Commit bce2b8f9 by Matthew Wahab Committed by Matthew Wahab

[PATCH 10/17][ARM] Refactor support code for NEON builtins.

gcc/
2016-09-23  Matthew Wahab  <matthew.wahab@arm.com>

	* config/arm/arm-builtins.c (arm_init_neon_builtin): New.
	(arm_init_builtins): Move body of a loop to the standalone
	function arm_init_neon_builtin.
	(arm_expand_neon_builtin_1): New.  Update comment.  Function body
	moved from arm_neon_builtin with some white-space fixes.
	(arm_expand_neon_builtin): Move code into the standalone function
	arm_expand_neon_builtin_1.

From-SVN: r240416
parent 55a9b91b
2016-09-23 Matthew Wahab <matthew.wahab@arm.com> 2016-09-23 Matthew Wahab <matthew.wahab@arm.com>
* config/arm/arm-builtins.c (arm_init_neon_builtin): New.
(arm_init_builtins): Move body of a loop to the standalone
function arm_init_neon_builtin.
(arm_expand_neon_builtin_1): New. Update comment. Function body
moved from arm_neon_builtin with some white-space fixes.
(arm_expand_neon_builtin): Move code into the standalone function
arm_expand_neon_builtin_1.
2016-09-23 Matthew Wahab <matthew.wahab@arm.com>
* config/arm/iterators.md (VCVTHI): New. * config/arm/iterators.md (VCVTHI): New.
(NEON_VCMP): Add UNSPEC_VCLT and UNSPEC_VCLE. Fix a long line. (NEON_VCMP): Add UNSPEC_VCLT and UNSPEC_VCLE. Fix a long line.
(NEON_VAGLTE): New. (NEON_VAGLTE): New.
......
...@@ -543,7 +543,7 @@ enum arm_builtins ...@@ -543,7 +543,7 @@ enum arm_builtins
}; };
#define ARM_BUILTIN_NEON_PATTERN_START \ #define ARM_BUILTIN_NEON_PATTERN_START \
(ARM_BUILTIN_MAX - ARRAY_SIZE (neon_builtin_data)) (ARM_BUILTIN_NEON_BASE + 1)
#undef CF #undef CF
#undef VAR1 #undef VAR1
...@@ -895,6 +895,110 @@ arm_init_simd_builtin_scalar_types (void) ...@@ -895,6 +895,110 @@ arm_init_simd_builtin_scalar_types (void)
"__builtin_neon_uti"); "__builtin_neon_uti");
} }
/* Set up a NEON builtin. */
static void
arm_init_neon_builtin (unsigned int fcode,
neon_builtin_datum *d)
{
bool print_type_signature_p = false;
char type_signature[SIMD_MAX_BUILTIN_ARGS] = { 0 };
char namebuf[60];
tree ftype = NULL;
tree fndecl = NULL;
d->fcode = fcode;
/* We must track two variables here. op_num is
the operand number as in the RTL pattern. This is
required to access the mode (e.g. V4SF mode) of the
argument, from which the base type can be derived.
arg_num is an index in to the qualifiers data, which
gives qualifiers to the type (e.g. const unsigned).
The reason these two variables may differ by one is the
void return type. While all return types take the 0th entry
in the qualifiers array, there is no operand for them in the
RTL pattern. */
int op_num = insn_data[d->code].n_operands - 1;
int arg_num = d->qualifiers[0] & qualifier_void
? op_num + 1
: op_num;
tree return_type = void_type_node, args = void_list_node;
tree eltype;
/* Build a function type directly from the insn_data for this
builtin. The build_function_type () function takes care of
removing duplicates for us. */
for (; op_num >= 0; arg_num--, op_num--)
{
machine_mode op_mode = insn_data[d->code].operand[op_num].mode;
enum arm_type_qualifiers qualifiers = d->qualifiers[arg_num];
if (qualifiers & qualifier_unsigned)
{
type_signature[arg_num] = 'u';
print_type_signature_p = true;
}
else if (qualifiers & qualifier_poly)
{
type_signature[arg_num] = 'p';
print_type_signature_p = true;
}
else
type_signature[arg_num] = 's';
/* Skip an internal operand for vget_{low, high}. */
if (qualifiers & qualifier_internal)
continue;
/* Some builtins have different user-facing types
for certain arguments, encoded in d->mode. */
if (qualifiers & qualifier_map_mode)
op_mode = d->mode;
/* For pointers, we want a pointer to the basic type
of the vector. */
if (qualifiers & qualifier_pointer && VECTOR_MODE_P (op_mode))
op_mode = GET_MODE_INNER (op_mode);
eltype = arm_simd_builtin_type
(op_mode,
(qualifiers & qualifier_unsigned) != 0,
(qualifiers & qualifier_poly) != 0);
gcc_assert (eltype != NULL);
/* Add qualifiers. */
if (qualifiers & qualifier_const)
eltype = build_qualified_type (eltype, TYPE_QUAL_CONST);
if (qualifiers & qualifier_pointer)
eltype = build_pointer_type (eltype);
/* If we have reached arg_num == 0, we are at a non-void
return type. Otherwise, we are still processing
arguments. */
if (arg_num == 0)
return_type = eltype;
else
args = tree_cons (NULL_TREE, eltype, args);
}
ftype = build_function_type (return_type, args);
gcc_assert (ftype != NULL);
if (print_type_signature_p)
snprintf (namebuf, sizeof (namebuf), "__builtin_neon_%s_%s",
d->name, type_signature);
else
snprintf (namebuf, sizeof (namebuf), "__builtin_neon_%s",
d->name);
fndecl = add_builtin_function (namebuf, ftype, fcode, BUILT_IN_MD,
NULL, NULL_TREE);
arm_builtin_decls[fcode] = fndecl;
}
/* Set up all the NEON builtins, even builtins for instructions that are not /* Set up all the NEON builtins, even builtins for instructions that are not
in the current target ISA to allow the user to compile particular modules in the current target ISA to allow the user to compile particular modules
with different target specific options that differ from the command line with different target specific options that differ from the command line
...@@ -924,103 +1028,8 @@ arm_init_neon_builtins (void) ...@@ -924,103 +1028,8 @@ arm_init_neon_builtins (void)
for (i = 0; i < ARRAY_SIZE (neon_builtin_data); i++, fcode++) for (i = 0; i < ARRAY_SIZE (neon_builtin_data); i++, fcode++)
{ {
bool print_type_signature_p = false;
char type_signature[SIMD_MAX_BUILTIN_ARGS] = { 0 };
neon_builtin_datum *d = &neon_builtin_data[i]; neon_builtin_datum *d = &neon_builtin_data[i];
char namebuf[60]; arm_init_neon_builtin (fcode, d);
tree ftype = NULL;
tree fndecl = NULL;
d->fcode = fcode;
/* We must track two variables here. op_num is
the operand number as in the RTL pattern. This is
required to access the mode (e.g. V4SF mode) of the
argument, from which the base type can be derived.
arg_num is an index in to the qualifiers data, which
gives qualifiers to the type (e.g. const unsigned).
The reason these two variables may differ by one is the
void return type. While all return types take the 0th entry
in the qualifiers array, there is no operand for them in the
RTL pattern. */
int op_num = insn_data[d->code].n_operands - 1;
int arg_num = d->qualifiers[0] & qualifier_void
? op_num + 1
: op_num;
tree return_type = void_type_node, args = void_list_node;
tree eltype;
/* Build a function type directly from the insn_data for this
builtin. The build_function_type () function takes care of
removing duplicates for us. */
for (; op_num >= 0; arg_num--, op_num--)
{
machine_mode op_mode = insn_data[d->code].operand[op_num].mode;
enum arm_type_qualifiers qualifiers = d->qualifiers[arg_num];
if (qualifiers & qualifier_unsigned)
{
type_signature[arg_num] = 'u';
print_type_signature_p = true;
}
else if (qualifiers & qualifier_poly)
{
type_signature[arg_num] = 'p';
print_type_signature_p = true;
}
else
type_signature[arg_num] = 's';
/* Skip an internal operand for vget_{low, high}. */
if (qualifiers & qualifier_internal)
continue;
/* Some builtins have different user-facing types
for certain arguments, encoded in d->mode. */
if (qualifiers & qualifier_map_mode)
op_mode = d->mode;
/* For pointers, we want a pointer to the basic type
of the vector. */
if (qualifiers & qualifier_pointer && VECTOR_MODE_P (op_mode))
op_mode = GET_MODE_INNER (op_mode);
eltype = arm_simd_builtin_type
(op_mode,
(qualifiers & qualifier_unsigned) != 0,
(qualifiers & qualifier_poly) != 0);
gcc_assert (eltype != NULL);
/* Add qualifiers. */
if (qualifiers & qualifier_const)
eltype = build_qualified_type (eltype, TYPE_QUAL_CONST);
if (qualifiers & qualifier_pointer)
eltype = build_pointer_type (eltype);
/* If we have reached arg_num == 0, we are at a non-void
return type. Otherwise, we are still processing
arguments. */
if (arg_num == 0)
return_type = eltype;
else
args = tree_cons (NULL_TREE, eltype, args);
}
ftype = build_function_type (return_type, args);
gcc_assert (ftype != NULL);
if (print_type_signature_p)
snprintf (namebuf, sizeof (namebuf), "__builtin_neon_%s_%s",
d->name, type_signature);
else
snprintf (namebuf, sizeof (namebuf), "__builtin_neon_%s",
d->name);
fndecl = add_builtin_function (namebuf, ftype, fcode, BUILT_IN_MD,
NULL, NULL_TREE);
arm_builtin_decls[fcode] = fndecl;
} }
} }
...@@ -2211,40 +2220,16 @@ constant_arg: ...@@ -2211,40 +2220,16 @@ constant_arg:
return target; return target;
} }
/* Expand a Neon builtin, i.e. those registered only if TARGET_NEON holds. /* Expand a neon builtin. This is also used for vfp builtins, which behave in
Most of these are "special" because they don't have symbolic the same way. These builtins are "special" because they don't have symbolic
constants defined per-instruction or per instruction-variant. Instead, the constants defined per-instruction or per instruction-variant. Instead, the
required info is looked up in the table neon_builtin_data. */ required info is looked up in the NEON_BUILTIN_DATA record that is passed
into the function. */
static rtx static rtx
arm_expand_neon_builtin (int fcode, tree exp, rtx target) arm_expand_neon_builtin_1 (int fcode, tree exp, rtx target,
neon_builtin_datum *d)
{ {
/* Check in the context of the function making the call whether the
builtin is supported. */
if (! TARGET_NEON)
{
fatal_error (input_location,
"You must enable NEON instructions (e.g. -mfloat-abi=softfp -mfpu=neon) to use these intrinsics.");
return const0_rtx;
}
if (fcode == ARM_BUILTIN_NEON_LANE_CHECK)
{
/* Builtin is only to check bounds of the lane passed to some intrinsics
that are implemented with gcc vector extensions in arm_neon.h. */
tree nlanes = CALL_EXPR_ARG (exp, 0);
gcc_assert (TREE_CODE (nlanes) == INTEGER_CST);
rtx lane_idx = expand_normal (CALL_EXPR_ARG (exp, 1));
if (CONST_INT_P (lane_idx))
neon_lane_bounds (lane_idx, 0, TREE_INT_CST_LOW (nlanes), exp);
else
error ("%Klane index must be a constant immediate", exp);
/* Don't generate any RTL. */
return const0_rtx;
}
neon_builtin_datum *d =
&neon_builtin_data[fcode - ARM_BUILTIN_NEON_PATTERN_START];
enum insn_code icode = d->code; enum insn_code icode = d->code;
builtin_arg args[SIMD_MAX_BUILTIN_ARGS + 1]; builtin_arg args[SIMD_MAX_BUILTIN_ARGS + 1];
int num_args = insn_data[d->code].n_operands; int num_args = insn_data[d->code].n_operands;
...@@ -2260,8 +2245,8 @@ arm_expand_neon_builtin (int fcode, tree exp, rtx target) ...@@ -2260,8 +2245,8 @@ arm_expand_neon_builtin (int fcode, tree exp, rtx target)
/* We have four arrays of data, each indexed in a different fashion. /* We have four arrays of data, each indexed in a different fashion.
qualifiers - element 0 always describes the function return type. qualifiers - element 0 always describes the function return type.
operands - element 0 is either the operand for return value (if operands - element 0 is either the operand for return value (if
the function has a non-void return type) or the operand for the the function has a non-void return type) or the operand for the
first argument. first argument.
expr_args - element 0 always holds the first argument. expr_args - element 0 always holds the first argument.
args - element 0 is always used for the return type. */ args - element 0 is always used for the return type. */
int qualifiers_k = k; int qualifiers_k = k;
...@@ -2283,7 +2268,7 @@ arm_expand_neon_builtin (int fcode, tree exp, rtx target) ...@@ -2283,7 +2268,7 @@ arm_expand_neon_builtin (int fcode, tree exp, rtx target)
bool op_const_int_p = bool op_const_int_p =
(CONST_INT_P (arg) (CONST_INT_P (arg)
&& (*insn_data[icode].operand[operands_k].predicate) && (*insn_data[icode].operand[operands_k].predicate)
(arg, insn_data[icode].operand[operands_k].mode)); (arg, insn_data[icode].operand[operands_k].mode));
args[k] = op_const_int_p ? NEON_ARG_CONSTANT : NEON_ARG_COPY_TO_REG; args[k] = op_const_int_p ? NEON_ARG_CONSTANT : NEON_ARG_COPY_TO_REG;
} }
else if (d->qualifiers[qualifiers_k] & qualifier_pointer) else if (d->qualifiers[qualifiers_k] & qualifier_pointer)
...@@ -2296,8 +2281,47 @@ arm_expand_neon_builtin (int fcode, tree exp, rtx target) ...@@ -2296,8 +2281,47 @@ arm_expand_neon_builtin (int fcode, tree exp, rtx target)
/* The interface to arm_expand_neon_args expects a 0 if /* The interface to arm_expand_neon_args expects a 0 if
the function is void, and a 1 if it is not. */ the function is void, and a 1 if it is not. */
return arm_expand_neon_args return arm_expand_neon_args
(target, d->mode, fcode, icode, !is_void, exp, (target, d->mode, fcode, icode, !is_void, exp,
&args[1]); &args[1]);
}
/* Expand a Neon builtin, i.e. those registered only if TARGET_NEON holds.
Most of these are "special" because they don't have symbolic
constants defined per-instruction or per instruction-variant. Instead, the
required info is looked up in the table neon_builtin_data. */
static rtx
arm_expand_neon_builtin (int fcode, tree exp, rtx target)
{
if (fcode >= ARM_BUILTIN_NEON_BASE && ! TARGET_NEON)
{
fatal_error (input_location,
"You must enable NEON instructions"
" (e.g. -mfloat-abi=softfp -mfpu=neon)"
" to use these intrinsics.");
return const0_rtx;
}
if (fcode == ARM_BUILTIN_NEON_LANE_CHECK)
{
/* Builtin is only to check bounds of the lane passed to some intrinsics
that are implemented with gcc vector extensions in arm_neon.h. */
tree nlanes = CALL_EXPR_ARG (exp, 0);
gcc_assert (TREE_CODE (nlanes) == INTEGER_CST);
rtx lane_idx = expand_normal (CALL_EXPR_ARG (exp, 1));
if (CONST_INT_P (lane_idx))
neon_lane_bounds (lane_idx, 0, TREE_INT_CST_LOW (nlanes), exp);
else
error ("%Klane index must be a constant immediate", exp);
/* Don't generate any RTL. */
return const0_rtx;
}
neon_builtin_datum *d
= &neon_builtin_data[fcode - ARM_BUILTIN_NEON_PATTERN_START];
return arm_expand_neon_builtin_1 (fcode, exp, target, d);
} }
/* Expand an expression EXP that calls a built-in function, /* Expand an expression EXP that calls a built-in function,
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment