Commit af5fb6ab by Benjamin Kosnik Committed by Benjamin Kosnik

re PR libstdc++/8230 (Buggy allocator behaviour)


2002-11-15  Benjamin Kosnik  <bkoz@redhat.com>
            Gabriel Dos Reis  <gdr@integrable-solutions.net>

	PR libstdc++/8230
	* include/bits/stl_alloc.h: Use builtin_expect for the most
	obvious limit checks.
	(__default_alloc_template::allocate): Check for null, throw
	bad_alloc.
	* include/bits/vector.tcc: Formatting tweaks.
	* include/bits/stl_vector.h: Same.
	* testsuite/20_util/allocator_members.cc (test02): Add.
	* testsuite/23_containers/vector_capacity.cc (test03): Add.

Co-Authored-By: Gabriel Dos Reis <gdr@integrable-solutions.net>

From-SVN: r59169
parent 5dab517f
2002-11-15 Benjamin Kosnik <bkoz@redhat.com>
Gabriel Dos Reis <gdr@integrable-solutions.net>
PR libstdc++/8230
* include/bits/stl_alloc.h: Use builtin_expect for the most
obvious limit checks.
(__default_alloc_template::allocate): Check for null, throw
bad_alloc.
* include/bits/vector.tcc: Formatting tweaks.
* include/bits/stl_vector.h: Same.
* testsuite/20_util/allocator_members.cc (test02): Add.
* testsuite/23_containers/vector_capacity.cc (test03): Add.
2002-11-15 Rainer Orth <ro@TechFak.Uni-Bielefeld.DE> 2002-11-15 Rainer Orth <ro@TechFak.Uni-Bielefeld.DE>
* src/ios.cc [_GLIBCPP_HAVE_UNISTD_H]: Include unistd.h. * src/ios.cc [_GLIBCPP_HAVE_UNISTD_H]: Include unistd.h.
......
...@@ -139,7 +139,8 @@ namespace std ...@@ -139,7 +139,8 @@ namespace std
allocate(size_t __n) allocate(size_t __n)
{ {
void* __result = malloc(__n); void* __result = malloc(__n);
if (0 == __result) __result = _S_oom_malloc(__n); if (__builtin_expect(__result == 0, 0))
__result = _S_oom_malloc(__n);
return __result; return __result;
} }
...@@ -152,7 +153,7 @@ namespace std ...@@ -152,7 +153,7 @@ namespace std
reallocate(void* __p, size_t /* old_sz */, size_t __new_sz) reallocate(void* __p, size_t /* old_sz */, size_t __new_sz)
{ {
void* __result = realloc(__p, __new_sz); void* __result = realloc(__p, __new_sz);
if (0 == __result) if (__builtin_expect(__result == 0, 0))
__result = _S_oom_realloc(__p, __new_sz); __result = _S_oom_realloc(__p, __new_sz);
return __result; return __result;
} }
...@@ -181,8 +182,8 @@ namespace std ...@@ -181,8 +182,8 @@ namespace std
for (;;) for (;;)
{ {
__my_malloc_handler = __malloc_alloc_oom_handler; __my_malloc_handler = __malloc_alloc_oom_handler;
if (0 == __my_malloc_handler) if (__builtin_expect(__my_malloc_handler == 0, 0))
std::__throw_bad_alloc(); __throw_bad_alloc();
(*__my_malloc_handler)(); (*__my_malloc_handler)();
__result = malloc(__n); __result = malloc(__n);
if (__result) if (__result)
...@@ -202,8 +203,8 @@ namespace std ...@@ -202,8 +203,8 @@ namespace std
for (;;) for (;;)
{ {
__my_malloc_handler = __malloc_alloc_oom_handler; __my_malloc_handler = __malloc_alloc_oom_handler;
if (0 == __my_malloc_handler) if (__builtin_expect(__my_malloc_handler == 0, 0))
std::__throw_bad_alloc(); __throw_bad_alloc();
(*__my_malloc_handler)(); (*__my_malloc_handler)();
__result = realloc(__p, __n); __result = realloc(__p, __n);
if (__result) if (__result)
...@@ -232,7 +233,12 @@ namespace std ...@@ -232,7 +233,12 @@ namespace std
public: public:
static _Tp* static _Tp*
allocate(size_t __n) allocate(size_t __n)
{ return 0 == __n ? 0 : (_Tp*) _Alloc::allocate(__n * sizeof (_Tp)); } {
_Tp* __ret = 0;
if (__n)
__ret = static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp)));
return __ret;
}
static _Tp* static _Tp*
allocate() allocate()
...@@ -293,9 +299,9 @@ namespace std ...@@ -293,9 +299,9 @@ namespace std
{ {
char* __real_p = (char*)__p - (int) _S_extra; char* __real_p = (char*)__p - (int) _S_extra;
assert(*(size_t*)__real_p == __old_sz); assert(*(size_t*)__real_p == __old_sz);
char* __result = (char*) char* __result = (char*) _Alloc::reallocate(__real_p,
_Alloc::reallocate(__real_p, __old_sz + (int) _S_extra, __old_sz + (int) _S_extra,
__new_sz + (int) _S_extra); __new_sz + (int) _S_extra);
*(size_t*)__result = __new_sz; *(size_t*)__result = __new_sz;
return __result + (int) _S_extra; return __result + (int) _S_extra;
} }
...@@ -362,7 +368,7 @@ namespace std ...@@ -362,7 +368,7 @@ namespace std
static size_t static size_t
_S_freelist_index(size_t __bytes) _S_freelist_index(size_t __bytes)
{ return (((__bytes) + (size_t)_ALIGN-1)/(size_t)_ALIGN - 1); } { return (((__bytes) + (size_t)_ALIGN - 1)/(size_t)_ALIGN - 1); }
// Returns an object of size __n, and optionally adds to size __n // Returns an object of size __n, and optionally adds to size __n
// free list. // free list.
...@@ -402,7 +408,7 @@ namespace std ...@@ -402,7 +408,7 @@ namespace std
else else
__atomic_add(&_S_force_new, -1); __atomic_add(&_S_force_new, -1);
// Trust but verify... // Trust but verify...
assert (_S_force_new != 0); assert(_S_force_new != 0);
} }
if ((__n > (size_t) _MAX_BYTES) || (_S_force_new > 0)) if ((__n > (size_t) _MAX_BYTES) || (_S_force_new > 0))
...@@ -416,13 +422,15 @@ namespace std ...@@ -416,13 +422,15 @@ namespace std
// unwinding. // unwinding.
_Lock __lock_instance; _Lock __lock_instance;
_Obj* __restrict__ __result = *__my_free_list; _Obj* __restrict__ __result = *__my_free_list;
if (__result == 0) if (__builtin_expect(__result == 0, 0))
__ret = _S_refill(_S_round_up(__n)); __ret = _S_refill(_S_round_up(__n));
else else
{ {
*__my_free_list = __result -> _M_free_list_link; *__my_free_list = __result -> _M_free_list_link;
__ret = __result; __ret = __result;
} }
if (__builtin_expect(__ret == 0, 0))
__throw_bad_alloc();
} }
return __ret; return __ret;
} }
...@@ -510,7 +518,7 @@ namespace std ...@@ -510,7 +518,7 @@ namespace std
*__my_free_list = (_Obj*)_S_start_free; *__my_free_list = (_Obj*)_S_start_free;
} }
_S_start_free = (char*) __new_alloc::allocate(__bytes_to_get); _S_start_free = (char*) __new_alloc::allocate(__bytes_to_get);
if (0 == _S_start_free) if (_S_start_free == 0)
{ {
size_t __i; size_t __i;
_Obj* volatile* __my_free_list; _Obj* volatile* __my_free_list;
...@@ -523,7 +531,7 @@ namespace std ...@@ -523,7 +531,7 @@ namespace std
{ {
__my_free_list = _S_free_list + _S_freelist_index(__i); __my_free_list = _S_free_list + _S_freelist_index(__i);
__p = *__my_free_list; __p = *__my_free_list;
if (0 != __p) if (__p != 0)
{ {
*__my_free_list = __p -> _M_free_list_link; *__my_free_list = __p -> _M_free_list_link;
_S_start_free = (char*)__p; _S_start_free = (char*)__p;
...@@ -569,17 +577,17 @@ namespace std ...@@ -569,17 +577,17 @@ namespace std
*__my_free_list = __next_obj = (_Obj*)(__chunk + __n); *__my_free_list = __next_obj = (_Obj*)(__chunk + __n);
for (__i = 1; ; __i++) for (__i = 1; ; __i++)
{ {
__current_obj = __next_obj; __current_obj = __next_obj;
__next_obj = (_Obj*)((char*)__next_obj + __n); __next_obj = (_Obj*)((char*)__next_obj + __n);
if (__nobjs - 1 == __i) if (__nobjs - 1 == __i)
{ {
__current_obj -> _M_free_list_link = 0; __current_obj -> _M_free_list_link = 0;
break; break;
} }
else else
__current_obj -> _M_free_list_link = __next_obj; __current_obj -> _M_free_list_link = __next_obj;
} }
return(__result); return __result;
} }
...@@ -600,7 +608,7 @@ namespace std ...@@ -600,7 +608,7 @@ namespace std
__copy_sz = __new_sz > __old_sz? __old_sz : __new_sz; __copy_sz = __new_sz > __old_sz? __old_sz : __new_sz;
memcpy(__result, __p, __copy_sz); memcpy(__result, __p, __copy_sz);
deallocate(__p, __old_sz); deallocate(__p, __old_sz);
return(__result); return __result;
} }
#endif #endif
...@@ -669,13 +677,20 @@ namespace std ...@@ -669,13 +677,20 @@ namespace std
const_pointer const_pointer
address(const_reference __x) const { return &__x; } address(const_reference __x) const { return &__x; }
// __n is permitted to be 0. The C++ standard says nothing about what // NB: __n is permitted to be 0. The C++ standard says nothing
// the return value is when __n == 0. // about what the return value is when __n == 0.
_Tp* _Tp*
allocate(size_type __n, const void* = 0) allocate(size_type __n, const void* = 0)
{ {
return __n != 0 _Tp* __ret = 0;
? static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp))) : 0; if (__n)
{
if (__n <= this->max_size())
__ret = static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp)));
else
__throw_bad_alloc();
}
return __ret;
} }
// __p is not permitted to be a null pointer. // __p is not permitted to be a null pointer.
...@@ -719,12 +734,13 @@ namespace std ...@@ -719,12 +734,13 @@ namespace std
/** /**
* @if maint * @if maint
* Allocator adaptor to turn an "SGI" style allocator (e.g., __alloc, * Allocator adaptor to turn an "SGI" style allocator (e.g.,
* __malloc_alloc_template) into a "standard" conforming allocator. Note * __alloc, __malloc_alloc_template) into a "standard" conforming
* that this adaptor does *not* assume that all objects of the underlying * allocator. Note that this adaptor does *not* assume that all
* alloc class are identical, nor does it assume that all of the underlying * objects of the underlying alloc class are identical, nor does it
* alloc's member functions are static member functions. Note, also, that * assume that all of the underlying alloc's member functions are
* __allocator<_Tp, __alloc> is essentially the same thing as allocator<_Tp>. * static member functions. Note, also, that __allocator<_Tp,
* __alloc> is essentially the same thing as allocator<_Tp>.
* @endif * @endif
* (See @link Allocators allocators info @endlink for more.) * (See @link Allocators allocators info @endlink for more.)
*/ */
...@@ -732,7 +748,7 @@ namespace std ...@@ -732,7 +748,7 @@ namespace std
struct __allocator struct __allocator
{ {
_Alloc __underlying_alloc; _Alloc __underlying_alloc;
typedef size_t size_type; typedef size_t size_type;
typedef ptrdiff_t difference_type; typedef ptrdiff_t difference_type;
typedef _Tp* pointer; typedef _Tp* pointer;
...@@ -761,29 +777,31 @@ namespace std ...@@ -761,29 +777,31 @@ namespace std
const_pointer const_pointer
address(const_reference __x) const { return &__x; } address(const_reference __x) const { return &__x; }
// __n is permitted to be 0. // NB: __n is permitted to be 0. The C++ standard says nothing
_Tp* // about what the return value is when __n == 0.
allocate(size_type __n, const void* = 0) _Tp*
{ allocate(size_type __n, const void* = 0)
return __n != 0 {
? static_cast<_Tp*>(__underlying_alloc.allocate(__n * sizeof(_Tp))) _Tp* __ret = 0;
: 0; if (__n)
} __ret = static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp)));
return __ret;
// __p is not permitted to be a null pointer. }
void
deallocate(pointer __p, size_type __n)
{ __underlying_alloc.deallocate(__p, __n * sizeof(_Tp)); }
size_type
max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
void
construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); }
void // __p is not permitted to be a null pointer.
destroy(pointer __p) { __p->~_Tp(); } void
}; deallocate(pointer __p, size_type __n)
{ __underlying_alloc.deallocate(__p, __n * sizeof(_Tp)); }
size_type
max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
void
construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); }
void
destroy(pointer __p) { __p->~_Tp(); }
};
template<typename _Alloc> template<typename _Alloc>
struct __allocator<void, _Alloc> struct __allocator<void, _Alloc>
......
...@@ -73,62 +73,62 @@ namespace std ...@@ -73,62 +73,62 @@ namespace std
* See bits/stl_deque.h's _Deque_alloc_base for an explanation. * See bits/stl_deque.h's _Deque_alloc_base for an explanation.
* @endif * @endif
*/ */
template <typename _Tp, typename _Allocator, bool _IsStatic> template<typename _Tp, typename _Allocator, bool _IsStatic>
class _Vector_alloc_base class _Vector_alloc_base
{ {
public: public:
typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
allocator_type; allocator_type;
allocator_type allocator_type
get_allocator() const { return _M_data_allocator; } get_allocator() const { return _M_data_allocator; }
_Vector_alloc_base(const allocator_type& __a) _Vector_alloc_base(const allocator_type& __a)
: _M_data_allocator(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0) : _M_data_allocator(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
{} { }
protected: protected:
allocator_type _M_data_allocator; allocator_type _M_data_allocator;
_Tp* _M_start; _Tp* _M_start;
_Tp* _M_finish; _Tp* _M_finish;
_Tp* _M_end_of_storage; _Tp* _M_end_of_storage;
_Tp* _Tp*
_M_allocate(size_t __n) { return _M_data_allocator.allocate(__n); } _M_allocate(size_t __n) { return _M_data_allocator.allocate(__n); }
void void
_M_deallocate(_Tp* __p, size_t __n) _M_deallocate(_Tp* __p, size_t __n)
{ if (__p) _M_data_allocator.deallocate(__p, __n); } { if (__p) _M_data_allocator.deallocate(__p, __n); }
}; };
/// @if maint Specialization for instanceless allocators. @endif /// @if maint Specialization for instanceless allocators. @endif
template <typename _Tp, typename _Allocator> template<typename _Tp, typename _Allocator>
class _Vector_alloc_base<_Tp, _Allocator, true> class _Vector_alloc_base<_Tp, _Allocator, true>
{ {
public: public:
typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
allocator_type; allocator_type;
allocator_type allocator_type
get_allocator() const { return allocator_type(); } get_allocator() const { return allocator_type(); }
_Vector_alloc_base(const allocator_type&) _Vector_alloc_base(const allocator_type&)
: _M_start(0), _M_finish(0), _M_end_of_storage(0) : _M_start(0), _M_finish(0), _M_end_of_storage(0)
{} { }
protected:
_Tp* _M_start;
_Tp* _M_finish;
_Tp* _M_end_of_storage;
typedef typename _Alloc_traits<_Tp, _Allocator>::_Alloc_type _Alloc_type; protected:
_Tp* _M_start;
_Tp* _M_finish;
_Tp* _M_end_of_storage;
_Tp* typedef typename _Alloc_traits<_Tp, _Allocator>::_Alloc_type _Alloc_type;
_M_allocate(size_t __n) { return _Alloc_type::allocate(__n); }
_Tp*
_M_allocate(size_t __n) { return _Alloc_type::allocate(__n); }
void void
_M_deallocate(_Tp* __p, size_t __n) { _Alloc_type::deallocate(__p, __n);} _M_deallocate(_Tp* __p, size_t __n) { _Alloc_type::deallocate(__p, __n);}
}; };
/** /**
...@@ -136,29 +136,31 @@ namespace std ...@@ -136,29 +136,31 @@ namespace std
* See bits/stl_deque.h's _Deque_base for an explanation. * See bits/stl_deque.h's _Deque_base for an explanation.
* @endif * @endif
*/ */
template <typename _Tp, typename _Alloc> template<typename _Tp, typename _Alloc>
struct _Vector_base struct _Vector_base
: public _Vector_alloc_base<_Tp, _Alloc, : public _Vector_alloc_base<_Tp, _Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless> _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
{
public:
typedef _Vector_alloc_base<_Tp, _Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
_Base;
typedef typename _Base::allocator_type allocator_type;
_Vector_base(const allocator_type& __a)
: _Base(__a) {}
_Vector_base(size_t __n, const allocator_type& __a)
: _Base(__a)
{ {
_M_start = _M_allocate(__n); public:
_M_finish = _M_start; typedef _Vector_alloc_base<_Tp, _Alloc,
_M_end_of_storage = _M_start + __n; _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
} _Base;
typedef typename _Base::allocator_type allocator_type;
~_Vector_base() { _M_deallocate(_M_start, _M_end_of_storage - _M_start); }
}; _Vector_base(const allocator_type& __a)
: _Base(__a) { }
_Vector_base(size_t __n, const allocator_type& __a)
: _Base(__a)
{
_M_start = _M_allocate(__n);
_M_finish = _M_start;
_M_end_of_storage = _M_start + __n;
}
~_Vector_base()
{ _M_deallocate(_M_start, _M_end_of_storage - _M_start); }
};
/** /**
...@@ -179,723 +181,744 @@ namespace std ...@@ -179,723 +181,744 @@ namespace std
* and saves the user from worrying about memory and size allocation. * and saves the user from worrying about memory and size allocation.
* Subscripting ( @c [] ) access is also provided as with C-style arrays. * Subscripting ( @c [] ) access is also provided as with C-style arrays.
*/ */
template <typename _Tp, typename _Alloc = allocator<_Tp> > template<typename _Tp, typename _Alloc = allocator<_Tp> >
class vector : protected _Vector_base<_Tp, _Alloc> class vector : protected _Vector_base<_Tp, _Alloc>
{ {
// concept requirements // Concept requirements.
__glibcpp_class_requires(_Tp, _SGIAssignableConcept) __glibcpp_class_requires(_Tp, _SGIAssignableConcept)
typedef _Vector_base<_Tp, _Alloc> _Base; typedef _Vector_base<_Tp, _Alloc> _Base;
typedef vector<_Tp, _Alloc> vector_type; typedef vector<_Tp, _Alloc> vector_type;
public: public:
typedef _Tp value_type; typedef _Tp value_type;
typedef value_type* pointer; typedef value_type* pointer;
typedef const value_type* const_pointer; typedef const value_type* const_pointer;
typedef __gnu_cxx::__normal_iterator<pointer, vector_type> iterator; typedef __gnu_cxx::__normal_iterator<pointer, vector_type> iterator;
typedef __gnu_cxx::__normal_iterator<const_pointer, vector_type> typedef __gnu_cxx::__normal_iterator<const_pointer, vector_type>
const_iterator; const_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator; typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator; typedef std::reverse_iterator<iterator> reverse_iterator;
typedef value_type& reference; typedef value_type& reference;
typedef const value_type& const_reference; typedef const value_type& const_reference;
typedef size_t size_type; typedef size_t size_type;
typedef ptrdiff_t difference_type; typedef ptrdiff_t difference_type;
typedef typename _Base::allocator_type allocator_type; typedef typename _Base::allocator_type allocator_type;
protected: protected:
/** @if maint /** @if maint
* These two functions and three data members are all from the top-most * These two functions and three data members are all from the
* base class, which varies depending on the type of %allocator. They * top-most base class, which varies depending on the type of
* should be pretty self-explanatory, as %vector uses a simple contiguous * %allocator. They should be pretty self-explanatory, as
* allocation scheme. * %vector uses a simple contiguous allocation scheme. @endif
* @endif */
*/ using _Base::_M_allocate;
using _Base::_M_allocate; using _Base::_M_deallocate;
using _Base::_M_deallocate; using _Base::_M_start;
using _Base::_M_start; using _Base::_M_finish;
using _Base::_M_finish; using _Base::_M_end_of_storage;
using _Base::_M_end_of_storage;
public:
public: // [23.2.4.1] construct/copy/destroy
// [23.2.4.1] construct/copy/destroy // (assign() and get_allocator() are also listed in this section)
// (assign() and get_allocator() are also listed in this section) /**
/** * @brief Default constructor creates no elements.
* @brief Default constructor creates no elements. */
*/ explicit
explicit vector(const allocator_type& __a = allocator_type())
vector(const allocator_type& __a = allocator_type()) : _Base(__a) { }
: _Base(__a) {}
/**
/** * @brief Create a %vector with copies of an exemplar element.
* @brief Create a %vector with copies of an exemplar element. * @param n The number of elements to initially create.
* @param n The number of elements to initially create. * @param value An element to copy.
* @param value An element to copy. *
* * This constructor fills the %vector with @a n copies of @a value.
* This constructor fills the %vector with @a n copies of @a value. */
*/ vector(size_type __n, const value_type& __value,
vector(size_type __n, const value_type& __value, const allocator_type& __a = allocator_type())
const allocator_type& __a = allocator_type())
: _Base(__n, __a) : _Base(__n, __a)
{ _M_finish = uninitialized_fill_n(_M_start, __n, __value); } { _M_finish = uninitialized_fill_n(_M_start, __n, __value); }
/** /**
* @brief Create a %vector with default elements. * @brief Create a %vector with default elements.
* @param n The number of elements to initially create. * @param n The number of elements to initially create.
* *
* This constructor fills the %vector with @a n copies of a * This constructor fills the %vector with @a n copies of a
* default-constructed element. * default-constructed element.
*/ */
explicit explicit
vector(size_type __n) vector(size_type __n)
: _Base(__n, allocator_type()) : _Base(__n, allocator_type())
{ _M_finish = uninitialized_fill_n(_M_start, __n, value_type()); } { _M_finish = uninitialized_fill_n(_M_start, __n, value_type()); }
/** /**
* @brief %Vector copy constructor. * @brief %Vector copy constructor.
* @param x A %vector of identical element and allocator types. * @param x A %vector of identical element and allocator types.
* *
* The newly-created %vector uses a copy of the allocation object used * The newly-created %vector uses a copy of the allocation
* by @a x. All the elements of @a x are copied, but any extra memory in * object used by @a x. All the elements of @a x are copied,
* @a x (for fast expansion) will not be copied. * but any extra memory in
*/ * @a x (for fast expansion) will not be copied.
vector(const vector& __x) */
vector(const vector& __x)
: _Base(__x.size(), __x.get_allocator()) : _Base(__x.size(), __x.get_allocator())
{ _M_finish = uninitialized_copy(__x.begin(), __x.end(), _M_start); } { _M_finish = uninitialized_copy(__x.begin(), __x.end(), _M_start); }
/** /**
* @brief Builds a %vector from a range. * @brief Builds a %vector from a range.
* @param first An input iterator. * @param first An input iterator.
* @param last An input iterator. * @param last An input iterator.
* *
* Create a %vector consisting of copies of the elements from [first,last). * Create a %vector consisting of copies of the elements from
* * [first,last).
* If the iterators are forward, bidirectional, or random-access, then *
* this will call the elements' copy constructor N times (where N is * If the iterators are forward, bidirectional, or random-access, then
* distance(first,last)) and do no memory reallocation. But if only * this will call the elements' copy constructor N times (where N is
* input iterators are used, then this will do at most 2N calls to the * distance(first,last)) and do no memory reallocation. But if only
* copy constructor, and logN memory reallocations. * input iterators are used, then this will do at most 2N calls to the
*/ * copy constructor, and logN memory reallocations.
template <typename _InputIterator> */
vector(_InputIterator __first, _InputIterator __last, template<typename _InputIterator>
const allocator_type& __a = allocator_type()) vector(_InputIterator __first, _InputIterator __last,
: _Base(__a) const allocator_type& __a = allocator_type())
{ : _Base(__a)
// Check whether it's an integral type. If so, it's not an iterator.
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_initialize_dispatch(__first, __last, _Integral());
}
/**
* The dtor only erases the elements, and note that if the elements
* themselves are pointers, the pointed-to memory is not touched in any
* way. Managing the pointer is the user's responsibilty.
*/
~vector() { _Destroy(_M_start, _M_finish); }
/**
* @brief %Vector assignment operator.
* @param x A %vector of identical element and allocator types.
*
* All the elements of @a x are copied, but any extra memory in @a x (for
* fast expansion) will not be copied. Unlike the copy constructor, the
* allocator object is not copied.
*/
vector&
operator=(const vector& __x);
/**
* @brief Assigns a given value to a %vector.
* @param n Number of elements to be assigned.
* @param val Value to be assigned.
*
* This function fills a %vector with @a n copies of the given value.
* Note that the assignment completely changes the %vector and that the
* resulting %vector's size is the same as the number of elements assigned.
* Old data may be lost.
*/
void
assign(size_type __n, const value_type& __val) { _M_fill_assign(__n, __val); }
/**
* @brief Assigns a range to a %vector.
* @param first An input iterator.
* @param last An input iterator.
*
* This function fills a %vector with copies of the elements in the
* range [first,last).
*
* Note that the assignment completely changes the %vector and that the
* resulting %vector's size is the same as the number of elements assigned.
* Old data may be lost.
*/
template<typename _InputIterator>
void
assign(_InputIterator __first, _InputIterator __last)
{
// Check whether it's an integral type. If so, it's not an iterator.
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_assign_dispatch(__first, __last, _Integral());
}
/// Get a copy of the memory allocation object.
allocator_type
get_allocator() const { return _Base::get_allocator(); }
// iterators
/**
* Returns a read/write iterator that points to the first element in the
* %vector. Iteration is done in ordinary element order.
*/
iterator
begin() { return iterator (_M_start); }
/**
* Returns a read-only (constant) iterator that points to the first element
* in the %vector. Iteration is done in ordinary element order.
*/
const_iterator
begin() const { return const_iterator (_M_start); }
/**
* Returns a read/write iterator that points one past the last element in
* the %vector. Iteration is done in ordinary element order.
*/
iterator
end() { return iterator (_M_finish); }
/**
* Returns a read-only (constant) iterator that points one past the last
* element in the %vector. Iteration is done in ordinary element order.
*/
const_iterator
end() const { return const_iterator (_M_finish); }
/**
* Returns a read/write reverse iterator that points to the last element in
* the %vector. Iteration is done in reverse element order.
*/
reverse_iterator
rbegin() { return reverse_iterator(end()); }
/**
* Returns a read-only (constant) reverse iterator that points to the last
* element in the %vector. Iteration is done in reverse element order.
*/
const_reverse_iterator
rbegin() const { return const_reverse_iterator(end()); }
/**
* Returns a read/write reverse iterator that points to one before the
* first element in the %vector. Iteration is done in reverse element
* order.
*/
reverse_iterator
rend() { return reverse_iterator(begin()); }
/**
* Returns a read-only (constant) reverse iterator that points to one
* before the first element in the %vector. Iteration is done in reverse
* element order.
*/
const_reverse_iterator
rend() const { return const_reverse_iterator(begin()); }
// [23.2.4.2] capacity
/** Returns the number of elements in the %vector. */
size_type
size() const { return size_type(end() - begin()); }
/** Returns the size() of the largest possible %vector. */
size_type
max_size() const { return size_type(-1) / sizeof(value_type); }
/**
* @brief Resizes the %vector to the specified number of elements.
* @param new_size Number of elements the %vector should contain.
* @param x Data with which new elements should be populated.
*
* This function will %resize the %vector to the specified number of
* elements. If the number is smaller than the %vector's current size the
* %vector is truncated, otherwise the %vector is extended and new elements
* are populated with given data.
*/
void
resize(size_type __new_size, const value_type& __x)
{
if (__new_size < size())
erase(begin() + __new_size, end());
else
insert(end(), __new_size - size(), __x);
}
/**
* @brief Resizes the %vector to the specified number of elements.
* @param new_size Number of elements the %vector should contain.
*
* This function will resize the %vector to the specified number of
* elements. If the number is smaller than the %vector's current size the
* %vector is truncated, otherwise the %vector is extended and new elements
* are default-constructed.
*/
void
resize(size_type __new_size) { resize(__new_size, value_type()); }
/**
* Returns the total number of elements that the %vector can hold before
* needing to allocate more memory.
*/
size_type
capacity() const
{ return size_type(const_iterator(_M_end_of_storage) - begin()); }
/**
* Returns true if the %vector is empty. (Thus begin() would equal end().)
*/
bool
empty() const { return begin() == end(); }
/**
* @brief Attempt to preallocate enough memory for specified number of
* elements.
* @param n Number of elements required.
* @throw std::length_error If @a n exceeds @c max_size().
*
* This function attempts to reserve enough memory for the %vector to hold
* the specified number of elements. If the number requested is more than
* max_size(), length_error is thrown.
*
* The advantage of this function is that if optimal code is a necessity
* and the user can determine the number of elements that will be required,
* the user can reserve the memory in %advance, and thus prevent a possible
* reallocation of memory and copying of %vector data.
*/
void
reserve(size_type __n);
// element access
/**
* @brief Subscript access to the data contained in the %vector.
* @param n The index of the element for which data should be accessed.
* @return Read/write reference to data.
*
* This operator allows for easy, array-style, data access.
* Note that data access with this operator is unchecked and out_of_range
* lookups are not defined. (For checked lookups see at().)
*/
reference
operator[](size_type __n) { return *(begin() + __n); }
/**
* @brief Subscript access to the data contained in the %vector.
* @param n The index of the element for which data should be accessed.
* @return Read-only (constant) reference to data.
*
* This operator allows for easy, array-style, data access.
* Note that data access with this operator is unchecked and out_of_range
* lookups are not defined. (For checked lookups see at().)
*/
const_reference
operator[](size_type __n) const { return *(begin() + __n); }
protected:
/// @if maint Safety check used only from at(). @endif
void
_M_range_check(size_type __n) const
{
if (__n >= this->size())
__throw_out_of_range("vector [] access out of range");
}
public:
/**
* @brief Provides access to the data contained in the %vector.
* @param n The index of the element for which data should be accessed.
* @return Read/write reference to data.
* @throw std::out_of_range If @a n is an invalid index.
*
* This function provides for safer data access. The parameter is first
* checked that it is in the range of the vector. The function throws
* out_of_range if the check fails.
*/
reference
at(size_type __n) { _M_range_check(__n); return (*this)[__n]; }
/**
* @brief Provides access to the data contained in the %vector.
* @param n The index of the element for which data should be accessed.
* @return Read-only (constant) reference to data.
* @throw std::out_of_range If @a n is an invalid index.
*
* This function provides for safer data access. The parameter is first
* checked that it is in the range of the vector. The function throws
* out_of_range if the check fails.
*/
const_reference
at(size_type __n) const { _M_range_check(__n); return (*this)[__n]; }
/**
* Returns a read/write reference to the data at the first element of the
* %vector.
*/
reference
front() { return *begin(); }
/**
* Returns a read-only (constant) reference to the data at the first
* element of the %vector.
*/
const_reference
front() const { return *begin(); }
/**
* Returns a read/write reference to the data at the last element of the
* %vector.
*/
reference
back() { return *(end() - 1); }
/**
* Returns a read-only (constant) reference to the data at the last
* element of the %vector.
*/
const_reference
back() const { return *(end() - 1); }
// [23.2.4.3] modifiers
/**
* @brief Add data to the end of the %vector.
* @param x Data to be added.
*
* This is a typical stack operation. The function creates an element at
* the end of the %vector and assigns the given data to it.
* Due to the nature of a %vector this operation can be done in constant
* time if the %vector has preallocated space available.
*/
void
push_back(const value_type& __x)
{
if (_M_finish != _M_end_of_storage)
{
_Construct(_M_finish, __x);
++_M_finish;
}
else
_M_insert_aux(end(), __x);
}
/**
* @brief Removes last element.
*
* This is a typical stack operation. It shrinks the %vector by one.
*
* Note that no data is returned, and if the last element's data is
* needed, it should be retrieved before pop_back() is called.
*/
void
pop_back()
{
--_M_finish;
_Destroy(_M_finish);
}
/**
* @brief Inserts given value into %vector before specified iterator.
* @param position An iterator into the %vector.
* @param x Data to be inserted.
* @return An iterator that points to the inserted data.
*
* This function will insert a copy of the given value before the specified
* location.
* Note that this kind of operation could be expensive for a %vector and if
* it is frequently used the user should consider using std::list.
*/
iterator
insert(iterator __position, const value_type& __x);
#ifdef _GLIBCPP_DEPRECATED
/**
* @brief Inserts an element into the %vector.
* @param position An iterator into the %vector.
* @return An iterator that points to the inserted element.
*
* This function will insert a default-constructed element before the
* specified location. You should consider using
* insert(position,value_type()) instead.
* Note that this kind of operation could be expensive for a vector and if
* it is frequently used the user should consider using std::list.
*
* @note This was deprecated in 3.2 and will be removed in 3.4. You must
* define @c _GLIBCPP_DEPRECATED to make this visible in 3.2; see
* c++config.h.
*/
iterator
insert(iterator __position)
{ return insert(__position, value_type()); }
#endif
/**
* @brief Inserts a number of copies of given data into the %vector.
* @param position An iterator into the %vector.
* @param n Number of elements to be inserted.
* @param x Data to be inserted.
*
* This function will insert a specified number of copies of the given data
* before the location specified by @a position.
*
* Note that this kind of operation could be expensive for a %vector and if
* it is frequently used the user should consider using std::list.
*/
void
insert (iterator __pos, size_type __n, const value_type& __x)
{ _M_fill_insert(__pos, __n, __x); }
/**
* @brief Inserts a range into the %vector.
* @param pos An iterator into the %vector.
* @param first An input iterator.
* @param last An input iterator.
*
* This function will insert copies of the data in the range [first,last)
* into the %vector before the location specified by @a pos.
*
* Note that this kind of operation could be expensive for a %vector and if
* it is frequently used the user should consider using std::list.
*/
template<typename _InputIterator>
void
insert(iterator __pos, _InputIterator __first, _InputIterator __last)
{
// Check whether it's an integral type. If so, it's not an iterator.
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_insert_dispatch(__pos, __first, __last, _Integral());
}
/**
* @brief Remove element at given position.
* @param position Iterator pointing to element to be erased.
* @return An iterator pointing to the next element (or end()).
*
* This function will erase the element at the given position and thus
* shorten the %vector by one.
*
* Note This operation could be expensive and if it is frequently used the
* user should consider using std::list. The user is also cautioned that
* this function only erases the element, and that if the element is itself
* a pointer, the pointed-to memory is not touched in any way. Managing
* the pointer is the user's responsibilty.
*/
iterator
erase(iterator __position);
/**
* @brief Remove a range of elements.
* @param first Iterator pointing to the first element to be erased.
* @param last Iterator pointing to one past the last element to be
* erased.
* @return An iterator pointing to the element pointed to by @a last
* prior to erasing (or end()).
*
* This function will erase the elements in the range [first,last) and
* shorten the %vector accordingly.
*
* Note This operation could be expensive and if it is frequently used the
* user should consider using std::list. The user is also cautioned that
* this function only erases the elements, and that if the elements
* themselves are pointers, the pointed-to memory is not touched in any
* way. Managing the pointer is the user's responsibilty.
*/
iterator
erase(iterator __first, iterator __last);
/**
* @brief Swaps data with another %vector.
* @param x A %vector of the same element and allocator types.
*
* This exchanges the elements between two vectors in constant time.
* (Three pointers, so it should be quite fast.)
* Note that the global std::swap() function is specialized such that
* std::swap(v1,v2) will feed to this function.
*/
void
swap(vector& __x)
{
std::swap(_M_start, __x._M_start);
std::swap(_M_finish, __x._M_finish);
std::swap(_M_end_of_storage, __x._M_end_of_storage);
}
/**
* Erases all the elements. Note that this function only erases the
* elements, and that if the elements themselves are pointers, the
* pointed-to memory is not touched in any way. Managing the pointer is
* the user's responsibilty.
*/
void
clear() { erase(begin(), end()); }
protected:
/**
* @if maint
* Memory expansion handler. Uses the member allocation function to
* obtain @a n bytes of memory, and then copies [first,last) into it.
* @endif
*/
template <typename _ForwardIterator>
pointer
_M_allocate_and_copy(size_type __n,
_ForwardIterator __first, _ForwardIterator __last)
{
pointer __result = _M_allocate(__n);
try
{ {
uninitialized_copy(__first, __last, __result); // Check whether it's an integral type. If so, it's not an iterator.
return __result; typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
} _M_initialize_dispatch(__first, __last, _Integral());
catch(...) }
/**
* The dtor only erases the elements, and note that if the elements
* themselves are pointers, the pointed-to memory is not touched in any
* way. Managing the pointer is the user's responsibilty.
*/
~vector() { _Destroy(_M_start, _M_finish); }
/**
* @brief %Vector assignment operator.
* @param x A %vector of identical element and allocator types.
*
* All the elements of @a x are copied, but any extra memory in
* @a x (for fast expansion) will not be copied. Unlike the
* copy constructor, the allocator object is not copied.
*/
vector&
operator=(const vector& __x);
/**
* @brief Assigns a given value to a %vector.
* @param n Number of elements to be assigned.
* @param val Value to be assigned.
*
* This function fills a %vector with @a n copies of the given
* value. Note that the assignment completely changes the
* %vector and that the resulting %vector's size is the same as
* the number of elements assigned. Old data may be lost.
*/
void
assign(size_type __n, const value_type& __val)
{ _M_fill_assign(__n, __val); }
/**
* @brief Assigns a range to a %vector.
* @param first An input iterator.
* @param last An input iterator.
*
* This function fills a %vector with copies of the elements in the
* range [first,last).
*
* Note that the assignment completely changes the %vector and
* that the resulting %vector's size is the same as the number
* of elements assigned. Old data may be lost.
*/
template<typename _InputIterator>
void
assign(_InputIterator __first, _InputIterator __last)
{ {
_M_deallocate(__result, __n); // Check whether it's an integral type. If so, it's not an iterator.
__throw_exception_again; typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
} _M_assign_dispatch(__first, __last, _Integral());
} }
/// Get a copy of the memory allocation object.
// Internal constructor functions follow. allocator_type
get_allocator() const { return _Base::get_allocator(); }
// called by the range constructor to implement [23.1.1]/9
template<typename _Integer> // iterators
/**
* Returns a read/write iterator that points to the first element in the
* %vector. Iteration is done in ordinary element order.
*/
iterator
begin() { return iterator (_M_start); }
/**
* Returns a read-only (constant) iterator that points to the
* first element in the %vector. Iteration is done in ordinary
* element order.
*/
const_iterator
begin() const { return const_iterator (_M_start); }
/**
* Returns a read/write iterator that points one past the last
* element in the %vector. Iteration is done in ordinary
* element order.
*/
iterator
end() { return iterator (_M_finish); }
/**
* Returns a read-only (constant) iterator that points one past the last
* element in the %vector. Iteration is done in ordinary element order.
*/
const_iterator
end() const { return const_iterator (_M_finish); }
/**
* Returns a read/write reverse iterator that points to the
* last element in the %vector. Iteration is done in reverse
* element order.
*/
reverse_iterator
rbegin() { return reverse_iterator(end()); }
/**
* Returns a read-only (constant) reverse iterator that points
* to the last element in the %vector. Iteration is done in
* reverse element order.
*/
const_reverse_iterator
rbegin() const { return const_reverse_iterator(end()); }
/**
* Returns a read/write reverse iterator that points to one before the
* first element in the %vector. Iteration is done in reverse element
* order.
*/
reverse_iterator
rend() { return reverse_iterator(begin()); }
/**
* Returns a read-only (constant) reverse iterator that points
* to one before the first element in the %vector. Iteration
* is done in reverse element order.
*/
const_reverse_iterator
rend() const { return const_reverse_iterator(begin()); }
// [23.2.4.2] capacity
/** Returns the number of elements in the %vector. */
size_type
size() const { return size_type(end() - begin()); }
/** Returns the size() of the largest possible %vector. */
size_type
max_size() const { return size_type(-1) / sizeof(value_type); }
/**
* @brief Resizes the %vector to the specified number of elements.
* @param new_size Number of elements the %vector should contain.
* @param x Data with which new elements should be populated.
*
* This function will %resize the %vector to the specified
* number of elements. If the number is smaller than the
* %vector's current size the %vector is truncated, otherwise
* the %vector is extended and new elements are populated with
* given data.
*/
void void
_M_initialize_dispatch(_Integer __n, _Integer __value, __true_type) resize(size_type __new_size, const value_type& __x)
{ {
_M_start = _M_allocate(__n); if (__new_size < size())
_M_end_of_storage = _M_start + __n; erase(begin() + __new_size, end());
_M_finish = uninitialized_fill_n(_M_start, __n, __value); else
insert(end(), __new_size - size(), __x);
} }
// called by the range constructor to implement [23.1.1]/9 /**
template<typename _InputIter> * @brief Resizes the %vector to the specified number of elements.
* @param new_size Number of elements the %vector should contain.
*
* This function will resize the %vector to the specified
* number of elements. If the number is smaller than the
* %vector's current size the %vector is truncated, otherwise
* the %vector is extended and new elements are
* default-constructed.
*/
void
resize(size_type __new_size) { resize(__new_size, value_type()); }
/**
* Returns the total number of elements that the %vector can hold before
* needing to allocate more memory.
*/
size_type
capacity() const
{ return size_type(const_iterator(_M_end_of_storage) - begin()); }
/**
* Returns true if the %vector is empty. (Thus begin() would
* equal end().)
*/
bool
empty() const { return begin() == end(); }
/**
* @brief Attempt to preallocate enough memory for specified number of
* elements.
* @param n Number of elements required.
* @throw std::length_error If @a n exceeds @c max_size().
*
* This function attempts to reserve enough memory for the
* %vector to hold the specified number of elements. If the
* number requested is more than max_size(), length_error is
* thrown.
*
* The advantage of this function is that if optimal code is a
* necessity and the user can determine the number of elements
* that will be required, the user can reserve the memory in
* %advance, and thus prevent a possible reallocation of memory
* and copying of %vector data.
*/
void
reserve(size_type __n);
// element access
/**
* @brief Subscript access to the data contained in the %vector.
* @param n The index of the element for which data should be accessed.
* @return Read/write reference to data.
*
* This operator allows for easy, array-style, data access.
* Note that data access with this operator is unchecked and
* out_of_range lookups are not defined. (For checked lookups
* see at().)
*/
reference
operator[](size_type __n) { return *(begin() + __n); }
/**
* @brief Subscript access to the data contained in the %vector.
* @param n The index of the element for which data should be
* accessed.
* @return Read-only (constant) reference to data.
*
* This operator allows for easy, array-style, data access.
* Note that data access with this operator is unchecked and
* out_of_range lookups are not defined. (For checked lookups
* see at().)
*/
const_reference
operator[](size_type __n) const { return *(begin() + __n); }
protected:
/// @if maint Safety check used only from at(). @endif
void void
_M_initialize_dispatch(_InputIter __first, _InputIter __last, _M_range_check(size_type __n) const
__false_type)
{ {
typedef typename iterator_traits<_InputIter>::iterator_category if (__n >= this->size())
_IterCategory; __throw_out_of_range("vector [] access out of range");
_M_range_initialize(__first, __last, _IterCategory());
} }
// called by the second initialize_dispatch above public:
template <typename _InputIterator> /**
void * @brief Provides access to the data contained in the %vector.
_M_range_initialize(_InputIterator __first, * @param n The index of the element for which data should be
_InputIterator __last, input_iterator_tag) * accessed.
{ * @return Read/write reference to data.
for ( ; __first != __last; ++__first) * @throw std::out_of_range If @a n is an invalid index.
push_back(*__first); *
} * This function provides for safer data access. The parameter is first
* checked that it is in the range of the vector. The function throws
// called by the second initialize_dispatch above * out_of_range if the check fails.
template <typename _ForwardIterator> */
void _M_range_initialize(_ForwardIterator __first, reference
_ForwardIterator __last, forward_iterator_tag) at(size_type __n) { _M_range_check(__n); return (*this)[__n]; }
{
size_type __n = distance(__first, __last); /**
_M_start = _M_allocate(__n); * @brief Provides access to the data contained in the %vector.
_M_end_of_storage = _M_start + __n; * @param n The index of the element for which data should be
_M_finish = uninitialized_copy(__first, __last, _M_start); * accessed.
} * @return Read-only (constant) reference to data.
* @throw std::out_of_range If @a n is an invalid index.
*
// Internal assign functions follow. The *_aux functions do the actual * This function provides for safer data access. The parameter
// assignment work for the range versions. * is first checked that it is in the range of the vector. The
* function throws out_of_range if the check fails.
// called by the range assign to implement [23.1.1]/9 */
template<typename _Integer> const_reference
void at(size_type __n) const { _M_range_check(__n); return (*this)[__n]; }
_M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
{ /**
_M_fill_assign(static_cast<size_type>(__n), * Returns a read/write reference to the data at the first
static_cast<value_type>(__val)); * element of the %vector.
} */
reference
// called by the range assign to implement [23.1.1]/9 front() { return *begin(); }
template<typename _InputIter>
/**
* Returns a read-only (constant) reference to the data at the first
* element of the %vector.
*/
const_reference
front() const { return *begin(); }
/**
* Returns a read/write reference to the data at the last element of the
* %vector.
*/
reference
back() { return *(end() - 1); }
/**
* Returns a read-only (constant) reference to the data at the last
* element of the %vector.
*/
const_reference
back() const { return *(end() - 1); }
// [23.2.4.3] modifiers
/**
* @brief Add data to the end of the %vector.
* @param x Data to be added.
*
* This is a typical stack operation. The function creates an
* element at the end of the %vector and assigns the given data
* to it. Due to the nature of a %vector this operation can be
* done in constant time if the %vector has preallocated space
* available.
*/
void void
_M_assign_dispatch(_InputIter __first, _InputIter __last, __false_type) push_back(const value_type& __x)
{ {
typedef typename iterator_traits<_InputIter>::iterator_category if (_M_finish != _M_end_of_storage)
_IterCategory; {
_M_assign_aux(__first, __last, _IterCategory()); _Construct(_M_finish, __x);
++_M_finish;
}
else
_M_insert_aux(end(), __x);
} }
// called by the second assign_dispatch above /**
template <typename _InputIterator> * @brief Removes last element.
void *
_M_assign_aux(_InputIterator __first, _InputIterator __last, * This is a typical stack operation. It shrinks the %vector by one.
input_iterator_tag); *
* Note that no data is returned, and if the last element's data is
// called by the second assign_dispatch above * needed, it should be retrieved before pop_back() is called.
template <typename _ForwardIterator> */
void
_M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
forward_iterator_tag);
// Called by assign(n,t), and the range assign when it turns out to be the
// same thing.
void
_M_fill_assign(size_type __n, const value_type& __val);
// Internal insert functions follow.
// called by the range insert to implement [23.1.1]/9
template<typename _Integer>
void void
_M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val, pop_back()
__true_type)
{ {
_M_fill_insert(__pos, static_cast<size_type>(__n), --_M_finish;
static_cast<value_type>(__val)); _Destroy(_M_finish);
} }
// called by the range insert to implement [23.1.1]/9 /**
template<typename _InputIterator> * @brief Inserts given value into %vector before specified iterator.
* @param position An iterator into the %vector.
* @param x Data to be inserted.
* @return An iterator that points to the inserted data.
*
* This function will insert a copy of the given value before
* the specified location. Note that this kind of operation
* could be expensive for a %vector and if it is frequently
* used the user should consider using std::list.
*/
iterator
insert(iterator __position, const value_type& __x);
#ifdef _GLIBCPP_DEPRECATED
/**
* @brief Inserts an element into the %vector.
* @param position An iterator into the %vector.
* @return An iterator that points to the inserted element.
*
* This function will insert a default-constructed element
* before the specified location. You should consider using
* insert(position,value_type()) instead. Note that this kind
* of operation could be expensive for a vector and if it is
* frequently used the user should consider using std::list.
*
* @note This was deprecated in 3.2 and will be removed in 3.4.
* You must define @c _GLIBCPP_DEPRECATED to make this visible
* in 3.2; see c++config.h.
*/
iterator
insert(iterator __position)
{ return insert(__position, value_type()); }
#endif
/**
* @brief Inserts a number of copies of given data into the %vector.
* @param position An iterator into the %vector.
* @param n Number of elements to be inserted.
* @param x Data to be inserted.
*
* This function will insert a specified number of copies of
* the given data before the location specified by @a position.
*
* Note that this kind of operation could be expensive for a
* %vector and if it is frequently used the user should
* consider using std::list.
*/
void
insert(iterator __pos, size_type __n, const value_type& __x)
{ _M_fill_insert(__pos, __n, __x); }
/**
* @brief Inserts a range into the %vector.
* @param pos An iterator into the %vector.
* @param first An input iterator.
* @param last An input iterator.
*
* This function will insert copies of the data in the range
* [first,last) into the %vector before the location specified
* by @a pos.
*
* Note that this kind of operation could be expensive for a
* %vector and if it is frequently used the user should
* consider using std::list.
*/
template<typename _InputIterator>
void
insert(iterator __pos, _InputIterator __first, _InputIterator __last)
{
// Check whether it's an integral type. If so, it's not an iterator.
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_insert_dispatch(__pos, __first, __last, _Integral());
}
/**
* @brief Remove element at given position.
* @param position Iterator pointing to element to be erased.
* @return An iterator pointing to the next element (or end()).
*
* This function will erase the element at the given position and thus
* shorten the %vector by one.
*
* Note This operation could be expensive and if it is
* frequently used the user should consider using std::list.
* The user is also cautioned that this function only erases
* the element, and that if the element is itself a pointer,
* the pointed-to memory is not touched in any way. Managing
* the pointer is the user's responsibilty.
*/
iterator
erase(iterator __position);
/**
* @brief Remove a range of elements.
* @param first Iterator pointing to the first element to be erased.
* @param last Iterator pointing to one past the last element to be
* erased.
* @return An iterator pointing to the element pointed to by @a last
* prior to erasing (or end()).
*
* This function will erase the elements in the range [first,last) and
* shorten the %vector accordingly.
*
* Note This operation could be expensive and if it is
* frequently used the user should consider using std::list.
* The user is also cautioned that this function only erases
* the elements, and that if the elements themselves are
* pointers, the pointed-to memory is not touched in any way.
* Managing the pointer is the user's responsibilty.
*/
iterator
erase(iterator __first, iterator __last);
/**
* @brief Swaps data with another %vector.
* @param x A %vector of the same element and allocator types.
*
* This exchanges the elements between two vectors in constant time.
* (Three pointers, so it should be quite fast.)
* Note that the global std::swap() function is specialized such that
* std::swap(v1,v2) will feed to this function.
*/
void void
_M_insert_dispatch(iterator __pos, _InputIterator __first, swap(vector& __x)
_InputIterator __last, __false_type)
{ {
typedef typename iterator_traits<_InputIterator>::iterator_category std::swap(_M_start, __x._M_start);
_IterCategory; std::swap(_M_finish, __x._M_finish);
_M_range_insert(__pos, __first, __last, _IterCategory()); std::swap(_M_end_of_storage, __x._M_end_of_storage);
} }
// called by the second insert_dispatch above /**
template <typename _InputIterator> * Erases all the elements. Note that this function only erases the
* elements, and that if the elements themselves are pointers, the
* pointed-to memory is not touched in any way. Managing the pointer is
* the user's responsibilty.
*/
void void
_M_range_insert(iterator __pos, clear() { erase(begin(), end()); }
_InputIterator __first, _InputIterator __last,
input_iterator_tag); protected:
/**
// called by the second insert_dispatch above * @if maint
template <typename _ForwardIterator> * Memory expansion handler. Uses the member allocation function to
* obtain @a n bytes of memory, and then copies [first,last) into it.
* @endif
*/
template<typename _ForwardIterator>
pointer
_M_allocate_and_copy(size_type __n,
_ForwardIterator __first, _ForwardIterator __last)
{
pointer __result = _M_allocate(__n);
try
{
uninitialized_copy(__first, __last, __result);
return __result;
}
catch(...)
{
_M_deallocate(__result, __n);
__throw_exception_again;
}
}
// Internal constructor functions follow.
// Called by the range constructor to implement [23.1.1]/9
template<typename _Integer>
void
_M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
{
_M_start = _M_allocate(__n);
_M_end_of_storage = _M_start + __n;
_M_finish = uninitialized_fill_n(_M_start, __n, __value);
}
// Called by the range constructor to implement [23.1.1]/9
template<typename _InputIter>
void
_M_initialize_dispatch(_InputIter __first, _InputIter __last,
__false_type)
{
typedef typename iterator_traits<_InputIter>::iterator_category
_IterCategory;
_M_range_initialize(__first, __last, _IterCategory());
}
// Called by the second initialize_dispatch above
template<typename _InputIterator>
void
_M_range_initialize(_InputIterator __first,
_InputIterator __last, input_iterator_tag)
{
for ( ; __first != __last; ++__first)
push_back(*__first);
}
// Called by the second initialize_dispatch above
template<typename _ForwardIterator>
void
_M_range_initialize(_ForwardIterator __first,
_ForwardIterator __last, forward_iterator_tag)
{
size_type __n = distance(__first, __last);
_M_start = _M_allocate(__n);
_M_end_of_storage = _M_start + __n;
_M_finish = uninitialized_copy(__first, __last, _M_start);
}
// Internal assign functions follow. The *_aux functions do the actual
// assignment work for the range versions.
// Called by the range assign to implement [23.1.1]/9
template<typename _Integer>
void
_M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
{
_M_fill_assign(static_cast<size_type>(__n),
static_cast<value_type>(__val));
}
// Called by the range assign to implement [23.1.1]/9
template<typename _InputIter>
void
_M_assign_dispatch(_InputIter __first, _InputIter __last, __false_type)
{
typedef typename iterator_traits<_InputIter>::iterator_category
_IterCategory;
_M_assign_aux(__first, __last, _IterCategory());
}
// Called by the second assign_dispatch above
template<typename _InputIterator>
void
_M_assign_aux(_InputIterator __first, _InputIterator __last,
input_iterator_tag);
// Called by the second assign_dispatch above
template<typename _ForwardIterator>
void
_M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
forward_iterator_tag);
// Called by assign(n,t), and the range assign when it turns out
// to be the same thing.
void void
_M_range_insert(iterator __pos, _M_fill_assign(size_type __n, const value_type& __val);
_ForwardIterator __first, _ForwardIterator __last,
forward_iterator_tag);
// Internal insert functions follow.
// Called by insert(p,n,x), and the range insert when it turns out to be
// the same thing. // Called by the range insert to implement [23.1.1]/9
void template<typename _Integer>
_M_fill_insert (iterator __pos, size_type __n, const value_type& __x); void
_M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
// called by insert(p,x) __true_type)
void {
_M_insert_aux(iterator __position, const value_type& __x); _M_fill_insert(__pos, static_cast<size_type>(__n),
static_cast<value_type>(__val));
#ifdef _GLIBCPP_DEPRECATED }
// unused now (same situation as in deque)
void _M_insert_aux(iterator __position); // Called by the range insert to implement [23.1.1]/9
#endif template<typename _InputIterator>
}; void
_M_insert_dispatch(iterator __pos, _InputIterator __first,
_InputIterator __last, __false_type)
{
typedef typename iterator_traits<_InputIterator>::iterator_category
_IterCategory;
_M_range_insert(__pos, __first, __last, _IterCategory());
}
// Called by the second insert_dispatch above
template<typename _InputIterator>
void
_M_range_insert(iterator __pos, _InputIterator __first,
_InputIterator __last, input_iterator_tag);
// Called by the second insert_dispatch above
template<typename _ForwardIterator>
void
_M_range_insert(iterator __pos, _ForwardIterator __first,
_ForwardIterator __last, forward_iterator_tag);
// Called by insert(p,n,x), and the range insert when it turns out to be
// the same thing.
void
_M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
// Called by insert(p,x)
void
_M_insert_aux(iterator __position, const value_type& __x);
#ifdef _GLIBCPP_DEPRECATED
// Unused now (same situation as in deque)
void _M_insert_aux(iterator __position);
#endif
};
/** /**
...@@ -908,7 +931,7 @@ namespace std ...@@ -908,7 +931,7 @@ namespace std
* vectors. Vectors are considered equivalent if their sizes are equal, * vectors. Vectors are considered equivalent if their sizes are equal,
* and if corresponding elements compare equal. * and if corresponding elements compare equal.
*/ */
template <typename _Tp, typename _Alloc> template<typename _Tp, typename _Alloc>
inline bool inline bool
operator==(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y) operator==(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y)
{ {
...@@ -927,7 +950,7 @@ namespace std ...@@ -927,7 +950,7 @@ namespace std
* *
* See std::lexographical_compare() for how the determination is made. * See std::lexographical_compare() for how the determination is made.
*/ */
template <typename _Tp, typename _Alloc> template<typename _Tp, typename _Alloc>
inline bool inline bool
operator<(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y) operator<(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y)
{ {
...@@ -936,31 +959,31 @@ namespace std ...@@ -936,31 +959,31 @@ namespace std
} }
/// Based on operator== /// Based on operator==
template <typename _Tp, typename _Alloc> template<typename _Tp, typename _Alloc>
inline bool inline bool
operator!=(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y) operator!=(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y)
{ return !(__x == __y); } { return !(__x == __y); }
/// Based on operator< /// Based on operator<
template <typename _Tp, typename _Alloc> template<typename _Tp, typename _Alloc>
inline bool inline bool
operator>(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y) operator>(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y)
{ return __y < __x; } { return __y < __x; }
/// Based on operator< /// Based on operator<
template <typename _Tp, typename _Alloc> template<typename _Tp, typename _Alloc>
inline bool inline bool
operator<=(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y) operator<=(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y)
{ return !(__y < __x); } { return !(__y < __x); }
/// Based on operator< /// Based on operator<
template <typename _Tp, typename _Alloc> template<typename _Tp, typename _Alloc>
inline bool inline bool
operator>=(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y) operator>=(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y)
{ return !(__x < __y); } { return !(__x < __y); }
/// See std::vector::swap(). /// See std::vector::swap().
template <typename _Tp, typename _Alloc> template<typename _Tp, typename _Alloc>
inline void inline void
swap(vector<_Tp,_Alloc>& __x, vector<_Tp,_Alloc>& __y) swap(vector<_Tp,_Alloc>& __x, vector<_Tp,_Alloc>& __y)
{ __x.swap(__y); } { __x.swap(__y); }
......
...@@ -63,7 +63,7 @@ ...@@ -63,7 +63,7 @@
namespace std namespace std
{ {
template <typename _Tp, typename _Alloc> template<typename _Tp, typename _Alloc>
void void
vector<_Tp,_Alloc>:: vector<_Tp,_Alloc>::
reserve(size_type __n) reserve(size_type __n)
...@@ -82,7 +82,7 @@ namespace std ...@@ -82,7 +82,7 @@ namespace std
} }
} }
template <typename _Tp, typename _Alloc> template<typename _Tp, typename _Alloc>
typename vector<_Tp,_Alloc>::iterator typename vector<_Tp,_Alloc>::iterator
vector<_Tp,_Alloc>:: vector<_Tp,_Alloc>::
insert(iterator __position, const value_type& __x) insert(iterator __position, const value_type& __x)
...@@ -98,7 +98,7 @@ namespace std ...@@ -98,7 +98,7 @@ namespace std
return begin() + __n; return begin() + __n;
} }
template <typename _Tp, typename _Alloc> template<typename _Tp, typename _Alloc>
typename vector<_Tp,_Alloc>::iterator typename vector<_Tp,_Alloc>::iterator
vector<_Tp,_Alloc>:: vector<_Tp,_Alloc>::
erase(iterator __position) erase(iterator __position)
...@@ -110,7 +110,7 @@ namespace std ...@@ -110,7 +110,7 @@ namespace std
return __position; return __position;
} }
template <typename _Tp, typename _Alloc> template<typename _Tp, typename _Alloc>
typename vector<_Tp,_Alloc>::iterator typename vector<_Tp,_Alloc>::iterator
vector<_Tp,_Alloc>:: vector<_Tp,_Alloc>::
erase(iterator __first, iterator __last) erase(iterator __first, iterator __last)
...@@ -121,7 +121,7 @@ namespace std ...@@ -121,7 +121,7 @@ namespace std
return __first; return __first;
} }
template <typename _Tp, typename _Alloc> template<typename _Tp, typename _Alloc>
vector<_Tp,_Alloc>& vector<_Tp,_Alloc>&
vector<_Tp,_Alloc>:: vector<_Tp,_Alloc>::
operator=(const vector<_Tp,_Alloc>& __x) operator=(const vector<_Tp,_Alloc>& __x)
...@@ -152,7 +152,7 @@ namespace std ...@@ -152,7 +152,7 @@ namespace std
return *this; return *this;
} }
template <typename _Tp, typename _Alloc> template<typename _Tp, typename _Alloc>
void void
vector<_Tp,_Alloc>:: vector<_Tp,_Alloc>::
_M_fill_assign(size_t __n, const value_type& __val) _M_fill_assign(size_t __n, const value_type& __val)
...@@ -171,7 +171,7 @@ namespace std ...@@ -171,7 +171,7 @@ namespace std
erase(fill_n(begin(), __n, __val), end()); erase(fill_n(begin(), __n, __val), end());
} }
template <typename _Tp, typename _Alloc> template <typename _InputIter> template<typename _Tp, typename _Alloc> template<typename _InputIter>
void void
vector<_Tp,_Alloc>:: vector<_Tp,_Alloc>::
_M_assign_aux(_InputIter __first, _InputIter __last, input_iterator_tag) _M_assign_aux(_InputIter __first, _InputIter __last, input_iterator_tag)
...@@ -185,7 +185,7 @@ namespace std ...@@ -185,7 +185,7 @@ namespace std
insert(end(), __first, __last); insert(end(), __first, __last);
} }
template <typename _Tp, typename _Alloc> template <typename _ForwardIter> template<typename _Tp, typename _Alloc> template<typename _ForwardIter>
void void
vector<_Tp,_Alloc>:: vector<_Tp,_Alloc>::
_M_assign_aux(_ForwardIter __first, _ForwardIter __last, _M_assign_aux(_ForwardIter __first, _ForwardIter __last,
...@@ -216,7 +216,7 @@ namespace std ...@@ -216,7 +216,7 @@ namespace std
} }
} }
template <typename _Tp, typename _Alloc> template<typename _Tp, typename _Alloc>
void void
vector<_Tp,_Alloc>:: vector<_Tp,_Alloc>::
_M_insert_aux(iterator __position, const _Tp& __x) _M_insert_aux(iterator __position, const _Tp& __x)
...@@ -259,7 +259,7 @@ namespace std ...@@ -259,7 +259,7 @@ namespace std
} }
#ifdef _GLIBCPP_DEPRECATED #ifdef _GLIBCPP_DEPRECATED
template <typename _Tp, typename _Alloc> template<typename _Tp, typename _Alloc>
void void
vector<_Tp,_Alloc>:: vector<_Tp,_Alloc>::
_M_insert_aux(iterator __position) _M_insert_aux(iterator __position)
...@@ -302,63 +302,64 @@ namespace std ...@@ -302,63 +302,64 @@ namespace std
} }
#endif #endif
template <typename _Tp, typename _Alloc> template<typename _Tp, typename _Alloc>
void void
vector<_Tp,_Alloc>:: vector<_Tp,_Alloc>::
_M_fill_insert(iterator __position, size_type __n, const value_type& __x) _M_fill_insert(iterator __position, size_type __n, const value_type& __x)
{ {
if (__n != 0) if (__n != 0)
{ {
if (size_type(_M_end_of_storage - _M_finish) >= __n) { if (size_type(_M_end_of_storage - _M_finish) >= __n)
value_type __x_copy = __x; {
const size_type __elems_after = end() - __position; value_type __x_copy = __x;
iterator __old_finish(_M_finish); const size_type __elems_after = end() - __position;
if (__elems_after > __n) iterator __old_finish(_M_finish);
{ if (__elems_after > __n)
uninitialized_copy(_M_finish - __n, _M_finish, _M_finish); {
_M_finish += __n; uninitialized_copy(_M_finish - __n, _M_finish, _M_finish);
copy_backward(__position, __old_finish - __n, __old_finish); _M_finish += __n;
fill(__position, __position + __n, __x_copy); copy_backward(__position, __old_finish - __n, __old_finish);
} fill(__position, __position + __n, __x_copy);
else }
{ else
uninitialized_fill_n(_M_finish, __n - __elems_after, __x_copy); {
_M_finish += __n - __elems_after; uninitialized_fill_n(_M_finish, __n - __elems_after, __x_copy);
uninitialized_copy(__position, __old_finish, _M_finish); _M_finish += __n - __elems_after;
_M_finish += __elems_after; uninitialized_copy(__position, __old_finish, _M_finish);
fill(__position, __old_finish, __x_copy); _M_finish += __elems_after;
} fill(__position, __old_finish, __x_copy);
} }
}
else else
{ {
const size_type __old_size = size(); const size_type __old_size = size();
const size_type __len = __old_size + max(__old_size, __n); const size_type __len = __old_size + max(__old_size, __n);
iterator __new_start(_M_allocate(__len)); iterator __new_start(_M_allocate(__len));
iterator __new_finish(__new_start); iterator __new_finish(__new_start);
try try
{ {
__new_finish = uninitialized_copy(begin(), __position, __new_finish = uninitialized_copy(begin(), __position,
__new_start); __new_start);
__new_finish = uninitialized_fill_n(__new_finish, __n, __x); __new_finish = uninitialized_fill_n(__new_finish, __n, __x);
__new_finish __new_finish = uninitialized_copy(__position, end(),
= uninitialized_copy(__position, end(), __new_finish); __new_finish);
} }
catch(...) catch(...)
{ {
_Destroy(__new_start,__new_finish); _Destroy(__new_start,__new_finish);
_M_deallocate(__new_start.base(),__len); _M_deallocate(__new_start.base(),__len);
__throw_exception_again; __throw_exception_again;
} }
_Destroy(_M_start, _M_finish); _Destroy(_M_start, _M_finish);
_M_deallocate(_M_start, _M_end_of_storage - _M_start); _M_deallocate(_M_start, _M_end_of_storage - _M_start);
_M_start = __new_start.base(); _M_start = __new_start.base();
_M_finish = __new_finish.base(); _M_finish = __new_finish.base();
_M_end_of_storage = __new_start.base() + __len; _M_end_of_storage = __new_start.base() + __len;
} }
} }
} }
template <typename _Tp, typename _Alloc> template <typename _InputIterator> template<typename _Tp, typename _Alloc> template<typename _InputIterator>
void void
vector<_Tp,_Alloc>:: vector<_Tp,_Alloc>::
_M_range_insert(iterator __pos, _M_range_insert(iterator __pos,
...@@ -372,12 +373,11 @@ namespace std ...@@ -372,12 +373,11 @@ namespace std
} }
} }
template <typename _Tp, typename _Alloc> template <typename _ForwardIterator> template<typename _Tp, typename _Alloc> template<typename _ForwardIterator>
void void
vector<_Tp,_Alloc>:: vector<_Tp,_Alloc>::
_M_range_insert(iterator __position, _M_range_insert(iterator __position,_ForwardIterator __first,
_ForwardIterator __first, _ForwardIterator __last, _ForwardIterator __last, forward_iterator_tag)
forward_iterator_tag)
{ {
if (__first != __last) if (__first != __last)
{ {
......
// 2001-06-14 Benjamin Kosnik <bkoz@redhat.com> // 2001-06-14 Benjamin Kosnik <bkoz@redhat.com>
// Copyright (C) 2001 Free Software Foundation, Inc. // Copyright (C) 2001, 2002 Free Software Foundation, Inc.
// //
// This file is part of the GNU ISO C++ Library. This library is free // This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the // software; you can redistribute it and/or modify it under the
...@@ -21,6 +21,7 @@ ...@@ -21,6 +21,7 @@
// 20.4.1.1 allocator members // 20.4.1.1 allocator members
#include <memory> #include <memory>
#include <stdexcept>
#include <cstdlib> #include <cstdlib>
#include <testsuite_hooks.h> #include <testsuite_hooks.h>
...@@ -42,7 +43,7 @@ void operator delete(void *v) throw() ...@@ -42,7 +43,7 @@ void operator delete(void *v) throw()
return std::free(v); return std::free(v);
} }
int main(void) void test01()
{ {
bool test = true; bool test = true;
std::allocator<gnu> obj; std::allocator<gnu> obj;
...@@ -55,6 +56,34 @@ int main(void) ...@@ -55,6 +56,34 @@ int main(void)
obj.deallocate(pobj, 256); obj.deallocate(pobj, 256);
VERIFY( check_delete ); VERIFY( check_delete );
}
// libstdc++/8230
void test02()
{
bool test = true;
try
{
std::allocator<int> alloc;
const std::allocator<int>::size_type n = alloc.max_size();
int* p = alloc.allocate(n + 1);
p[n] = 2002;
}
catch(const std::bad_alloc& e)
{
// Allowed.
test = true;
}
catch(...)
{
test = false;
}
VERIFY( test );
}
int main()
{
test01();
test02();
return 0; return 0;
} }
...@@ -99,9 +99,30 @@ void test02() ...@@ -99,9 +99,30 @@ void test02()
} }
} }
void test03()
{
bool test = true;
std::vector<int> v;
try
{
v.resize(v.max_size());
v[v.max_size() - 1] = 2002;
}
catch (const std::bad_alloc& error)
{
test = true;
}
catch (...)
{
test = false;
}
VERIFY( test );
}
int main() int main()
{ {
test01(); test01();
test02(); test02();
test03();
return 0; return 0;
} }
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment