >= 0; i--)
{ {
if (fmt[i] == 'e') if (fmt[i] == 'e')
{ {
rtx tem = XEXP (x, i);
/* If we are about to do the last recursive call /* If we are about to do the last recursive call
needed at this level, change it into iteration. needed at this level, change it into iteration.
This function is called enough to be worth it. */ This function is called enough to be worth it. */
if (i == 0) if (i == 0)
{ {
x = tem; x = XEXP (x, i);
goto repeat; goto repeat;
} }
hash += hash_expr_1 (tem, 0, do_not_record_p);
hash += hash_expr_1 (XEXP (x, i), 0, do_not_record_p);
if (*do_not_record_p) if (*do_not_record_p)
return 0; return 0;
} }
else if (fmt[i] == 'E') else if (fmt[i] == 'E')
for (j = 0; j < XVECLEN (x, i); j++) for (j = 0; j < XVECLEN (x, i); j++)
{ {
...@@ -1550,18 +1485,17 @@ hash_expr_1 (x, mode, do_not_record_p) ...@@ -1550,18 +1485,17 @@ hash_expr_1 (x, mode, do_not_record_p)
if (*do_not_record_p) if (*do_not_record_p)
return 0; return 0;
} }
else if (fmt[i] == 's') else if (fmt[i] == 's')
{ {
register unsigned char *p = (unsigned char *) XSTR (x, i); register unsigned char *p = (unsigned char *) XSTR (x, i);
if (p) if (p)
while (*p) while (*p)
hash += *p++; hash += *p++;
} }
else if (fmt[i] == 'i') else if (fmt[i] == 'i')
{ hash += (unsigned int) XINT (x, i);
register unsigned tem = XINT (x, i);
hash += tem;
}
else else
abort (); abort ();
} }
...@@ -1571,8 +1505,8 @@ hash_expr_1 (x, mode, do_not_record_p) ...@@ -1571,8 +1505,8 @@ hash_expr_1 (x, mode, do_not_record_p)
/* Hash a set of register REGNO. /* Hash a set of register REGNO.
Sets are hashed on the register that is set. Sets are hashed on the register that is set. This simplifies the PRE copy
This simplifies the PRE copy propagation code. propagation code.
??? May need to make things more elaborate. Later, as necessary. */ ??? May need to make things more elaborate. Later, as necessary. */
...@@ -1600,6 +1534,7 @@ expr_equiv_p (x, y) ...@@ -1600,6 +1534,7 @@ expr_equiv_p (x, y)
if (x == y) if (x == y)
return 1; return 1;
if (x == 0 || y == 0) if (x == 0 || y == 0)
return x == y; return x == y;
...@@ -1735,7 +1670,7 @@ insert_expr_in_table (x, mode, insn, antic_p, avail_p) ...@@ -1735,7 +1670,7 @@ insert_expr_in_table (x, mode, insn, antic_p, avail_p)
cur_expr = expr_hash_table[hash]; cur_expr = expr_hash_table[hash];
found = 0; found = 0;
while (cur_expr && ! (found = expr_equiv_p (cur_expr->expr, x))) while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
{ {
/* If the expression isn't found, save a pointer to the end of /* If the expression isn't found, save a pointer to the end of
the list. */ the list. */
...@@ -1748,15 +1683,12 @@ insert_expr_in_table (x, mode, insn, antic_p, avail_p) ...@@ -1748,15 +1683,12 @@ insert_expr_in_table (x, mode, insn, antic_p, avail_p)
cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr)); cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
bytes_used += sizeof (struct expr); bytes_used += sizeof (struct expr);
if (expr_hash_table[hash] == NULL) if (expr_hash_table[hash] == NULL)
{
/* This is the first pattern that hashed to this index. */ /* This is the first pattern that hashed to this index. */
expr_hash_table[hash] = cur_expr; expr_hash_table[hash] = cur_expr;
}
else else
{
/* Add EXPR to end of this hash chain. */ /* Add EXPR to end of this hash chain. */
last_expr->next_same_hash = cur_expr; last_expr->next_same_hash = cur_expr;
}
/* Set the fields of the expr element. */ /* Set the fields of the expr element. */
cur_expr->expr = x; cur_expr->expr = x;
cur_expr->bitmap_index = n_exprs++; cur_expr->bitmap_index = n_exprs++;
...@@ -1766,7 +1698,6 @@ insert_expr_in_table (x, mode, insn, antic_p, avail_p) ...@@ -1766,7 +1698,6 @@ insert_expr_in_table (x, mode, insn, antic_p, avail_p)
} }
/* Now record the occurrence(s). */ /* Now record the occurrence(s). */
if (antic_p) if (antic_p)
{ {
antic_occr = cur_expr->antic_occr; antic_occr = cur_expr->antic_occr;
...@@ -1781,12 +1712,10 @@ insert_expr_in_table (x, mode, insn, antic_p, avail_p) ...@@ -1781,12 +1712,10 @@ insert_expr_in_table (x, mode, insn, antic_p, avail_p)
} }
if (antic_occr) if (antic_occr)
{
/* Found another instance of the expression in the same basic block. /* Found another instance of the expression in the same basic block.
Prefer the currently recorded one. We want the first one in the Prefer the currently recorded one. We want the first one in the
block and the block is scanned from start to end. */ block and the block is scanned from start to end. */
; /* nothing to do */ ; /* nothing to do */
}
else else
{ {
/* First occurrence of this expression in this basic block. */ /* First occurrence of this expression in this basic block. */
...@@ -1797,6 +1726,7 @@ insert_expr_in_table (x, mode, insn, antic_p, avail_p) ...@@ -1797,6 +1726,7 @@ insert_expr_in_table (x, mode, insn, antic_p, avail_p)
cur_expr->antic_occr = antic_occr; cur_expr->antic_occr = antic_occr;
else else
last_occr->next = antic_occr; last_occr->next = antic_occr;
antic_occr->insn = insn; antic_occr->insn = insn;
antic_occr->next = NULL; antic_occr->next = NULL;
} }
...@@ -1816,23 +1746,23 @@ insert_expr_in_table (x, mode, insn, antic_p, avail_p) ...@@ -1816,23 +1746,23 @@ insert_expr_in_table (x, mode, insn, antic_p, avail_p)
} }
if (avail_occr) if (avail_occr)
{
/* Found another instance of the expression in the same basic block. /* Found another instance of the expression in the same basic block.
Prefer this occurrence to the currently recorded one. We want Prefer this occurrence to the currently recorded one. We want
the last one in the block and the block is scanned from start the last one in the block and the block is scanned from start
to end. */ to end. */
avail_occr->insn = insn; avail_occr->insn = insn;
}
else else
{ {
/* First occurrence of this expression in this basic block. */ /* First occurrence of this expression in this basic block. */
avail_occr = (struct occr *) gcse_alloc (sizeof (struct occr)); avail_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
bytes_used += sizeof (struct occr); bytes_used += sizeof (struct occr);
/* First occurrence of this expression in any block? */ /* First occurrence of this expression in any block? */
if (cur_expr->avail_occr == NULL) if (cur_expr->avail_occr == NULL)
cur_expr->avail_occr = avail_occr; cur_expr->avail_occr = avail_occr;
else else
last_occr->next = avail_occr; last_occr->next = avail_occr;
avail_occr->insn = insn; avail_occr->insn = insn;
avail_occr->next = NULL; avail_occr->next = NULL;
} }
...@@ -1863,7 +1793,7 @@ insert_set_in_table (x, insn) ...@@ -1863,7 +1793,7 @@ insert_set_in_table (x, insn)
cur_expr = set_hash_table[hash]; cur_expr = set_hash_table[hash];
found = 0; found = 0;
while (cur_expr && ! (found = expr_equiv_p (cur_expr->expr, x))) while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
{ {
/* If the expression isn't found, save a pointer to the end of /* If the expression isn't found, save a pointer to the end of
the list. */ the list. */
...@@ -1876,15 +1806,12 @@ insert_set_in_table (x, insn) ...@@ -1876,15 +1806,12 @@ insert_set_in_table (x, insn)
cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr)); cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
bytes_used += sizeof (struct expr); bytes_used += sizeof (struct expr);
if (set_hash_table[hash] == NULL) if (set_hash_table[hash] == NULL)
{
/* This is the first pattern that hashed to this index. */ /* This is the first pattern that hashed to this index. */
set_hash_table[hash] = cur_expr; set_hash_table[hash] = cur_expr;
}
else else
{
/* Add EXPR to end of this hash chain. */ /* Add EXPR to end of this hash chain. */
last_expr->next_same_hash = cur_expr; last_expr->next_same_hash = cur_expr;
}
/* Set the fields of the expr element. /* Set the fields of the expr element.
We must copy X because it can be modified when copy propagation is We must copy X because it can be modified when copy propagation is
performed on its operands. */ performed on its operands. */
...@@ -1897,7 +1824,6 @@ insert_set_in_table (x, insn) ...@@ -1897,7 +1824,6 @@ insert_set_in_table (x, insn)
} }
/* Now record the occurrence. */ /* Now record the occurrence. */
cur_occr = cur_expr->avail_occr; cur_occr = cur_expr->avail_occr;
/* Search for another occurrence in the same basic block. */ /* Search for another occurrence in the same basic block. */
...@@ -1910,31 +1836,30 @@ insert_set_in_table (x, insn) ...@@ -1910,31 +1836,30 @@ insert_set_in_table (x, insn)
} }
if (cur_occr) if (cur_occr)
{
/* Found another instance of the expression in the same basic block. /* Found another instance of the expression in the same basic block.
Prefer this occurrence to the currently recorded one. We want Prefer this occurrence to the currently recorded one. We want the
the last one in the block and the block is scanned from start last one in the block and the block is scanned from start to end. */
to end. */
cur_occr->insn = insn; cur_occr->insn = insn;
}
else else
{ {
/* First occurrence of this expression in this basic block. */ /* First occurrence of this expression in this basic block. */
cur_occr = (struct occr *) gcse_alloc (sizeof (struct occr)); cur_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
bytes_used += sizeof (struct occr); bytes_used += sizeof (struct occr);
/* First occurrence of this expression in any block? */ /* First occurrence of this expression in any block? */
if (cur_expr->avail_occr == NULL) if (cur_expr->avail_occr == NULL)
cur_expr->avail_occr = cur_occr; cur_expr->avail_occr = cur_occr;
else else
last_occr->next = cur_occr; last_occr->next = cur_occr;
cur_occr->insn = insn; cur_occr->insn = insn;
cur_occr->next = NULL; cur_occr->next = NULL;
} }
} }
/* Scan pattern PAT of INSN and add an entry to the hash table. /* Scan pattern PAT of INSN and add an entry to the hash table. If SET_P is
If SET_P is non-zero, this is for the assignment hash table, non-zero, this is for the assignment hash table, otherwise it is for the
otherwise it is for the expression hash table. */ expression hash table. */
static void static void
hash_scan_set (pat, insn, set_p) hash_scan_set (pat, insn, set_p)
...@@ -1966,8 +1891,10 @@ hash_scan_set (pat, insn, set_p) ...@@ -1966,8 +1891,10 @@ hash_scan_set (pat, insn, set_p)
/* An expression is not available if its operands are /* An expression is not available if its operands are
subsequently modified, including this insn. */ subsequently modified, including this insn. */
int avail_p = oprs_available_p (src, insn); int avail_p = oprs_available_p (src, insn);
insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p); insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p);
} }
/* Record sets for constant/copy propagation. */ /* Record sets for constant/copy propagation. */
else if (set_p else if (set_p
&& regno >= FIRST_PSEUDO_REGISTER && regno >= FIRST_PSEUDO_REGISTER
...@@ -2021,6 +1948,7 @@ hash_scan_insn (insn, set_p, in_libcall_block) ...@@ -2021,6 +1948,7 @@ hash_scan_insn (insn, set_p, in_libcall_block)
int in_libcall_block; int in_libcall_block;
{ {
rtx pat = PATTERN (insn); rtx pat = PATTERN (insn);
int i;
/* Pick out the sets of INSN and for other forms of instructions record /* Pick out the sets of INSN and for other forms of instructions record
what's been modified. */ what's been modified. */
...@@ -2032,9 +1960,6 @@ hash_scan_insn (insn, set_p, in_libcall_block) ...@@ -2032,9 +1960,6 @@ hash_scan_insn (insn, set_p, in_libcall_block)
hash_scan_set (pat, insn, set_p); hash_scan_set (pat, insn, set_p);
} }
else if (GET_CODE (pat) == PARALLEL) else if (GET_CODE (pat) == PARALLEL)
{
int i;
for (i = 0; i < XVECLEN (pat, 0); i++) for (i = 0; i < XVECLEN (pat, 0); i++)
{ {
rtx x = XVECEXP (pat, 0, i); rtx x = XVECEXP (pat, 0, i);
...@@ -2049,7 +1974,7 @@ hash_scan_insn (insn, set_p, in_libcall_block) ...@@ -2049,7 +1974,7 @@ hash_scan_insn (insn, set_p, in_libcall_block)
else if (GET_CODE (x) == CALL) else if (GET_CODE (x) == CALL)
hash_scan_call (x, insn); hash_scan_call (x, insn);
} }
}
else if (GET_CODE (pat) == CLOBBER) else if (GET_CODE (pat) == CLOBBER)
hash_scan_clobber (pat, insn); hash_scan_clobber (pat, insn);
else if (GET_CODE (pat) == CALL) else if (GET_CODE (pat) == CALL)
...@@ -2067,47 +1992,44 @@ dump_hash_table (file, name, table, table_size, total_size) ...@@ -2067,47 +1992,44 @@ dump_hash_table (file, name, table, table_size, total_size)
/* Flattened out table, so it's printed in proper order. */ /* Flattened out table, so it's printed in proper order. */
struct expr **flat_table; struct expr **flat_table;
unsigned int *hash_val; unsigned int *hash_val;
struct expr *expr;
flat_table flat_table
= (struct expr **) xcalloc (total_size, sizeof (struct expr *)); = (struct expr **) xcalloc (total_size, sizeof (struct expr *));
hash_val = (unsigned int *) xmalloc (total_size * sizeof (unsigned int)); hash_val = (unsigned int *) xmalloc (total_size * sizeof (unsigned int));
for (i = 0; i < table_size; i++) for (i = 0; i < table_size; i++)
{
struct expr *expr;
for (expr = table[i]; expr != NULL; expr = expr->next_same_hash) for (expr = table[i]; expr != NULL; expr = expr->next_same_hash)
{ {
flat_table[expr->bitmap_index] = expr; flat_table[expr->bitmap_index] = expr;
hash_val[expr->bitmap_index] = i; hash_val[expr->bitmap_index] = i;
} }
}
fprintf (file, "%s hash table (%d buckets, %d entries)\n", fprintf (file, "%s hash table (%d buckets, %d entries)\n",
name, table_size, total_size); name, table_size, total_size);
for (i = 0; i < total_size; i++) for (i = 0; i < total_size; i++)
{ {
struct expr *expr = flat_table[i];
fprintf (file, "Index %d (hash value %d)\n ", fprintf (file, "Index %d (hash value %d)\n ",
expr->bitmap_index, hash_val[i]); expr->bitmap_index, hash_val[i]);
print_rtl (file, expr->expr); print_rtl (file, flat_table[i]->expr);
fprintf (file, "\n"); fprintf (file, "\n");
} }
fprintf (file, "\n"); fprintf (file, "\n");
/* Clean up. */
free (flat_table); free (flat_table);
free (hash_val); free (hash_val);
} }
/* Record register first/last/block set information for REGNO in INSN. /* Record register first/last/block set information for REGNO in INSN.
reg_first_set records the first place in the block where the register reg_first_set records the first place in the block where the register
is set and is used to compute "anticipatability". is set and is used to compute "anticipatability".
reg_last_set records the last place in the block where the register reg_last_set records the last place in the block where the register
is set and is used to compute "availability". is set and is used to compute "availability".
reg_set_in_block records whether the register is set in the block reg_set_in_block records whether the register is set in the block
and is used to compute "transparency". */ and is used to compute "transparency". */
...@@ -2118,6 +2040,7 @@ record_last_reg_set_info (insn, regno) ...@@ -2118,6 +2040,7 @@ record_last_reg_set_info (insn, regno)
{ {
if (reg_first_set[regno] == NEVER_SET) if (reg_first_set[regno] == NEVER_SET)
reg_first_set[regno] = INSN_CUID (insn); reg_first_set[regno] = INSN_CUID (insn);
reg_last_set[regno] = INSN_CUID (insn); reg_last_set[regno] = INSN_CUID (insn);
SET_BIT (reg_set_in_block[BLOCK_NUM (insn)], regno); SET_BIT (reg_set_in_block[BLOCK_NUM (insn)], regno);
} }
...@@ -2130,6 +2053,7 @@ record_last_mem_set_info (insn) ...@@ -2130,6 +2053,7 @@ record_last_mem_set_info (insn)
{ {
if (mem_first_set == NEVER_SET) if (mem_first_set == NEVER_SET)
mem_first_set = INSN_CUID (insn); mem_first_set = INSN_CUID (insn);
mem_last_set = INSN_CUID (insn); mem_last_set = INSN_CUID (insn);
mem_set_in_block[BLOCK_NUM (insn)] = 1; mem_set_in_block[BLOCK_NUM (insn)] = 1;
} }
...@@ -2167,6 +2091,7 @@ record_last_set_info (dest, setter, data) ...@@ -2167,6 +2091,7 @@ record_last_set_info (dest, setter, data)
- they are of the form (set (pseudo-reg) src), - they are of the form (set (pseudo-reg) src),
- src is something we want to perform const/copy propagation on, - src is something we want to perform const/copy propagation on,
- none of the operands or target are subsequently modified in the block - none of the operands or target are subsequently modified in the block
Currently src must be a pseudo-reg or a const_int. Currently src must be a pseudo-reg or a const_int.
F is the first insn. F is the first insn.
...@@ -2245,6 +2170,7 @@ compute_hash_table (set_p) ...@@ -2245,6 +2170,7 @@ compute_hash_table (set_p)
&& regno != FRAME_POINTER_REGNUM) && regno != FRAME_POINTER_REGNUM)
|| global_regs[regno]) || global_regs[regno])
record_last_reg_set_info (insn, regno); record_last_reg_set_info (insn, regno);
if (! CONST_CALL_P (insn)) if (! CONST_CALL_P (insn))
record_last_mem_set_info (insn); record_last_mem_set_info (insn);
} }
...@@ -2257,7 +2183,6 @@ compute_hash_table (set_p) ...@@ -2257,7 +2183,6 @@ compute_hash_table (set_p)
for (insn = BLOCK_HEAD (bb), in_libcall_block = 0; for (insn = BLOCK_HEAD (bb), in_libcall_block = 0;
insn && insn != NEXT_INSN (BLOCK_END (bb)); insn && insn != NEXT_INSN (BLOCK_END (bb));
insn = NEXT_INSN (insn)) insn = NEXT_INSN (insn))
{
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
{ {
if (find_reg_note (insn, REG_LIBCALL, NULL_RTX)) if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
...@@ -2267,10 +2192,10 @@ compute_hash_table (set_p) ...@@ -2267,10 +2192,10 @@ compute_hash_table (set_p)
hash_scan_insn (insn, set_p, in_libcall_block); hash_scan_insn (insn, set_p, in_libcall_block);
} }
} }
}
free (reg_first_set); free (reg_first_set);
free (reg_last_set); free (reg_last_set);
/* Catch bugs early. */ /* Catch bugs early. */
reg_first_set = reg_last_set = 0; reg_first_set = reg_last_set = 0;
} }
...@@ -2288,6 +2213,7 @@ alloc_set_hash_table (n_insns) ...@@ -2288,6 +2213,7 @@ alloc_set_hash_table (n_insns)
set_hash_table_size = n_insns / 4; set_hash_table_size = n_insns / 4;
if (set_hash_table_size < 11) if (set_hash_table_size < 11)
set_hash_table_size = 11; set_hash_table_size = 11;
/* Attempt to maintain efficient use of hash table. /* Attempt to maintain efficient use of hash table.
Making it an odd number is simplest for now. Making it an odd number is simplest for now.
??? Later take some measurements. */ ??? Later take some measurements. */
...@@ -2311,7 +2237,8 @@ compute_set_hash_table () ...@@ -2311,7 +2237,8 @@ compute_set_hash_table ()
{ {
/* Initialize count of number of entries in hash table. */ /* Initialize count of number of entries in hash table. */
n_sets = 0; n_sets = 0;
bzero ((char *) set_hash_table, set_hash_table_size * sizeof (struct expr *)); bzero ((char *) set_hash_table,
set_hash_table_size * sizeof (struct expr *));
compute_hash_table (1); compute_hash_table (1);
} }
...@@ -2330,6 +2257,7 @@ alloc_expr_hash_table (n_insns) ...@@ -2330,6 +2257,7 @@ alloc_expr_hash_table (n_insns)
/* Make sure the amount is usable. */ /* Make sure the amount is usable. */
if (expr_hash_table_size < 11) if (expr_hash_table_size < 11)
expr_hash_table_size = 11; expr_hash_table_size = 11;
/* Attempt to maintain efficient use of hash table. /* Attempt to maintain efficient use of hash table.
Making it an odd number is simplest for now. Making it an odd number is simplest for now.
??? Later take some measurements. */ ??? Later take some measurements. */
...@@ -2353,7 +2281,8 @@ compute_expr_hash_table () ...@@ -2353,7 +2281,8 @@ compute_expr_hash_table ()
{ {
/* Initialize count of number of entries in hash table. */ /* Initialize count of number of entries in hash table. */
n_exprs = 0; n_exprs = 0;
bzero ((char *) expr_hash_table, expr_hash_table_size * sizeof (struct expr *)); bzero ((char *) expr_hash_table,
expr_hash_table_size * sizeof (struct expr *));
compute_hash_table (0); compute_hash_table (0);
} }
...@@ -2383,10 +2312,9 @@ lookup_expr (pat) ...@@ -2383,10 +2312,9 @@ lookup_expr (pat)
return expr; return expr;
} }
/* Lookup REGNO in the set table. /* Lookup REGNO in the set table. If PAT is non-NULL look for the entry that
If PAT is non-NULL look for the entry that matches it, otherwise return matches it, otherwise return the first entry for REGNO. The result is a
the first entry for REGNO. pointer to the table entry, or NULL if not found. */
The result is a pointer to the table entry, or NULL if not found. */
static struct expr * static struct expr *
lookup_set (regno, pat) lookup_set (regno, pat)
...@@ -2422,6 +2350,7 @@ next_set (regno, expr) ...@@ -2422,6 +2350,7 @@ next_set (regno, expr)
do do
expr = expr->next_same_hash; expr = expr->next_same_hash;
while (expr && REGNO (SET_DEST (expr->expr)) != regno); while (expr && REGNO (SET_DEST (expr->expr)) != regno);
return expr; return expr;
} }
...@@ -2434,6 +2363,7 @@ reset_opr_set_tables () ...@@ -2434,6 +2363,7 @@ reset_opr_set_tables ()
/* Maintain a bitmap of which regs have been set since beginning of /* Maintain a bitmap of which regs have been set since beginning of
the block. */ the block. */
sbitmap_zero (reg_set_bitmap); sbitmap_zero (reg_set_bitmap);
/* Also keep a record of the last instruction to modify memory. /* Also keep a record of the last instruction to modify memory.
For now this is very trivial, we only record whether any memory For now this is very trivial, we only record whether any memory
location has been modified. */ location has been modified. */
...@@ -2447,13 +2377,10 @@ static int ...@@ -2447,13 +2377,10 @@ static int
oprs_not_set_p (x, insn) oprs_not_set_p (x, insn)
rtx x, insn; rtx x, insn;
{ {
int i; int i, j;
enum rtx_code code; enum rtx_code code;
const char *fmt; const char *fmt;
/* repeat is used to turn tail-recursion into iteration. */
repeat:
if (x == 0) if (x == 0)
return 1; return 1;
...@@ -2474,8 +2401,8 @@ repeat: ...@@ -2474,8 +2401,8 @@ repeat:
case MEM: case MEM:
if (mem_last_set != 0) if (mem_last_set != 0)
return 0; return 0;
x = XEXP (x, 0); else
goto repeat; return oprs_not_set_p (XEXP (x, 0), insn);
case REG: case REG:
return ! TEST_BIT (reg_set_bitmap, REGNO (x)); return ! TEST_BIT (reg_set_bitmap, REGNO (x));
...@@ -2484,35 +2411,24 @@ repeat: ...@@ -2484,35 +2411,24 @@ repeat:
break; break;
} }
fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{ {
if (fmt[i] == 'e') if (fmt[i] == 'e')
{ {
int not_set_p;
/* If we are about to do the last recursive call /* If we are about to do the last recursive call
needed at this level, change it into iteration. needed at this level, change it into iteration.
This function is called enough to be worth it. */ This function is called enough to be worth it. */
if (i == 0) if (i == 0)
{ return oprs_not_set_p (XEXP (x, i), insn);
x = XEXP (x, 0);
goto repeat; if (! oprs_not_set_p (XEXP (x, i), insn))
}
not_set_p = oprs_not_set_p (XEXP (x, i), insn);
if (! not_set_p)
return 0; return 0;
} }
else if (fmt[i] == 'E') else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++) for (j = 0; j < XVECLEN (x, i); j++)
{ if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
int not_set_p = oprs_not_set_p (XVECEXP (x, i, j), insn);
if (! not_set_p)
return 0; return 0;
} }
}
}
return 1; return 1;
} }
...@@ -2574,13 +2490,11 @@ mark_oprs_set (insn) ...@@ -2574,13 +2490,11 @@ mark_oprs_set (insn)
rtx insn; rtx insn;
{ {
rtx pat = PATTERN (insn); rtx pat = PATTERN (insn);
int i;
if (GET_CODE (pat) == SET) if (GET_CODE (pat) == SET)
mark_set (pat, insn); mark_set (pat, insn);
else if (GET_CODE (pat) == PARALLEL) else if (GET_CODE (pat) == PARALLEL)
{
int i;
for (i = 0; i < XVECLEN (pat, 0); i++) for (i = 0; i < XVECLEN (pat, 0); i++)
{ {
rtx x = XVECEXP (pat, 0, i); rtx x = XVECEXP (pat, 0, i);
...@@ -2592,7 +2506,7 @@ mark_oprs_set (insn) ...@@ -2592,7 +2506,7 @@ mark_oprs_set (insn)
else if (GET_CODE (x) == CALL) else if (GET_CODE (x) == CALL)
mark_call (insn); mark_call (insn);
} }
}
else if (GET_CODE (pat) == CLOBBER) else if (GET_CODE (pat) == CLOBBER)
mark_clobber (pat, insn); mark_clobber (pat, insn);
else if (GET_CODE (pat) == CALL) else if (GET_CODE (pat) == CALL)
...@@ -2632,22 +2546,18 @@ free_rd_mem () ...@@ -2632,22 +2546,18 @@ free_rd_mem ()
free (rd_out); free (rd_out);
} }
/* Add INSN to the kills of BB. /* Add INSN to the kills of BB. REGNO, set in BB, is killed by INSN. */
REGNO, set in BB, is killed by INSN. */
static void static void
handle_rd_kill_set (insn, regno, bb) handle_rd_kill_set (insn, regno, bb)
rtx insn; rtx insn;
int regno, bb; int regno, bb;
{ {
struct reg_set *this_reg = reg_set_table[regno]; struct reg_set *this_reg;
while (this_reg) for (this_reg = reg_set_table[regno]; this_reg; this_reg = this_reg ->next)
{
if (BLOCK_NUM (this_reg->insn) != BLOCK_NUM (insn)) if (BLOCK_NUM (this_reg->insn) != BLOCK_NUM (insn))
SET_BIT (rd_kill[bb], INSN_CUID (this_reg->insn)); SET_BIT (rd_kill[bb], INSN_CUID (this_reg->insn));
this_reg = this_reg->next;
}
} }
/* Compute the set of kill's for reaching definitions. */ /* Compute the set of kill's for reaching definitions. */
...@@ -2655,7 +2565,8 @@ handle_rd_kill_set (insn, regno, bb) ...@@ -2655,7 +2565,8 @@ handle_rd_kill_set (insn, regno, bb)
static void static void
compute_kill_rd () compute_kill_rd ()
{ {
int bb,cuid; int bb, cuid;
int regno, i;
/* For each block /* For each block
For each set bit in `gen' of the block (i.e each insn which For each set bit in `gen' of the block (i.e each insn which
...@@ -2664,13 +2575,9 @@ compute_kill_rd () ...@@ -2664,13 +2575,9 @@ compute_kill_rd ()
Look at the linked list starting at reg_set_table[regx] Look at the linked list starting at reg_set_table[regx]
For each setting of regx in the linked list, which is not in For each setting of regx in the linked list, which is not in
this block this block
Set the bit in `kill' corresponding to that insn Set the bit in `kill' corresponding to that insn. */
*/
for (bb = 0; bb < n_basic_blocks; bb++) for (bb = 0; bb < n_basic_blocks; bb++)
{
for (cuid = 0; cuid < max_cuid; cuid++) for (cuid = 0; cuid < max_cuid; cuid++)
{
if (TEST_BIT (rd_gen[bb], cuid)) if (TEST_BIT (rd_gen[bb], cuid))
{ {
rtx insn = CUID_INSN (cuid); rtx insn = CUID_INSN (cuid);
...@@ -2678,8 +2585,6 @@ compute_kill_rd () ...@@ -2678,8 +2585,6 @@ compute_kill_rd ()
if (GET_CODE (insn) == CALL_INSN) if (GET_CODE (insn) == CALL_INSN)
{ {
int regno;
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
{ {
if ((call_used_regs[regno] if ((call_used_regs[regno]
...@@ -2702,12 +2607,10 @@ compute_kill_rd () ...@@ -2702,12 +2607,10 @@ compute_kill_rd ()
if (GET_CODE (pat) == PARALLEL) if (GET_CODE (pat) == PARALLEL)
{ {
int i;
/* We work backwards because ... */
for (i = XVECLEN (pat, 0) - 1; i >= 0; i--) for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
{ {
enum rtx_code code = GET_CODE (XVECEXP (pat, 0, i)); enum rtx_code code = GET_CODE (XVECEXP (pat, 0, i));
if ((code == SET || code == CLOBBER) if ((code == SET || code == CLOBBER)
&& GET_CODE (XEXP (XVECEXP (pat, 0, i), 0)) == REG) && GET_CODE (XEXP (XVECEXP (pat, 0, i), 0)) == REG)
handle_rd_kill_set (insn, handle_rd_kill_set (insn,
...@@ -2715,19 +2618,11 @@ compute_kill_rd () ...@@ -2715,19 +2618,11 @@ compute_kill_rd ()
bb); bb);
} }
} }
else if (GET_CODE (pat) == SET) else if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == REG)
{
if (GET_CODE (SET_DEST (pat)) == REG)
{
/* Each setting of this register outside of this block /* Each setting of this register outside of this block
must be marked in the set of kills in this block. */ must be marked in the set of kills in this block. */
handle_rd_kill_set (insn, REGNO (SET_DEST (pat)), bb); handle_rd_kill_set (insn, REGNO (SET_DEST (pat)), bb);
} }
}
/* FIXME: CLOBBER? */
}
}
}
} }
/* Compute the reaching definitions as in /* Compute the reaching definitions as in
...@@ -2801,26 +2696,17 @@ static void ...@@ -2801,26 +2696,17 @@ static void
compute_ae_gen () compute_ae_gen ()
{ {
int i; int i;
struct expr *expr;
struct occr *occr;
/* For each recorded occurrence of each expression, set ae_gen[bb][expr]. /* For each recorded occurrence of each expression, set ae_gen[bb][expr].
This is all we have to do because an expression is not recorded if it This is all we have to do because an expression is not recorded if it
is not available, and the only expressions we want to work with are the is not available, and the only expressions we want to work with are the
ones that are recorded. */ ones that are recorded. */
for (i = 0; i < expr_hash_table_size; i++) for (i = 0; i < expr_hash_table_size; i++)
{ for (expr = expr_hash_table[i]; expr != 0; expr = expr->next_same_hash)
struct expr *expr = expr_hash_table[i]; for (occr = expr->avail_occr; occr != 0; occr = occr->next)
while (expr != NULL)
{
struct occr *occr = expr->avail_occr;
while (occr != NULL)
{
SET_BIT (ae_gen[BLOCK_NUM (occr->insn)], expr->bitmap_index); SET_BIT (ae_gen[BLOCK_NUM (occr->insn)], expr->bitmap_index);
occr = occr->next;
}
expr = expr->next_same_hash;
}
}
} }
/* Return non-zero if expression X is killed in BB. */ /* Return non-zero if expression X is killed in BB. */
...@@ -2830,13 +2716,10 @@ expr_killed_p (x, bb) ...@@ -2830,13 +2716,10 @@ expr_killed_p (x, bb)
rtx x; rtx x;
int bb; int bb;
{ {
int i; int i, j;
enum rtx_code code; enum rtx_code code;
const char *fmt; const char *fmt;
/* repeat is used to turn tail-recursion into iteration. */
repeat:
if (x == 0) if (x == 0)
return 1; return 1;
...@@ -2849,8 +2732,8 @@ expr_killed_p (x, bb) ...@@ -2849,8 +2732,8 @@ expr_killed_p (x, bb)
case MEM: case MEM:
if (mem_set_in_block[bb]) if (mem_set_in_block[bb])
return 1; return 1;
x = XEXP (x, 0); else
goto repeat; return expr_killed_p (XEXP (x, 0), bb);
case PC: case PC:
case CC0: /*FIXME*/ case CC0: /*FIXME*/
...@@ -2867,35 +2750,23 @@ expr_killed_p (x, bb) ...@@ -2867,35 +2750,23 @@ expr_killed_p (x, bb)
break; break;
} }
i = GET_RTX_LENGTH (code) - 1; for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
fmt = GET_RTX_FORMAT (code);
for (; i >= 0; i--)
{ {
if (fmt[i] == 'e') if (fmt[i] == 'e')
{ {
rtx tem = XEXP (x, i);
/* If we are about to do the last recursive call /* If we are about to do the last recursive call
needed at this level, change it into iteration. needed at this level, change it into iteration.
This function is called enough to be worth it. */ This function is called enough to be worth it. */
if (i == 0) if (i == 0)
{ return expr_killed_p (XEXP (x, i), bb);
x = tem; else if (expr_killed_p (XEXP (x, i), bb))
goto repeat;
}
if (expr_killed_p (tem, bb))
return 1; return 1;
} }
else if (fmt[i] == 'E') else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++) for (j = 0; j < XVECLEN (x, i); j++)
{
if (expr_killed_p (XVECEXP (x, i, j), bb)) if (expr_killed_p (XVECEXP (x, i, j), bb))
return 1; return 1;
} }
}
}
return 0; return 0;
} }
...@@ -2906,15 +2777,12 @@ static void ...@@ -2906,15 +2777,12 @@ static void
compute_ae_kill (ae_gen, ae_kill) compute_ae_kill (ae_gen, ae_kill)
sbitmap *ae_gen, *ae_kill; sbitmap *ae_gen, *ae_kill;
{ {
int bb,i; int bb, i;
struct expr *expr;
for (bb = 0; bb < n_basic_blocks; bb++) for (bb = 0; bb < n_basic_blocks; bb++)
{
for (i = 0; i < expr_hash_table_size; i++) for (i = 0; i < expr_hash_table_size; i++)
{ for (expr = expr_hash_table[i]; expr; expr = expr->next_same_hash)
struct expr *expr = expr_hash_table[i];
for ( ; expr != NULL; expr = expr->next_same_hash)
{ {
/* Skip EXPR if generated in this block. */ /* Skip EXPR if generated in this block. */
if (TEST_BIT (ae_gen[bb], expr->bitmap_index)) if (TEST_BIT (ae_gen[bb], expr->bitmap_index))
...@@ -2923,8 +2791,6 @@ compute_ae_kill (ae_gen, ae_kill) ...@@ -2923,8 +2791,6 @@ compute_ae_kill (ae_gen, ae_kill)
if (expr_killed_p (expr->expr, bb)) if (expr_killed_p (expr->expr, bb))
SET_BIT (ae_kill[bb], expr->bitmap_index); SET_BIT (ae_kill[bb], expr->bitmap_index);
} }
}
}
} }
/* Actually perform the Classic GCSE optimizations. */ /* Actually perform the Classic GCSE optimizations. */
...@@ -2960,11 +2826,8 @@ expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited) ...@@ -2960,11 +2826,8 @@ expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited)
int pred_bb = pred->src->index; int pred_bb = pred->src->index;
if (visited[pred_bb]) if (visited[pred_bb])
{ /* This predecessor has already been visited. Nothing to do. */
/* This predecessor has already been visited.
Nothing to do. */
; ;
}
else if (pred_bb == bb) else if (pred_bb == bb)
{ {
/* BB loops on itself. */ /* BB loops on itself. */
...@@ -2972,11 +2835,14 @@ expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited) ...@@ -2972,11 +2835,14 @@ expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited)
&& TEST_BIT (ae_gen[pred_bb], expr->bitmap_index) && TEST_BIT (ae_gen[pred_bb], expr->bitmap_index)
&& BLOCK_NUM (occr->insn) == pred_bb) && BLOCK_NUM (occr->insn) == pred_bb)
return 1; return 1;
visited[pred_bb] = 1; visited[pred_bb] = 1;
} }
/* Ignore this predecessor if it kills the expression. */ /* Ignore this predecessor if it kills the expression. */
else if (TEST_BIT (ae_kill[pred_bb], expr->bitmap_index)) else if (TEST_BIT (ae_kill[pred_bb], expr->bitmap_index))
visited[pred_bb] = 1; visited[pred_bb] = 1;
/* Does this predecessor generate this expression? */ /* Does this predecessor generate this expression? */
else if (TEST_BIT (ae_gen[pred_bb], expr->bitmap_index)) else if (TEST_BIT (ae_gen[pred_bb], expr->bitmap_index))
{ {
...@@ -2985,14 +2851,17 @@ expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited) ...@@ -2985,14 +2851,17 @@ expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited)
so we just need to check the block number. */ so we just need to check the block number. */
if (BLOCK_NUM (occr->insn) == pred_bb) if (BLOCK_NUM (occr->insn) == pred_bb)
return 1; return 1;
visited[pred_bb] = 1; visited[pred_bb] = 1;
} }
/* Neither gen nor kill. */ /* Neither gen nor kill. */
else else
{ {
visited[pred_bb] = 1; visited[pred_bb] = 1;
if (expr_reaches_here_p_work (occr, expr, pred_bb, check_self_loop, if (expr_reaches_here_p_work (occr, expr, pred_bb, check_self_loop,
visited)) visited))
return 1; return 1;
} }
} }
...@@ -3012,13 +2881,12 @@ expr_reaches_here_p (occr, expr, bb, check_self_loop) ...@@ -3012,13 +2881,12 @@ expr_reaches_here_p (occr, expr, bb, check_self_loop)
int check_self_loop; int check_self_loop;
{ {
int rval; int rval;
char * visited = (char *) xcalloc (n_basic_blocks, 1); char *visited = (char *) xcalloc (n_basic_blocks, 1);
rval = expr_reaches_here_p_work(occr, expr, bb, check_self_loop, visited); rval = expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited);
free (visited); free (visited);
return rval;
return (rval);
} }
/* Return the instruction that computes EXPR that reaches INSN's basic block. /* Return the instruction that computes EXPR that reaches INSN's basic block.
...@@ -3036,11 +2904,10 @@ computing_insn (expr, insn) ...@@ -3036,11 +2904,10 @@ computing_insn (expr, insn)
if (expr->avail_occr->next == NULL) if (expr->avail_occr->next == NULL)
{ {
if (BLOCK_NUM (expr->avail_occr->insn) == bb) if (BLOCK_NUM (expr->avail_occr->insn) == bb)
{
/* The available expression is actually itself /* The available expression is actually itself
(i.e. a loop in the flow graph) so do nothing. */ (i.e. a loop in the flow graph) so do nothing. */
return NULL; return NULL;
}
/* (FIXME) Case that we found a pattern that was created by /* (FIXME) Case that we found a pattern that was created by
a substitution that took place. */ a substitution that took place. */
return expr->avail_occr->insn; return expr->avail_occr->insn;
...@@ -3062,31 +2929,29 @@ computing_insn (expr, insn) ...@@ -3062,31 +2929,29 @@ computing_insn (expr, insn)
The only time we care about this is when the expression The only time we care about this is when the expression
is generated later in the block [and thus there's a loop]. is generated later in the block [and thus there's a loop].
We let the normal cse pass handle the other cases. */ We let the normal cse pass handle the other cases. */
if (INSN_CUID (insn) < INSN_CUID (occr->insn)) if (INSN_CUID (insn) < INSN_CUID (occr->insn)
{ && expr_reaches_here_p (occr, expr, bb, 1))
if (expr_reaches_here_p (occr, expr, bb, 1))
{ {
can_reach++; can_reach++;
if (can_reach > 1) if (can_reach > 1)
return NULL; return NULL;
insn_computes_expr = occr->insn; insn_computes_expr = occr->insn;
} }
} }
} else if (expr_reaches_here_p (occr, expr, bb, 0))
else /* Computation of the pattern outside this block. */
{
if (expr_reaches_here_p (occr, expr, bb, 0))
{ {
can_reach++; can_reach++;
if (can_reach > 1) if (can_reach > 1)
return NULL; return NULL;
insn_computes_expr = occr->insn; insn_computes_expr = occr->insn;
} }
} }
}
if (insn_computes_expr == NULL) if (insn_computes_expr == NULL)
abort (); abort ();
return insn_computes_expr; return insn_computes_expr;
} }
} }
...@@ -3109,12 +2974,13 @@ def_reaches_here_p (insn, def_insn) ...@@ -3109,12 +2974,13 @@ def_reaches_here_p (insn, def_insn)
{ {
if (GET_CODE (PATTERN (def_insn)) == PARALLEL) if (GET_CODE (PATTERN (def_insn)) == PARALLEL)
return 1; return 1;
if (GET_CODE (PATTERN (def_insn)) == CLOBBER) else if (GET_CODE (PATTERN (def_insn)) == CLOBBER)
reg = XEXP (PATTERN (def_insn), 0); reg = XEXP (PATTERN (def_insn), 0);
else if (GET_CODE (PATTERN (def_insn)) == SET) else if (GET_CODE (PATTERN (def_insn)) == SET)
reg = SET_DEST (PATTERN (def_insn)); reg = SET_DEST (PATTERN (def_insn));
else else
abort (); abort ();
return ! reg_set_between_p (reg, NEXT_INSN (def_insn), insn); return ! reg_set_between_p (reg, NEXT_INSN (def_insn), insn);
} }
else else
...@@ -3124,11 +2990,11 @@ def_reaches_here_p (insn, def_insn) ...@@ -3124,11 +2990,11 @@ def_reaches_here_p (insn, def_insn)
return 0; return 0;
} }
/* Return non-zero if *ADDR_THIS_REG can only have one value at INSN. /* Return non-zero if *ADDR_THIS_REG can only have one value at INSN. The
The value returned is the number of definitions that reach INSN. value returned is the number of definitions that reach INSN. Returning a
Returning a value of zero means that [maybe] more than one definition value of zero means that [maybe] more than one definition reaches INSN and
reaches INSN and the caller can't perform whatever optimization it is the caller can't perform whatever optimization it is trying. i.e. it is
trying. i.e. it is always safe to return zero. */ always safe to return zero. */
static int static int
can_disregard_other_sets (addr_this_reg, insn, for_combine) can_disregard_other_sets (addr_this_reg, insn, for_combine)
...@@ -3137,42 +3003,37 @@ can_disregard_other_sets (addr_this_reg, insn, for_combine) ...@@ -3137,42 +3003,37 @@ can_disregard_other_sets (addr_this_reg, insn, for_combine)
int for_combine; int for_combine;
{ {
int number_of_reaching_defs = 0; int number_of_reaching_defs = 0;
struct reg_set *this_reg = *addr_this_reg; struct reg_set *this_reg;
while (this_reg) for (this_reg = *addr_this_reg; this_reg != 0; this_reg = this_reg->next)
{
if (def_reaches_here_p (insn, this_reg->insn)) if (def_reaches_here_p (insn, this_reg->insn))
{ {
number_of_reaching_defs++; number_of_reaching_defs++;
/* Ignore parallels for now. */ /* Ignore parallels for now. */
if (GET_CODE (PATTERN (this_reg->insn)) == PARALLEL) if (GET_CODE (PATTERN (this_reg->insn)) == PARALLEL)
return 0; return 0;
if (!for_combine if (!for_combine
&& (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER && (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER
|| ! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)), || ! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
SET_SRC (PATTERN (insn))))) SET_SRC (PATTERN (insn)))))
{
/* A setting of the reg to a different value reaches INSN. */ /* A setting of the reg to a different value reaches INSN. */
return 0; return 0;
}
if (number_of_reaching_defs > 1) if (number_of_reaching_defs > 1)
{ {
/* If in this setting the value the register is being /* If in this setting the value the register is being set to is
set to is equal to the previous value the register equal to the previous value the register was set to and this
was set to and this setting reaches the insn we are setting reaches the insn we are trying to do the substitution
trying to do the substitution on then we are ok. */ on then we are ok. */
if (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER) if (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER)
return 0; return 0;
if (! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)), else if (! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
SET_SRC (PATTERN (insn)))) SET_SRC (PATTERN (insn))))
return 0; return 0;
} }
*addr_this_reg = this_reg;
}
/* prev_this_reg = this_reg; */ *addr_this_reg = this_reg;
this_reg = this_reg->next;
} }
return number_of_reaching_defs; return number_of_reaching_defs;
...@@ -3206,12 +3067,13 @@ handle_avail_expr (insn, expr) ...@@ -3206,12 +3067,13 @@ handle_avail_expr (insn, expr)
/* At this point we know only one computation of EXPR outside of this /* At this point we know only one computation of EXPR outside of this
block reaches this insn. Now try to find a register that the block reaches this insn. Now try to find a register that the
expression is computed into. */ expression is computed into. */
if (GET_CODE (SET_SRC (PATTERN (insn_computes_expr))) == REG) if (GET_CODE (SET_SRC (PATTERN (insn_computes_expr))) == REG)
{ {
/* This is the case when the available expression that reaches /* This is the case when the available expression that reaches
here has already been handled as an available expression. */ here has already been handled as an available expression. */
int regnum_for_replacing = REGNO (SET_SRC (PATTERN (insn_computes_expr))); int regnum_for_replacing
= REGNO (SET_SRC (PATTERN (insn_computes_expr)));
/* If the register was created by GCSE we can't use `reg_set_table', /* If the register was created by GCSE we can't use `reg_set_table',
however we know it's set only once. */ however we know it's set only once. */
if (regnum_for_replacing >= max_gcse_regno if (regnum_for_replacing >= max_gcse_regno
...@@ -3228,11 +3090,15 @@ handle_avail_expr (insn, expr) ...@@ -3228,11 +3090,15 @@ handle_avail_expr (insn, expr)
if (!found_setting) if (!found_setting)
{ {
int regnum_for_replacing = REGNO (SET_DEST (PATTERN (insn_computes_expr))); int regnum_for_replacing
= REGNO (SET_DEST (PATTERN (insn_computes_expr)));
/* This shouldn't happen. */ /* This shouldn't happen. */
if (regnum_for_replacing >= max_gcse_regno) if (regnum_for_replacing >= max_gcse_regno)
abort (); abort ();
this_reg = reg_set_table[regnum_for_replacing]; this_reg = reg_set_table[regnum_for_replacing];
/* If the register the expression is computed into is set only once, /* If the register the expression is computed into is set only once,
or only one set reaches this insn, use it. */ or only one set reaches this insn, use it. */
if (this_reg->next == NULL if (this_reg->next == NULL
...@@ -3256,14 +3122,15 @@ handle_avail_expr (insn, expr) ...@@ -3256,14 +3122,15 @@ handle_avail_expr (insn, expr)
gcse_subst_count++; gcse_subst_count++;
if (gcse_file != NULL) if (gcse_file != NULL)
{ {
fprintf (gcse_file, "GCSE: Replacing the source in insn %d with reg %d %s insn %d\n", fprintf (gcse_file, "GCSE: Replacing the source in insn %d with",
INSN_UID (insn), REGNO (to), INSN_UID (insn));
use_src ? "from" : "set in", fprintf (gcse_file, " reg %d %s insn %d\n",
REGNO (to), use_src ? "from" : "set in",
INSN_UID (insn_computes_expr)); INSN_UID (insn_computes_expr));
} }
} }
} }
/* The register that the expr is computed into is set more than once. */ /* The register that the expr is computed into is set more than once. */
else if (1 /*expensive_op(this_pattrn->op) && do_expensive_gcse)*/) else if (1 /*expensive_op(this_pattrn->op) && do_expensive_gcse)*/)
{ {
...@@ -3280,28 +3147,34 @@ handle_avail_expr (insn, expr) ...@@ -3280,28 +3147,34 @@ handle_avail_expr (insn, expr)
an insn. I think this is ok. */ an insn. I think this is ok. */
new_insn new_insn
= emit_insn_after (gen_rtx_SET (VOIDmode, to, = emit_insn_after (gen_rtx_SET (VOIDmode, to,
SET_DEST (PATTERN (insn_computes_expr))), SET_DEST (PATTERN
(insn_computes_expr))),
insn_computes_expr); insn_computes_expr);
/* Keep block number table up to date. */ /* Keep block number table up to date. */
set_block_num (new_insn, BLOCK_NUM (insn_computes_expr)); set_block_num (new_insn, BLOCK_NUM (insn_computes_expr));
/* Keep register set table up to date. */ /* Keep register set table up to date. */
record_one_set (REGNO (to), new_insn); record_one_set (REGNO (to), new_insn);
gcse_create_count++; gcse_create_count++;
if (gcse_file != NULL) if (gcse_file != NULL)
{ {
fprintf (gcse_file, "GCSE: Creating insn %d to copy value of reg %d, computed in insn %d,\n", fprintf (gcse_file, "GCSE: Creating insn %d to copy value of reg %d",
INSN_UID (NEXT_INSN (insn_computes_expr)), INSN_UID (NEXT_INSN (insn_computes_expr)),
REGNO (SET_SRC (PATTERN (NEXT_INSN (insn_computes_expr)))), REGNO (SET_SRC (PATTERN (NEXT_INSN (insn_computes_expr)))));
fprintf (gcse_file, ", computed in insn %d,\n",
INSN_UID (insn_computes_expr)); INSN_UID (insn_computes_expr));
fprintf (gcse_file, " into newly allocated reg %d\n", REGNO (to)); fprintf (gcse_file, " into newly allocated reg %d\n",
REGNO (to));
} }
pat = PATTERN (insn); pat = PATTERN (insn);
/* Do register replacement for INSN. */ /* Do register replacement for INSN. */
changed = validate_change (insn, &SET_SRC (pat), changed = validate_change (insn, &SET_SRC (pat),
SET_DEST (PATTERN (NEXT_INSN (insn_computes_expr))), SET_DEST (PATTERN
(NEXT_INSN (insn_computes_expr))),
0); 0);
/* We should be able to ignore the return code from validate_change but /* We should be able to ignore the return code from validate_change but
...@@ -3311,21 +3184,22 @@ handle_avail_expr (insn, expr) ...@@ -3311,21 +3184,22 @@ handle_avail_expr (insn, expr)
gcse_subst_count++; gcse_subst_count++;
if (gcse_file != NULL) if (gcse_file != NULL)
{ {
fprintf (gcse_file, "GCSE: Replacing the source in insn %d with reg %d set in insn %d\n", fprintf (gcse_file,
"GCSE: Replacing the source in insn %d with reg %d ",
INSN_UID (insn), INSN_UID (insn),
REGNO (SET_DEST (PATTERN (NEXT_INSN (insn_computes_expr)))), REGNO (SET_DEST (PATTERN (NEXT_INSN
(insn_computes_expr)))));
fprintf (gcse_file, "set in insn %d\n",
INSN_UID (insn_computes_expr)); INSN_UID (insn_computes_expr));
} }
} }
} }
return changed; return changed;
} }
/* Perform classic GCSE. /* Perform classic GCSE. This is called by one_classic_gcse_pass after all
This is called by one_classic_gcse_pass after all the dataflow analysis the dataflow analysis has been done.
has been done.
The result is non-zero if a change was made. */ The result is non-zero if a change was made. */
...@@ -3349,7 +3223,6 @@ classic_gcse () ...@@ -3349,7 +3223,6 @@ classic_gcse ()
insn = NEXT_INSN (insn)) insn = NEXT_INSN (insn))
{ {
/* Is insn of form (set (pseudo-reg) ...)? */ /* Is insn of form (set (pseudo-reg) ...)? */
if (GET_CODE (insn) == INSN if (GET_CODE (insn) == INSN
&& GET_CODE (PATTERN (insn)) == SET && GET_CODE (PATTERN (insn)) == SET
&& GET_CODE (SET_DEST (PATTERN (insn))) == REG && GET_CODE (SET_DEST (PATTERN (insn))) == REG
...@@ -3400,6 +3273,7 @@ one_classic_gcse_pass (pass) ...@@ -3400,6 +3273,7 @@ one_classic_gcse_pass (pass)
if (gcse_file) if (gcse_file)
dump_hash_table (gcse_file, "Expression", expr_hash_table, dump_hash_table (gcse_file, "Expression", expr_hash_table,
expr_hash_table_size, n_exprs); expr_hash_table_size, n_exprs);
if (n_exprs > 0) if (n_exprs > 0)
{ {
compute_kill_rd (); compute_kill_rd ();
...@@ -3411,15 +3285,16 @@ one_classic_gcse_pass (pass) ...@@ -3411,15 +3285,16 @@ one_classic_gcse_pass (pass)
changed = classic_gcse (); changed = classic_gcse ();
free_avail_expr_mem (); free_avail_expr_mem ();
} }
free_rd_mem (); free_rd_mem ();
free_expr_hash_table (); free_expr_hash_table ();
if (gcse_file) if (gcse_file)
{ {
fprintf (gcse_file, "\n"); fprintf (gcse_file, "\n");
fprintf (gcse_file, "GCSE of %s, pass %d: %d bytes needed, %d substs, %d insns created\n", fprintf (gcse_file, "GCSE of %s, pass %d: %d bytes needed, %d substs,",
current_function_name, pass, current_function_name, pass, bytes_used, gcse_subst_count);
bytes_used, gcse_subst_count, gcse_create_count); fprintf (gcse_file, "%d insns created\n", gcse_create_count);
} }
return changed; return changed;
...@@ -3428,18 +3303,15 @@ one_classic_gcse_pass (pass) ...@@ -3428,18 +3303,15 @@ one_classic_gcse_pass (pass)
/* Compute copy/constant propagation working variables. */ /* Compute copy/constant propagation working variables. */
/* Local properties of assignments. */ /* Local properties of assignments. */
static sbitmap *cprop_pavloc; static sbitmap *cprop_pavloc;
static sbitmap *cprop_absaltered; static sbitmap *cprop_absaltered;
/* Global properties of assignments (computed from the local properties). */ /* Global properties of assignments (computed from the local properties). */
static sbitmap *cprop_avin; static sbitmap *cprop_avin;
static sbitmap *cprop_avout; static sbitmap *cprop_avout;
/* Allocate vars used for copy/const propagation. /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
N_BLOCKS is the number of basic blocks. basic blocks. N_SETS is the number of sets. */
N_SETS is the number of sets. */
static void static void
alloc_cprop_mem (n_blocks, n_sets) alloc_cprop_mem (n_blocks, n_sets)
...@@ -3463,11 +3335,11 @@ free_cprop_mem () ...@@ -3463,11 +3335,11 @@ free_cprop_mem ()
free (cprop_avout); free (cprop_avout);
} }
/* For each block, compute whether X is transparent. /* For each block, compute whether X is transparent. X is either an
X is either an expression or an assignment [though we don't care which, expression or an assignment [though we don't care which, for this context
for this context an assignment is treated as an expression]. an assignment is treated as an expression]. For each block where an
For each block where an element of X is modified, set (SET_P == 1) or reset element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
(SET_P == 0) the INDX bit in BMAP. */ bit in BMAP. */
static void static void
compute_transp (x, indx, bmap, set_p) compute_transp (x, indx, bmap, set_p)
...@@ -3476,11 +3348,13 @@ compute_transp (x, indx, bmap, set_p) ...@@ -3476,11 +3348,13 @@ compute_transp (x, indx, bmap, set_p)
sbitmap *bmap; sbitmap *bmap;
int set_p; int set_p;
{ {
int bb,i; int bb, i, j;
enum rtx_code code; enum rtx_code code;
reg_set *r;
const char *fmt; const char *fmt;
/* repeat is used to turn tail-recursion into iteration. */ /* repeat is used to turn tail-recursion into iteration since GCC
can't do it when there's no return value. */
repeat: repeat:
if (x == 0) if (x == 0)
...@@ -3490,46 +3364,36 @@ compute_transp (x, indx, bmap, set_p) ...@@ -3490,46 +3364,36 @@ compute_transp (x, indx, bmap, set_p)
switch (code) switch (code)
{ {
case REG: case REG:
{
reg_set *r;
int regno = REGNO (x);
if (set_p) if (set_p)
{ {
if (regno < FIRST_PSEUDO_REGISTER) if (REGNO (x) < FIRST_PSEUDO_REGISTER)
{ {
for (bb = 0; bb < n_basic_blocks; bb++) for (bb = 0; bb < n_basic_blocks; bb++)
if (TEST_BIT (reg_set_in_block[bb], regno)) if (TEST_BIT (reg_set_in_block[bb], REGNO (x)))
SET_BIT (bmap[bb], indx); SET_BIT (bmap[bb], indx);
} }
else else
{ {
for (r = reg_set_table[regno]; r != NULL; r = r->next) for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
{ SET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
bb = BLOCK_NUM (r->insn);
SET_BIT (bmap[bb], indx);
}
} }
} }
else else
{ {
if (regno < FIRST_PSEUDO_REGISTER) if (REGNO (x) < FIRST_PSEUDO_REGISTER)
{ {
for (bb = 0; bb < n_basic_blocks; bb++) for (bb = 0; bb < n_basic_blocks; bb++)
if (TEST_BIT (reg_set_in_block[bb], regno)) if (TEST_BIT (reg_set_in_block[bb], REGNO (x)))
RESET_BIT (bmap[bb], indx); RESET_BIT (bmap[bb], indx);
} }
else else
{ {
for (r = reg_set_table[regno]; r != NULL; r = r->next) for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
{ RESET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
bb = BLOCK_NUM (r->insn);
RESET_BIT (bmap[bb], indx);
}
} }
} }
return; return;
}
case MEM: case MEM:
if (set_p) if (set_p)
...@@ -3544,6 +3408,7 @@ compute_transp (x, indx, bmap, set_p) ...@@ -3544,6 +3408,7 @@ compute_transp (x, indx, bmap, set_p)
if (mem_set_in_block[bb]) if (mem_set_in_block[bb])
RESET_BIT (bmap[bb], indx); RESET_BIT (bmap[bb], indx);
} }
x = XEXP (x, 0); x = XEXP (x, 0);
goto repeat; goto repeat;
...@@ -3562,31 +3427,25 @@ compute_transp (x, indx, bmap, set_p) ...@@ -3562,31 +3427,25 @@ compute_transp (x, indx, bmap, set_p)
break; break;
} }
i = GET_RTX_LENGTH (code) - 1; for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
fmt = GET_RTX_FORMAT (code);
for (; i >= 0; i--)
{ {
if (fmt[i] == 'e') if (fmt[i] == 'e')
{ {
rtx tem = XEXP (x, i);
/* If we are about to do the last recursive call /* If we are about to do the last recursive call
needed at this level, change it into iteration. needed at this level, change it into iteration.
This function is called enough to be worth it. */ This function is called enough to be worth it. */
if (i == 0) if (i == 0)
{ {
x = tem; x = XEXP (x, i);
goto repeat; goto repeat;
} }
compute_transp (tem, indx, bmap, set_p);
compute_transp (XEXP (x, i), indx, bmap, set_p);
} }
else if (fmt[i] == 'E') else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++) for (j = 0; j < XVECLEN (x, i); j++)
compute_transp (XVECEXP (x, i, j), indx, bmap, set_p); compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
} }
}
} }
/* Top level routine to do the dataflow analysis needed by copy/const /* Top level routine to do the dataflow analysis needed by copy/const
...@@ -3612,23 +3471,23 @@ static struct reg_use reg_use_table[MAX_USES]; ...@@ -3612,23 +3471,23 @@ static struct reg_use reg_use_table[MAX_USES];
/* Index into `reg_use_table' while building it. */ /* Index into `reg_use_table' while building it. */
static int reg_use_count; static int reg_use_count;
/* Set up a list of register numbers used in INSN. /* Set up a list of register numbers used in INSN. The found uses are stored
The found uses are stored in `reg_use_table'. in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
`reg_use_count' is initialized to zero before entry, and and contains the number of uses in the table upon exit.
contains the number of uses in the table upon exit.
??? If a register appears multiple times we will record it multiple ??? If a register appears multiple times we will record it multiple times.
times. This doesn't hurt anything but it will slow things down. */ This doesn't hurt anything but it will slow things down. */
static void static void
find_used_regs (x) find_used_regs (x)
rtx x; rtx x;
{ {
int i; int i, j;
enum rtx_code code; enum rtx_code code;
const char *fmt; const char *fmt;
/* repeat is used to turn tail-recursion into iteration. */ /* repeat is used to turn tail-recursion into iteration since GCC
can't do it when there's no return value. */
repeat: repeat:
if (x == 0) if (x == 0)
...@@ -3640,6 +3499,7 @@ find_used_regs (x) ...@@ -3640,6 +3499,7 @@ find_used_regs (x)
case REG: case REG:
if (reg_use_count == MAX_USES) if (reg_use_count == MAX_USES)
return; return;
reg_use_table[reg_use_count].reg_rtx = x; reg_use_table[reg_use_count].reg_rtx = x;
reg_use_count++; reg_use_count++;
return; return;
...@@ -3673,8 +3533,7 @@ find_used_regs (x) ...@@ -3673,8 +3533,7 @@ find_used_regs (x)
/* Recursively scan the operands of this expression. */ /* Recursively scan the operands of this expression. */
fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{ {
if (fmt[i] == 'e') if (fmt[i] == 'e')
{ {
...@@ -3686,15 +3545,13 @@ find_used_regs (x) ...@@ -3686,15 +3545,13 @@ find_used_regs (x)
x = XEXP (x, 0); x = XEXP (x, 0);
goto repeat; goto repeat;
} }
find_used_regs (XEXP (x, i)); find_used_regs (XEXP (x, i));
} }
else if (fmt[i] == 'E') else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++) for (j = 0; j < XVECLEN (x, i); j++)
find_used_regs (XVECEXP (x, i, j)); find_used_regs (XVECEXP (x, i, j));
} }
}
} }
/* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO. /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
...@@ -3720,7 +3577,6 @@ try_replace_reg (from, to, insn) ...@@ -3720,7 +3577,6 @@ try_replace_reg (from, to, insn)
But we need a general simplify_rtx that doesn't have pass But we need a general simplify_rtx that doesn't have pass
specific state variables. I'm not aware of one at the moment. */ specific state variables. I'm not aware of one at the moment. */
success = validate_replace_src (from, to, insn); success = validate_replace_src (from, to, insn);
set = single_set (insn); set = single_set (insn);
...@@ -3730,6 +3586,7 @@ try_replace_reg (from, to, insn) ...@@ -3730,6 +3586,7 @@ try_replace_reg (from, to, insn)
{ {
if (!set) if (!set)
return 0; return 0;
note = REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL, note = REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL,
copy_rtx (SET_SRC (set)), copy_rtx (SET_SRC (set)),
REG_NOTES (insn)); REG_NOTES (insn));
...@@ -3740,6 +3597,7 @@ try_replace_reg (from, to, insn) ...@@ -3740,6 +3597,7 @@ try_replace_reg (from, to, insn)
if (note) if (note)
{ {
rtx simplified; rtx simplified;
src = XEXP (note, 0); src = XEXP (note, 0);
replace_rtx (src, from, to); replace_rtx (src, from, to);
...@@ -3760,8 +3618,9 @@ try_replace_reg (from, to, insn) ...@@ -3760,8 +3618,9 @@ try_replace_reg (from, to, insn)
} }
return success; return success;
} }
/* Find a set of REGNO that is available on entry to INSN's block.
Returns NULL if not found. */ /* Find a set of REGNOs that are available on entry to INSN's block. Returns
NULL no such set is found. */
static struct expr * static struct expr *
find_avail_set (regno, insn) find_avail_set (regno, insn)
...@@ -3811,6 +3670,7 @@ find_avail_set (regno, insn) ...@@ -3811,6 +3670,7 @@ find_avail_set (regno, insn)
If the source operand changed, we may still use it for the next If the source operand changed, we may still use it for the next
iteration of this loop, but we may not use it for substitutions. */ iteration of this loop, but we may not use it for substitutions. */
if (CONSTANT_P (src) || oprs_not_set_p (src, insn)) if (CONSTANT_P (src) || oprs_not_set_p (src, insn))
set1 = set; set1 = set;
...@@ -3835,6 +3695,7 @@ find_avail_set (regno, insn) ...@@ -3835,6 +3695,7 @@ find_avail_set (regno, insn)
REG_USED is the use we will try to replace, SRC is the constant we REG_USED is the use we will try to replace, SRC is the constant we
will try to substitute for it. will try to substitute for it.
Returns nonzero if a change was made. */ Returns nonzero if a change was made. */
static int static int
cprop_jump (insn, copy, reg_used, src) cprop_jump (insn, copy, reg_used, src)
rtx insn, copy; rtx insn, copy;
...@@ -3895,24 +3756,26 @@ cprop_jump (insn, copy, reg_used, src) ...@@ -3895,24 +3756,26 @@ cprop_jump (insn, copy, reg_used, src)
const_prop_count++; const_prop_count++;
if (gcse_file != NULL) if (gcse_file != NULL)
{ {
int regno = REGNO (reg_used->reg_rtx); fprintf (gcse_file,
fprintf (gcse_file, "CONST-PROP: Replacing reg %d in insn %d with constant ", "CONST-PROP: Replacing reg %d in insn %d with constant ",
regno, INSN_UID (insn)); REGNO (reg_used->reg_rtx), INSN_UID (insn));
print_rtl (gcse_file, src); print_rtl (gcse_file, src);
fprintf (gcse_file, "\n"); fprintf (gcse_file, "\n");
} }
return 1; return 1;
} }
return 0; return 0;
} }
#ifdef HAVE_cc0 #ifdef HAVE_cc0
/* Subroutine of cprop_insn that tries to propagate constants into
JUMP_INSNS for machines that have CC0. INSN is a single set that /* Subroutine of cprop_insn that tries to propagate constants into JUMP_INSNS
stores into CC0; the insn following it is a conditional jump. for machines that have CC0. INSN is a single set that stores into CC0;
REG_USED is the use we will try to replace, SRC is the constant we the insn following it is a conditional jump. REG_USED is the use we will
will try to substitute for it. try to replace, SRC is the constant we will try to substitute for it.
Returns nonzero if a change was made. */ Returns nonzero if a change was made. */
static int static int
cprop_cc0_jump (insn, reg_used, src) cprop_cc0_jump (insn, reg_used, src)
rtx insn; rtx insn;
...@@ -3967,12 +3830,12 @@ cprop_insn (insn, alter_jumps) ...@@ -3967,12 +3830,12 @@ cprop_insn (insn, alter_jumps)
if (note) if (note)
find_used_regs (XEXP (note, 0)); find_used_regs (XEXP (note, 0));
reg_used = &reg_use_table[0]; for (reg_used = &reg_use_table[0]; reg_use_count > 0;
for ( ; reg_use_count > 0; reg_used++, reg_use_count--) reg_used++, reg_use_count--)
{ {
int regno = REGNO (reg_used->reg_rtx);
rtx pat, src; rtx pat, src;
struct expr *set; struct expr *set;
int regno = REGNO (reg_used->reg_rtx);
/* Ignore registers created by GCSE. /* Ignore registers created by GCSE.
We do this because ... */ We do this because ... */
...@@ -3994,6 +3857,7 @@ cprop_insn (insn, alter_jumps) ...@@ -3994,6 +3857,7 @@ cprop_insn (insn, alter_jumps)
/* ??? We might be able to handle PARALLELs. Later. */ /* ??? We might be able to handle PARALLELs. Later. */
if (GET_CODE (pat) != SET) if (GET_CODE (pat) != SET)
abort (); abort ();
src = SET_SRC (pat); src = SET_SRC (pat);
/* Constant propagation. */ /* Constant propagation. */
...@@ -4008,8 +3872,10 @@ cprop_insn (insn, alter_jumps) ...@@ -4008,8 +3872,10 @@ cprop_insn (insn, alter_jumps)
const_prop_count++; const_prop_count++;
if (gcse_file != NULL) if (gcse_file != NULL)
{ {
fprintf (gcse_file, "CONST-PROP: Replacing reg %d in insn %d with constant ", fprintf (gcse_file, "CONST-PROP: Replacing reg %d in ",
regno, INSN_UID (insn)); regno);
fprintf (gcse_file, "insn %d with constant ",
INSN_UID (insn));
print_rtl (gcse_file, src); print_rtl (gcse_file, src);
fprintf (gcse_file, "\n"); fprintf (gcse_file, "\n");
} }
...@@ -4051,8 +3917,9 @@ cprop_insn (insn, alter_jumps) ...@@ -4051,8 +3917,9 @@ cprop_insn (insn, alter_jumps)
copy_prop_count++; copy_prop_count++;
if (gcse_file != NULL) if (gcse_file != NULL)
{ {
fprintf (gcse_file, "COPY-PROP: Replacing reg %d in insn %d with reg %d\n", fprintf (gcse_file, "COPY-PROP: Replacing reg %d in insn %d",
regno, INSN_UID (insn), REGNO (src)); regno, INSN_UID (insn));
fprintf (gcse_file, " with reg %d\n", REGNO (src));
} }
/* The original insn setting reg_used may or may not now be /* The original insn setting reg_used may or may not now be
...@@ -4067,9 +3934,8 @@ cprop_insn (insn, alter_jumps) ...@@ -4067,9 +3934,8 @@ cprop_insn (insn, alter_jumps)
return changed; return changed;
} }
/* Forward propagate copies. /* Forward propagate copies. This includes copies and constants. Return
This includes copies and constants. non-zero if a change was made. */
Return non-zero if a change was made. */
static int static int
cprop (alter_jumps) cprop (alter_jumps)
...@@ -4136,14 +4002,15 @@ one_cprop_pass (pass, alter_jumps) ...@@ -4136,14 +4002,15 @@ one_cprop_pass (pass, alter_jumps)
changed = cprop (alter_jumps); changed = cprop (alter_jumps);
free_cprop_mem (); free_cprop_mem ();
} }
free_set_hash_table (); free_set_hash_table ();
if (gcse_file) if (gcse_file)
{ {
fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, %d const props, %d copy props\n", fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, ",
current_function_name, pass, current_function_name, pass, bytes_used);
bytes_used, const_prop_count, copy_prop_count); fprintf (gcse_file, "%d const props, %d copy props\n\n",
fprintf (gcse_file, "\n"); const_prop_count, copy_prop_count);
} }
return changed; return changed;
...@@ -4207,6 +4074,7 @@ alloc_pre_mem (n_blocks, n_exprs) ...@@ -4207,6 +4074,7 @@ alloc_pre_mem (n_blocks, n_exprs)
u_bitmap = NULL; u_bitmap = NULL;
transpout = sbitmap_vector_alloc (n_blocks, n_exprs); transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs); ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
/* pre_insert and pre_delete are allocated later. */ /* pre_insert and pre_delete are allocated later. */
} }
...@@ -4260,7 +4128,6 @@ compute_pre_data () ...@@ -4260,7 +4128,6 @@ compute_pre_data ()
ae_kill, &pre_insert_map, &pre_delete_map); ae_kill, &pre_insert_map, &pre_delete_map);
} }
/* PRE utilities */ /* PRE utilities */
/* Return non-zero if an occurrence of expression EXPR in OCCR_BB would reach /* Return non-zero if an occurrence of expression EXPR in OCCR_BB would reach
...@@ -4292,9 +4159,8 @@ pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited) ...@@ -4292,9 +4159,8 @@ pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited)
if (pred->src == ENTRY_BLOCK_PTR if (pred->src == ENTRY_BLOCK_PTR
/* Has predecessor has already been visited? */ /* Has predecessor has already been visited? */
|| visited[pred_bb]) || visited[pred_bb])
{ ;/* Nothing to do. */
/* Nothing to do. */
}
/* Does this predecessor generate this expression? */ /* Does this predecessor generate this expression? */
else if (TEST_BIT (comp[pred_bb], expr->bitmap_index)) else if (TEST_BIT (comp[pred_bb], expr->bitmap_index))
{ {
...@@ -4303,11 +4169,13 @@ pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited) ...@@ -4303,11 +4169,13 @@ pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited)
so we just need to check the block number. */ so we just need to check the block number. */
if (occr_bb == pred_bb) if (occr_bb == pred_bb)
return 1; return 1;
visited[pred_bb] = 1; visited[pred_bb] = 1;
} }
/* Ignore this predecessor if it kills the expression. */ /* Ignore this predecessor if it kills the expression. */
else if (! TEST_BIT (transp[pred_bb], expr->bitmap_index)) else if (! TEST_BIT (transp[pred_bb], expr->bitmap_index))
visited[pred_bb] = 1; visited[pred_bb] = 1;
/* Neither gen nor kill. */ /* Neither gen nor kill. */
else else
{ {
...@@ -4331,13 +4199,12 @@ pre_expr_reaches_here_p (occr_bb, expr, bb) ...@@ -4331,13 +4199,12 @@ pre_expr_reaches_here_p (occr_bb, expr, bb)
int bb; int bb;
{ {
int rval; int rval;
char * visited = (char *) xcalloc (n_basic_blocks, 1); char *visited = (char *) xcalloc (n_basic_blocks, 1);
rval = pre_expr_reaches_here_p_work(occr_bb, expr, bb, visited); rval = pre_expr_reaches_here_p_work(occr_bb, expr, bb, visited);
free (visited); free (visited);
return rval;
return (rval);
} }
...@@ -4382,6 +4249,7 @@ insert_insn_end_bb (expr, bb, pre) ...@@ -4382,6 +4249,7 @@ insert_insn_end_bb (expr, bb, pre)
rtx reg = expr->reaching_reg; rtx reg = expr->reaching_reg;
int regno = REGNO (reg); int regno = REGNO (reg);
rtx pat; rtx pat;
int i;
pat = process_insert_insn (expr); pat = process_insert_insn (expr);
...@@ -4419,6 +4287,7 @@ insert_insn_end_bb (expr, bb, pre) ...@@ -4419,6 +4287,7 @@ insert_insn_end_bb (expr, bb, pre)
/* FIXME: What if something in cc0/jump uses value set in new insn? */ /* FIXME: What if something in cc0/jump uses value set in new insn? */
new_insn = emit_block_insn_before (pat, insn, BASIC_BLOCK (bb)); new_insn = emit_block_insn_before (pat, insn, BASIC_BLOCK (bb));
} }
/* Likewise if the last insn is a call, as will happen in the presence /* Likewise if the last insn is a call, as will happen in the presence
of exception handling. */ of exception handling. */
else if (GET_CODE (insn) == CALL_INSN) else if (GET_CODE (insn) == CALL_INSN)
...@@ -4430,11 +4299,12 @@ insert_insn_end_bb (expr, bb, pre) ...@@ -4430,11 +4299,12 @@ insert_insn_end_bb (expr, bb, pre)
/* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers, /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
we search backward and place the instructions before the first we search backward and place the instructions before the first
parameter is loaded. Do this for everyone for consistency and a parameter is loaded. Do this for everyone for consistency and a
presumtion that we'll get better code elsewhere as well. */ presumtion that we'll get better code elsewhere as well.
/* It should always be the case that we can put these instructions It should always be the case that we can put these instructions
anywhere in the basic block with performing PRE optimizations. anywhere in the basic block with performing PRE optimizations.
Check this. */ Check this. */
if (pre if (pre
&& !TEST_BIT (antloc[bb], expr->bitmap_index) && !TEST_BIT (antloc[bb], expr->bitmap_index)
&& !TEST_BIT (transp[bb], expr->bitmap_index)) && !TEST_BIT (transp[bb], expr->bitmap_index))
...@@ -4449,10 +4319,10 @@ insert_insn_end_bb (expr, bb, pre) ...@@ -4449,10 +4319,10 @@ insert_insn_end_bb (expr, bb, pre)
if (GET_CODE (XEXP (p, 0)) == USE if (GET_CODE (XEXP (p, 0)) == USE
&& GET_CODE (XEXP (XEXP (p, 0), 0)) == REG) && GET_CODE (XEXP (XEXP (p, 0), 0)) == REG)
{ {
int regno = REGNO (XEXP (XEXP (p, 0), 0)); if (REGNO (XEXP (XEXP (p, 0), 0)) >= FIRST_PSEUDO_REGISTER)
if (regno >= FIRST_PSEUDO_REGISTER)
abort (); abort ();
SET_HARD_REG_BIT (parm_regs, regno);
SET_HARD_REG_BIT (parm_regs, REGNO (XEXP (XEXP (p, 0), 0)));
nparm_regs++; nparm_regs++;
} }
...@@ -4480,9 +4350,10 @@ insert_insn_end_bb (expr, bb, pre) ...@@ -4480,9 +4350,10 @@ insert_insn_end_bb (expr, bb, pre)
after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */ after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
if (GET_CODE (insn) == CODE_LABEL) if (GET_CODE (insn) == CODE_LABEL)
insn = NEXT_INSN (insn); insn = NEXT_INSN (insn);
if (GET_CODE (insn) == NOTE else if (GET_CODE (insn) == NOTE
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK) && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK)
insn = NEXT_INSN (insn); insn = NEXT_INSN (insn);
new_insn = emit_block_insn_before (pat, insn, BASIC_BLOCK (bb)); new_insn = emit_block_insn_before (pat, insn, BASIC_BLOCK (bb));
} }
else else
...@@ -4496,14 +4367,14 @@ insert_insn_end_bb (expr, bb, pre) ...@@ -4496,14 +4367,14 @@ insert_insn_end_bb (expr, bb, pre)
sure that each insn in the sequence is handled. */ sure that each insn in the sequence is handled. */
if (GET_CODE (pat) == SEQUENCE) if (GET_CODE (pat) == SEQUENCE)
{ {
int i;
for (i = 0; i < XVECLEN (pat, 0); i++) for (i = 0; i < XVECLEN (pat, 0); i++)
{ {
rtx insn = XVECEXP (pat, 0, i); rtx insn = XVECEXP (pat, 0, i);
set_block_num (insn, bb); set_block_num (insn, bb);
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
add_label_notes (PATTERN (insn), new_insn); add_label_notes (PATTERN (insn), new_insn);
note_stores (PATTERN (insn), record_set_info, insn); note_stores (PATTERN (insn), record_set_info, insn);
} }
} }
...@@ -4511,6 +4382,7 @@ insert_insn_end_bb (expr, bb, pre) ...@@ -4511,6 +4382,7 @@ insert_insn_end_bb (expr, bb, pre)
{ {
add_label_notes (SET_SRC (pat), new_insn); add_label_notes (SET_SRC (pat), new_insn);
set_block_num (new_insn, bb); set_block_num (new_insn, bb);
/* Keep register set table up to date. */ /* Keep register set table up to date. */
record_one_set (regno, new_insn); record_one_set (regno, new_insn);
} }
...@@ -4519,8 +4391,10 @@ insert_insn_end_bb (expr, bb, pre) ...@@ -4519,8 +4391,10 @@ insert_insn_end_bb (expr, bb, pre)
if (gcse_file) if (gcse_file)
{ {
fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, copying expression %d to reg %d\n", fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, ",
bb, INSN_UID (new_insn), expr->bitmap_index, regno); bb, INSN_UID (new_insn));
fprintf (gcse_file, "copying expression %d to reg %d\n",
expr->bitmap_index, regno);
} }
} }
...@@ -4532,7 +4406,7 @@ pre_edge_insert (edge_list, index_map) ...@@ -4532,7 +4406,7 @@ pre_edge_insert (edge_list, index_map)
struct edge_list *edge_list; struct edge_list *edge_list;
struct expr **index_map; struct expr **index_map;
{ {
int e, i, num_edges, set_size, did_insert = 0; int e, i, j, num_edges, set_size, did_insert = 0;
sbitmap *inserted; sbitmap *inserted;
/* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
...@@ -4552,10 +4426,8 @@ pre_edge_insert (edge_list, index_map) ...@@ -4552,10 +4426,8 @@ pre_edge_insert (edge_list, index_map)
for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS) for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
{ {
SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i]; SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
int j;
for (j = indx; insert && j < n_exprs; j++, insert >>= 1) for (j = indx; insert && j < n_exprs; j++, insert >>= 1)
{
if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX) if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
{ {
struct expr *expr = index_map[j]; struct expr *expr = index_map[j];
...@@ -4573,29 +4445,31 @@ pre_edge_insert (edge_list, index_map) ...@@ -4573,29 +4445,31 @@ pre_edge_insert (edge_list, index_map)
{ {
rtx insn; rtx insn;
edge eg = INDEX_EDGE (edge_list, e); edge eg = INDEX_EDGE (edge_list, e);
/* We can't insert anything on an abnormal
and critical edge, so we insert the /* We can't insert anything on an abnormal and
insn at the end of the previous block. There critical edge, so we insert the insn at the end of
are several alternatives detailed in the previous block. There are several alternatives
Morgans book P277 (sec 10.5) for handling detailed in Morgans book P277 (sec 10.5) for
this situation. This one is easiest for now. */ handling this situation. This one is easiest for
now. */
if ((eg->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL) if ((eg->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
{
insert_insn_end_bb (index_map[j], bb, 0); insert_insn_end_bb (index_map[j], bb, 0);
}
else else
{ {
insn = process_insert_insn (index_map[j]); insn = process_insert_insn (index_map[j]);
insert_insn_on_edge (insn, eg); insert_insn_on_edge (insn, eg);
} }
if (gcse_file) if (gcse_file)
{ {
fprintf (gcse_file, fprintf (gcse_file, "PRE/HOIST: edge (%d,%d), ",
"PRE/HOIST: edge (%d,%d), copy expression %d\n",
bb, bb,
INDEX_EDGE_SUCC_BB (edge_list, e)->index, expr->bitmap_index); INDEX_EDGE_SUCC_BB (edge_list, e)->index);
fprintf (gcse_file, "copy expression %d\n",
expr->bitmap_index);
} }
SET_BIT (inserted[e], j); SET_BIT (inserted[e], j);
did_insert = 1; did_insert = 1;
gcse_create_count++; gcse_create_count++;
...@@ -4604,16 +4478,12 @@ pre_edge_insert (edge_list, index_map) ...@@ -4604,16 +4478,12 @@ pre_edge_insert (edge_list, index_map)
} }
} }
} }
}
/* Clean up. */
free (inserted); free (inserted);
return did_insert; return did_insert;
} }
/* Copy the result of INSN to REG. /* Copy the result of INSN to REG. INDX is the expression number. */
INDX is the expression number. */
static void static void
pre_insert_copy_insn (expr, insn) pre_insert_copy_insn (expr, insn)
...@@ -4629,10 +4499,13 @@ pre_insert_copy_insn (expr, insn) ...@@ -4629,10 +4499,13 @@ pre_insert_copy_insn (expr, insn)
if (!set) if (!set)
abort (); abort ();
new_insn = emit_insn_after (gen_rtx_SET (VOIDmode, reg, SET_DEST (set)), new_insn = emit_insn_after (gen_rtx_SET (VOIDmode, reg, SET_DEST (set)),
insn); insn);
/* Keep block number table up to date. */ /* Keep block number table up to date. */
set_block_num (new_insn, bb); set_block_num (new_insn, bb);
/* Keep register set table up to date. */ /* Keep register set table up to date. */
record_one_set (regno, new_insn); record_one_set (regno, new_insn);
if (insn == BLOCK_END (bb)) if (insn == BLOCK_END (bb))
...@@ -4654,6 +4527,9 @@ static void ...@@ -4654,6 +4527,9 @@ static void
pre_insert_copies () pre_insert_copies ()
{ {
int i; int i;
struct expr *expr;
struct occr *occr;
struct occr *avail;
/* For each available expression in the table, copy the result to /* For each available expression in the table, copy the result to
`reaching_reg' if the expression reaches a deleted one. `reaching_reg' if the expression reaches a deleted one.
...@@ -4662,26 +4538,18 @@ pre_insert_copies () ...@@ -4662,26 +4538,18 @@ pre_insert_copies ()
Need to do some profiling. */ Need to do some profiling. */
for (i = 0; i < expr_hash_table_size; i++) for (i = 0; i < expr_hash_table_size; i++)
{
struct expr *expr;
for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash) for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
{ {
struct occr *occr; /* If the basic block isn't reachable, PPOUT will be TRUE. However,
we don't want to insert a copy here because the expression may not
/* If the basic block isn't reachable, PPOUT will be TRUE. really be redundant. So only insert an insn if the expression was
However, we don't want to insert a copy here because the deleted. This test also avoids further processing if the
expression may not really be redundant. So only insert expression wasn't deleted anywhere. */
an insn if the expression was deleted.
This test also avoids further processing if the expression
wasn't deleted anywhere. */
if (expr->reaching_reg == NULL) if (expr->reaching_reg == NULL)
continue; continue;
for (occr = expr->antic_occr; occr != NULL; occr = occr->next) for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
{ {
struct occr *avail;
if (! occr->deleted_p) if (! occr->deleted_p)
continue; continue;
...@@ -4692,9 +4560,11 @@ pre_insert_copies () ...@@ -4692,9 +4560,11 @@ pre_insert_copies ()
/* No need to handle this one if handled already. */ /* No need to handle this one if handled already. */
if (avail->copied_p) if (avail->copied_p)
continue; continue;
/* Don't handle this one if it's a redundant one. */ /* Don't handle this one if it's a redundant one. */
if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn))) if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
continue; continue;
/* Or if the expression doesn't reach the deleted one. */ /* Or if the expression doesn't reach the deleted one. */
if (! pre_expr_reaches_here_p (BLOCK_NUM (avail->insn), expr, if (! pre_expr_reaches_here_p (BLOCK_NUM (avail->insn), expr,
BLOCK_NUM (occr->insn))) BLOCK_NUM (occr->insn)))
...@@ -4706,7 +4576,6 @@ pre_insert_copies () ...@@ -4706,7 +4576,6 @@ pre_insert_copies ()
} }
} }
} }
}
} }
/* Delete redundant computations. /* Delete redundant computations.
...@@ -4720,6 +4589,8 @@ static int ...@@ -4720,6 +4589,8 @@ static int
pre_delete () pre_delete ()
{ {
int i, bb, changed; int i, bb, changed;
struct expr *expr;
struct occr *occr;
/* Compute the expressions which are redundant and need to be replaced by /* Compute the expressions which are redundant and need to be replaced by
copies from the reaching reg to the target reg. */ copies from the reaching reg to the target reg. */
...@@ -4728,12 +4599,8 @@ pre_delete () ...@@ -4728,12 +4599,8 @@ pre_delete ()
changed = 0; changed = 0;
for (i = 0; i < expr_hash_table_size; i++) for (i = 0; i < expr_hash_table_size; i++)
{
struct expr *expr;
for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash) for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
{ {
struct occr *occr;
int indx = expr->bitmap_index; int indx = expr->bitmap_index;
/* We only need to search antic_occr since we require /* We only need to search antic_occr since we require
...@@ -4752,8 +4619,8 @@ pre_delete () ...@@ -4752,8 +4619,8 @@ pre_delete ()
abort (); abort ();
/* Create a pseudo-reg to store the result of reaching /* Create a pseudo-reg to store the result of reaching
expressions into. Get the mode for the new pseudo expressions into. Get the mode for the new pseudo from
from the mode of the original destination pseudo. */ the mode of the original destination pseudo. */
if (expr->reaching_reg == NULL) if (expr->reaching_reg == NULL)
expr->reaching_reg expr->reaching_reg
= gen_reg_rtx (GET_MODE (SET_DEST (set))); = gen_reg_rtx (GET_MODE (SET_DEST (set)));
...@@ -4777,9 +4644,10 @@ pre_delete () ...@@ -4777,9 +4644,10 @@ pre_delete ()
if (gcse_file) if (gcse_file)
{ {
fprintf (gcse_file, fprintf (gcse_file,
"PRE: redundant insn %d (expression %d) in bb %d, reaching reg is %d\n", "PRE: redundant insn %d (expression %d) in ",
INSN_UID (insn), indx, bb, REGNO (expr->reaching_reg)); INSN_UID (insn), indx);
} fprintf (gcse_file, "bb %d, reaching reg is %d\n",
bb, REGNO (expr->reaching_reg));
} }
} }
} }
...@@ -4792,20 +4660,20 @@ pre_delete () ...@@ -4792,20 +4660,20 @@ pre_delete ()
This is called by one_pre_gcse_pass after all the dataflow analysis This is called by one_pre_gcse_pass after all the dataflow analysis
has been done. has been done.
This is based on the original Morel-Renvoise paper Fred Chow's thesis, This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
and lazy code motion from Knoop, Ruthing and Steffen as described in lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
Advanced Compiler Design and Implementation. Compiler Design and Implementation.
??? A new pseudo reg is created to hold the reaching expression. ??? A new pseudo reg is created to hold the reaching expression. The nice
The nice thing about the classical approach is that it would try to thing about the classical approach is that it would try to use an existing
use an existing reg. If the register can't be adequately optimized reg. If the register can't be adequately optimized [i.e. we introduce
[i.e. we introduce reload problems], one could add a pass here to reload problems], one could add a pass here to propagate the new register
propagate the new register through the block. through the block.
??? We don't handle single sets in PARALLELs because we're [currently] ??? We don't handle single sets in PARALLELs because we're [currently] not
not able to copy the rest of the parallel when we insert copies to create able to copy the rest of the parallel when we insert copies to create full
full redundancies from partial redundancies. However, there's no reason redundancies from partial redundancies. However, there's no reason why we
why we can't handle PARALLELs in the cases where there are no partial can't handle PARALLELs in the cases where there are no partial
redundancies. */ redundancies. */
static int static int
...@@ -4814,18 +4682,15 @@ pre_gcse () ...@@ -4814,18 +4682,15 @@ pre_gcse ()
int i, did_insert; int i, did_insert;
int changed; int changed;
struct expr **index_map; struct expr **index_map;
struct expr *expr;
/* Compute a mapping from expression number (`bitmap_index') to /* Compute a mapping from expression number (`bitmap_index') to
hash table entry. */ hash table entry. */
index_map = (struct expr **) xcalloc (n_exprs, sizeof (struct expr *)); index_map = (struct expr **) xcalloc (n_exprs, sizeof (struct expr *));
for (i = 0; i < expr_hash_table_size; i++) for (i = 0; i < expr_hash_table_size; i++)
{
struct expr *expr;
for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash) for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
index_map[expr->bitmap_index] = expr; index_map[expr->bitmap_index] = expr;
}
/* Reset bitmap used to track which insns are redundant. */ /* Reset bitmap used to track which insns are redundant. */
pre_redundant_insns = sbitmap_alloc (max_cuid); pre_redundant_insns = sbitmap_alloc (max_cuid);
...@@ -4835,9 +4700,11 @@ pre_gcse () ...@@ -4835,9 +4700,11 @@ pre_gcse ()
- we know what register to use for the new insns and for the other - we know what register to use for the new insns and for the other
ones with reaching expressions ones with reaching expressions
- we know which insns are redundant when we go to create copies */ - we know which insns are redundant when we go to create copies */
changed = pre_delete (); changed = pre_delete ();
did_insert = pre_edge_insert (edge_list, index_map); did_insert = pre_edge_insert (edge_list, index_map);
/* In other places with reaching expressions, copy the expression to the /* In other places with reaching expressions, copy the expression to the
specially allocated pseudo-reg that reaches the redundant expr. */ specially allocated pseudo-reg that reaches the redundant expr. */
pre_insert_copies (); pre_insert_copies ();
...@@ -4849,7 +4716,6 @@ pre_gcse () ...@@ -4849,7 +4716,6 @@ pre_gcse ()
free (index_map); free (index_map);
free (pre_redundant_insns); free (pre_redundant_insns);
return changed; return changed;
} }
...@@ -4872,6 +4738,7 @@ one_pre_gcse_pass (pass) ...@@ -4872,6 +4738,7 @@ one_pre_gcse_pass (pass)
if (gcse_file) if (gcse_file)
dump_hash_table (gcse_file, "Expression", expr_hash_table, dump_hash_table (gcse_file, "Expression", expr_hash_table,
expr_hash_table_size, n_exprs); expr_hash_table_size, n_exprs);
if (n_exprs > 0) if (n_exprs > 0)
{ {
alloc_pre_mem (n_basic_blocks, n_exprs); alloc_pre_mem (n_basic_blocks, n_exprs);
...@@ -4880,15 +4747,16 @@ one_pre_gcse_pass (pass) ...@@ -4880,15 +4747,16 @@ one_pre_gcse_pass (pass)
free_edge_list (edge_list); free_edge_list (edge_list);
free_pre_mem (); free_pre_mem ();
} }
remove_fake_edges (); remove_fake_edges ();
free_expr_hash_table (); free_expr_hash_table ();
if (gcse_file) if (gcse_file)
{ {
fprintf (gcse_file, "\n"); fprintf (gcse_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
fprintf (gcse_file, "PRE GCSE of %s, pass %d: %d bytes needed, %d substs, %d insns created\n", current_function_name, pass, bytes_used);
current_function_name, pass, fprintf (gcse_file, "%d substs, %d insns created\n",
bytes_used, gcse_subst_count, gcse_create_count); gcse_subst_count, gcse_create_count);
} }
return changed; return changed;
...@@ -4921,13 +4789,13 @@ add_label_notes (x, insn) ...@@ -4921,13 +4789,13 @@ add_label_notes (x, insn)
We no longer ignore such label references (see LABEL_REF handling in We no longer ignore such label references (see LABEL_REF handling in
mark_jump_label for additional information). */ mark_jump_label for additional information). */
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL, XEXP (x, 0), REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL, XEXP (x, 0),
REG_NOTES (insn)); REG_NOTES (insn));
return; return;
} }
fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{ {
if (fmt[i] == 'e') if (fmt[i] == 'e')
add_label_notes (XEXP (x, i), insn); add_label_notes (XEXP (x, i), insn);
...@@ -4954,13 +4822,13 @@ static void ...@@ -4954,13 +4822,13 @@ static void
compute_transpout () compute_transpout ()
{ {
int bb; int bb;
int i;
struct expr *expr;
sbitmap_vector_ones (transpout, n_basic_blocks); sbitmap_vector_ones (transpout, n_basic_blocks);
for (bb = 0; bb < n_basic_blocks; ++bb) for (bb = 0; bb < n_basic_blocks; ++bb)
{ {
int i;
/* Note that flow inserted a nop a the end of basic blocks that /* Note that flow inserted a nop a the end of basic blocks that
end in call instructions for reasons other than abnormal end in call instructions for reasons other than abnormal
control flow. */ control flow. */
...@@ -4968,15 +4836,11 @@ compute_transpout () ...@@ -4968,15 +4836,11 @@ compute_transpout ()
continue; continue;
for (i = 0; i < expr_hash_table_size; i++) for (i = 0; i < expr_hash_table_size; i++)
{
struct expr *expr;
for (expr = expr_hash_table[i]; expr ; expr = expr->next_same_hash) for (expr = expr_hash_table[i]; expr ; expr = expr->next_same_hash)
if (GET_CODE (expr->expr) == MEM) if (GET_CODE (expr->expr) == MEM)
{ {
rtx addr = XEXP (expr->expr, 0); if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
if (GET_CODE (addr) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (addr))
continue; continue;
/* ??? Optimally, we would use interprocedural alias /* ??? Optimally, we would use interprocedural alias
...@@ -4985,7 +4849,6 @@ compute_transpout () ...@@ -4985,7 +4849,6 @@ compute_transpout ()
RESET_BIT (transpout[bb], expr->bitmap_index); RESET_BIT (transpout[bb], expr->bitmap_index);
} }
} }
}
} }
/* Removal of useless null pointer checks */ /* Removal of useless null pointer checks */
...@@ -4995,6 +4858,7 @@ compute_transpout () ...@@ -4995,6 +4858,7 @@ compute_transpout ()
`null_pointer_info *'. `null_pointer_info *'.
We ignore hard registers. */ We ignore hard registers. */
static void static void
invalidate_nonnull_info (x, setter, data) invalidate_nonnull_info (x, setter, data)
rtx x; rtx x;
...@@ -5005,6 +4869,7 @@ invalidate_nonnull_info (x, setter, data) ...@@ -5005,6 +4869,7 @@ invalidate_nonnull_info (x, setter, data)
struct null_pointer_info* npi = (struct null_pointer_info *) data; struct null_pointer_info* npi = (struct null_pointer_info *) data;
offset = 0; offset = 0;
while (GET_CODE (x) == SUBREG) while (GET_CODE (x) == SUBREG)
x = SUBREG_REG (x); x = SUBREG_REG (x);
...@@ -5046,6 +4911,7 @@ delete_null_pointer_checks_1 (block_reg, nonnull_avin, nonnull_avout, npi) ...@@ -5046,6 +4911,7 @@ delete_null_pointer_checks_1 (block_reg, nonnull_avin, nonnull_avout, npi)
computed. */ computed. */
sbitmap_vector_zero (nonnull_local, n_basic_blocks); sbitmap_vector_zero (nonnull_local, n_basic_blocks);
sbitmap_vector_zero (nonnull_killed, n_basic_blocks); sbitmap_vector_zero (nonnull_killed, n_basic_blocks);
for (current_block = 0; current_block < n_basic_blocks; current_block++) for (current_block = 0; current_block < n_basic_blocks; current_block++)
{ {
rtx insn, stop_insn; rtx insn, stop_insn;
...@@ -5365,9 +5231,11 @@ compute_code_hoist_vbeinout () ...@@ -5365,9 +5231,11 @@ compute_code_hoist_vbeinout ()
passes = 0; passes = 0;
changed = 1; changed = 1;
while (changed) while (changed)
{ {
changed = 0; changed = 0;
/* We scan the blocks in the reverse order to speed up /* We scan the blocks in the reverse order to speed up
the convergence. */ the convergence. */
for (bb = n_basic_blocks - 1; bb >= 0; bb--) for (bb = n_basic_blocks - 1; bb >= 0; bb--)
...@@ -5377,6 +5245,7 @@ compute_code_hoist_vbeinout () ...@@ -5377,6 +5245,7 @@ compute_code_hoist_vbeinout ()
if (bb != n_basic_blocks - 1) if (bb != n_basic_blocks - 1)
sbitmap_intersection_of_succs (hoist_vbeout[bb], hoist_vbein, bb); sbitmap_intersection_of_succs (hoist_vbeout[bb], hoist_vbein, bb);
} }
passes++; passes++;
} }
...@@ -5436,11 +5305,13 @@ hoist_expr_reaches_here_p (expr_bb, expr_index, bb, visited) ...@@ -5436,11 +5305,13 @@ hoist_expr_reaches_here_p (expr_bb, expr_index, bb, visited)
break; break;
else if (visited[pred_bb]) else if (visited[pred_bb])
continue; continue;
/* Does this predecessor generate this expression? */ /* Does this predecessor generate this expression? */
else if (TEST_BIT (comp[pred_bb], expr_index)) else if (TEST_BIT (comp[pred_bb], expr_index))
break; break;
else if (! TEST_BIT (transp[pred_bb], expr_index)) else if (! TEST_BIT (transp[pred_bb], expr_index))
break; break;
/* Not killed. */ /* Not killed. */
else else
{ {
...@@ -5452,15 +5323,18 @@ hoist_expr_reaches_here_p (expr_bb, expr_index, bb, visited) ...@@ -5452,15 +5323,18 @@ hoist_expr_reaches_here_p (expr_bb, expr_index, bb, visited)
} }
if (visited_allocated_locally) if (visited_allocated_locally)
free (visited); free (visited);
return (pred == NULL); return (pred == NULL);
} }
/* Actually perform code hoisting. */ /* Actually perform code hoisting. */
static void static void
hoist_code () hoist_code ()
{ {
int bb, dominated, i; int bb, dominated, i;
struct expr **index_map; struct expr **index_map;
struct expr *expr;
sbitmap_vector_zero (hoist_exprs, n_basic_blocks); sbitmap_vector_zero (hoist_exprs, n_basic_blocks);
...@@ -5469,12 +5343,8 @@ hoist_code () ...@@ -5469,12 +5343,8 @@ hoist_code ()
index_map = (struct expr **) xcalloc (n_exprs, sizeof (struct expr *)); index_map = (struct expr **) xcalloc (n_exprs, sizeof (struct expr *));
for (i = 0; i < expr_hash_table_size; i++) for (i = 0; i < expr_hash_table_size; i++)
{
struct expr *expr;
for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash) for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
index_map[expr->bitmap_index] = expr; index_map[expr->bitmap_index] = expr;
}
/* Walk over each basic block looking for potentially hoistable /* Walk over each basic block looking for potentially hoistable
expressions, nothing gets hoisted from the entry block. */ expressions, nothing gets hoisted from the entry block. */
...@@ -5488,8 +5358,8 @@ hoist_code () ...@@ -5488,8 +5358,8 @@ hoist_code ()
for (i = 0; i < hoist_vbeout[bb]->n_bits; i++) for (i = 0; i < hoist_vbeout[bb]->n_bits; i++)
{ {
int hoistable = 0; int hoistable = 0;
if (TEST_BIT (hoist_vbeout[bb], i)
&& TEST_BIT (transpout[bb], i)) if (TEST_BIT (hoist_vbeout[bb], i) && TEST_BIT (transpout[bb], i))
{ {
/* We've found a potentially hoistable expression, now /* We've found a potentially hoistable expression, now
we look at every block BB dominates to see if it we look at every block BB dominates to see if it
...@@ -5576,7 +5446,6 @@ hoist_code () ...@@ -5576,7 +5446,6 @@ hoist_code ()
rtx insn; rtx insn;
rtx set; rtx set;
/* Find the right occurence of this expression. */ /* Find the right occurence of this expression. */
while (BLOCK_NUM (occr->insn) != dominated && occr) while (BLOCK_NUM (occr->insn) != dominated && occr)
occr = occr->next; occr = occr->next;
...@@ -5601,10 +5470,11 @@ hoist_code () ...@@ -5601,10 +5470,11 @@ hoist_code ()
/* In theory this should never fail since we're creating /* In theory this should never fail since we're creating
a reg->reg copy. a reg->reg copy.
However, on the x86 some of the movXX patterns actually However, on the x86 some of the movXX patterns
contain clobbers of scratch regs. This may cause the actually contain clobbers of scratch regs. This may
insn created by validate_change to not match any cause the insn created by validate_change to not
pattern and thus cause validate_change to fail. */ match any pattern and thus cause validate_change to
fail. */
if (validate_change (insn, &SET_SRC (set), if (validate_change (insn, &SET_SRC (set),
expr->reaching_reg, 0)) expr->reaching_reg, 0))
{ {
...@@ -5620,6 +5490,7 @@ hoist_code () ...@@ -5620,6 +5490,7 @@ hoist_code ()
} }
} }
} }
free (index_map); free (index_map);
} }
...@@ -5637,6 +5508,7 @@ one_code_hoisting_pass () ...@@ -5637,6 +5508,7 @@ one_code_hoisting_pass ()
if (gcse_file) if (gcse_file)
dump_hash_table (gcse_file, "Code Hosting Expressions", expr_hash_table, dump_hash_table (gcse_file, "Code Hosting Expressions", expr_hash_table,
expr_hash_table_size, n_exprs); expr_hash_table_size, n_exprs);
if (n_exprs > 0) if (n_exprs > 0)
{ {
alloc_code_hoist_mem (n_basic_blocks, n_exprs); alloc_code_hoist_mem (n_basic_blocks, n_exprs);
...@@ -5644,6 +5516,7 @@ one_code_hoisting_pass () ...@@ -5644,6 +5516,7 @@ one_code_hoisting_pass ()
hoist_code (); hoist_code ();
free_code_hoist_mem (); free_code_hoist_mem ();
} }
free_expr_hash_table (); free_expr_hash_table ();
return changed; return changed;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment