Commit c0e5eb16 by Tom Tromey Committed by Tom Tromey

javaprims.h: Updated class list.

	* gcj/javaprims.h: Updated class list.
	* java/util/Hashtable.java: Re-merged with Classpath.

From-SVN: r46295
parent dc8ad298
2001-10-16 Tom Tromey <tromey@redhat.com>
* gcj/javaprims.h: Updated class list.
* java/util/Hashtable.java: Re-merged with Classpath.
2001-10-16 Bryce McKinlay <bryce@waitaki.otago.ac.nz> 2001-10-16 Bryce McKinlay <bryce@waitaki.otago.ac.nz>
* name-finder.cc (_Jv_name_finder::lookup): Check for NULL dli_sname. * name-finder.cc (_Jv_name_finder::lookup): Check for NULL dli_sname.
......
...@@ -279,16 +279,18 @@ extern "Java" ...@@ -279,16 +279,18 @@ extern "Java"
class EventObject; class EventObject;
class GregorianCalendar; class GregorianCalendar;
class HashMap; class HashMap;
class HashMap$Entry; class HashMap$HashEntry;
class HashMap$HashIterator; class HashMap$HashIterator;
class HashSet; class HashSet;
class Hashtable; class Hashtable;
class Hashtable$Entry;
class Hashtable$Enumerator; class Hashtable$Enumerator;
class Hashtable$HashEntry;
class Hashtable$HashIterator; class Hashtable$HashIterator;
class IdentityHashMap; class IdentityHashMap;
class IdentityHashMap$IdentityIterator; class IdentityHashMap$IdentityIterator;
class Iterator; class Iterator;
class LinkedHashMap;
class LinkedHashMap$LinkedHashEntry;
class LinkedList; class LinkedList;
class LinkedList$Entry; class LinkedList$Entry;
class LinkedList$LinkedListItr; class LinkedList$LinkedListItr;
...@@ -298,6 +300,7 @@ extern "Java" ...@@ -298,6 +300,7 @@ extern "Java"
class Locale; class Locale;
class Map; class Map;
class Map$Entry; class Map$Entry;
class Map$Map;
class MissingResourceException; class MissingResourceException;
class NoSuchElementException; class NoSuchElementException;
class Observable; class Observable;
...@@ -306,6 +309,7 @@ extern "Java" ...@@ -306,6 +309,7 @@ extern "Java"
class PropertyPermission; class PropertyPermission;
class PropertyResourceBundle; class PropertyResourceBundle;
class Random; class Random;
class RandomAccess;
class ResourceBundle; class ResourceBundle;
class Set; class Set;
class SimpleTimeZone; class SimpleTimeZone;
......
/* Hashtable.java -- a class providing a basic hashtable data structure, /* Hashtable.java -- a class providing a basic hashtable data structure,
mapping Object --> Object mapping Object --> Object
Copyright (C) 1998, 1999, 2000 Free Software Foundation, Inc. Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
This file is part of GNU Classpath. This file is part of GNU Classpath.
...@@ -8,7 +8,7 @@ GNU Classpath is free software; you can redistribute it and/or modify ...@@ -8,7 +8,7 @@ GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option) the Free Software Foundation; either version 2, or (at your option)
any later version. any later version.
GNU Classpath is distributed in the hope that it will be useful, but GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
...@@ -37,20 +37,23 @@ import java.io.ObjectOutputStream; ...@@ -37,20 +37,23 @@ import java.io.ObjectOutputStream;
// code. // code.
/** /**
* a class which implements a Hashtable data structure * A class which implements a hashtable data structure.
* <p>
* *
* This implementation of Hashtable uses a hash-bucket approach. That is: * This implementation of Hashtable uses a hash-bucket approach. That is:
* linear probing and rehashing is avoided; instead, each hashed value maps * linear probing and rehashing is avoided; instead, each hashed value maps
* to a simple linked-list which, in the best case, only has one node. * to a simple linked-list which, in the best case, only has one node.
* Assuming a large enough table, low enough load factor, and / or well * Assuming a large enough table, low enough load factor, and / or well
* implemented hashCode() methods, Hashtable should provide O(1) * implemented hashCode() methods, Hashtable should provide O(1)
* insertion, deletion, and searching of keys. Hashtable is O(n) in * insertion, deletion, and searching of keys. Hashtable is O(n) in
* the worst case for all of these (if all keys has to the same bucket). * the worst case for all of these (if all keys hash to the same bucket).
* <p>
* *
* This is a JDK-1.2 compliant implementation of Hashtable. As such, it * This is a JDK-1.2 compliant implementation of Hashtable. As such, it
* belongs, partially, to the Collections framework (in that it implements * belongs, partially, to the Collections framework (in that it implements
* Map). For backwards compatibility, it inherits from the obsolete and * Map). For backwards compatibility, it inherits from the obsolete and
* utterly useless Dictionary class. * utterly useless Dictionary class.
* <p>
* *
* Being a hybrid of old and new, Hashtable has methods which provide redundant * Being a hybrid of old and new, Hashtable has methods which provide redundant
* capability, but with subtle and even crucial differences. * capability, but with subtle and even crucial differences.
...@@ -58,64 +61,104 @@ import java.io.ObjectOutputStream; ...@@ -58,64 +61,104 @@ import java.io.ObjectOutputStream;
* either an Iterator (which is the JDK-1.2 way of doing things) or with an * either an Iterator (which is the JDK-1.2 way of doing things) or with an
* Enumeration. The latter can end up in an undefined state if the Hashtable * Enumeration. The latter can end up in an undefined state if the Hashtable
* changes while the Enumeration is open. * changes while the Enumeration is open.
* <p>
*
* Unlike HashMap, Hashtable does not accept `null' as a key value. Also,
* all accesses are synchronized: in a single thread environment, this is
* expensive, but in a multi-thread environment, this saves you the effort
* of extra synchronization.
* <p>
* *
* Unlike HashMap, Hashtable does not accept `null' as a key value. * The iterators are <i>fail-fast</i>, meaning that any structural
* modification, except for <code>remove()</code> called on the iterator
* itself, cause the iterator to throw a
* <code>ConcurrentModificationException</code> rather than exhibit
* non-deterministic behavior.
* *
* @author Jon Zeppieri * @author Jon Zeppieri
* @author Warren Levy * @author Warren Levy
* @author Bryce McKinlay * @author Bryce McKinlay
* @author Eric Blake <ebb9@email.byu.edu>
* @see HashMap
* @see TreeMap
* @see IdentityHashMap
* @see LinkedHashMap
* @since 1.0
*/ */
public class Hashtable extends Dictionary public class Hashtable extends Dictionary
implements Map, Cloneable, Serializable implements Map, Cloneable, Serializable
{ {
/** Default number of buckets. This is the value the JDK 1.3 uses. Some /** Default number of buckets. This is the value the JDK 1.3 uses. Some
* early documentation specified this value as 101. That is incorrect. */ * early documentation specified this value as 101. That is incorrect.
private static final int DEFAULT_CAPACITY = 11; */
/** The defaulty load factor; this is explicitly specified by the spec. */ private static final int DEFAULT_CAPACITY = 11;
/**
* The default load factor; this is explicitly specified by the spec.
*/
private static final float DEFAULT_LOAD_FACTOR = 0.75f; private static final float DEFAULT_LOAD_FACTOR = 0.75f;
/**
* Compatible with JDK 1.0+.
*/
private static final long serialVersionUID = 1421746759512286392L; private static final long serialVersionUID = 1421746759512286392L;
/** /**
* The rounded product of the capacity and the load factor; when the number * The rounded product of the capacity and the load factor; when the number
* of elements exceeds the threshold, the Hashtable calls <pre>rehash()</pre>. * of elements exceeds the threshold, the Hashtable calls
* <pre>rehash()</pre>.
* @serial * @serial
*/ */
int threshold; int threshold;
/** Load factor of this Hashtable: used in computing the threshold. /**
* Load factor of this Hashtable: used in computing the threshold.
* @serial * @serial
*/ */
float loadFactor = DEFAULT_LOAD_FACTOR; final float loadFactor;
/** /**
* Array containing the actual key-value mappings * Array containing the actual key-value mappings.
*/ */
transient Entry[] buckets; transient HashEntry[] buckets;
/** /**
* counts the number of modifications this Hashtable has undergone, used * Counts the number of modifications this Hashtable has undergone, used
* by Iterators to know when to throw ConcurrentModificationExceptions. * by Iterators to know when to throw ConcurrentModificationExceptions.
*/ */
transient int modCount; transient int modCount;
/** the size of this Hashtable: denotes the number of key-value pairs */ /**
* The size of this Hashtable: denotes the number of key-value pairs.
*/
transient int size; transient int size;
/** /**
* Class to represent an entry in the hash table. Holds a single key-value * Class to represent an entry in the hash table. Holds a single key-value
* pair. A Hashtable Entry is identical to a HashMap Entry, except that * pair. A Hashtable Entry is identical to a HashMap Entry, except that
* `null' is not allowed for keys and values. * `null' is not allowed for keys and values.
*/ */
static class Entry extends BasicMapEntry static class HashEntry extends BasicMapEntry
{ {
Entry next; /** The next entry in the linked list. */
HashEntry next;
Entry(Object key, Object value)
/**
* Simple constructor.
* @param key the key, already guaranteed non-null
* @param value the value, already guaranteed non-null
*/
HashEntry(Object key, Object value)
{ {
super(key, value); super(key, value);
} }
/**
* Resets the value.
* @param newValue the new value
* @return the prior value
* @throws NullPointerException if <code>newVal</code> is null
*/
public final Object setValue(Object newVal) public final Object setValue(Object newVal)
{ {
if (newVal == null) if (newVal == null)
...@@ -125,7 +168,7 @@ public class Hashtable extends Dictionary ...@@ -125,7 +168,7 @@ public class Hashtable extends Dictionary
} }
/** /**
* construct a new Hashtable with the default capacity (11) and the default * Construct a new Hashtable with the default capacity (11) and the default
* load factor (0.75). * load factor (0.75).
*/ */
public Hashtable() public Hashtable()
...@@ -134,271 +177,327 @@ public class Hashtable extends Dictionary ...@@ -134,271 +177,327 @@ public class Hashtable extends Dictionary
} }
/** /**
* construct a new Hashtable from the given Map * Construct a new Hashtable from the given Map, with initial capacity
* * the greater of the size of <code>m</code> or the default of 11.
* every element in Map t will be put into this new Hashtable * <p>
* *
* @param t a Map whose key / value pairs will be put into * Every element in Map m will be put into this new Hashtable.
* the new Hashtable. <b>NOTE: key / value pairs *
* are not cloned in this constructor</b> * @param m a Map whose key / value pairs will be put into
* the new Hashtable. <b>NOTE: key / value pairs
* are not cloned in this constructor.</b>
* @throws NullPointerException if m is null, or if m contains a mapping
* to or from `null'.
* @since 1.2
*/ */
public Hashtable(Map m) public Hashtable(Map m)
{ {
int size = Math.max(m.size() * 2, DEFAULT_CAPACITY); this(Math.max(m.size() * 2, DEFAULT_CAPACITY), DEFAULT_LOAD_FACTOR);
buckets = new Entry[size];
threshold = (int) (size * loadFactor);
putAll(m); putAll(m);
} }
/** /**
* construct a new Hashtable with a specific inital capacity * Construct a new Hashtable with a specific inital capacity and
* * default load factor of 0.75.
* @param initialCapacity the initial capacity of this Hashtable (>=0)
* *
* @throws IllegalArgumentException if (initialCapacity < 0) * @param initialCapacity the initial capacity of this Hashtable (>=0)
* @throws IllegalArgumentException if (initialCapacity < 0)
*/ */
public Hashtable(int initialCapacity) throws IllegalArgumentException public Hashtable(int initialCapacity)
{ {
this(initialCapacity, DEFAULT_LOAD_FACTOR); this(initialCapacity, DEFAULT_LOAD_FACTOR);
} }
/** /**
* construct a new Hashtable with a specific inital capacity and load factor * Construct a new Hashtable with a specific initial capacity and
* load factor.
* *
* @param initialCapacity the initial capacity (>=0) * @param initialCapacity the initial capacity (>=0)
* @param loadFactor the load factor * @param loadFactor the load factor (>0, not NaN)
* * @throws IllegalArgumentException if (initialCapacity < 0) ||
* @throws IllegalArgumentException if (initialCapacity < 0) || * ! (loadFactor > 0.0)
* (initialLoadFactor <= 0.0)
*/ */
public Hashtable(int initialCapacity, float loadFactor) public Hashtable(int initialCapacity, float loadFactor)
throws IllegalArgumentException
{ {
if (initialCapacity < 0) if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Initial Capacity: " throw new IllegalArgumentException("Illegal Capacity: "
+ initialCapacity); + initialCapacity);
if (loadFactor <= 0) if (! (loadFactor > 0)) // check for NaN too
throw new IllegalArgumentException("Illegal Load Factor: " + loadFactor); throw new IllegalArgumentException("Illegal Load: " + loadFactor);
if (initialCapacity == 0) if (initialCapacity == 0)
initialCapacity = 1; initialCapacity = 1;
buckets = new Entry[initialCapacity]; buckets = new HashEntry[initialCapacity];
this.loadFactor = loadFactor; this.loadFactor = loadFactor;
this.threshold = (int) (initialCapacity * loadFactor); threshold = (int) (initialCapacity * loadFactor);
} }
/** Returns the number of key-value mappings currently in this Map */ /**
public int size() * Returns the number of key-value mappings currently in this hashtable.
* @return the size
*/
public synchronized int size()
{ {
return size; return size;
} }
/** returns true if there are no key-value mappings currently in this Map */ /**
public boolean isEmpty() * Returns true if there are no key-value mappings currently in this table.
* @return <code>size() == 0</code>
*/
public synchronized boolean isEmpty()
{ {
return size == 0; return size == 0;
} }
/**
* Return an enumeration of the keys of this table.
* @return the keys
* @see #elements()
* @see #keySet()
*/
public synchronized Enumeration keys() public synchronized Enumeration keys()
{ {
return new Enumerator(Enumerator.KEYS); return new Enumerator(Enumerator.KEYS);
} }
/**
* Return an enumeration of the values of this table.
* @return the values
* @see #keys()
* @see #values()
*/
public synchronized Enumeration elements() public synchronized Enumeration elements()
{ {
return new Enumerator(Enumerator.VALUES); return new Enumerator(Enumerator.VALUES);
} }
/** /**
* returns true if this Hashtable contains a value <pre>o</pre>, * Returns true if this Hashtable contains a value <pre>o</pre>,
* such that <pre>o.equals(value)</pre>. * such that <pre>o.equals(value)</pre>. This is the same as
* <code>containsValue()</code>, and is O(n).
* <p>
* *
* Note: this is one of the <i>old</i> Hashtable methods which does * Note: this is one of the <i>old</i> Hashtable methods which does
* not like null values; it throws NullPointerException if the * not like null values; it throws NullPointerException if the
* supplied parameter is null. * supplied parameter is null.
* *
* @param value the value to search for in this Hashtable * @param value the value to search for in this Hashtable
* * @return true if at least one key maps to the value
* @throws NullPointerException if <pre>value</pre> is null * @throws NullPointerException if <pre>value</pre> is null
* @see #containsValue(Object)
* @see #containsKey(Object)
*/ */
public synchronized boolean contains(Object value) public synchronized boolean contains(Object value)
{ {
for (int i = 0; i < buckets.length; i++) // Check if value is null in case Hashtable is empty.
if (value == null)
throw new NullPointerException();
for (int i = buckets.length - 1; i >= 0; i--)
{ {
Entry e = buckets[i]; HashEntry e = buckets[i];
while (e != null) while (e != null)
{ {
if (value.equals(e.value)) if (value.equals(e.value))
return true; return true;
e = e.next; e = e.next;
} }
} }
return false; return false;
} }
/** /**
* returns true if this Hashtable contains a value <pre>o</pre>, such that * Returns true if this Hashtable contains a value <pre>o</pre>, such that
* <pre>o.equals(value)</pre>. * <pre>o.equals(value)</pre>. This is the new API for the old
* <code>contains()</code>.
* *
* @param value the value to search for in this Hashtable * @param value the value to search for in this Hashtable
* * @return true if at least one key maps to the value
* @throws NullPointerException if <pre>value</pre> is null * @throws NullPointerException if <pre>value</pre> is null
* @see #contains(Object)
* @see #containsKey(Object)
* @since 1.2
*/ */
public boolean containsValue(Object value) public boolean containsValue(Object value)
{ {
return contains(value); return contains(value);
} }
/** /**
* returns true if the supplied object equals (<pre>equals()</pre>) a key * Returns true if the supplied object <pre>equals()</pre> a key
* in this Hashtable * in this Hashtable.
* *
* @param key the key to search for in this Hashtable * @param key the key to search for in this Hashtable
* @return true if the key is in the table
* @throws NullPointerException if key is null
* @see #containsValue(Object)
*/ */
public synchronized boolean containsKey(Object key) public synchronized boolean containsKey(Object key)
{ {
int idx = hash(key); int idx = hash(key);
Entry e = buckets[idx]; HashEntry e = buckets[idx];
while (e != null) while (e != null)
{ {
if (key.equals(e.key)) if (key.equals(e.key))
return true; return true;
e = e.next; e = e.next;
} }
return false; return false;
} }
/** /**
* return the value in this Hashtable associated with the supplied key, or <pre>null</pre> * Return the value in this Hashtable associated with the supplied key,
* if the key maps to nothing * or <pre>null</pre> if the key maps to nothing.
* *
* @param key the key for which to fetch an associated value * @param key the key for which to fetch an associated value
* @return what the key maps to, if present
* @throws NullPointerException if key is null
* @see #put(Object, Object)
* @see #containsKey(Object)
*/ */
public synchronized Object get(Object key) public synchronized Object get(Object key)
{ {
int idx = hash(key); int idx = hash(key);
Entry e = buckets[idx]; HashEntry e = buckets[idx];
while (e != null) while (e != null)
{ {
if (key.equals(e.key)) if (key.equals(e.key))
return e.value; return e.value;
e = e.next; e = e.next;
} }
return null; return null;
} }
/** /**
* puts the supplied value into the Map, mapped by the supplied key * Puts the supplied value into the Map, mapped by the supplied key.
* Neither parameter may be null. The value may be retrieved by any
* object which <code>equals()</code> this key.
* *
* @param key the key used to locate the value * @param key the key used to locate the value
* @param value the value to be stored in the table * @param value the value to be stored in the table
* @return the prior mapping of the key, or null if there was none
* @throws NullPointerException if key or value is null
* @see #get(Object)
* @see Object#equals(Object)
*/ */
public synchronized Object put(Object key, Object value) public synchronized Object put(Object key, Object value)
{ {
modCount++; modCount++;
int idx = hash(key); int idx = hash(key);
Entry e = buckets[idx]; HashEntry e = buckets[idx];
// Hashtable does not accept null values. This method doesn't dereference // Check if value is null since it is not permitted.
// `value' anywhere, so check for it explicitly.
if (value == null) if (value == null)
throw new NullPointerException(); throw new NullPointerException();
while (e != null) while (e != null)
{ {
if (key.equals(e.key)) if (key.equals(e.key))
{ {
Object r = e.value; // Bypass e.setValue, since we already know value is non-null.
e.value = value; Object r = e.value;
return r; e.value = value;
} return r;
else }
{ else
e = e.next; {
} e = e.next;
}
} }
// At this point, we know we need to add a new entry. // At this point, we know we need to add a new entry.
if (++size > threshold) if (++size > threshold)
{ {
rehash(); rehash();
// Need a new hash value to suit the bigger table. // Need a new hash value to suit the bigger table.
idx = hash(key); idx = hash(key);
} }
e = new Entry(key, value); e = new HashEntry(key, value);
e.next = buckets[idx]; e.next = buckets[idx];
buckets[idx] = e; buckets[idx] = e;
return null; return null;
} }
/** /**
* removes from the table and returns the value which is mapped by the * Removes from the table and returns the value which is mapped by the
* supplied key; if the key maps to nothing, then the table remains * supplied key. If the key maps to nothing, then the table remains
* unchanged, and <pre>null</pre> is returned * unchanged, and <pre>null</pre> is returned.
* *
* @param key the key used to locate the value to remove * @param key the key used to locate the value to remove
* @return whatever the key mapped to, if present
* @throws NullPointerException if key is null
*/ */
public synchronized Object remove(Object key) public synchronized Object remove(Object key)
{ {
modCount++; modCount++;
int idx = hash(key); int idx = hash(key);
Entry e = buckets[idx]; HashEntry e = buckets[idx];
Entry last = null; HashEntry last = null;
while (e != null) while (e != null)
{ {
if (key.equals(e.key)) if (key.equals(e.key))
{ {
if (last == null) if (last == null)
buckets[idx] = e.next; buckets[idx] = e.next;
else else
last.next = e.next; last.next = e.next;
size--; size--;
return e.value; return e.value;
} }
last = e; last = e;
e = e.next; e = e.next;
} }
return null; return null;
} }
/**
* Copies all elements of the given map into this hashtable. However, no
* mapping can contain null as key or value. If this table already has
* a mapping for a key, the new mapping replaces the current one.
*
* @param m the map to be hashed into this
* @throws NullPointerException if m is null, or contains null keys or values
*/
public synchronized void putAll(Map m) public synchronized void putAll(Map m)
{ {
int msize = m.size();
Iterator itr = m.entrySet().iterator(); Iterator itr = m.entrySet().iterator();
for (int i=0; i < msize; i++) for (int msize = m.size(); msize > 0; msize--)
{ {
Map.Entry e = (Map.Entry) itr.next(); Map.Entry e = (Map.Entry) itr.next();
// Optimize in case the Entry is one of our own. // Optimize in case the Entry is one of our own.
if (e instanceof BasicMapEntry) if (e instanceof BasicMapEntry)
{ {
BasicMapEntry entry = (BasicMapEntry) e; BasicMapEntry entry = (BasicMapEntry) e;
put(entry.key, entry.value); put(entry.key, entry.value);
} }
else else
{ {
put(e.getKey(), e.getValue()); put(e.getKey(), e.getValue());
} }
} }
} }
/**
* Clears the hashtable so it has no keys. This is O(1).
*/
public synchronized void clear() public synchronized void clear()
{ {
modCount++; modCount++;
for (int i=0; i < buckets.length; i++) Arrays.fill(buckets, null);
{
buckets[i] = null;
}
size = 0; size = 0;
} }
/** /**
* returns a shallow clone of this Hashtable (i.e. the Map itself is cloned, * Returns a shallow clone of this Hashtable. The Map itself is cloned,
* but its contents are not) * but its contents are not. This is O(n).
*
* @return the clone
*/ */
public synchronized Object clone() public synchronized Object clone()
{ {
...@@ -409,63 +508,91 @@ public class Hashtable extends Dictionary ...@@ -409,63 +508,91 @@ public class Hashtable extends Dictionary
} }
catch (CloneNotSupportedException x) catch (CloneNotSupportedException x)
{ {
// This is impossible.
} }
copy.buckets = new Entry[buckets.length]; copy.buckets = new HashEntry[buckets.length];
for (int i=0; i < buckets.length; i++) for (int i = buckets.length - 1; i >= 0; i--)
{ {
Entry e = buckets[i]; HashEntry e = buckets[i];
Entry last = null; HashEntry last = null;
while (e != null) while (e != null)
{ {
if (last == null) if (last == null)
{ {
copy.buckets[i] = new Entry(e.key, e.value); last = new HashEntry(e.key, e.value);
last = copy.buckets[i]; copy.buckets[i] = last;
} }
else else
{ {
last.next = new Entry(e.key, e.value); last.next = new HashEntry(e.key, e.value);
last = last.next; last = last.next;
} }
e = e.next; e = e.next;
} }
} }
return copy; return copy;
} }
/**
* Converts this Hashtable to a String, surrounded by braces (<pre>'{'</pre>
* and <pre>'}'</pre>), key/value pairs listed with an equals sign between,
* (<pre>'='</pre>), and pairs separated by comma and space
* (<pre>", "</pre>).
* <p>
*
* NOTE: if the <code>toString()</code> method of any key or value
* throws an exception, this will fail for the same reason.
*
* @return the string representation
*/
public synchronized String toString() public synchronized String toString()
{ {
Iterator entries = entrySet().iterator(); // Since we are already synchronized, and entrySet().iterator()
// would repeatedly re-lock/release the monitor, we directly use the
// unsynchronized HashIterator instead.
Iterator entries = new HashIterator(HashIterator.ENTRIES);
StringBuffer r = new StringBuffer("{"); StringBuffer r = new StringBuffer("{");
for (int pos = 0; pos < size; pos++) for (int pos = size; pos > 0; pos--)
{ {
r.append(entries.next()); r.append(entries.next());
if (pos < size - 1) if (pos > 1)
r.append(", "); r.append(", ");
} }
r.append("}"); r.append("}");
return r.toString(); return r.toString();
} }
/** returns a "set view" of this Hashtable's keys */ /**
* Returns a "set view" of this Hashtable's keys. The set is backed by
* the hashtable, so changes in one show up in the other. The set supports
* element removal, but not element addition. The set is properly
* synchronized on the original hashtable. The set will throw a
* {@link NullPointerException} if null is passed to <code>contains</code>,
* <code>remove</code>, or related methods.
*
* @return a set view of the keys
* @see #values()
* @see #entrySet()
* @since 1.2
*/
public Set keySet() public Set keySet()
{ {
// Create a synchronized AbstractSet with custom implementations of those // Create a synchronized AbstractSet with custom implementations of those
// methods that can be overriden easily and efficiently. // methods that can be overridden easily and efficiently.
Set r = new AbstractSet() Set r = new AbstractSet()
{ {
public int size() public int size()
{ {
return size; return size;
} }
public Iterator iterator() public Iterator iterator()
{ {
return new HashIterator(HashIterator.KEYS); return new HashIterator(HashIterator.KEYS);
} }
public void clear() public void clear()
{ {
Hashtable.this.clear(); Hashtable.this.clear();
...@@ -475,18 +602,33 @@ public class Hashtable extends Dictionary ...@@ -475,18 +602,33 @@ public class Hashtable extends Dictionary
{ {
return Hashtable.this.containsKey(o); return Hashtable.this.containsKey(o);
} }
public boolean remove(Object o) public boolean remove(Object o)
{ {
return (Hashtable.this.remove(o) != null); return (Hashtable.this.remove(o) != null);
} }
}; };
return Collections.synchronizedSet(r); // We must specify the correct object to synchronize upon, hence the
// use of a non-public API
return new Collections.SynchronizedSet(this, r);
} }
/** Returns a "collection view" (or "bag view") of this Hashtable's values.
*/ /**
* Returns a "collection view" (or "bag view") of this Hashtable's values.
* The collection is backed by the hashtable, so changes in one show up
* in the other. The collection supports element removal, but not element
* addition. The collection is properly synchronized on the original
* hashtable. The collection will throw a {@link NullPointerException}
* if null is passed to <code>contains</code> or related methods, but not
* if passed to <code>remove</code> or related methods.
*
* @return a bag view of the values
* @see #keySet()
* @see #entrySet()
* @since 1.2
*/
public Collection values() public Collection values()
{ {
// We don't bother overriding many of the optional methods, as doing so // We don't bother overriding many of the optional methods, as doing so
...@@ -497,38 +639,65 @@ public class Hashtable extends Dictionary ...@@ -497,38 +639,65 @@ public class Hashtable extends Dictionary
{ {
return size; return size;
} }
public Iterator iterator() public Iterator iterator()
{ {
return new HashIterator(HashIterator.VALUES); return new HashIterator(HashIterator.VALUES);
} }
public void clear() public void clear()
{ {
Hashtable.this.clear(); Hashtable.this.clear();
} }
// Override this so that we check for null
public boolean contains(Object o)
{
return Hashtable.this.contains(o);
}
}; };
return Collections.synchronizedCollection(r); // We must specify the correct object to synchronize upon, hence the
// use of a non-public API
return new Collections.SynchronizedCollection(this, r);
} }
/** Returns a "set view" of this Hashtable's entries. */ /**
* Returns a "set view" of this Hashtable's entries. The set is backed by
* the hashtable, so changes in one show up in the other. The set supports
* element removal, but not element addition. The set is properly
* synchronized on the original hashtable. The set will throw a
* {@link NullPointerException} if the Map.Entry passed to
* <code>contains</code>, <code>remove</code>, or related methods returns
* null for <code>getKey</code>, but not if the Map.Entry is null or
* returns null for <code>getValue</code>.
* <p>
*
* Note that the iterators for all three views, from keySet(), entrySet(),
* and values(), traverse the hashtable in the same sequence.
*
* @return a set view of the entries
* @see #keySet()
* @see #values()
* @see Map.Entry
* @since 1.2
*/
public Set entrySet() public Set entrySet()
{ {
// Create an AbstractSet with custom implementations of those methods that // Create an AbstractSet with custom implementations of those methods that
// can be overriden easily and efficiently. // can be overridden easily and efficiently.
Set r = new AbstractSet() Set r = new AbstractSet()
{ {
public int size() public int size()
{ {
return size; return size;
} }
public Iterator iterator() public Iterator iterator()
{ {
return new HashIterator(HashIterator.ENTRIES); return new HashIterator(HashIterator.ENTRIES);
} }
public void clear() public void clear()
{ {
Hashtable.this.clear(); Hashtable.this.clear();
...@@ -536,250 +705,284 @@ public class Hashtable extends Dictionary ...@@ -536,250 +705,284 @@ public class Hashtable extends Dictionary
public boolean contains(Object o) public boolean contains(Object o)
{ {
if (!(o instanceof Map.Entry)) return getEntry(o) != null;
return false;
Map.Entry me = (Map.Entry) o;
Entry e = getEntry(me);
return (e != null);
} }
public boolean remove(Object o) public boolean remove(Object o)
{ {
if (!(o instanceof Map.Entry)) HashEntry e = getEntry(o);
return false; if (e != null)
Map.Entry me = (Map.Entry) o; {
Entry e = getEntry(me); Hashtable.this.remove(e.key);
if (e != null) return true;
{ }
Hashtable.this.remove(e.key); return false;
return true;
}
return false;
} }
}; };
return Collections.synchronizedSet(r); // We must specify the correct object to synchronize upon, hence the
// use of a non-public API
return new Collections.SynchronizedSet(this, r);
} }
/** returns true if this Hashtable equals the supplied Object <pre>o</pre>; /**
* that is: * Returns true if this Hashtable equals the supplied Object <pre>o</pre>.
* As specified by Map, this is:
* <pre> * <pre>
* if (o instanceof Map) * (o instanceof Map) && entrySet().equals(((Map) o).entrySet());
* and * </pre>
* o.keySet().equals(keySet()) *
* and * @param o the object to compare to
* for each key in o.keySet(), o.get(key).equals(get(key)) * @return true if o is an equal map
*</pre> * @since 1.2
*/ */
public boolean equals(Object o) public boolean equals(Object o)
{ {
// no need to synchronize, entrySet().equals() does that
if (o == this) if (o == this)
return true; return true;
if (!(o instanceof Map)) if (!(o instanceof Map))
return false; return false;
Map m = (Map) o; return entrySet().equals(((Map) o).entrySet());
Set s = m.entrySet();
Iterator itr = entrySet().iterator();
if (m.size() != size)
return false;
for (int pos = 0; pos < size; pos++)
{
if (!s.contains(itr.next()))
return false;
}
return true;
} }
/** a Map's hashCode is the sum of the hashCodes of all of its /**
Map.Entry objects */ * Returns the hashCode for this Hashtable. As specified by Map, this is
public int hashCode() * the sum of the hashCodes of all of its Map.Entry objects
*
* @return the sum of the hashcodes of the entries
* @since 1.2
*/
public synchronized int hashCode()
{ {
// Since we are already synchronized, and entrySet().iterator()
// would repeatedly re-lock/release the monitor, we directly use the
// unsynchronized HashIterator instead.
Iterator itr = new HashIterator(HashIterator.ENTRIES);
int hashcode = 0; int hashcode = 0;
Iterator itr = entrySet().iterator(); for (int pos = size; pos > 0; pos--)
for (int pos = 0; pos < size; pos++) hashcode += itr.next().hashCode();
{
hashcode += itr.next().hashCode(); return hashcode;
}
return hashcode;
} }
/** Return an index in the buckets array for `key' based on its hashCode() */ /**
* Helper method that returns an index in the buckets array for `key'
* based on its hashCode().
*
* @param key the key
* @return the bucket number
* @throws NullPointerException if key is null
*/
private int hash(Object key) private int hash(Object key)
{ {
return Math.abs(key.hashCode() % buckets.length); return Math.abs(key.hashCode() % buckets.length);
} }
private Entry getEntry(Map.Entry me) /**
* Helper method for entrySet(), which matches both key and value
* simultaneously.
*
* @param o the entry to match
* @return the matching entry, if found, or null
* @throws NullPointerException if me.getKey() returns null
* @see #entrySet()
*/
private HashEntry getEntry(Object o)
{ {
if (!(o instanceof Map.Entry))
return null;
Map.Entry me = (Map.Entry) o;
int idx = hash(me.getKey()); int idx = hash(me.getKey());
Entry e = buckets[idx]; HashEntry e = buckets[idx];
while (e != null) while (e != null)
{ {
if (e.equals(me)) if (e.equals(me))
return e; return e;
e = e.next; e = e.next;
} }
return null; return null;
} }
/** /**
* increases the size of the Hashtable and rehashes all keys to new array * Increases the size of the Hashtable and rehashes all keys to new array
* indices; this is called when the addition of a new value would cause * indices; this is called when the addition of a new value would cause
* size() > threshold. Note that the existing Entry objects are reused in * size() > threshold. Note that the existing Entry objects are reused in
* the new hash table. * the new hash table.
* <p>
*
* This is not specified, but the new size is twice the current size plus
* one; this number is not always prime, unfortunately.
*/ */
protected void rehash() protected void rehash()
{ {
Entry[] oldBuckets = buckets; HashEntry[] oldBuckets = buckets;
int newcapacity = (buckets.length * 2) + 1; int newcapacity = (buckets.length * 2) + 1;
threshold = (int) (newcapacity * loadFactor); threshold = (int) (newcapacity * loadFactor);
buckets = new Entry[newcapacity]; buckets = new HashEntry[newcapacity];
for (int i = 0; i < oldBuckets.length; i++) for (int i = oldBuckets.length - 1; i >= 0; i--)
{ {
Entry e = oldBuckets[i]; HashEntry e = oldBuckets[i];
while (e != null) while (e != null)
{ {
int idx = hash(e.key); int idx = hash(e.key);
Entry dest = buckets[idx]; HashEntry dest = buckets[idx];
if (dest != null) if (dest != null)
{ {
while (dest.next != null) while (dest.next != null)
dest = dest.next; dest = dest.next;
dest.next = e; dest.next = e;
} }
else else
{ {
buckets[idx] = e; buckets[idx] = e;
} }
Entry next = e.next; HashEntry next = e.next;
e.next = null; e.next = null;
e = next; e = next;
} }
} }
} }
/** /**
* Serializes this object to the given stream. * Serializes this object to the given stream.
* @serialdata the <i>capacity</i>(int) that is the length of the *
* bucket array, the <i>size</i>(int) of the hash map are emitted * @param s the stream to write to
* first. They are followed by size entries, each consisting of * @throws IOException if the underlying stream fails
* a key (Object) and a value (Object). * @serialData the <i>capacity</i>(int) that is the length of the
* bucket array, the <i>size</i>(int) of the hash map
* are emitted first. They are followed by size entries,
* each consisting of a key (Object) and a value (Object).
*/ */
private void writeObject(ObjectOutputStream s) throws IOException private synchronized void writeObject(ObjectOutputStream s)
throws IOException
{ {
// the threshold and loadFactor fields // Write the threshold and loadFactor fields.
s.defaultWriteObject(); s.defaultWriteObject();
s.writeInt(buckets.length); s.writeInt(buckets.length);
s.writeInt(size); s.writeInt(size);
Iterator it = entrySet().iterator(); // Since we are already synchronized, and entrySet().iterator()
// would repeatedly re-lock/release the monitor, we directly use the
// unsynchronized HashIterator instead.
Iterator it = new HashIterator(HashIterator.ENTRIES);
while (it.hasNext()) while (it.hasNext())
{ {
Map.Entry entry = (Map.Entry) it.next(); HashEntry entry = (HashEntry) it.next();
s.writeObject(entry.getKey()); s.writeObject(entry.key);
s.writeObject(entry.getValue()); s.writeObject(entry.value);
} }
} }
/** /**
* Deserializes this object from the given stream. * Deserializes this object from the given stream.
* @serialdata the <i>capacity</i>(int) that is the length of the *
* bucket array, the <i>size</i>(int) of the hash map are emitted * @param s the stream to read from
* first. They are followed by size entries, each consisting of * @throws ClassNotFoundException if the underlying stream fails
* a key (Object) and a value (Object). * @throws IOException if the underlying stream fails
* @serialData the <i>capacity</i>(int) that is the length of the
* bucket array, the <i>size</i>(int) of the hash map
* are emitted first. They are followed by size entries,
* each consisting of a key (Object) and a value (Object).
*/ */
private void readObject(ObjectInputStream s) private void readObject(ObjectInputStream s)
throws IOException, ClassNotFoundException throws IOException, ClassNotFoundException
{ {
// the threshold and loadFactor fields // Read the threshold and loadFactor fields.
s.defaultReadObject(); s.defaultReadObject();
int capacity = s.readInt(); // Read and use capacity.
buckets = new HashEntry[s.readInt()];
int len = s.readInt(); int len = s.readInt();
size = 0;
modCount = 0;
buckets = new Entry[capacity];
for (int i = 0; i < len; i++) // Read and use key/value pairs.
{ for ( ; len > 0; len--)
Object key = s.readObject(); put(s.readObject(), s.readObject());
Object value = s.readObject();
put(key, value);
}
} }
/** /**
* a class which implements the Iterator interface and is used for * A class which implements the Iterator interface and is used for
* iterating over Hashtables; * iterating over Hashtables.
* this implementation is parameterized to give a sequential view of * This implementation is parameterized to give a sequential view of
* keys, values, or entries; it also allows the removal of elements, * keys, values, or entries; it also allows the removal of elements,
* as per the Javasoft spec. * as per the Javasoft spec. Note that it is not synchronized; this is
* a performance enhancer since it is never exposed externally and is
* only used within synchronized blocks above.
* *
* @author Jon Zeppieri * @author Jon Zeppieri
*/ */
class HashIterator implements Iterator class HashIterator implements Iterator
{ {
/** "enum" of iterator types. */
static final int KEYS = 0, static final int KEYS = 0,
VALUES = 1, VALUES = 1,
ENTRIES = 2; ENTRIES = 2;
// The type of this Iterator: KEYS, VALUES, or ENTRIES. /**
int type; * The type of this Iterator: {@link #KEYS}, {@link #VALUES},
// The number of modifications to the backing Hashtable that we know about. * or {@link #ENTRIES}.
int knownMod; */
// The total number of elements returned by next(). Used to determine if final int type;
// there are more elements remaining. /**
int count; * The number of modifications to the backing Hashtable that we know about.
// Current index in the physical hash table. */
int idx; int knownMod = modCount;
// The last Entry returned by a next() call. /** The number of elements remaining to be returned by next(). */
Entry last; int count = size;
// The next entry that should be returned by next(). It is set to something /** Current index in the physical hash table. */
// if we're iterating through a bucket that contains multiple linked int idx = buckets.length;
// entries. It is null if next() needs to find a new bucket. /** The last Entry returned by a next() call. */
Entry next; HashEntry last;
/**
/* Construct a new HashIterator with the supplied type: * The next entry that should be returned by next(). It is set to something
KEYS, VALUES, or ENTRIES */ * if we're iterating through a bucket that contains multiple linked
* entries. It is null if next() needs to find a new bucket.
*/
HashEntry next;
/**
* Construct a new HashIterator with the supplied type.
* @param type {@link #KEYS}, {@link #VALUES}, or {@link #ENTRIES}
*/
HashIterator(int type) HashIterator(int type)
{ {
this.type = type; this.type = type;
knownMod = Hashtable.this.modCount;
count = 0;
idx = buckets.length;
} }
/** returns true if the Iterator has more elements */ /**
* Returns true if the Iterator has more elements.
* @return true if there are more elements
* @throws ConcurrentModificationException if the hashtable was modified
*/
public boolean hasNext() public boolean hasNext()
{ {
if (knownMod != Hashtable.this.modCount) if (knownMod != modCount)
throw new ConcurrentModificationException(); throw new ConcurrentModificationException();
return count < size; return count > 0;
} }
/** Returns the next element in the Iterator's sequential view. */ /**
* Returns the next element in the Iterator's sequential view.
* @return the next element
* @throws ConcurrentModificationException if the hashtable was modified
* @throws NoSuchElementException if there is none
*/
public Object next() public Object next()
{ {
if (knownMod != Hashtable.this.modCount) if (knownMod != modCount)
throw new ConcurrentModificationException(); throw new ConcurrentModificationException();
if (count == size) if (count == 0)
throw new NoSuchElementException(); throw new NoSuchElementException();
count++; count--;
Entry e = null; HashEntry e = next;
if (next != null)
e = next;
while (e == null) while (e == null)
{ e = buckets[--idx];
e = buckets[--idx];
}
next = e.next; next = e.next;
last = e; last = e;
...@@ -790,32 +993,29 @@ public class Hashtable extends Dictionary ...@@ -790,32 +993,29 @@ public class Hashtable extends Dictionary
return e; return e;
} }
/** /**
* Removes from the backing Hashtable the last element which was fetched * Removes from the backing Hashtable the last element which was fetched
* with the <pre>next()</pre> method. * with the <pre>next()</pre> method.
* @throws ConcurrentModificationException if the hashtable was modified
* @throws IllegalStateException if called when there is no last element
*/ */
public void remove() public void remove()
{ {
if (knownMod != Hashtable.this.modCount) if (knownMod != modCount)
throw new ConcurrentModificationException(); throw new ConcurrentModificationException();
if (last == null) if (last == null)
{ throw new IllegalStateException();
throw new IllegalStateException();
} Hashtable.this.remove(last.key);
else knownMod++;
{ last = null;
Hashtable.this.remove(last.key);
knownMod++;
count--;
last = null;
}
} }
} }
/** /**
* Enumeration view of this Hashtable, providing sequential access to its * Enumeration view of this Hashtable, providing sequential access to its
* elements; this implementation is parameterized to provide access either * elements; this implementation is parameterized to provide access either
* to the keys or to the values in the Hashtable. * to the keys or to the values in the Hashtable.
* *
* <b>NOTE</b>: Enumeration is not safe if new elements are put in the table * <b>NOTE</b>: Enumeration is not safe if new elements are put in the table
...@@ -825,58 +1025,78 @@ public class Hashtable extends Dictionary ...@@ -825,58 +1025,78 @@ public class Hashtable extends Dictionary
* the "Java Class Libraries" book infers that modifications to the * the "Java Class Libraries" book infers that modifications to the
* hashtable during enumeration causes indeterminate results. Don't do it! * hashtable during enumeration causes indeterminate results. Don't do it!
* *
* @author Jon Zeppieri * @author Jon Zeppieri
*/ */
class Enumerator implements Enumeration class Enumerator implements Enumeration
{ {
static final int KEYS = 0; /** "enum" of iterator types. */
static final int VALUES = 1; static final int KEYS = 0,
VALUES = 1;
/**
* The type of this Iterator: {@link #KEYS} or {@link #VALUES}.
*/
int type; int type;
// current index in the physical hash table. /** Current index in the physical hash table. */
int idx; int idx;
// the last Entry returned by nextEntry(). /** The last Entry returned by nextEntry(). */
Entry last; HashEntry last;
// Entry which will be returned by the next nextElement() call. /** Entry which will be returned by the next nextElement() call. */
Entry next; HashEntry next;
/**
* Construct the enumeration.
* @param type either {@link #KEYS} or {@link #VALUES}.
*/
Enumerator(int type) Enumerator(int type)
{ {
this.type = type; this.type = type;
this.idx = buckets.length; this.idx = buckets.length;
} }
private Entry nextEntry() /**
* Helper method to find the next entry.
* @return the next entry, or null
*/
private HashEntry nextEntry()
{ {
Entry e = null; HashEntry e = null;
if (last != null) if (last != null)
e = last.next; e = last.next;
while (e == null && idx > 0) while (e == null && idx > 0)
{ e = buckets[--idx];
e = buckets[--idx];
}
last = e; last = e;
return e; return e;
} }
/**
* Checks whether more elements remain in the enumeration.
* @return true if nextElement() will not fail.
*/
public boolean hasMoreElements() public boolean hasMoreElements()
{ {
if (next != null) if (next != null)
return true; return true;
next = nextEntry(); next = nextEntry();
return (next != null); return next != null;
} }
/**
* Returns the next element.
* @return the next element
* @throws NoSuchElementException if there is none.
*/
public Object nextElement() public Object nextElement()
{ {
Entry e = null; HashEntry e;
if (next != null) if (next != null)
{ {
e = next; e = next;
next = null; next = null;
} }
else else
e = nextEntry(); e = nextEntry();
if (e == null) if (e == null)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment