Commit ae180d84 by Jeff Law

v850: New directory for v850 port.

Fri Sep  5 10:08:44 1997  Jeffrey A Law  (law@cygnus.com)

        * v850: New directory for v850 port.
        * v850/lib1funcs.asm: New file.
        * t-v850, v850.c, v850.h, v850.md, xm-v850.h: New files.
        * ginclude/va-v850.h: New file.
        * varargs.h, stdarg.h: Include va-mn10200.h.
        * configure.in (mn10200-*-*): New target.
        * Makefile.in (USER_H): Add va-mn10200.h.

From-SVN: r15103
parent 89cc6098
/* CYGNUS LOCAL entire file v850/law */
/* libgcc1 routines for NEC V850.
Copyright (C) 1996, 1997 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file with other programs, and to distribute
those programs without any restriction coming from the use of this
file. (The General Public License restrictions do apply in other
respects; for example, they cover modification of the file, and
distribution when not linked into another program.)
This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* As a special exception, if you link this library with files
compiled with GCC to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public License.
This exception does not however invalidate any other reasons why
the executable file might be covered by the GNU General Public License. */
#ifdef L_mulsi3
.text
.globl ___mulsi3
.type ___mulsi3,@function
/*
* In order to not deal with negative numbers (mulh is a signed multiply
* and we want an unsigned multiply, code the multiplication as a series
* of 7 bit multiplies).
*
* int __mulsi3 (unsigned a, unsigned b)
* {
* int i, j;
* int ret = 0;
*
* for (i = 0; i < 32; i += 7)
* {
* short a_part = a & 0x7f;
* unsigned b_tmp = b;
* a >>= 7;
*
* for (j = 0; (i+j) < 32; j += 7)
* {
* short b_part = b_tmp & 0x7f;
* ret += (((int)a_part) * ((int)b_part)) << (i+j);
* b_tmp >>= 7;
* }
* }
*
* return ret;
* }
*/
___mulsi3:
mov 0,r10 /* total */
mov 0,r14 /* i = 0, index for multiply a's part */
movea lo(31),r0,r16 /* upper bounds for loop */
.L5:
mov r7,r13 /* b_tmp = b */
andi 0x7f,r6,r15 /* a_part = (a & 127) */
shr 7,r6 /* a >>= 7 */
mov r14,r12 /* i+j = i */
.L9:
andi 0x7f,r13,r11 /* b_part = (b_tmp & 127) */
mulh r15,r11 /* ((int)a_part) * ((int)b_part) */
shr 7,r13 /* b_tmp >>= 7 */
shl r12,r11 /* (((int)a_part) * ((int)b_part)) << (i+j) */
add r11,r10 /* ret += (((int)a_part) * ((int)b_part)) << (i+j) */
add 7,r12 /* i+j += 7 */
cmp r16,r12 /* i+j < 32 */
ble .L9
add 7,r14 /* i += 7 */
cmp r16,r14 /* i < 32 */
ble .L5
jmp [r31] /* return */
.size __mulsi3,.-__mulsi3
#endif
#ifdef L_udivsi3
.global ___udivsi3
___udivsi3:
mov 1,r12
mov 0,r10
cmp r6,r7
bnl .L12
movhi hi(-2147483648),r0,r13
cmp r0,r7
blt .L12
.L4:
shl 1,r7
shl 1,r12
cmp r6,r7
bnl .L12
cmp r0,r12
be .L8
mov r7,r5
and r13,r5
be .L4
br .L12
.L9:
cmp r7,r6
bl .L10
sub r7,r6
or r12,r10
.L10:
shr 1,r12
shr 1,r7
.L12:
cmp r0,r12
bne .L9
.L8:
jmp [r31]
.size __udivsi3,.-__udivsi3
#endif
#ifdef L_divsi3
.text
.globl ___divsi3
.type ___divsi3,@function
___divsi3:
add -8,sp
st.w r31,4[sp]
st.w r22,0[sp]
mov 1,r22
tst r7,r7
bp .L3
subr r0,r7
subr r0,r22
.L3:
tst r6,r6
bp .L4
subr r0,r6
subr r0,r22
.L4:
jarl ___udivsi3,r31
cmp r0,r22
bp .L7
subr r0,r10
.L7:
ld.w 0[sp],r22
ld.w 4[sp],r31
add 8,sp
jmp [r31]
.size __divsi3,.-__divsi3
#endif
#ifdef L_umodsi3
.text
.globl ___umodsi3
.type ___umodsi3,@function
___umodsi3:
add -12,sp
st.w r31,8[sp]
st.w r7,4[sp]
st.w r6,0[sp]
jarl ___udivsi3,r31
ld.w 4[sp],r7
mov r10,r6
jarl ___mulsi3,r31
ld.w 0[sp],r6
subr r6,r10
ld.w 8[sp],r31
add 12,sp
jmp [r31]
.size __umodsi3,.-__umodsi3
#endif /* L_umodsi3 */
#ifdef L_modsi3
.text
.globl ___modsi3
.type ___modsi3,@function
___modsi3:
add -12,sp
st.w r31,8[sp]
st.w r7,4[sp]
st.w r6,0[sp]
jarl ___divsi3,r31
ld.w 4[sp],r7
mov r10,r6
jarl ___mulsi3,r31
ld.w 0[sp],r6
subr r6,r10
ld.w 8[sp],r31
add 12,sp
jmp [r31]
.size __modsi3,.-__modsi3
#endif /* L_modsi3 */
#ifdef L_save_2
.text
.align 2
.globl __save_r2_r29
.type __save_r2_r29,@function
/* Allocate space and save registers 2, 20 .. 29 on the stack */
/* Called via: jalr __save_r2_r29,r10 */
__save_r2_r29:
mov ep,r1
addi -44,sp,sp
mov sp,ep
sst.w r29,0[ep]
sst.w r28,4[ep]
sst.w r27,8[ep]
sst.w r26,12[ep]
sst.w r25,16[ep]
sst.w r24,20[ep]
sst.w r23,24[ep]
sst.w r22,28[ep]
sst.w r21,32[ep]
sst.w r20,36[ep]
sst.w r2,40[ep]
mov r1,ep
jmp [r10]
.size __save_r2_r29,.-__save_r2_r29
/* Restore saved registers, deallocate stack and return to the user */
/* Called via: jr __return_r2_r29 */
.align 2
.globl __return_r2_r29
.type __return_r2_r29,@function
__return_r2_r29:
mov ep,r1
mov sp,ep
sld.w 0[ep],r29
sld.w 4[ep],r28
sld.w 8[ep],r27
sld.w 12[ep],r26
sld.w 16[ep],r25
sld.w 20[ep],r24
sld.w 24[ep],r23
sld.w 28[ep],r22
sld.w 32[ep],r21
sld.w 36[ep],r20
sld.w 40[ep],r2
addi 44,sp,sp
mov r1,ep
jmp [r31]
.size __return_r2_r29,.-__return_r2_r29
#endif /* L_save_2 */
#ifdef L_save_20
.text
.align 2
.globl __save_r20_r29
.type __save_r20_r29,@function
/* Allocate space and save registers 20 .. 29 on the stack */
/* Called via: jalr __save_r20_r29,r10 */
__save_r20_r29:
mov ep,r1
addi -40,sp,sp
mov sp,ep
sst.w r29,0[ep]
sst.w r28,4[ep]
sst.w r27,8[ep]
sst.w r26,12[ep]
sst.w r25,16[ep]
sst.w r24,20[ep]
sst.w r23,24[ep]
sst.w r22,28[ep]
sst.w r21,32[ep]
sst.w r20,36[ep]
mov r1,ep
jmp [r10]
.size __save_r20_r29,.-__save_r20_r29
/* Restore saved registers, deallocate stack and return to the user */
/* Called via: jr __return_r20_r29 */
.align 2
.globl __return_r20_r29
.type __return_r20_r29,@function
__return_r20_r29:
mov ep,r1
mov sp,ep
sld.w 0[ep],r29
sld.w 4[ep],r28
sld.w 8[ep],r27
sld.w 12[ep],r26
sld.w 16[ep],r25
sld.w 20[ep],r24
sld.w 24[ep],r23
sld.w 28[ep],r22
sld.w 32[ep],r21
sld.w 36[ep],r20
addi 40,sp,sp
mov r1,ep
jmp [r31]
.size __return_r20_r29,.-__return_r20_r29
#endif /* L_save_20 */
#ifdef L_save_21
.text
.align 2
.globl __save_r21_r29
.type __save_r21_r29,@function
/* Allocate space and save registers 21 .. 29 on the stack */
/* Called via: jalr __save_r21_r29,r10 */
__save_r21_r29:
mov ep,r1
addi -36,sp,sp
mov sp,ep
sst.w r29,0[ep]
sst.w r28,4[ep]
sst.w r27,8[ep]
sst.w r26,12[ep]
sst.w r25,16[ep]
sst.w r24,20[ep]
sst.w r23,24[ep]
sst.w r22,28[ep]
sst.w r21,32[ep]
mov r1,ep
jmp [r10]
.size __save_r21_r29,.-__save_r21_r29
/* Restore saved registers, deallocate stack and return to the user */
/* Called via: jr __return_r21_r29 */
.align 2
.globl __return_r21_r29
.type __return_r21_r29,@function
__return_r21_r29:
mov ep,r1
mov sp,ep
sld.w 0[ep],r29
sld.w 4[ep],r28
sld.w 8[ep],r27
sld.w 12[ep],r26
sld.w 16[ep],r25
sld.w 20[ep],r24
sld.w 24[ep],r23
sld.w 28[ep],r22
sld.w 32[ep],r21
addi 36,sp,sp
mov r1,ep
jmp [r31]
.size __return_r21_r29,.-__return_r21_r29
#endif /* L_save_21 */
#ifdef L_save_22
.text
.align 2
.globl __save_r22_r29
.type __save_r22_r29,@function
/* Allocate space and save registers 22 .. 29 on the stack */
/* Called via: jalr __save_r22_r29,r10 */
__save_r22_r29:
mov ep,r1
addi -32,sp,sp
mov sp,ep
sst.w r29,0[ep]
sst.w r28,4[ep]
sst.w r27,8[ep]
sst.w r26,12[ep]
sst.w r25,16[ep]
sst.w r24,20[ep]
sst.w r23,24[ep]
sst.w r22,28[ep]
mov r1,ep
jmp [r10]
.size __save_r22_r29,.-__save_r22_r29
/* Restore saved registers, deallocate stack and return to the user */
/* Called via: jr __return_r22_r29 */
.align 2
.globl __return_r22_r29
.type __return_r22_r29,@function
__return_r22_r29:
mov ep,r1
mov sp,ep
sld.w 0[ep],r29
sld.w 4[ep],r28
sld.w 8[ep],r27
sld.w 12[ep],r26
sld.w 16[ep],r25
sld.w 20[ep],r24
sld.w 24[ep],r23
sld.w 28[ep],r22
addi 32,sp,sp
mov r1,ep
jmp [r31]
.size __return_r22_r29,.-__return_r22_r29
#endif /* L_save_22 */
#ifdef L_save_23
.text
.align 2
.globl __save_r23_r29
.type __save_r23_r29,@function
/* Allocate space and save registers 23 .. 29 on the stack */
/* Called via: jalr __save_r23_r29,r10 */
__save_r23_r29:
mov ep,r1
addi -28,sp,sp
mov sp,ep
sst.w r29,0[ep]
sst.w r28,4[ep]
sst.w r27,8[ep]
sst.w r26,12[ep]
sst.w r25,16[ep]
sst.w r24,20[ep]
sst.w r23,24[ep]
mov r1,ep
jmp [r10]
.size __save_r23_r29,.-__save_r23_r29
/* Restore saved registers, deallocate stack and return to the user */
/* Called via: jr __return_r23_r29 */
.align 2
.globl __return_r23_r29
.type __return_r23_r29,@function
__return_r23_r29:
mov ep,r1
mov sp,ep
sld.w 0[ep],r29
sld.w 4[ep],r28
sld.w 8[ep],r27
sld.w 12[ep],r26
sld.w 16[ep],r25
sld.w 20[ep],r24
sld.w 24[ep],r23
addi 28,sp,sp
mov r1,ep
jmp [r31]
.size __return_r23_r29,.-__return_r23_r29
#endif /* L_save_23 */
#ifdef L_save_24
.text
.align 2
.globl __save_r24_r29
.type __save_r24_r29,@function
/* Allocate space and save registers 24 .. 29 on the stack */
/* Called via: jalr __save_r24_r29,r10 */
__save_r24_r29:
mov ep,r1
addi -24,sp,sp
mov sp,ep
sst.w r29,0[ep]
sst.w r28,4[ep]
sst.w r27,8[ep]
sst.w r26,12[ep]
sst.w r25,16[ep]
sst.w r24,20[ep]
mov r1,ep
jmp [r10]
.size __save_r24_r29,.-__save_r24_r29
/* Restore saved registers, deallocate stack and return to the user */
/* Called via: jr __return_r24_r29 */
.align 2
.globl __return_r24_r29
.type __return_r24_r29,@function
__return_r24_r29:
mov ep,r1
mov sp,ep
sld.w 0[ep],r29
sld.w 4[ep],r28
sld.w 8[ep],r27
sld.w 12[ep],r26
sld.w 16[ep],r25
sld.w 20[ep],r24
addi 24,sp,sp
mov r1,ep
jmp [r31]
.size __return_r24_r29,.-__return_r24_r29
#endif /* L_save_24 */
#ifdef L_save_25
.text
.align 2
.globl __save_r25_r29
.type __save_r25_r29,@function
/* Allocate space and save registers 25 .. 29 on the stack */
/* Called via: jalr __save_r25_r29,r10 */
__save_r25_r29:
mov ep,r1
addi -20,sp,sp
mov sp,ep
sst.w r29,0[ep]
sst.w r28,4[ep]
sst.w r27,8[ep]
sst.w r26,12[ep]
sst.w r25,16[ep]
mov r1,ep
jmp [r10]
.size __save_r25_r29,.-__save_r25_r29
/* Restore saved registers, deallocate stack and return to the user */
/* Called via: jr __return_r25_r29 */
.align 2
.globl __return_r25_r29
.type __return_r25_r29,@function
__return_r25_r29:
mov ep,r1
mov sp,ep
sld.w 0[ep],r29
sld.w 4[ep],r28
sld.w 8[ep],r27
sld.w 12[ep],r26
sld.w 16[ep],r25
addi 20,sp,sp
mov r1,ep
jmp [r31]
.size __return_r25_r29,.-__return_r25_r29
#endif /* L_save_25 */
#ifdef L_save_26
.text
.align 2
.globl __save_r26_r29
.type __save_r26_r29,@function
/* Allocate space and save registers 26 .. 29 on the stack */
/* Called via: jalr __save_r26_r29,r10 */
__save_r26_r29:
mov ep,r1
add -16,sp
mov sp,ep
sst.w r29,0[ep]
sst.w r28,4[ep]
sst.w r27,8[ep]
sst.w r26,12[ep]
mov r1,ep
jmp [r10]
.size __save_r26_r29,.-__save_r26_r29
/* Restore saved registers, deallocate stack and return to the user */
/* Called via: jr __return_r26_r29 */
.align 2
.globl __return_r26_r29
.type __return_r26_r29,@function
__return_r26_r29:
mov ep,r1
mov sp,ep
sld.w 0[ep],r29
sld.w 4[ep],r28
sld.w 8[ep],r27
sld.w 12[ep],r26
addi 16,sp,sp
mov r1,ep
jmp [r31]
.size __return_r26_r29,.-__return_r26_r29
#endif /* L_save_26 */
#ifdef L_save_27
.text
.align 2
.globl __save_r27_r29
.type __save_r27_r29,@function
/* Allocate space and save registers 27 .. 29 on the stack */
/* Called via: jalr __save_r27_r29,r10 */
__save_r27_r29:
add -12,sp
st.w r29,0[sp]
st.w r28,4[sp]
st.w r27,8[sp]
jmp [r10]
.size __save_r27_r29,.-__save_r27_r29
/* Restore saved registers, deallocate stack and return to the user */
/* Called via: jr __return_r27_r29 */
.align 2
.globl __return_r27_r29
.type __return_r27_r29,@function
__return_r27_r29:
ld.w 0[sp],r29
ld.w 4[sp],r28
ld.w 8[sp],r27
add 12,sp
jmp [r31]
.size __return_r27_r29,.-__return_r27_r29
#endif /* L_save_27 */
#ifdef L_save_28
.text
.align 2
.globl __save_r28_r29
.type __save_r28_r29,@function
/* Allocate space and save registers 28,29 on the stack */
/* Called via: jalr __save_r28_r29,r10 */
__save_r28_r29:
add -8,sp
st.w r29,0[sp]
st.w r28,4[sp]
jmp [r10]
.size __save_r28_r29,.-__save_r28_r29
/* Restore saved registers, deallocate stack and return to the user */
/* Called via: jr __return_r28_r29 */
.align 2
.globl __return_r28_r29
.type __return_r28_r29,@function
__return_r28_r29:
ld.w 0[sp],r29
ld.w 4[sp],r28
add 8,sp
jmp [r31]
.size __return_r28_r29,.-__return_r28_r29
#endif /* L_save_28 */
#ifdef L_save_29
.text
.align 2
.globl __save_r29
.type __save_r29,@function
/* Allocate space and save register 29 on the stack */
/* Called via: jalr __save_r29,r10 */
__save_r29:
add -4,sp
st.w r29,0[sp]
jmp [r10]
.size __save_r29,.-__save_r29
/* Restore saved register 29, deallocate stack and return to the user */
/* Called via: jr __return_r29 */
.align 2
.globl __return_r29
.type __return_r29,@function
__return_r29:
ld.w 0[sp],r29
add 4,sp
jmp [r31]
.size __return_r29,.-__return_r29
#endif /* L_save_28 */
#ifdef L_save_2c
.text
.align 2
.globl __save_r2_r31
.type __save_r2_r31,@function
/* Allocate space and save registers 20 .. 29, 31 on the stack */
/* Also allocate space for the argument save area */
/* Called via: jalr __save_r2_r31,r10 */
__save_r2_r31:
mov ep,r1
addi -64,sp,sp
mov sp,ep
sst.w r29,16[ep]
sst.w r28,20[ep]
sst.w r27,24[ep]
sst.w r26,28[ep]
sst.w r25,32[ep]
sst.w r24,36[ep]
sst.w r23,40[ep]
sst.w r22,44[ep]
sst.w r21,48[ep]
sst.w r20,52[ep]
sst.w r2,56[ep]
sst.w r31,60[ep]
mov r1,ep
jmp [r10]
.size __save_r2_r31,.-__save_r2_r31
/* Restore saved registers, deallocate stack and return to the user */
/* Called via: jr __return_r20_r31 */
.align 2
.globl __return_r2_r31
.type __return_r2_r31,@function
__return_r2_r31:
mov ep,r1
mov sp,ep
sld.w 16[ep],r29
sld.w 20[ep],r28
sld.w 24[ep],r27
sld.w 28[ep],r26
sld.w 32[ep],r25
sld.w 36[ep],r24
sld.w 40[ep],r23
sld.w 44[ep],r22
sld.w 48[ep],r21
sld.w 52[ep],r20
sld.w 56[ep],r2
sld.w 60[ep],r31
addi 64,sp,sp
mov r1,ep
jmp [r31]
.size __return_r2_r31,.-__return_r2_r31
#endif /* L_save_2c */
#ifdef L_save_20c
.text
.align 2
.globl __save_r20_r31
.type __save_r20_r31,@function
/* Allocate space and save registers 20 .. 29, 31 on the stack */
/* Also allocate space for the argument save area */
/* Called via: jalr __save_r20_r31,r10 */
__save_r20_r31:
mov ep,r1
addi -60,sp,sp
mov sp,ep
sst.w r29,16[ep]
sst.w r28,20[ep]
sst.w r27,24[ep]
sst.w r26,28[ep]
sst.w r25,32[ep]
sst.w r24,36[ep]
sst.w r23,40[ep]
sst.w r22,44[ep]
sst.w r21,48[ep]
sst.w r20,52[ep]
sst.w r31,56[ep]
mov r1,ep
jmp [r10]
.size __save_r20_r31,.-__save_r20_r31
/* Restore saved registers, deallocate stack and return to the user */
/* Called via: jr __return_r20_r31 */
.align 2
.globl __return_r20_r31
.type __return_r20_r31,@function
__return_r20_r31:
mov ep,r1
mov sp,ep
sld.w 16[ep],r29
sld.w 20[ep],r28
sld.w 24[ep],r27
sld.w 28[ep],r26
sld.w 32[ep],r25
sld.w 36[ep],r24
sld.w 40[ep],r23
sld.w 44[ep],r22
sld.w 48[ep],r21
sld.w 52[ep],r20
sld.w 56[ep],r31
addi 60,sp,sp
mov r1,ep
jmp [r31]
.size __return_r20_r31,.-__return_r20_r31
#endif /* L_save_20c */
#ifdef L_save_21c
.text
.align 2
.globl __save_r21_r31
.type __save_r21_r31,@function
/* Allocate space and save registers 21 .. 29, 31 on the stack */
/* Also allocate space for the argument save area */
/* Called via: jalr __save_r21_r31,r10 */
__save_r21_r31:
mov ep,r1
addi -56,sp,sp
mov sp,ep
sst.w r29,16[ep]
sst.w r28,20[ep]
sst.w r27,24[ep]
sst.w r26,28[ep]
sst.w r25,32[ep]
sst.w r24,36[ep]
sst.w r23,40[ep]
sst.w r22,44[ep]
sst.w r21,48[ep]
sst.w r31,52[ep]
mov r1,ep
jmp [r10]
.size __save_r21_r31,.-__save_r21_r31
/* Restore saved registers, deallocate stack and return to the user */
/* Called via: jr __return_r21_r31 */
.align 2
.globl __return_r21_r31
.type __return_r21_r31,@function
__return_r21_r31:
mov ep,r1
mov sp,ep
sld.w 16[ep],r29
sld.w 20[ep],r28
sld.w 24[ep],r27
sld.w 28[ep],r26
sld.w 32[ep],r25
sld.w 36[ep],r24
sld.w 40[ep],r23
sld.w 44[ep],r22
sld.w 48[ep],r21
sld.w 52[ep],r31
addi 56,sp,sp
mov r1,ep
jmp [r31]
.size __return_r21_r31,.-__return_r21_r31
#endif /* L_save_21c */
#ifdef L_save_22c
.text
.align 2
.globl __save_r22_r31
.type __save_r22_r31,@function
/* Allocate space and save registers 22 .. 29, 31 on the stack */
/* Also allocate space for the argument save area */
/* Called via: jalr __save_r22_r31,r10 */
__save_r22_r31:
mov ep,r1
addi -52,sp,sp
mov sp,ep
sst.w r29,16[ep]
sst.w r28,20[ep]
sst.w r27,24[ep]
sst.w r26,28[ep]
sst.w r25,32[ep]
sst.w r24,36[ep]
sst.w r23,40[ep]
sst.w r22,44[ep]
sst.w r31,48[ep]
mov r1,ep
jmp [r10]
.size __save_r22_r31,.-__save_r22_r31
/* Restore saved registers, deallocate stack and return to the user */
/* Called via: jr __return_r22_r31 */
.align 2
.globl __return_r22_r31
.type __return_r22_r31,@function
__return_r22_r31:
mov ep,r1
mov sp,ep
sld.w 16[ep],r29
sld.w 20[ep],r28
sld.w 24[ep],r27
sld.w 28[ep],r26
sld.w 32[ep],r25
sld.w 36[ep],r24
sld.w 40[ep],r23
sld.w 44[ep],r22
sld.w 48[ep],r31
addi 52,sp,sp
mov r1,ep
jmp [r31]
.size __return_r22_r31,.-__return_r22_r31
#endif /* L_save_22c */
#ifdef L_save_23c
.text
.align 2
.globl __save_r23_r31
.type __save_r23_r31,@function
/* Allocate space and save registers 23 .. 29, 31 on the stack */
/* Also allocate space for the argument save area */
/* Called via: jalr __save_r23_r31,r10 */
__save_r23_r31:
mov ep,r1
addi -48,sp,sp
mov sp,ep
sst.w r29,16[ep]
sst.w r28,20[ep]
sst.w r27,24[ep]
sst.w r26,28[ep]
sst.w r25,32[ep]
sst.w r24,36[ep]
sst.w r23,40[ep]
sst.w r31,44[ep]
mov r1,ep
jmp [r10]
.size __save_r23_r31,.-__save_r23_r31
/* Restore saved registers, deallocate stack and return to the user */
/* Called via: jr __return_r23_r31 */
.align 2
.globl __return_r23_r31
.type __return_r23_r31,@function
__return_r23_r31:
mov ep,r1
mov sp,ep
sld.w 16[ep],r29
sld.w 20[ep],r28
sld.w 24[ep],r27
sld.w 28[ep],r26
sld.w 32[ep],r25
sld.w 36[ep],r24
sld.w 40[ep],r23
sld.w 44[ep],r31
addi 48,sp,sp
mov r1,ep
jmp [r31]
.size __return_r23_r31,.-__return_r23_r31
#endif /* L_save_23c */
#ifdef L_save_24c
.text
.align 2
.globl __save_r24_r31
.type __save_r24_r31,@function
/* Allocate space and save registers 24 .. 29, 31 on the stack */
/* Also allocate space for the argument save area */
/* Called via: jalr __save_r24_r31,r10 */
__save_r24_r31:
mov ep,r1
addi -44,sp,sp
mov sp,ep
sst.w r29,16[ep]
sst.w r28,20[ep]
sst.w r27,24[ep]
sst.w r26,28[ep]
sst.w r25,32[ep]
sst.w r24,36[ep]
sst.w r31,40[ep]
mov r1,ep
jmp [r10]
.size __save_r24_r31,.-__save_r24_r31
/* Restore saved registers, deallocate stack and return to the user */
/* Called via: jr __return_r24_r31 */
.align 2
.globl __return_r24_r31
.type __return_r24_r31,@function
__return_r24_r31:
mov ep,r1
mov sp,ep
sld.w 16[ep],r29
sld.w 20[ep],r28
sld.w 24[ep],r27
sld.w 28[ep],r26
sld.w 32[ep],r25
sld.w 36[ep],r24
sld.w 40[ep],r31
addi 44,sp,sp
mov r1,ep
jmp [r31]
.size __return_r24_r31,.-__return_r24_r31
#endif /* L_save_24c */
#ifdef L_save_25c
.text
.align 2
.globl __save_r25_r31
.type __save_r25_r31,@function
/* Allocate space and save registers 25 .. 29, 31 on the stack */
/* Also allocate space for the argument save area */
/* Called via: jalr __save_r25_r31,r10 */
__save_r25_r31:
mov ep,r1
addi -40,sp,sp
mov sp,ep
sst.w r29,16[ep]
sst.w r28,20[ep]
sst.w r27,24[ep]
sst.w r26,28[ep]
sst.w r25,32[ep]
sst.w r31,36[ep]
mov r1,ep
jmp [r10]
.size __save_r25_r31,.-__save_r25_r31
/* Restore saved registers, deallocate stack and return to the user */
/* Called via: jr __return_r25_r31 */
.align 2
.globl __return_r25_r31
.type __return_r25_r31,@function
__return_r25_r31:
mov ep,r1
mov sp,ep
sld.w 16[ep],r29
sld.w 20[ep],r28
sld.w 24[ep],r27
sld.w 28[ep],r26
sld.w 32[ep],r25
sld.w 36[ep],r31
addi 40,sp,sp
mov r1,ep
jmp [r31]
.size __return_r25_r31,.-__return_r25_r31
#endif /* L_save_25c */
#ifdef L_save_26c
.text
.align 2
.globl __save_r26_r31
.type __save_r26_r31,@function
/* Allocate space and save registers 26 .. 29, 31 on the stack */
/* Also allocate space for the argument save area */
/* Called via: jalr __save_r26_r31,r10 */
__save_r26_r31:
mov ep,r1
addi -36,sp,sp
mov sp,ep
sst.w r29,16[ep]
sst.w r28,20[ep]
sst.w r27,24[ep]
sst.w r26,28[ep]
sst.w r31,32[ep]
mov r1,ep
jmp [r10]
.size __save_r26_r31,.-__save_r26_r31
/* Restore saved registers, deallocate stack and return to the user */
/* Called via: jr __return_r26_r31 */
.align 2
.globl __return_r26_r31
.type __return_r26_r31,@function
__return_r26_r31:
mov ep,r1
mov sp,ep
sld.w 16[ep],r29
sld.w 20[ep],r28
sld.w 24[ep],r27
sld.w 28[ep],r26
sld.w 32[ep],r31
addi 36,sp,sp
mov r1,ep
jmp [r31]
.size __return_r26_r31,.-__return_r26_r31
#endif /* L_save_26c */
#ifdef L_save_27c
.text
.align 2
.globl __save_r27_r31
.type __save_r27_r31,@function
/* Allocate space and save registers 27 .. 29, 31 on the stack */
/* Also allocate space for the argument save area */
/* Called via: jalr __save_r27_r31,r10 */
__save_r27_r31:
mov ep,r1
addi -32,sp,sp
mov sp,ep
sst.w r29,16[ep]
sst.w r28,20[ep]
sst.w r27,24[ep]
sst.w r31,28[ep]
mov r1,ep
jmp [r10]
.size __save_r27_r31,.-__save_r27_r31
/* Restore saved registers, deallocate stack and return to the user */
/* Called via: jr __return_r27_r31 */
.align 2
.globl __return_r27_r31
.type __return_r27_r31,@function
__return_r27_r31:
mov ep,r1
mov sp,ep
sld.w 16[ep],r29
sld.w 20[ep],r28
sld.w 24[ep],r27
sld.w 28[ep],r31
addi 32,sp,sp
mov r1,ep
jmp [r31]
.size __return_r27_r31,.-__return_r27_r31
#endif /* L_save_27c */
#ifdef L_save_28c
.text
.align 2
.globl __save_r28_r31
.type __save_r28_r31,@function
/* Allocate space and save registers 28 .. 29, 31 on the stack */
/* Also allocate space for the argument save area */
/* Called via: jalr __save_r28_r31,r10 */
__save_r28_r31:
addi -28,sp,sp
st.w r29,16[sp]
st.w r28,20[sp]
st.w r31,24[sp]
jmp [r10]
.size __save_r28_r31,.-__save_r28_r31
/* Restore saved registers, deallocate stack and return to the user */
/* Called via: jr __return_r28_r31 */
.align 2
.globl __return_r28_r31
.type __return_r28_r31,@function
__return_r28_r31:
ld.w 16[sp],r29
ld.w 20[sp],r28
ld.w 24[sp],r31
addi 28,sp,sp
jmp [r31]
.size __return_r28_r31,.-__return_r28_r31
#endif /* L_save_28c */
#ifdef L_save_29c
.text
.align 2
.globl __save_r29_r31
.type __save_r29_r31,@function
/* Allocate space and save registers 29 & 31 on the stack */
/* Also allocate space for the argument save area */
/* Called via: jalr __save_r29_r31,r10 */
__save_r29_r31:
addi -24,sp,sp
st.w r29,16[sp]
st.w r31,20[sp]
jmp [r10]
.size __save_r29_r31,.-__save_r29_r31
/* Restore saved registers, deallocate stack and return to the user */
/* Called via: jr __return_r29_r31 */
.align 2
.globl __return_r29_r31
.type __return_r29_r31,@function
__return_r29_r31:
ld.w 16[sp],r29
ld.w 20[sp],r31
addi 24,sp,sp
jmp [r31]
.size __return_r29_r31,.-__return_r29_r31
#endif /* L_save_29c */
#ifdef L_save_31c
.text
.align 2
.globl __save_r31
.type __save_r31,@function
/* Allocate space and save register 31 on the stack */
/* Also allocate space for the argument save area */
/* Called via: jalr __save_r29_r31,r10 */
__save_r31:
addi -20,sp,sp
st.w r31,16[sp]
jmp [r10]
.size __save_r31,.-__save_r31
/* Restore saved registers, deallocate stack and return to the user */
/* Called via: jr __return_r31 */
.align 2
.globl __return_r31
.type __return_r31,@function
__return_r31:
ld.w 16[sp],r31
addi 20,sp,sp
jmp [r31]
.size __return_r29_r31,.-__return_r29_r31
#endif /* L_save_31c */
#ifdef L_save_varargs
.text
.align 2
.globl __save_r6_r9
.type __save_r6_r9,@function
/* Save registers 6 .. 9 on the stack for variable argument functions */
/* Called via: jalr __save_r6_r9,r10 */
__save_r6_r9:
mov ep,r1
mov sp,ep
sst.w r6,0[ep]
sst.w r7,4[ep]
sst.w r8,8[ep]
sst.w r9,12[ep]
mov r1,ep
jmp [r10]
.size __save_r6_r9,.-__save_r6_r9
#endif /* L_save_varargs */
#ifdef L_save_interrupt
.text
.align 2
.globl __save_interrupt
.type __save_interrupt,@function
/* Save registers r1, r5 on stack and load up with expected values */
/* Note, 12 bytes of stack have already been allocated. */
/* Called via: jalr __save_interrupt,r10 */
__save_interrupt:
st.w ep,0[sp]
st.w gp,4[sp]
st.w r1,8[sp]
movhi hi(__ep),r0,ep
movea lo(__ep),ep,ep
movhi hi(__gp),r0,gp
movea lo(__gp),gp,gp
jmp [r10]
.size __save_interrupt,.-__save_interrupt
/* Restore saved registers, deallocate stack and return from the interrupt */
/* Called via: jr __return_interupt */
.align 2
.globl __return_interrupt
.type __return_interrupt,@function
__return_interrupt:
ld.w 0[sp],ep
ld.w 4[sp],gp
ld.w 8[ep],r1
ld.w 12[ep],r10
add 12,sp
reti
.size __return_interrupt,.-__return_interrupt
#endif /* L_save_interrupt */
#ifdef L_save_all_interrupt
.text
.align 2
.globl __save_all_interrupt
.type __save_all_interrupt,@function
/* Save all registers except for those saved in __save_interrupt */
/* allocate enough stack for all of the registers & 16 bytes of space */
/* Called via: jalr __save_all_interrupt,r10 */
__save_all_interrupt:
addi -120,sp,sp
mov ep,r1
mov sp,ep
sst.w r31,116[ep]
sst.w r2,112[ep]
sst.w gp,108[ep]
sst.w r6,104[ep]
sst.w r7,100[ep]
sst.w r8,96[ep]
sst.w r9,92[ep]
sst.w r11,88[ep]
sst.w r12,84[ep]
sst.w r13,80[ep]
sst.w r14,76[ep]
sst.w r15,72[ep]
sst.w r16,68[ep]
sst.w r17,64[ep]
sst.w r18,60[ep]
sst.w r19,56[ep]
sst.w r20,52[ep]
sst.w r21,48[ep]
sst.w r22,44[ep]
sst.w r23,40[ep]
sst.w r24,36[ep]
sst.w r25,32[ep]
sst.w r26,28[ep]
sst.w r27,24[ep]
sst.w r28,20[ep]
sst.w r29,16[ep]
mov r1,ep
jmp [r10]
.size __save_all_interrupt,.-__save_all_interrupt
.globl __restore_all_interrupt
.type __restore_all_interrupt,@function
/* Restore all registers saved in __save_all_interrupt */
/* & deallocate the stack space */
/* Called via: jalr __restore_all_interrupt,r10 */
__restore_all_interrupt:
mov ep,r1
mov sp,ep
sld.w 116[ep],r31
sld.w 112[ep],r2
sld.w 108[ep],gp
sld.w 104[ep],r6
sld.w 100[ep],r7
sld.w 96[ep],r8
sld.w 92[ep],r9
sld.w 88[ep],r11
sld.w 84[ep],r12
sld.w 80[ep],r13
sld.w 76[ep],r14
sld.w 72[ep],r15
sld.w 68[ep],r16
sld.w 64[ep],r17
sld.w 60[ep],r18
sld.w 56[ep],r19
sld.w 52[ep],r20
sld.w 48[ep],r21
sld.w 44[ep],r22
sld.w 40[ep],r23
sld.w 36[ep],r24
sld.w 32[ep],r25
sld.w 28[ep],r26
sld.w 24[ep],r27
sld.w 20[ep],r28
sld.w 16[ep],r29
mov r1,ep
addi 120,sp,sp
jmp [r10]
.size __restore_all_interrupt,.-__restore_all_interrupt
#endif /* L_save_all_interrupt */
/* END CYGNUS LOCAL */
# CYGNUS LOCAL entire file v850/law
CROSS_LIBGCC1 = libgcc1-asm.a
LIB1ASMSRC = v850/lib1funcs.asm
LIB1ASMFUNCS = _mulsi3 \
_divsi3 \
_udivsi3 \
_modsi3 \
_umodsi3 \
_save_2 \
_save_20 \
_save_21 \
_save_22 \
_save_23 \
_save_24 \
_save_25 \
_save_26 \
_save_27 \
_save_28 \
_save_29 \
_save_2c \
_save_20c \
_save_21c \
_save_22c \
_save_23c \
_save_24c \
_save_25c \
_save_26c \
_save_27c \
_save_28c \
_save_29c \
_save_31c \
_save_varargs \
_save_interrupt \
_save_all_interrupt
# These are really part of libgcc1, but this will cause them to be
# built correctly, so...
LIB2FUNCS_EXTRA = fp-bit.c dp-bit.c
dp-bit.c: $(srcdir)/config/fp-bit.c
echo '#ifdef __LITTLE_ENDIAN__' > dp-bit.c
echo '#define FLOAT_BIT_ORDER_MISMATCH' >>dp-bit.c
echo '#endif' >> dp-bit.c
cat $(srcdir)/config/fp-bit.c >> dp-bit.c
fp-bit.c: $(srcdir)/config/fp-bit.c
echo '#define FLOAT' > fp-bit.c
echo '#ifdef __LITTLE_ENDIAN__' >> fp-bit.c
echo '#define FLOAT_BIT_ORDER_MISMATCH' >>fp-bit.c
echo '#endif' >> fp-bit.c
cat $(srcdir)/config/fp-bit.c >> fp-bit.c
#END CYGNUS LOCAL
/* Subroutines for insn-output.c for NEC V850 series
Copyright (C) 1996, 1997 Free Software Foundation, Inc.
Contributed by Jeff Law (law@cygnus.com).
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include <stdio.h>
#include <ctype.h>
#include "config.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "recog.h"
#include "expr.h"
#include "tree.h"
#include "obstack.h"
/* True if the current function has anonymous arguments. */
int current_function_anonymous_args;
/* Information about the various small memory areas. */
struct small_memory_info small_memory[ (int)SMALL_MEMORY_max ] =
{
/* name value max physical max */
{ "tda", (char *)0, 0, 256 },
{ "sda", (char *)0, 0, 65536 },
{ "zda", (char *)0, 0, 32768 },
};
/* True if we don't need to check any more if the current
function is an interrupt handler */
static int v850_interrupt_cache_p = FALSE;
/* Whether current function is an interrupt handler. */
static int v850_interrupt_p = FALSE;
/* Sometimes certain combinations of command options do not make
sense on a particular target machine. You can define a macro
`OVERRIDE_OPTIONS' to take account of this. This macro, if
defined, is executed once just after all the command options have
been parsed.
Don't use this macro to turn on various extra optimizations for
`-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
void
override_options ()
{
int i;
extern int atoi ();
/* Parse -m{s,t,z}da=nnn switches */
for (i = 0; i < (int)SMALL_MEMORY_max; i++)
{
if (small_memory[i].value)
{
if (!isdigit (*small_memory[i].value))
error ("%s=%s is not numeric.",
small_memory[i].name,
small_memory[i].value);
else
{
small_memory[i].max = atoi (small_memory[i].value);
if (small_memory[i].max > small_memory[i].physical_max)
error ("%s=%s is too large.",
small_memory[i].name,
small_memory[i].value);
}
}
}
}
/* Output assembly code for the start of the file. */
void
asm_file_start (file)
FILE *file;
{
output_file_directive (file, main_input_filename);
}
/* Return an RTX to represent where a value with mode MODE will be returned
from a function. If the result is 0, the argument is pushed. */
rtx
function_arg (cum, mode, type, named)
CUMULATIVE_ARGS *cum;
enum machine_mode mode;
tree type;
int named;
{
rtx result = 0;
int size, align;
if (TARGET_GHS && !named)
return NULL_RTX;
if (mode == BLKmode)
size = int_size_in_bytes (type);
else
size = GET_MODE_SIZE (mode);
if (type)
align = TYPE_ALIGN (type) / BITS_PER_UNIT;
else
align = size;
cum->nbytes = (cum->nbytes + align - 1) &~(align - 1);
if (cum->nbytes > 4 * UNITS_PER_WORD)
return 0;
if (type == NULL_TREE
&& cum->nbytes + size > 4 * UNITS_PER_WORD)
return 0;
switch (cum->nbytes / UNITS_PER_WORD)
{
case 0:
result = gen_rtx (REG, mode, 6);
break;
case 1:
result = gen_rtx (REG, mode, 7);
break;
case 2:
result = gen_rtx (REG, mode, 8);
break;
case 3:
result = gen_rtx (REG, mode, 9);
break;
default:
result = 0;
}
return result;
}
/* Return the number of words which must be put into registers
for values which are part in registers and part in memory. */
int
function_arg_partial_nregs (cum, mode, type, named)
CUMULATIVE_ARGS *cum;
enum machine_mode mode;
tree type;
int named;
{
int size, align;
if (TARGET_GHS && !named)
return 0;
if (mode == BLKmode)
size = int_size_in_bytes (type);
else
size = GET_MODE_SIZE (mode);
if (type)
align = TYPE_ALIGN (type) / BITS_PER_UNIT;
else
align = size;
cum->nbytes = (cum->nbytes + align - 1) &~(align - 1);
if (cum->nbytes > 4 * UNITS_PER_WORD)
return 0;
if (cum->nbytes + size <= 4 * UNITS_PER_WORD)
return 0;
if (type == NULL_TREE
&& cum->nbytes + size > 4 * UNITS_PER_WORD)
return 0;
return (4 * UNITS_PER_WORD - cum->nbytes) / UNITS_PER_WORD;
}
/* Return the high and low words of a CONST_DOUBLE */
static void
const_double_split (x, p_high, p_low)
rtx x;
HOST_WIDE_INT *p_high;
HOST_WIDE_INT *p_low;
{
if (GET_CODE (x) == CONST_DOUBLE)
{
long t[2];
REAL_VALUE_TYPE rv;
switch (GET_MODE (x))
{
case DFmode:
REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
REAL_VALUE_TO_TARGET_DOUBLE (rv, t);
*p_high = t[1]; /* since v850 is little endian */
*p_low = t[0]; /* high is second word */
return;
case SFmode:
REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
REAL_VALUE_TO_TARGET_SINGLE (rv, *p_high);
*p_low = 0;
return;
case VOIDmode:
case DImode:
*p_high = CONST_DOUBLE_HIGH (x);
*p_low = CONST_DOUBLE_LOW (x);
return;
}
}
fatal_insn ("const_double_split got a bad insn:", x);
}
/* Return the cost of the rtx R with code CODE. */
static int
const_costs_int (value, zero_cost)
HOST_WIDE_INT value;
int zero_cost;
{
if (CONST_OK_FOR_I (value))
return zero_cost;
else if (CONST_OK_FOR_J (value))
return 1;
else if (CONST_OK_FOR_K (value))
return 2;
else
return 4;
}
int
const_costs (r, c)
rtx r;
enum rtx_code c;
{
HOST_WIDE_INT high, low;
switch (c)
{
case CONST_INT:
return const_costs_int (INTVAL (r), 0);
case CONST_DOUBLE:
const_double_split (r, &high, &low);
if (GET_MODE (r) == SFmode)
return const_costs_int (high, 1);
else
return const_costs_int (high, 1) + const_costs_int (low, 1);
case SYMBOL_REF:
case LABEL_REF:
case CONST:
return 2;
case HIGH:
return 1;
default:
return 4;
}
}
/* Print operand X using operand code CODE to assembly language output file
FILE. */
void
print_operand (file, x, code)
FILE *file;
rtx x;
int code;
{
HOST_WIDE_INT high, low;
switch (code)
{
case 'b':
case 'B':
switch (code == 'b' ? GET_CODE (x) : reverse_condition (GET_CODE (x)))
{
case NE:
fprintf (file, "bne");
break;
case EQ:
fprintf (file, "be");
break;
case GE:
fprintf (file, "bge");
break;
case GT:
fprintf (file, "bgt");
break;
case LE:
fprintf (file, "ble");
break;
case LT:
fprintf (file, "blt");
break;
case GEU:
fprintf (file, "bnl");
break;
case GTU:
fprintf (file, "bh");
break;
case LEU:
fprintf (file, "bnh");
break;
case LTU:
fprintf (file, "bl");
break;
default:
abort ();
}
break;
switch (GET_CODE (x))
{
case NE:
fprintf (file, "be");
break;
case EQ:
fprintf (file, "bne");
break;
case GE:
fprintf (file, "blt");
break;
case GT:
fprintf (file, "bgt");
break;
case LE:
fprintf (file, "ble");
break;
case LT:
fprintf (file, "blt");
break;
case GEU:
fprintf (file, "bnl");
break;
case GTU:
fprintf (file, "bh");
break;
case LEU:
fprintf (file, "bnh");
break;
case LTU:
fprintf (file, "bl");
break;
default:
abort ();
}
break;
case 'F': /* high word of CONST_DOUBLE */
if (GET_CODE (x) == CONST_INT)
fprintf (file, "%d", (INTVAL (x) >= 0) ? 0 : -1);
else if (GET_CODE (x) == CONST_DOUBLE)
{
const_double_split (x, &high, &low);
fprintf (file, "%ld", (long) high);
}
else
abort ();
break;
case 'G': /* low word of CONST_DOUBLE */
if (GET_CODE (x) == CONST_INT)
fprintf (file, "%ld", (long) INTVAL (x));
else if (GET_CODE (x) == CONST_DOUBLE)
{
const_double_split (x, &high, &low);
fprintf (file, "%ld", (long) low);
}
else
abort ();
break;
case 'L':
fprintf (file, "%d\n", INTVAL (x) & 0xffff);
break;
case 'M':
fprintf (file, "%d", exact_log2 (INTVAL (x)));
break;
case 'O':
if (special_symbolref_operand (x, VOIDmode))
{
char* name;
if (GET_CODE (x) == SYMBOL_REF)
name = XSTR (x, 0);
else if (GET_CODE (x) == CONST)
name = XSTR (XEXP (XEXP (x, 0), 0), 0);
else
abort ();
if (ZDA_NAME_P (name))
fprintf (file, "zdaoff");
else if (SDA_NAME_P (name))
fprintf (file, "sdaoff");
else if (TDA_NAME_P (name))
fprintf (file, "tdaoff");
else
abort();
}
else
abort();
break;
case 'P':
if (special_symbolref_operand (x, VOIDmode))
output_addr_const (file, x);
else
abort();
break;
case 'Q':
if (special_symbolref_operand (x, VOIDmode))
{
char* name;
if (GET_CODE (x) == SYMBOL_REF)
name = XSTR (x, 0);
else if (GET_CODE (x) == CONST)
name = XSTR (XEXP (XEXP (x, 0), 0), 0);
else
abort ();
if (ZDA_NAME_P (name))
fprintf (file, "r0");
else if (SDA_NAME_P (name))
fprintf (file, "gp");
else if (TDA_NAME_P (name))
fprintf (file, "ep");
else
abort();
}
else
abort();
break;
case 'R': /* 2nd word of a double. */
switch (GET_CODE (x))
{
case REG:
fprintf (file, reg_names[REGNO (x) + 1]);
break;
case MEM:
print_operand_address (file,
XEXP (adj_offsettable_operand (x, 4), 0));
break;
}
break;
case 'S':
{
/* if it's a referance to a TDA variable, use sst/sld vs. st/ld */
if (GET_CODE (x) == MEM && ep_memory_operand (x, GET_MODE (x)))
fputs ("s", file);
break;
}
case 'W': /* print the instruction suffix */
switch (GET_MODE (x))
{
default:
abort ();
case QImode: fputs (".b", file); break;
case HImode: fputs (".h", file); break;
case SImode: fputs (".w", file); break;
case SFmode: fputs (".w", file); break;
}
break;
case '.': /* register r0 */
fputs (reg_names[0], file);
break;
default:
switch (GET_CODE (x))
{
case MEM:
if (GET_CODE (XEXP (x, 0)) == CONST_INT)
output_address (gen_rtx (PLUS, SImode,
gen_rtx (REG, SImode, 0),
XEXP (x, 0)));
else
output_address (XEXP (x, 0));
break;
case REG:
fputs (reg_names[REGNO (x)], file);
break;
case SUBREG:
fputs (reg_names[REGNO (SUBREG_REG (x)) + SUBREG_WORD (x)], file);
break;
case CONST_INT:
case SYMBOL_REF:
case CONST:
case LABEL_REF:
case CODE_LABEL:
print_operand_address (file, x);
break;
default:
abort ();
}
break;
}
}
/* Output assembly language output for the address ADDR to FILE. */
void
print_operand_address (file, addr)
FILE *file;
rtx addr;
{
switch (GET_CODE (addr))
{
case REG:
fprintf (file, "0[");
print_operand (file, addr, 0);
fprintf (file, "]");
break;
case LO_SUM:
if (GET_CODE (XEXP (addr, 0)) == REG)
{
/* reg,foo */
fprintf (file, "lo(");
print_operand (file, XEXP (addr, 1), 0);
fprintf (file, ")[");
print_operand (file, XEXP (addr, 0), 0);
fprintf (file, "]");
}
break;
case PLUS:
if (GET_CODE (XEXP (addr, 0)) == REG
|| GET_CODE (XEXP (addr, 0)) == SUBREG)
{
/* reg,foo */
print_operand (file, XEXP (addr, 1), 0);
fprintf (file, "[");
print_operand (file, XEXP (addr, 0), 0);
fprintf (file, "]");
}
else
{
print_operand (file, XEXP (addr, 0), 0);
fprintf (file, "+");
print_operand (file, XEXP (addr, 1), 0);
}
break;
case SYMBOL_REF:
if (ENCODED_NAME_P (XSTR (addr, 0)))
{
char* name = XSTR (addr, 0);
char* off_name;
char* reg_name;
if (ZDA_NAME_P (name))
{
off_name = "zdaoff";
reg_name = "r0";
}
else if (SDA_NAME_P (name))
{
off_name = "sdaoff";
reg_name = "gp";
}
else if (TDA_NAME_P (name))
{
off_name = "tdaoff";
reg_name = "ep";
}
else
abort();
fprintf (file, "%s(", off_name);
output_addr_const (file, addr);
fprintf (file, ")[%s]", reg_name);
}
else
output_addr_const (file, addr);
break;
case CONST:
if (special_symbolref_operand (addr, VOIDmode))
{
char* name = XSTR (XEXP (XEXP (addr, 0), 0), 0);
char* off_name;
char* reg_name;
if (ZDA_NAME_P (name))
{
off_name = "zdaoff";
reg_name = "r0";
}
else if (SDA_NAME_P (name))
{
off_name = "sdaoff";
reg_name = "gp";
}
else if (TDA_NAME_P (name))
{
off_name = "tdaoff";
reg_name = "ep";
}
else
abort();
fprintf (file, "%s(", off_name);
output_addr_const (file, addr);
fprintf (file, ")[%s]", reg_name);
}
else
output_addr_const (file, addr);
break;
default:
output_addr_const (file, addr);
break;
}
}
/* Return appropriate code to load up a 1, 2, or 4 integer/floating
point value. */
char *
output_move_single (operands)
rtx *operands;
{
rtx dst = operands[0];
rtx src = operands[1];
if (REG_P (dst))
{
if (REG_P (src))
return "mov %1,%0";
else if (GET_CODE (src) == CONST_INT)
{
HOST_WIDE_INT value = INTVAL (src);
if (CONST_OK_FOR_J (value)) /* signed 5 bit immediate */
return "mov %1,%0";
else if (CONST_OK_FOR_K (value)) /* signed 16 bit immediate */
return "movea lo(%1),%.,%0";
else if (CONST_OK_FOR_L (value)) /* upper 16 bits were set */
return "movhi hi(%1),%.,%0";
else /* random constant */
return "movhi hi(%1),%.,%0\n\tmovea lo(%1),%0,%0";
}
else if (GET_CODE (src) == CONST_DOUBLE && GET_MODE (src) == SFmode)
{
HOST_WIDE_INT high, low;
const_double_split (src, &high, &low);
if (CONST_OK_FOR_J (high)) /* signed 5 bit immediate */
return "mov %F1,%0";
else if (CONST_OK_FOR_K (high)) /* signed 16 bit immediate */
return "movea lo(%F1),%.,%0";
else if (CONST_OK_FOR_L (high)) /* upper 16 bits were set */
return "movhi hi(%F1),%.,%0";
else /* random constant */
return "movhi hi(%F1),%.,%0\n\tmovea lo(%F1),%0,%0";
}
else if (GET_CODE (src) == MEM)
return "%S1ld%W1 %1,%0";
else if (special_symbolref_operand (src, VOIDmode))
return "movea %O1(%P1),%Q1,%0";
else if (GET_CODE (src) == LABEL_REF
|| GET_CODE (src) == SYMBOL_REF
|| GET_CODE (src) == CONST)
return "movhi hi(%1),%.,%0\n\tmovea lo(%1),%0,%0";
else if (GET_CODE (src) == HIGH)
return "movhi hi(%1),%.,%0";
else if (GET_CODE (src) == LO_SUM)
{
operands[2] = XEXP (src, 0);
operands[3] = XEXP (src, 1);
return "movea lo(%3),%2,%0";
}
}
else if (GET_CODE (dst) == MEM)
{
if (REG_P (src))
return "%S0st%W0 %1,%0";
else if (GET_CODE (src) == CONST_INT && INTVAL (src) == 0)
return "%S0st%W0 %.,%0";
else if (GET_CODE (src) == CONST_DOUBLE
&& CONST0_RTX (GET_MODE (dst)) == src)
return "%S0st%W0 %.,%0";
}
fatal_insn ("output_move_single:", gen_rtx (SET, VOIDmode, dst, src));
return "";
}
/* Return appropriate code to load up an 8 byte integer or floating point value */
char *
output_move_double (operands)
rtx *operands;
{
enum machine_mode mode = GET_MODE (operands[0]);
rtx dst = operands[0];
rtx src = operands[1];
if (register_operand (dst, mode)
&& register_operand (src, mode))
{
if (REGNO (src) + 1 == REGNO (dst))
return "mov %R1,%R0\n\tmov %1,%0";
else
return "mov %1,%0\n\tmov %R1,%R0";
}
/* Storing 0 */
if (GET_CODE (dst) == MEM
&& ((GET_CODE (src) == CONST_INT && INTVAL (src) == 0)
|| (GET_CODE (src) == CONST_DOUBLE && CONST_DOUBLE_OK_FOR_G (src))))
return "st.w %.,%0\n\tst.w %.,%R0";
if (GET_CODE (src) == CONST_INT || GET_CODE (src) == CONST_DOUBLE)
{
HOST_WIDE_INT high_low[2];
int i;
rtx xop[10];
if (GET_CODE (src) == CONST_DOUBLE)
const_double_split (src, &high_low[1], &high_low[0]);
else
{
high_low[0] = INTVAL (src);
high_low[1] = (INTVAL (src) >= 0) ? 0 : -1;
}
for (i = 0; i < 2; i++)
{
xop[0] = gen_rtx (REG, SImode, REGNO (dst)+i);
xop[1] = GEN_INT (high_low[i]);
output_asm_insn (output_move_single (xop), xop);
}
return "";
}
if (GET_CODE (src) == MEM)
{
int ptrreg = -1;
int dreg = REGNO (dst);
rtx inside = XEXP (src, 0);
if (GET_CODE (inside) == REG)
ptrreg = REGNO (inside);
else if (GET_CODE (inside) == SUBREG)
ptrreg = REGNO (SUBREG_REG (inside)) + SUBREG_WORD (inside);
else if (GET_CODE (inside) == PLUS)
ptrreg = REGNO (XEXP (inside, 0));
else if (GET_CODE (inside) == LO_SUM)
ptrreg = REGNO (XEXP (inside, 0));
if (dreg == ptrreg)
return "ld.w %R1,%R0\n\tld.w %1,%0";
}
if (GET_CODE (src) == MEM)
return "ld.w %1,%0\n\tld.w %R1,%R0";
if (GET_CODE (dst) == MEM)
return "st.w %1,%0\n\tst.w %R1,%R0";
return "mov %1,%0\n\tmov %R1,%R0";
}
/* Return true if OP is a valid short EP memory reference */
int
ep_memory_operand (op, mode)
rtx op;
enum machine_mode mode;
{
rtx addr, op0, op1;
int max_offset;
int mask;
if (GET_CODE (op) != MEM)
return FALSE;
switch (GET_MODE (op))
{
default:
return FALSE;
case QImode:
max_offset = 128;
mask = 0;
break;
case HImode:
max_offset = 256;
mask = 1;
break;
case SImode:
case SFmode:
max_offset = 256;
mask = 3;
break;
}
addr = XEXP (op, 0);
if (GET_CODE (addr) == CONST)
addr = XEXP (addr, 0);
switch (GET_CODE (addr))
{
default:
break;
case SYMBOL_REF:
return TDA_NAME_P (XSTR (addr, 0));
case REG:
return REGNO (addr) == EP_REGNUM;
case PLUS:
op0 = XEXP (addr, 0);
op1 = XEXP (addr, 1);
if (GET_CODE (op1) == CONST_INT
&& INTVAL (op1) < max_offset
&& (INTVAL (op1) & mask) == 0)
{
if (GET_CODE (op0) == REG && REGNO (op0) == EP_REGNUM)
return TRUE;
if (GET_CODE (op0) == SYMBOL_REF && TDA_NAME_P (XSTR (op0, 0)))
return TRUE;
}
break;
}
return FALSE;
}
/* Return true if OP is either a register or 0 */
int
reg_or_0_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) == CONST_INT)
return INTVAL (op) == 0;
else if (GET_CODE (op) == CONST_DOUBLE)
return CONST_DOUBLE_OK_FOR_G (op);
else if (GET_CODE (op) == REG)
return TRUE;
else if (GET_CODE (op) == SUBREG)
{
do {
op = SUBREG_REG (op);
} while (GET_CODE (op) == SUBREG);
if (GET_CODE (op) == MEM && !reload_completed)
return TRUE;
else if (GET_CODE (op) == REG)
return TRUE;
}
return FALSE;
}
/* Return true if OP is either a register or a signed five bit integer */
int
reg_or_int5_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) == CONST_INT)
return CONST_OK_FOR_J (INTVAL (op));
else if (GET_CODE (op) == REG)
return TRUE;
else if (GET_CODE (op) == SUBREG)
{
do {
op = SUBREG_REG (op);
} while (GET_CODE (op) == SUBREG);
if (GET_CODE (op) == MEM && !reload_completed)
return TRUE;
else if (GET_CODE (op) == REG)
return TRUE;
}
return FALSE;
}
/* Return true if OP is a valid call operand. */
int
call_address_operand (op, mode)
rtx op;
enum machine_mode mode;
{
/* Only registers are valid call operands if TARGET_LONG_CALLS. */
if (TARGET_LONG_CALLS)
return GET_CODE (op) == REG;
return (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == REG);
}
int
special_symbolref_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) == SYMBOL_REF)
return ENCODED_NAME_P (XSTR (op, 0));
else if (GET_CODE (op) == CONST)
return (GET_CODE (XEXP (op, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
&& ENCODED_NAME_P (XSTR (XEXP (XEXP (op, 0), 0), 0))
&& GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT
&& CONST_OK_FOR_K (INTVAL (XEXP (XEXP (op, 0), 1))));
return FALSE;
}
int
movsi_source_operand (op, mode)
rtx op;
enum machine_mode mode;
{
/* Some constants, as well as symbolic operands
must be done with HIGH & LO_SUM patterns. */
if (CONSTANT_P (op)
&& GET_CODE (op) != HIGH
&& !(GET_CODE (op) == CONST_INT
&& (CONST_OK_FOR_J (INTVAL (op))
|| CONST_OK_FOR_K (INTVAL (op))
|| CONST_OK_FOR_L (INTVAL (op)))))
return special_symbolref_operand (op, mode);
else
return general_operand (op, mode);
}
int
power_of_two_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) != CONST_INT)
return 0;
if (exact_log2 (INTVAL (op)) == -1)
return 0;
return 1;
}
int
not_power_of_two_operand (op, mode)
rtx op;
enum machine_mode mode;
{
unsigned int mask;
if (mode == QImode)
mask = 0xff;
else if (mode == HImode)
mask = 0xffff;
else if (mode == SImode)
mask = 0xffffffff;
else
return 0;
if (GET_CODE (op) != CONST_INT)
return 0;
if (exact_log2 (~INTVAL (op) & mask) == -1)
return 0;
return 1;
}
/* Substitute memory references involving a pointer, to use the ep pointer,
taking care to save and preserve the ep. */
static void
substitute_ep_register (first_insn, last_insn, uses, regno, p_r1, p_ep)
rtx first_insn;
rtx last_insn;
int uses;
int regno;
rtx *p_r1;
rtx *p_ep;
{
rtx reg = gen_rtx (REG, Pmode, regno);
rtx insn;
int i;
if (!*p_r1)
{
regs_ever_live[1] = 1;
*p_r1 = gen_rtx (REG, Pmode, 1);
*p_ep = gen_rtx (REG, Pmode, 30);
}
if (TARGET_DEBUG)
fprintf (stderr, "Saved %d bytes (%d uses of register %s) in function %s, starting as insn %d, ending at %d\n",
2 * (uses - 3), uses, reg_names[regno],
IDENTIFIER_POINTER (DECL_NAME (current_function_decl)),
INSN_UID (first_insn), INSN_UID (last_insn));
if (GET_CODE (first_insn) == NOTE)
first_insn = next_nonnote_insn (first_insn);
last_insn = next_nonnote_insn (last_insn);
for (insn = first_insn; insn && insn != last_insn; insn = NEXT_INSN (insn))
{
if (GET_CODE (insn) == INSN)
{
rtx pattern = single_set (insn);
/* Replace the memory references. */
if (pattern)
{
rtx *p_mem;
if (GET_CODE (SET_DEST (pattern)) == MEM
&& GET_CODE (SET_SRC (pattern)) == MEM)
p_mem = (rtx *)0;
else if (GET_CODE (SET_DEST (pattern)) == MEM)
p_mem = &SET_DEST (pattern);
else if (GET_CODE (SET_SRC (pattern)) == MEM)
p_mem = &SET_SRC (pattern);
else
p_mem = (rtx *)0;
if (p_mem)
{
rtx addr = XEXP (*p_mem, 0);
if (GET_CODE (addr) == REG && REGNO (addr) == regno)
*p_mem = change_address (*p_mem, VOIDmode, *p_ep);
else if (GET_CODE (addr) == PLUS
&& GET_CODE (XEXP (addr, 0)) == REG
&& REGNO (XEXP (addr, 0)) == regno
&& GET_CODE (XEXP (addr, 1)) == CONST_INT
&& ((unsigned)INTVAL (XEXP (addr, 1))) < 256
&& (GET_MODE (*p_mem) != QImode
|| ((unsigned)INTVAL (XEXP (addr, 1))) < 128))
*p_mem = change_address (*p_mem, VOIDmode,
gen_rtx (PLUS, Pmode,
*p_ep, XEXP (addr, 1)));
}
}
}
}
/* Optimize back to back cases of ep <- r1 & r1 <- ep. */
insn = prev_nonnote_insn (first_insn);
if (insn && GET_CODE (insn) == INSN
&& GET_CODE (PATTERN (insn)) == SET
&& SET_DEST (PATTERN (insn)) == *p_ep
&& SET_SRC (PATTERN (insn)) == *p_r1)
delete_insn (insn);
else
emit_insn_before (gen_rtx (SET, Pmode, *p_r1, *p_ep), first_insn);
emit_insn_before (gen_rtx (SET, Pmode, *p_ep, reg), first_insn);
emit_insn_before (gen_rtx (SET, Pmode, *p_ep, *p_r1), last_insn);
}
/* In rare cases, correct code generation requires extra machine
dependent processing between the second jump optimization pass and
delayed branch scheduling. On those machines, define this macro
as a C statement to act on the code starting at INSN.
On the 850, we use it to implement the -mep mode to copy heavily used
pointers to ep to use the implicit addressing */
void v850_reorg (start_insn)
rtx start_insn;
{
struct {
int uses;
rtx first_insn;
rtx last_insn;
} regs[FIRST_PSEUDO_REGISTER];
int i;
int use_ep = FALSE;
rtx r1 = NULL_RTX;
rtx ep = NULL_RTX;
rtx insn;
rtx pattern;
/* If not ep mode, just return now */
if (!TARGET_EP)
return;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
regs[i].uses = 0;
regs[i].first_insn = NULL_RTX;
regs[i].last_insn = NULL_RTX;
}
for (insn = start_insn; insn != NULL_RTX; insn = NEXT_INSN (insn))
{
switch (GET_CODE (insn))
{
/* End of basic block */
default:
if (!use_ep)
{
int max_uses = -1;
int max_regno = -1;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
if (max_uses < regs[i].uses)
{
max_uses = regs[i].uses;
max_regno = i;
}
}
if (max_uses > 3)
substitute_ep_register (regs[max_regno].first_insn,
regs[max_regno].last_insn,
max_uses, max_regno, &r1, &ep);
}
use_ep = FALSE;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
regs[i].uses = 0;
regs[i].first_insn = NULL_RTX;
regs[i].last_insn = NULL_RTX;
}
break;
case NOTE:
break;
case INSN:
pattern = single_set (insn);
/* See if there are any memory references we can shorten */
if (pattern)
{
rtx src = SET_SRC (pattern);
rtx dest = SET_DEST (pattern);
rtx mem;
if (GET_CODE (dest) == MEM && GET_CODE (src) == MEM)
mem = NULL_RTX;
else if (GET_CODE (dest) == MEM)
mem = dest;
else if (GET_CODE (src) == MEM)
mem = src;
else
mem = NULL_RTX;
if (mem && ep_memory_operand (mem, GET_MODE (mem)))
use_ep = TRUE;
else if (!use_ep && mem
&& GET_MODE_SIZE (GET_MODE (mem)) <= UNITS_PER_WORD)
{
rtx addr = XEXP (mem, 0);
int regno = -1;
int short_p;
if (GET_CODE (addr) == REG)
{
short_p = TRUE;
regno = REGNO (addr);
}
else if (GET_CODE (addr) == PLUS
&& GET_CODE (XEXP (addr, 0)) == REG
&& GET_CODE (XEXP (addr, 1)) == CONST_INT
&& ((unsigned)INTVAL (XEXP (addr, 1))) < 256
&& (GET_MODE (mem) != QImode
|| ((unsigned)INTVAL (XEXP (addr, 1))) < 128))
{
short_p = TRUE;
regno = REGNO (XEXP (addr, 0));
}
else
short_p = FALSE;
if (short_p)
{
regs[regno].uses++;
regs[regno].last_insn = insn;
if (!regs[regno].first_insn)
regs[regno].first_insn = insn;
}
}
/* Loading up a register in the basic block zaps any savings
for the register */
if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG)
{
enum machine_mode mode = GET_MODE (dest);
int word = 0;
int regno;
int endregno;
while (GET_CODE (dest) == SUBREG)
{
word = SUBREG_WORD (dest);
dest = SUBREG_REG (dest);
}
regno = REGNO (dest) + word;
endregno = regno + HARD_REGNO_NREGS (regno, mode);
if (!use_ep)
{
/* See if we can use the pointer before this
modification. */
int max_uses = -1;
int max_regno = -1;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
if (max_uses < regs[i].uses)
{
max_uses = regs[i].uses;
max_regno = i;
}
}
if (max_uses > 3
&& max_regno >= regno
&& max_regno < endregno)
{
substitute_ep_register (regs[max_regno].first_insn,
regs[max_regno].last_insn,
max_uses, max_regno, &r1, &ep);
/* Since we made a substitution, zap all remembered
registers. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
regs[i].uses = 0;
regs[i].first_insn = NULL_RTX;
regs[i].last_insn = NULL_RTX;
}
}
}
for (i = regno; i < endregno; i++)
{
regs[i].uses = 0;
regs[i].first_insn = NULL_RTX;
regs[i].last_insn = NULL_RTX;
}
}
}
}
}
}
/* # of registers saved by the interrupt handler. */
#define INTERRUPT_FIXED_NUM 4
/* # of bytes for registers saved by the interrupt handler. */
#define INTERRUPT_FIXED_SAVE_SIZE (4 * INTERRUPT_FIXED_NUM)
/* # of registers saved in register parameter area. */
#define INTERRUPT_REGPARM_NUM 4
/* # of words saved for other registers. */
#define INTERRUPT_ALL_SAVE_NUM \
(30 - INTERRUPT_FIXED_NUM + INTERRUPT_REGPARM_NUM)
#define INTERRUPT_ALL_SAVE_SIZE (4 * INTERRUPT_ALL_SAVE_NUM)
int
compute_register_save_size (p_reg_saved)
long *p_reg_saved;
{
int size = 0;
int i;
int interrupt_handler = v850_interrupt_function_p (current_function_decl);
int call_p = regs_ever_live[31];
long reg_saved = 0;
/* Count the return pointer if we need to save it. */
if (profile_flag && !call_p)
regs_ever_live[31] = call_p = 1;
/* Count space for the register saves. */
if (interrupt_handler)
{
for (i = 0; i <= 31; i++)
switch (i)
{
default:
if (regs_ever_live[i] || call_p)
{
size += 4;
reg_saved |= 1L << i;
}
break;
/* We don't save/restore r0 or the stack pointer */
case 0:
case STACK_POINTER_REGNUM:
break;
/* For registers with fixed use, we save them, set them to the
appropriate value, and then restore them.
These registers are handled specially, so don't list them
on the list of registers to save in the prologue. */
case 1: /* temp used to hold ep */
case 5: /* gp */
case 10: /* temp used to call interrupt save/restore */
case EP_REGNUM: /* ep */
size += 4;
break;
}
}
else
for (i = 0; i <= 31; i++)
if (regs_ever_live[i] && ((! call_used_regs[i]) || i == 31))
{
size += 4;
reg_saved |= 1L << i;
}
if (p_reg_saved)
*p_reg_saved = reg_saved;
return size;
}
int
compute_frame_size (size, p_reg_saved)
int size;
long *p_reg_saved;
{
extern int current_function_outgoing_args_size;
return (size
+ compute_register_save_size (p_reg_saved)
+ current_function_outgoing_args_size);
}
void
expand_prologue ()
{
unsigned int i;
int offset;
unsigned int size = get_frame_size ();
unsigned int actual_fsize;
unsigned int init_stack_alloc = 0;
rtx save_regs[32];
rtx save_all;
int num_save;
int default_stack;
int code;
int interrupt_handler = v850_interrupt_function_p (current_function_decl);
long reg_saved = 0;
actual_fsize = compute_frame_size (size, &reg_saved);
/* Save/setup global registers for interrupt functions right now */
if (interrupt_handler)
{
emit_insn (gen_save_interrupt ());
actual_fsize -= INTERRUPT_FIXED_SAVE_SIZE;
if (((1L << 31) & reg_saved) != 0)
actual_fsize -= INTERRUPT_ALL_SAVE_SIZE;
}
/* Save arg registers to the stack if necessary. */
else if (current_function_anonymous_args)
{
if (TARGET_PROLOG_FUNCTION)
emit_insn (gen_save_r6_r9 ());
else
{
offset = 0;
for (i = 6; i < 10; i++)
{
emit_move_insn (gen_rtx (MEM, SImode,
plus_constant (stack_pointer_rtx,
offset)),
gen_rtx (REG, SImode, i));
offset += 4;
}
}
}
/* Identify all of the saved registers */
num_save = 0;
default_stack = 0;
for (i = 1; i < 31; i++)
{
if (((1L << i) & reg_saved) != 0)
save_regs[num_save++] = gen_rtx (REG, Pmode, i);
}
/* If the return pointer is saved, the helper functions also allocate
16 bytes of stack for arguments to be saved in. */
if (((1L << 31) & reg_saved) != 0)
{
save_regs[num_save++] = gen_rtx (REG, Pmode, 31);
default_stack = 16;
}
/* See if we have an insn that allocates stack space and saves the particular
registers we want to. */
save_all = NULL_RTX;
if (TARGET_PROLOG_FUNCTION && num_save > 0 && actual_fsize >= default_stack)
{
int alloc_stack = (4 * num_save) + default_stack;
int unalloc_stack = actual_fsize - alloc_stack;
int save_func_len = 4;
int save_normal_len;
if (unalloc_stack)
save_func_len += CONST_OK_FOR_J (unalloc_stack) ? 2 : 4;
/* see if we would have used ep to save the stack */
if (TARGET_EP && num_save > 3 && (unsigned)actual_fsize < 255)
save_normal_len = (3 * 2) + (2 * num_save);
else
save_normal_len = 4 * num_save;
save_normal_len += CONST_OK_FOR_J (actual_fsize) ? 2 : 4;
/* Don't bother checking if we don't actually save any space.
This happens for instance if one register is saved and additional
stack space is allocated. */
if (save_func_len < save_normal_len)
{
save_all = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (num_save + 2));
XVECEXP (save_all, 0, 0) = gen_rtx (SET, VOIDmode,
stack_pointer_rtx,
gen_rtx (PLUS, Pmode,
stack_pointer_rtx,
GEN_INT (-alloc_stack)));
XVECEXP (save_all, 0, num_save+1)
= gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, Pmode, 10));
offset = - default_stack;
for (i = 0; i < num_save; i++)
{
XVECEXP (save_all, 0, i+1)
= gen_rtx (SET, VOIDmode,
gen_rtx (MEM, Pmode,
plus_constant (stack_pointer_rtx, offset)),
save_regs[i]);
offset -= 4;
}
code = recog (save_all, NULL_RTX, NULL_PTR);
if (code >= 0)
{
rtx insn = emit_insn (save_all);
INSN_CODE (insn) = code;
actual_fsize -= alloc_stack;
if (TARGET_DEBUG)
fprintf (stderr, "Saved %d bytes via prologue function (%d vs. %d) for function %s\n",
save_normal_len - save_func_len,
save_normal_len, save_func_len,
IDENTIFIER_POINTER (DECL_NAME (current_function_decl)));
}
else
save_all = NULL_RTX;
}
}
/* If no prolog save function is available, store the registers the old fashioned
way (one by one). */
if (!save_all)
{
/* Special case interrupt functions that save all registers for a call. */
if (interrupt_handler && ((1L << 31) & reg_saved) != 0)
emit_insn (gen_save_all_interrupt ());
else
{
/* If the stack is too big, allocate it in chunks so we can do the
register saves. We use the register save size so we use the ep
register. */
if (actual_fsize && !CONST_OK_FOR_K (-actual_fsize))
init_stack_alloc = compute_register_save_size (NULL);
else
init_stack_alloc = actual_fsize;
/* Save registers at the beginning of the stack frame */
offset = init_stack_alloc - 4;
if (init_stack_alloc)
emit_insn (gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (-init_stack_alloc)));
/* Save the return pointer first. */
if (num_save > 0 && REGNO (save_regs[num_save-1]) == 31)
{
emit_move_insn (gen_rtx (MEM, SImode,
plus_constant (stack_pointer_rtx,
offset)),
save_regs[--num_save]);
offset -= 4;
}
for (i = 0; i < num_save; i++)
{
emit_move_insn (gen_rtx (MEM, SImode,
plus_constant (stack_pointer_rtx,
offset)),
save_regs[i]);
offset -= 4;
}
}
}
/* Allocate the rest of the stack that was not allocated above (either it is
> 32K or we just called a function to save the registers and needed more
stack. */
if (actual_fsize > init_stack_alloc)
{
int diff = actual_fsize - init_stack_alloc;
if (CONST_OK_FOR_K (diff))
emit_insn (gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (-diff)));
else
{
rtx reg = gen_rtx (REG, Pmode, 12);
emit_move_insn (reg, GEN_INT (-diff));
emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, reg));
}
}
/* If we need a frame pointer, set it up now. */
if (frame_pointer_needed)
emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
}
void
expand_epilogue ()
{
unsigned int i;
int offset;
unsigned int size = get_frame_size ();
long reg_saved = 0;
unsigned int actual_fsize = compute_frame_size (size, &reg_saved);
unsigned int init_stack_free = 0;
rtx restore_regs[32];
rtx restore_all;
int num_restore;
int default_stack;
int code;
int interrupt_handler = v850_interrupt_function_p (current_function_decl);
/* Eliminate the initial stack stored by interrupt functions. */
if (interrupt_handler)
{
actual_fsize -= INTERRUPT_FIXED_SAVE_SIZE;
if (((1L << 31) & reg_saved) != 0)
actual_fsize -= INTERRUPT_ALL_SAVE_SIZE;
}
/* Cut off any dynamic stack created. */
if (frame_pointer_needed)
emit_move_insn (stack_pointer_rtx, hard_frame_pointer_rtx);
/* Identify all of the saved registers */
num_restore = 0;
default_stack = 0;
for (i = 1; i < 31; i++)
{
if (((1L << i) & reg_saved) != 0)
restore_regs[num_restore++] = gen_rtx (REG, Pmode, i);
}
/* If the return pointer is saved, the helper functions also allocate
16 bytes of stack for arguments to be saved in. */
if (((1L << 31) & reg_saved) != 0)
{
restore_regs[num_restore++] = gen_rtx (REG, Pmode, 31);
default_stack = 16;
}
/* See if we have an insn that restores the particular registers we
want to. */
restore_all = NULL_RTX;
if (TARGET_PROLOG_FUNCTION && num_restore > 0 && actual_fsize >= default_stack
&& !interrupt_handler)
{
int alloc_stack = (4 * num_restore) + default_stack;
int unalloc_stack = actual_fsize - alloc_stack;
int restore_func_len = 4;
int restore_normal_len;
if (unalloc_stack)
restore_func_len += CONST_OK_FOR_J (unalloc_stack) ? 2 : 4;
/* see if we would have used ep to restore the registers */
if (TARGET_EP && num_restore > 3 && (unsigned)actual_fsize < 255)
restore_normal_len = (3 * 2) + (2 * num_restore);
else
restore_normal_len = 4 * num_restore;
restore_normal_len += (CONST_OK_FOR_J (actual_fsize) ? 2 : 4) + 2;
/* Don't bother checking if we don't actually save any space. */
if (restore_func_len < restore_normal_len)
{
restore_all = gen_rtx (PARALLEL, VOIDmode,
rtvec_alloc (num_restore + 2));
XVECEXP (restore_all, 0, 0) = gen_rtx (RETURN, VOIDmode);
XVECEXP (restore_all, 0, 1)
= gen_rtx (SET, VOIDmode, stack_pointer_rtx,
gen_rtx (PLUS, Pmode,
stack_pointer_rtx,
GEN_INT (alloc_stack)));
offset = alloc_stack - 4;
for (i = 0; i < num_restore; i++)
{
XVECEXP (restore_all, 0, i+2)
= gen_rtx (SET, VOIDmode,
restore_regs[i],
gen_rtx (MEM, Pmode,
plus_constant (stack_pointer_rtx, offset)));
offset -= 4;
}
code = recog (restore_all, NULL_RTX, NULL_PTR);
if (code >= 0)
{
rtx insn;
actual_fsize -= alloc_stack;
if (actual_fsize)
{
if (CONST_OK_FOR_K (actual_fsize))
emit_insn (gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (actual_fsize)));
else
{
rtx reg = gen_rtx (REG, Pmode, 12);
emit_move_insn (reg, GEN_INT (actual_fsize));
emit_insn (gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
reg));
}
}
insn = emit_jump_insn (restore_all);
INSN_CODE (insn) = code;
if (TARGET_DEBUG)
fprintf (stderr, "Saved %d bytes via epilogue function (%d vs. %d) in function %s\n",
restore_normal_len - restore_func_len,
restore_normal_len, restore_func_len,
IDENTIFIER_POINTER (DECL_NAME (current_function_decl)));
}
else
restore_all = NULL_RTX;
}
}
/* If no epilog save function is available, restore the registers the
old fashioned way (one by one). */
if (!restore_all)
{
/* If the stack is large, we need to cut it down in 2 pieces. */
if (actual_fsize && !CONST_OK_FOR_K (-actual_fsize))
init_stack_free = 4 * num_restore;
else
init_stack_free = actual_fsize;
/* Deallocate the rest of the stack if it is > 32K or if extra stack
was allocated for an interrupt handler that makes a call. */
if (actual_fsize > init_stack_free || (interrupt_handler && actual_fsize))
{
int diff = actual_fsize - ((interrupt_handler) ? 0 : init_stack_free);
if (CONST_OK_FOR_K (diff))
emit_insn (gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (diff)));
else
{
rtx reg = gen_rtx (REG, Pmode, 12);
emit_move_insn (reg, GEN_INT (diff));
emit_insn (gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
reg));
}
}
/* Special case interrupt functions that save all registers
for a call. */
if (interrupt_handler && ((1L << 31) & reg_saved) != 0)
emit_insn (gen_restore_all_interrupt ());
else
{
/* Restore registers from the beginning of the stack frame */
offset = init_stack_free - 4;
/* Restore the return pointer first. */
if (num_restore > 0 && REGNO (restore_regs[num_restore-1]) == 31)
{
emit_move_insn (restore_regs[--num_restore],
gen_rtx (MEM, SImode,
plus_constant (stack_pointer_rtx,
offset)));
offset -= 4;
}
for (i = 0; i < num_restore; i++)
{
emit_move_insn (restore_regs[i],
gen_rtx (MEM, SImode,
plus_constant (stack_pointer_rtx,
offset)));
offset -= 4;
}
/* Cut back the remainder of the stack. */
if (init_stack_free)
emit_insn (gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (init_stack_free)));
}
/* And return or use reti for interrupt handlers. */
if (interrupt_handler)
emit_jump_insn (gen_restore_interrupt ());
else if (actual_fsize)
emit_jump_insn (gen_return_internal ());
else
emit_jump_insn (gen_return ());
}
current_function_anonymous_args = 0;
v850_interrupt_cache_p = FALSE;
v850_interrupt_p = FALSE;
}
/* Update the condition code from the insn. */
void
notice_update_cc (body, insn)
rtx body;
rtx insn;
{
switch (get_attr_cc (insn))
{
case CC_NONE:
/* Insn does not affect CC at all. */
break;
case CC_NONE_0HIT:
/* Insn does not change CC, but the 0'th operand has been changed. */
if (cc_status.value1 != 0
&& reg_overlap_mentioned_p (recog_operand[0], cc_status.value1))
cc_status.value1 = 0;
break;
case CC_SET_ZN:
/* Insn sets the Z,N flags of CC to recog_operand[0].
V,C is in an unusable state. */
CC_STATUS_INIT;
cc_status.flags |= CC_OVERFLOW_UNUSABLE | CC_NO_CARRY;
cc_status.value1 = recog_operand[0];
break;
case CC_SET_ZNV:
/* Insn sets the Z,N,V flags of CC to recog_operand[0].
C is in an unusable state. */
CC_STATUS_INIT;
cc_status.flags |= CC_NO_CARRY;
cc_status.value1 = recog_operand[0];
break;
case CC_COMPARE:
/* The insn is a compare instruction. */
CC_STATUS_INIT;
cc_status.value1 = SET_SRC (body);
break;
case CC_CLOBBER:
/* Insn doesn't leave CC in a usable state. */
CC_STATUS_INIT;
break;
}
}
/* Return nonzero if ATTR is a valid attribute for DECL.
ATTRIBUTES are any existing attributes and ARGS are the arguments
supplied with ATTR.
Supported attributes:
interrupt_handler or interrupt: output a prologue and epilogue suitable
for an interrupt handler. */
int
v850_valid_machine_decl_attribute (decl, attributes, attr, args)
tree decl;
tree attributes;
tree attr;
tree args;
{
if (args != NULL_TREE)
return 0;
if (is_attribute_p ("interrupt_handler", attr)
|| is_attribute_p ("interrupt", attr))
return TREE_CODE (decl) == FUNCTION_DECL;
return 0;
}
/* Return nonzero if FUNC is an interrupt function as specified
by the "interrupt" attribute. */
int
v850_interrupt_function_p (func)
tree func;
{
tree a;
int ret = 0;
if (v850_interrupt_cache_p)
return v850_interrupt_p;
if (TREE_CODE (func) != FUNCTION_DECL)
return 0;
a = lookup_attribute ("interrupt_handler", DECL_MACHINE_ATTRIBUTES (func));
if (a != NULL_TREE)
ret = 1;
else
{
a = lookup_attribute ("interrupt", DECL_MACHINE_ATTRIBUTES (func));
ret = a != NULL_TREE;
}
/* Its not safe to trust global variables until after function inlining has
been done. */
if (reload_completed | reload_in_progress)
v850_interrupt_p = ret;
return ret;
}
extern struct obstack *saveable_obstack;
v850_encode_data_area (decl)
tree decl;
{
char *str = XSTR (XEXP (DECL_RTL (decl), 0), 0);
int len = strlen (str);
char *newstr;
/* In the Cygnus sources we actually do something; this is just
here to make merges easier. */
return;
}
/* CYGNUS LOCAL entire file/law */
/* Definitions of target machine for GNU compiler.
NEC V850 series
Copyright (C) 1996, 1997 Free Software Foundation, Inc.
Contributed by Jeff Law (law@cygnus.com).
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "svr4.h"
#undef ASM_SPEC
#undef ASM_FINAL_SPEC
#undef LIB_SPEC
#undef ENDFILE_SPEC
#undef LINK_SPEC
#undef STARTFILE_SPEC
/* Names to predefine in the preprocessor for this target machine. */
#define CPP_PREDEFINES "-D__v850__ -D__v851__ -D__v850"
/* Run-time compilation parameters selecting different hardware subsets. */
extern int target_flags;
/* Target flags bits, see below for an explanation of the bits. */
#define MASK_GHS 0x00000001
#define MASK_LONG_CALLS 0x00000002
#define MASK_EP 0x00000004
#define MASK_PROLOG_FUNCTION 0x00000008
#define MASK_DEBUG 0x40000000
/* Macros used in the machine description to test the flags. */
/* The GHS calling convention support doesn't really work,
mostly due to a lack of documentation. Outstanding issues:
* How do varargs & stdarg really work. How to they handle
passing structures (if at all).
* Doubles are normally 4 byte aligned, except in argument
lists where they are 8 byte aligned. Is the alignment
in the argument list based on the first parameter,
first stack parameter, etc etc.
* Passing/returning of large structures probably isn't the same
as GHS. We don't have enough documentation on their conventions
to be compatable.
* Tests of SETUP_INCOMING_VARARGS need to be made runtime checks
since it depends on TARGET_GHS. */
#define TARGET_GHS (target_flags & MASK_GHS)
/* Don't do PC-relative calls, instead load the address of the target
function into a register and perform a register indirect call. */
#define TARGET_LONG_CALLS (target_flags & MASK_LONG_CALLS)
/* Whether to optimize space by using ep (r30) for pointers with small offsets
in basic blocks. */
#define TARGET_EP (target_flags & MASK_EP)
/* Whether to call out-of-line functions to save registers or not. */
#define TARGET_PROLOG_FUNCTION (target_flags & MASK_PROLOG_FUNCTION)
/* General debug flag */
#define TARGET_DEBUG (target_flags & MASK_DEBUG)
/* Macro to define tables used to set the flags.
This is a list in braces of pairs in braces,
each pair being { "NAME", VALUE }
where VALUE is the bits to set or minus the bits to clear.
An empty string NAME is used to identify the default VALUE. */
#define TARGET_SWITCHES \
{{ "ghs", MASK_GHS }, \
{ "no-ghs", -MASK_GHS }, \
{ "long-calls", MASK_LONG_CALLS }, \
{ "no-long-calls", -MASK_LONG_CALLS }, \
{ "ep", MASK_EP }, \
{ "no-ep", -MASK_EP }, \
{ "prolog-function", MASK_PROLOG_FUNCTION }, \
{ "no-prolog-function", -MASK_PROLOG_FUNCTION }, \
{ "space", MASK_EP | MASK_PROLOG_FUNCTION }, \
{ "debug", MASK_DEBUG }, \
{ "", TARGET_DEFAULT}}
#ifndef TARGET_DEFAULT
#define TARGET_DEFAULT 0
#endif
/* Information about the various small memory areas. */
struct small_memory_info {
char *name;
char *value;
long max;
long physical_max;
};
enum small_memory_type {
/* tiny data area, using EP as base register */
SMALL_MEMORY_TDA = 0,
/* small data area using dp as base register */
SMALL_MEMORY_SDA,
/* zero data area using r0 as base register */
SMALL_MEMORY_ZDA,
SMALL_MEMORY_max
};
extern struct small_memory_info small_memory[(int)SMALL_MEMORY_max];
/* This macro is similar to `TARGET_SWITCHES' but defines names of
command options that have values. Its definition is an
initializer with a subgrouping for each command option.
Each subgrouping contains a string constant, that defines the
fixed part of the option name, and the address of a variable. The
variable, type `char *', is set to the variable part of the given
option if the fixed part matches. The actual option name is made
by appending `-m' to the specified name.
Here is an example which defines `-mshort-data-NUMBER'. If the
given option is `-mshort-data-512', the variable `m88k_short_data'
will be set to the string `"512"'.
extern char *m88k_short_data;
#define TARGET_OPTIONS \
{ { "short-data-", &m88k_short_data } } */
#define TARGET_OPTIONS \
{ \
{ "tda=", &small_memory[ (int)SMALL_MEMORY_TDA ].value }, \
{ "tda-", &small_memory[ (int)SMALL_MEMORY_TDA ].value }, \
{ "sda=", &small_memory[ (int)SMALL_MEMORY_SDA ].value }, \
{ "sda-", &small_memory[ (int)SMALL_MEMORY_SDA ].value }, \
{ "zda=", &small_memory[ (int)SMALL_MEMORY_ZDA ].value }, \
{ "zda-", &small_memory[ (int)SMALL_MEMORY_ZDA ].value }, \
}
/* Print subsidiary information on the compiler version in use. */
#define TARGET_VERSION fprintf (stderr, " (NEC V850)");
/* Sometimes certain combinations of command options do not make
sense on a particular target machine. You can define a macro
`OVERRIDE_OPTIONS' to take account of this. This macro, if
defined, is executed once just after all the command options have
been parsed.
Don't use this macro to turn on various extra optimizations for
`-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
#define OVERRIDE_OPTIONS override_options ()
/* Show we can debug even without a frame pointer. */
#define CAN_DEBUG_WITHOUT_FP
/* Some machines may desire to change what optimizations are
performed for various optimization levels. This macro, if
defined, is executed once just after the optimization level is
determined and before the remainder of the command options have
been parsed. Values set in this macro are used as the default
values for the other command line options.
LEVEL is the optimization level specified; 2 if `-O2' is
specified, 1 if `-O' is specified, and 0 if neither is specified.
You should not use this macro to change options that are not
machine-specific. These should uniformly selected by the same
optimization level on all supported machines. Use this macro to
enable machine-specific optimizations.
*Do not examine `write_symbols' in this macro!* The debugging
options are not supposed to alter the generated code. */
#define OPTIMIZATION_OPTIONS(LEVEL) \
{ \
if (LEVEL) \
target_flags |= (MASK_EP | MASK_PROLOG_FUNCTION); \
}
/* Target machine storage layout */
/* Define this if most significant bit is lowest numbered
in instructions that operate on numbered bit-fields.
This is not true on the NEC V850. */
#define BITS_BIG_ENDIAN 0
/* Define this if most significant byte of a word is the lowest numbered. */
/* This is not true on the NEC V850. */
#define BYTES_BIG_ENDIAN 0
/* Define this if most significant word of a multiword number is lowest
numbered.
This is not true on the NEC V850. */
#define WORDS_BIG_ENDIAN 0
/* Number of bits in an addressable storage unit */
#define BITS_PER_UNIT 8
/* Width in bits of a "word", which is the contents of a machine register.
Note that this is not necessarily the width of data type `int';
if using 16-bit ints on a 68000, this would still be 32.
But on a machine with 16-bit registers, this would be 16. */
#define BITS_PER_WORD 32
/* Width of a word, in units (bytes). */
#define UNITS_PER_WORD 4
/* Width in bits of a pointer.
See also the macro `Pmode' defined below. */
#define POINTER_SIZE 32
/* Define this macro if it is advisable to hold scalars in registers
in a wider mode than that declared by the program. In such cases,
the value is constrained to be within the bounds of the declared
type, but kept valid in the wider mode. The signedness of the
extension may differ from that of the type.
Some simple experiments have shown that leaving UNSIGNEDP alone
generates the best overall code. */
#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
if (GET_MODE_CLASS (MODE) == MODE_INT \
&& GET_MODE_SIZE (MODE) < 4) \
{ (MODE) = SImode; }
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
#define PARM_BOUNDARY 32
/* The stack goes in 32 bit lumps. */
#define STACK_BOUNDARY 32
/* Allocation boundary (in *bits*) for the code of a function.
16 is the minimum boundary; 32 would give better performance. */
#define FUNCTION_BOUNDARY 16
/* No data type wants to be aligned rounder than this. */
#define BIGGEST_ALIGNMENT 32
/* Alignment of field after `int : 0' in a structure. */
#define EMPTY_FIELD_BOUNDARY 32
/* No structure field wants to be aligned rounder than this. */
#define BIGGEST_FIELD_ALIGNMENT 32
/* Define this if move instructions will actually fail to work
when given unaligned data. */
#define STRICT_ALIGNMENT 1
/* Define this as 1 if `char' should by default be signed; else as 0.
On the NEC V850, loads do sign extension, so make this default. */
#define DEFAULT_SIGNED_CHAR 1
/* Define results of standard character escape sequences. */
#define TARGET_BELL 007
#define TARGET_BS 010
#define TARGET_TAB 011
#define TARGET_NEWLINE 012
#define TARGET_VT 013
#define TARGET_FF 014
#define TARGET_CR 015
/* Standard register usage. */
/* Number of actual hardware registers.
The hardware registers are assigned numbers for the compiler
from 0 to just below FIRST_PSEUDO_REGISTER.
All registers that the compiler knows about must be given numbers,
even those that are not normally considered general registers. */
#define FIRST_PSEUDO_REGISTER 34
/* 1 for registers that have pervasive standard uses
and are not available for the register allocator. */
#define FIXED_REGISTERS \
{ 1, 1, 0, 1, 1, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 1, 0, \
1, 1}
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
Aside from that, you can include as many other registers as you
like. */
#define CALL_USED_REGISTERS \
{ 1, 1, 0, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 1, 1, \
1, 1}
/* List the order in which to allocate registers. Each register must be
listed once, even those in FIXED_REGISTERS.
On the 850, we make the return registers first, then all of the volatile
registers, then the saved registers in reverse order to better save the
registers with an out of line function , and finnally the fixed
registers. */
#define REG_ALLOC_ORDER \
{ \
10, 11, /* return registers */ \
12, 13, 14, 15, 16, 17, 18, 19, /* scratch registers */ \
6, 7, 8, 9, 31, /* argument registers */ \
29, 28, 27, 26, 25, 24, 23, 22, /* saved registers */ \
21, 20, 2, \
0, 1, 3, 4, 5, 30, 32, 33 /* fixed registers */ \
}
/* Return number of consecutive hard regs needed starting at reg REGNO
to hold something of mode MODE.
This is ordinarily the length in words of a value of mode MODE
but can be less for certain modes in special long registers. */
#define HARD_REGNO_NREGS(REGNO, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
/* Value is 1 if hard register REGNO can hold a value of machine-mode
MODE. */
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
((((REGNO) & 1) == 0) || (GET_MODE_SIZE (MODE) <= 4))
/* Value is 1 if it is a good idea to tie two pseudo registers
when one has mode MODE1 and one has mode MODE2.
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
for any hard reg, then this must be 0 for correct output. */
#define MODES_TIEABLE_P(MODE1, MODE2) \
(MODE1 == MODE2 || GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4)
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
For any two classes, it is very desirable that there be another
class that represents their union. */
enum reg_class {
NO_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
};
#define N_REG_CLASSES (int) LIM_REG_CLASSES
/* Give names of register classes as strings for dump file. */
#define REG_CLASS_NAMES \
{ "NO_REGS", "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
/* Define which registers fit in which classes.
This is an initializer for a vector of HARD_REG_SET
of length N_REG_CLASSES. */
#define REG_CLASS_CONTENTS \
{ 0x00000000, /* No regs */ \
0xffffffff, /* GENERAL_REGS */ \
0xffffffff, /* ALL_REGS */ \
}
/* The same information, inverted:
Return the class number of the smallest class containing
reg number REGNO. This could be a conditional expression
or could index an array. */
#define REGNO_REG_CLASS(REGNO) GENERAL_REGS
/* The class value for index registers, and the one for base regs. */
#define INDEX_REG_CLASS NO_REGS
#define BASE_REG_CLASS GENERAL_REGS
/* Get reg_class from a letter such as appears in the machine description. */
#define REG_CLASS_FROM_LETTER(C) (NO_REGS)
/* Macros to check register numbers against specific register classes. */
/* These assume that REGNO is a hard or pseudo reg number.
They give nonzero only if REGNO is a hard reg of the suitable class
or a pseudo reg currently allocated to a suitable hard reg.
Since they use reg_renumber, they are safe only once reg_renumber
has been allocated, which happens in local-alloc.c. */
#define REGNO_OK_FOR_BASE_P(regno) \
((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
#define REGNO_OK_FOR_INDEX_P(regno) 0
/* Given an rtx X being reloaded into a reg required to be
in class CLASS, return the class of reg to actually use.
In general this is just CLASS; but on some machines
in some cases it is preferable to use a more restrictive class. */
#define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS. */
#define CLASS_MAX_NREGS(CLASS, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
/* The letters I, J, K, L, M, N, O, P in a register constraint string
can be used to stand for particular ranges of immediate operands.
This macro defines what the ranges are.
C is the letter, and VALUE is a constant value.
Return 1 if VALUE is in the range specified by C. */
#define INT_7_BITS(VALUE) ((unsigned) (VALUE) + 0x40 < 0x80)
#define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
#define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
#define CONST_OK_FOR_J(VALUE) ((unsigned) (VALUE) + 0x10 < 0x20)
#define CONST_OK_FOR_K(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
#define CONST_OK_FOR_L(VALUE) \
(((unsigned) ((int) (VALUE) >> 16) + 0x8000 < 0x10000) \
&& CONST_OK_FOR_I ((VALUE & 0xffff)))
#define CONST_OK_FOR_M(VALUE) ((unsigned)(VALUE) < 0x10000)
#define CONST_OK_FOR_N(VALUE) ((unsigned) VALUE >= 0 && (unsigned) VALUE <= 31) /* 5 bit signed immediate in shift instructions */
#define CONST_OK_FOR_O(VALUE) 0
#define CONST_OK_FOR_P(VALUE) 0
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
(C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
(C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
(C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
(C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
(C) == 'N' ? CONST_OK_FOR_N (VALUE) : \
(C) == 'O' ? CONST_OK_FOR_O (VALUE) : \
(C) == 'P' ? CONST_OK_FOR_P (VALUE) : \
0)
/* Similar, but for floating constants, and defining letters G and H.
Here VALUE is the CONST_DOUBLE rtx itself.
`G' is a zero of some form. */
#define CONST_DOUBLE_OK_FOR_G(VALUE) \
((GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
&& (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
|| (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_INT \
&& CONST_DOUBLE_LOW (VALUE) == 0 \
&& CONST_DOUBLE_HIGH (VALUE) == 0))
#define CONST_DOUBLE_OK_FOR_H(VALUE) 0
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) \
: (C) == 'H' ? CONST_DOUBLE_OK_FOR_H (VALUE) \
: 0)
/* Stack layout; function entry, exit and calling. */
/* Define this if pushing a word on the stack
makes the stack pointer a smaller address. */
#define STACK_GROWS_DOWNWARD
/* Define this if the nominal address of the stack frame
is at the high-address end of the local variables;
that is, each additional local variable allocated
goes at a more negative offset in the frame. */
#define FRAME_GROWS_DOWNWARD
/* Offset within stack frame to start allocating local variables at.
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
first local allocated. Otherwise, it is the offset to the BEGINNING
of the first local allocated. */
#define STARTING_FRAME_OFFSET 0
/* Offset of first parameter from the argument pointer register value. */
/* Is equal to the size of the saved fp + pc, even if an fp isn't
saved since the value is used before we know. */
#define FIRST_PARM_OFFSET(FNDECL) 0
/* Specify the registers used for certain standard purposes.
The values of these macros are register numbers. */
/* Register to use for pushing function arguments. */
#define STACK_POINTER_REGNUM 3
/* Base register for access to local variables of the function. */
#define FRAME_POINTER_REGNUM 32
/* On some machines the offset between the frame pointer and starting
offset of the automatic variables is not known until after register
allocation has been done (for example, because the saved registers
are between these two locations). On those machines, define
`FRAME_POINTER_REGNUM' the number of a special, fixed register to
be used internally until the offset is known, and define
`HARD_FRAME_POINTER_REGNUM' to be actual the hard register number
used for the frame pointer.
You should define this macro only in the very rare circumstances
when it is not possible to calculate the offset between the frame
pointer and the automatic variables until after register
allocation has been completed. When this macro is defined, you
must also indicate in your definition of `ELIMINABLE_REGS' how to
eliminate `FRAME_POINTER_REGNUM' into either
`HARD_FRAME_POINTER_REGNUM' or `STACK_POINTER_REGNUM'.
Do not define this macro if it would be the same as
`FRAME_POINTER_REGNUM'. */
#define HARD_FRAME_POINTER_REGNUM 29
/* Base register for access to arguments of the function. */
#define ARG_POINTER_REGNUM 33
/* Register in which static-chain is passed to a function. */
#define STATIC_CHAIN_REGNUM 5
/* Value should be nonzero if functions must have frame pointers.
Zero means the frame pointer need not be set up (and parms
may be accessed via the stack pointer) in functions that seem suitable.
This is computed in `reload', in reload1.c. */
#define FRAME_POINTER_REQUIRED 0
/* If defined, this macro specifies a table of register pairs used to
eliminate unneeded registers that point into the stack frame. If
it is not defined, the only elimination attempted by the compiler
is to replace references to the frame pointer with references to
the stack pointer.
The definition of this macro is a list of structure
initializations, each of which specifies an original and
replacement register.
On some machines, the position of the argument pointer is not
known until the compilation is completed. In such a case, a
separate hard register must be used for the argument pointer.
This register can be eliminated by replacing it with either the
frame pointer or the argument pointer, depending on whether or not
the frame pointer has been eliminated.
In this case, you might specify:
#define ELIMINABLE_REGS \
{{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
{FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
Note that the elimination of the argument pointer with the stack
pointer is specified first since that is the preferred elimination. */
#define ELIMINABLE_REGS \
{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
{ FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
{ ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }} \
/* A C expression that returns non-zero if the compiler is allowed to
try to replace register number FROM-REG with register number
TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
defined, and will usually be the constant 1, since most of the
cases preventing register elimination are things that the compiler
already knows about. */
#define CAN_ELIMINATE(FROM, TO) \
((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
specifies the initial difference between the specified pair of
registers. This macro must be defined if `ELIMINABLE_REGS' is
defined. */
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
{ \
if ((FROM) == FRAME_POINTER_REGNUM) \
(OFFSET) = get_frame_size () + current_function_outgoing_args_size; \
else if ((FROM) == ARG_POINTER_REGNUM) \
(OFFSET) = compute_frame_size (get_frame_size (), (long *)0); \
else \
abort (); \
}
/* A guess for the V850. */
#define PROMOTE_PROTOTYPES 1
/* Keep the stack pointer constant throughout the function. */
#define ACCUMULATE_OUTGOING_ARGS
/* Value is the number of bytes of arguments automatically
popped when returning from a subroutine call.
FUNDECL is the declaration node of the function (as a tree),
FUNTYPE is the data type of the function (as a tree),
or for a library call it is an identifier node for the subroutine name.
SIZE is the number of bytes of arguments passed on the stack. */
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
/* Define a data type for recording info about an argument list
during the scan of that argument list. This data type should
hold all necessary information about the function itself
and about the args processed so far, enough to enable macros
such as FUNCTION_ARG to determine where the next arg should go. */
#define CUMULATIVE_ARGS struct cum_arg
struct cum_arg { int nbytes; };
/* Define where to put the arguments to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis). */
struct rtx_def *function_arg();
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
function_arg (&CUM, MODE, TYPE, NAMED)
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0. */
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
((CUM).nbytes = 0)
/* Update the data in CUM to advance over an argument
of mode MODE and data type TYPE.
(TYPE is null for libcalls where that information may not be available.) */
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
((CUM).nbytes += ((MODE) != BLKmode \
? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD \
: (int_size_in_bytes (TYPE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD))
/* When a parameter is passed in a register, stack space is still
allocated for it. */
#define REG_PARM_STACK_SPACE(DECL) (!TARGET_GHS ? 16 : 0)
/* Define this if the above stack space is to be considered part of the
space allocated by the caller. */
#define OUTGOING_REG_PARM_STACK_SPACE
extern int current_function_anonymous_args;
/* Do any setup necessary for varargs/stdargs functions. */
#define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PAS, SECOND) \
current_function_anonymous_args = (!TARGET_GHS ? 1 : 0);
#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
((TYPE) && int_size_in_bytes (TYPE) > 8)
#define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
((TYPE) && int_size_in_bytes (TYPE) > 8)
/* 1 if N is a possible register number for function argument passing. */
#define FUNCTION_ARG_REGNO_P(N) (N >= 6 && N <= 9)
/* Define how to find the value returned by a function.
VALTYPE is the data type of the value (as a tree).
If the precise function being called is known, FUNC is its FUNCTION_DECL;
otherwise, FUNC is 0. */
#define FUNCTION_VALUE(VALTYPE, FUNC) \
gen_rtx (REG, TYPE_MODE (VALTYPE), 10)
/* Define how to find the value returned by a library function
assuming the value has mode MODE. */
#define LIBCALL_VALUE(MODE) \
gen_rtx (REG, MODE, 10)
/* 1 if N is a possible register number for a function value. */
#define FUNCTION_VALUE_REGNO_P(N) ((N) == 10)
/* Return values > 8 bytes in length in memory. */
#define DEFAULT_PCC_STRUCT_RETURN 0
#define RETURN_IN_MEMORY(TYPE) \
(int_size_in_bytes (TYPE) > 8 || TYPE_MODE (TYPE) == BLKmode)
/* Register in which address to store a structure value
is passed to a function. On the V850 it's passed as
the first parameter. */
#define STRUCT_VALUE 0
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. The value is tested only in
functions that have frame pointers.
No definition is equivalent to always zero. */
#define EXIT_IGNORE_STACK 1
/* Output assembler code to FILE to increment profiler label # LABELNO
for profiling a function entry. */
#define FUNCTION_PROFILER(FILE, LABELNO) ;
#define TRAMPOLINE_TEMPLATE(FILE) \
do { \
fprintf (FILE, "\tjarl .+4,r12\n"); \
fprintf (FILE, "\tld.w 12[r12],r5\n"); \
fprintf (FILE, "\tld.w 16[r12],r12\n"); \
fprintf (FILE, "\tjmp [r12]\n"); \
fprintf (FILE, "\tnop\n"); \
fprintf (FILE, "\t.long 0\n"); \
fprintf (FILE, "\t.long 0\n"); \
} while (0)
/* Length in units of the trampoline for entering a nested function. */
#define TRAMPOLINE_SIZE 24
/* Emit RTL insns to initialize the variable parts of a trampoline.
FNADDR is an RTX for the address of the function's pure code.
CXT is an RTX for the static chain value for the function. */
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
{ \
emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 16)), \
(CXT)); \
emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 20)), \
(FNADDR)); \
}
/* Addressing modes, and classification of registers for them. */
/* 1 if X is an rtx for a constant that is a valid address. */
#define CONSTANT_ADDRESS_P(X) \
(GET_CODE (X) == CONST_INT \
&& CONST_OK_FOR_K (INTVAL (X)))
/* Maximum number of registers that can appear in a valid memory address. */
#define MAX_REGS_PER_ADDRESS 1
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
and check its validity for a certain class.
We have two alternate definitions for each of them.
The usual definition accepts all pseudo regs; the other rejects
them unless they have been allocated suitable hard regs.
The symbol REG_OK_STRICT causes the latter definition to be used.
Most source files want to accept pseudo regs in the hope that
they will get allocated to the class that the insn wants them to be in.
Source files for reload pass need to be strict.
After reload, it makes no difference, since pseudo regs have
been eliminated by then. */
#ifndef REG_OK_STRICT
/* Nonzero if X is a hard reg that can be used as an index
or if it is a pseudo reg. */
#define REG_OK_FOR_INDEX_P(X) 0
/* Nonzero if X is a hard reg that can be used as a base reg
or if it is a pseudo reg. */
#define REG_OK_FOR_BASE_P(X) 1
#define REG_OK_FOR_INDEX_P_STRICT(X) 0
#define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
#define STRICT 0
#else
/* Nonzero if X is a hard reg that can be used as an index. */
#define REG_OK_FOR_INDEX_P(X) 0
/* Nonzero if X is a hard reg that can be used as a base reg. */
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
#define STRICT 1
#endif
/* A C expression that defines the optional machine-dependent
constraint letters that can be used to segregate specific types of
operands, usually memory references, for the target machine.
Normally this macro will not be defined. If it is required for a
particular target machine, it should return 1 if VALUE corresponds
to the operand type represented by the constraint letter C. If C
is not defined as an extra constraint, the value returned should
be 0 regardless of VALUE.
For example, on the ROMP, load instructions cannot have their
output in r0 if the memory reference contains a symbolic address.
Constraint letter `Q' is defined as representing a memory address
that does *not* contain a symbolic address. An alternative is
specified with a `Q' constraint on the input and `r' on the
output. The next alternative specifies `m' on the input and a
register class that does not include r0 on the output. */
#define EXTRA_CONSTRAINT(OP, C) \
((C) == 'Q' ? ep_memory_operand (OP, GET_MODE (OP)) \
: (C) == 'R' ? special_symbolref_operand (OP, VOIDmode) \
: (C) == 'S' ? (GET_CODE (OP) == SYMBOL_REF && ! ZDA_NAME_P (XSTR (OP, 0))) \
: (C) == 'T' ? 0 \
: (C) == 'U' ? 0 \
: 0)
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
that is a valid memory address for an instruction.
The MODE argument is the machine mode for the MEM expression
that wants to use this address.
The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
except for CONSTANT_ADDRESS_P which is actually
machine-independent. */
/* Accept either REG or SUBREG where a register is valid. */
#define RTX_OK_FOR_BASE_P(X) \
((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
|| (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
&& REG_OK_FOR_BASE_P (SUBREG_REG (X))))
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
do { \
if (RTX_OK_FOR_BASE_P (X)) goto ADDR; \
if (CONSTANT_ADDRESS_P (X) \
&& (MODE == QImode || INTVAL (X) % 2 == 0)) \
goto ADDR; \
if (GET_CODE (X) == LO_SUM \
&& GET_CODE (XEXP (X, 0)) == REG \
&& REG_OK_FOR_BASE_P (XEXP (X, 0)) \
&& CONSTANT_P (XEXP (X, 1)) \
&& (GET_CODE (XEXP (X, 1)) != CONST_INT \
|| ((MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \
&& CONST_OK_FOR_K (INTVAL (XEXP (X, 1))))) \
&& GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode)) \
goto ADDR; \
if (special_symbolref_operand (X, MODE) \
&& (GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode))) \
goto ADDR; \
if (GET_CODE (X) == PLUS \
&& CONSTANT_ADDRESS_P (XEXP (X, 1)) \
&& (MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \
&& RTX_OK_FOR_BASE_P (XEXP (X, 0))) goto ADDR; \
} while (0)
/* Try machine-dependent ways of modifying an illegitimate address
to be legitimate. If we find one, return the new, valid address.
This macro is used in only one place: `memory_address' in explow.c.
OLDX is the address as it was before break_out_memory_refs was called.
In some cases it is useful to look at this to decide what needs to be done.
MODE and WIN are passed so that this macro can use
GO_IF_LEGITIMATE_ADDRESS.
It is always safe for this macro to do nothing. It exists to recognize
opportunities to optimize the output. */
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
/* Go to LABEL if ADDR (a legitimate address expression)
has an effect that depends on the machine mode it is used for. */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
/* Nonzero if the constant value X is a legitimate general operand.
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
#define LEGITIMATE_CONSTANT_P(X) \
(GET_CODE (X) == CONST_DOUBLE \
|| !(GET_CODE (X) == CONST \
&& GET_CODE (XEXP (X, 0)) == PLUS \
&& GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
&& GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
&& ! CONST_OK_FOR_K (INTVAL (XEXP (XEXP (X, 0), 1)))))
/* In rare cases, correct code generation requires extra machine
dependent processing between the second jump optimization pass and
delayed branch scheduling. On those machines, define this macro
as a C statement to act on the code starting at INSN. */
#define MACHINE_DEPENDENT_REORG(INSN) v850_reorg (INSN)
/* Tell final.c how to eliminate redundant test instructions. */
/* Here we define machine-dependent flags and fields in cc_status
(see `conditions.h'). No extra ones are needed for the vax. */
/* Store in cc_status the expressions
that the condition codes will describe
after execution of an instruction whose pattern is EXP.
Do not alter them if the instruction would not alter the cc's. */
#define CC_OVERFLOW_UNUSABLE 0x200
#define CC_NO_CARRY CC_NO_OVERFLOW
#define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
/* A part of a C `switch' statement that describes the relative costs
of constant RTL expressions. It must contain `case' labels for
expression codes `const_int', `const', `symbol_ref', `label_ref'
and `const_double'. Each case must ultimately reach a `return'
statement to return the relative cost of the use of that kind of
constant value in an expression. The cost may depend on the
precise value of the constant, which is available for examination
in X, and the rtx code of the expression in which it is contained,
found in OUTER_CODE.
CODE is the expression code--redundant, since it can be obtained
with `GET_CODE (X)'. */
#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
case CONST_INT: \
case CONST_DOUBLE: \
case CONST: \
case SYMBOL_REF: \
case LABEL_REF: \
{ \
int _zxy = const_costs(RTX, CODE); \
return (_zxy) ? COSTS_N_INSNS (_zxy) : 0; \
}
/* A crude cut at RTX_COSTS for the V850. */
/* Provide the costs of a rtl expression. This is in the body of a
switch on CODE.
There aren't DImode MOD, DIV or MULT operations, so call them
very expensive. Everything else is pretty much a costant cost. */
#define RTX_COSTS(RTX,CODE,OUTER_CODE) \
case MOD: \
case DIV: \
return 60; \
case MULT: \
return 20;
/* All addressing modes have the same cost on the V850 series. */
#define ADDRESS_COST(ADDR) 1
/* Nonzero if access to memory by bytes or half words is no faster
than accessing full words. */
#define SLOW_BYTE_ACCESS 1
/* Define this if zero-extension is slow (more than one real instruction). */
#define SLOW_ZERO_EXTEND
/* According expr.c, a value of around 6 should minimize code size, and
for the V850 series, that's our primary concern. */
#define MOVE_RATIO 6
/* Indirect calls are expensive, never turn a direct call
into an indirect call. */
#define NO_FUNCTION_CSE
/* A list of names for sections other than the standard two, which are
`in_text' and `in_data'. You need not define this macro on a
system with no other sections (that GCC needs to use). */
#undef EXTRA_SECTIONS
#define EXTRA_SECTIONS in_tdata, in_sdata, in_zdata, in_const, in_ctors, in_dtors
/* One or more functions to be defined in `varasm.c'. These
functions should do jobs analogous to those of `text_section' and
`data_section', for your additional sections. Do not define this
macro if you do not define `EXTRA_SECTIONS'. */
#undef EXTRA_SECTION_FUNCTIONS
#define EXTRA_SECTION_FUNCTIONS \
CONST_SECTION_FUNCTION \
CTORS_SECTION_FUNCTION \
DTORS_SECTION_FUNCTION \
\
void \
sdata_section () \
{ \
if (in_section != in_sdata) \
{ \
fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP); \
in_section = in_sdata; \
} \
} \
\
void \
tdata_section () \
{ \
if (in_section != in_tdata) \
{ \
fprintf (asm_out_file, "%s\n", TDATA_SECTION_ASM_OP); \
in_section = in_tdata; \
} \
} \
\
void \
zdata_section () \
{ \
if (in_section != in_zdata) \
{ \
fprintf (asm_out_file, "%s\n", ZDATA_SECTION_ASM_OP); \
in_section = in_zdata; \
} \
}
#define TEXT_SECTION_ASM_OP "\t.section .text"
#define DATA_SECTION_ASM_OP "\t.section .data"
#define BSS_SECTION_ASM_OP "\t.section .bss"
#define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\""
#define SBSS_SECTION_ASM_OP "\t.section .sbss,\"aw\""
#define ZDATA_SECTION_ASM_OP "\t.section .zdata,\"aw\""
#define ZBSS_SECTION_ASM_OP "\t.section .zbss,\"aw\""
#define TDATA_SECTION_ASM_OP "\t.section .tdata,\"aw\""
/* A C statement or statements to switch to the appropriate section
for output of EXP. You can assume that EXP is either a `VAR_DECL'
node or a constant of some sort. RELOC indicates whether the
initial value of EXP requires link-time relocations. Select the
section by calling `text_section' or one of the alternatives for
other sections.
Do not define this macro if you put all read-only variables and
constants in the read-only data section (usually the text section). */
#undef SELECT_SECTION
#define SELECT_SECTION(EXP, RELOC) \
do { \
if (TREE_CODE (EXP) == VAR_DECL) \
{ \
if (!TREE_READONLY (EXP) || TREE_SIDE_EFFECTS (EXP) \
|| !DECL_INITIAL (EXP) \
|| (DECL_INITIAL (EXP) != error_mark_node \
&& !TREE_CONSTANT (DECL_INITIAL (EXP)))) \
data_section (); \
else \
const_section (); \
} \
else if (TREE_CODE (EXP) == STRING_CST) \
{ \
if (! flag_writable_strings) \
const_section (); \
else \
data_section (); \
} \
\
else \
const_section (); \
\
} while (0)
/* A C statement or statements to switch to the appropriate section
for output of RTX in mode MODE. You can assume that RTX is some
kind of constant in RTL. The argument MODE is redundant except in
the case of a `const_int' rtx. Select the section by calling
`text_section' or one of the alternatives for other sections.
Do not define this macro if you put all constants in the read-only
data section. */
/* #define SELECT_RTX_SECTION(MODE, RTX) */
/* Output at beginning/end of assembler file. */
#undef ASM_FILE_START
#define ASM_FILE_START(FILE) asm_file_start(FILE)
#define ASM_COMMENT_START "#"
/* Output to assembler file text saying following lines
may contain character constants, extra white space, comments, etc. */
#define ASM_APP_ON "#APP\n"
/* Output to assembler file text saying following lines
no longer contain unusual constructs. */
#define ASM_APP_OFF "#NO_APP\n"
/* This is how to output an assembler line defining a `double' constant.
It is .double or .float, depending. */
#define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
do { char dstr[30]; \
REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
fprintf (FILE, "\t.double %s\n", dstr); \
} while (0)
/* This is how to output an assembler line defining a `float' constant. */
#define ASM_OUTPUT_FLOAT(FILE, VALUE) \
do { char dstr[30]; \
REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
fprintf (FILE, "\t.float %s\n", dstr); \
} while (0)
/* This is how to output an assembler line defining an `int' constant. */
#define ASM_OUTPUT_INT(FILE, VALUE) \
( fprintf (FILE, "\t.long "), \
output_addr_const (FILE, (VALUE)), \
fprintf (FILE, "\n"))
/* Likewise for `char' and `short' constants. */
#define ASM_OUTPUT_SHORT(FILE, VALUE) \
( fprintf (FILE, "\t.hword "), \
output_addr_const (FILE, (VALUE)), \
fprintf (FILE, "\n"))
#define ASM_OUTPUT_CHAR(FILE, VALUE) \
( fprintf (FILE, "\t.byte "), \
output_addr_const (FILE, (VALUE)), \
fprintf (FILE, "\n"))
/* This is how to output an assembler line for a numeric constant byte. */
#define ASM_OUTPUT_BYTE(FILE, VALUE) \
fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
/* Define the parentheses used to group arithmetic operations
in assembler code. */
#define ASM_OPEN_PAREN "("
#define ASM_CLOSE_PAREN ")"
/* This says how to output the assembler to define a global
uninitialized but not common symbol.
Try to use asm_output_bss to implement this macro. */
#define ASM_OUTPUT_BSS(FILE, DECL, NAME, SIZE, ROUNDED) \
asm_output_bss ((FILE), (DECL), (NAME), (SIZE), (ROUNDED))
/* This is how to output the definition of a user-level label named NAME,
such as the label on a static function or variable NAME. */
#define ASM_OUTPUT_LABEL(FILE, NAME) \
do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
/* This is how to output a command to make the user-level label named NAME
defined for reference from other files. */
#define ASM_GLOBALIZE_LABEL(FILE, NAME) \
do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
/* This is how to output a reference to a user-level label named NAME.
`assemble_name' uses this. */
#undef ASM_OUTPUT_LABELREF
#define ASM_OUTPUT_LABELREF(FILE, NAME) \
do { \
char* real_name; \
STRIP_NAME_ENCODING (real_name, (NAME)); \
fprintf (FILE, "_%s", real_name); \
} while (0)
/* Store in OUTPUT a string (made with alloca) containing
an assembler-name for a local static variable named NAME.
LABELNO is an integer which is different for each call. */
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
/* This is how we tell the assembler that two symbols have the same value. */
#define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
do { assemble_name(FILE, NAME1); \
fputs(" = ", FILE); \
assemble_name(FILE, NAME2); \
fputc('\n', FILE); } while (0)
/* How to refer to registers in assembler output.
This sequence is indexed by compiler's hard-register-number (see above). */
#define REGISTER_NAMES \
{ "r0", "r1", "r2", "sp", "gp", "r5", "r6" , "r7", \
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
"r24", "r25", "r26", "r27", "r28", "r29", "ep", "r31", \
".fp", ".ap"}
#define ADDITIONAL_REGISTER_NAMES \
{ { "zero", 0 }, \
{ "hp", 2 }, \
{ "r3", 3 }, \
{ "r4", 4 }, \
{ "tp", 5 }, \
{ "fp", 29 }, \
{ "r30", 30 }, \
{ "lp", 31} }
/* Print an instruction operand X on file FILE.
look in v850.c for details */
#define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE,X,CODE)
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
((CODE) == '.')
/* Print a memory operand whose address is X, on file FILE.
This uses a function in output-vax.c. */
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
#define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
#define ASM_OUTPUT_REG_POP(FILE,REGNO)
/* This is how to output an element of a case-vector that is absolute. */
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
asm_fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
/* This is how to output an element of a case-vector that is relative. */
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
if ((LOG) != 0) \
fprintf (FILE, "\t.align %d\n", (LOG))
/* We don't have to worry about dbx compatability for the v850. */
#define DEFAULT_GDB_EXTENSIONS 1
/* Use stabs debugging info by default. */
#undef PREFERRED_DEBUGGING_TYPE
#define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
#define DBX_REGISTER_NUMBER(REGNO) REGNO
/* Define to use software floating point emulator for REAL_ARITHMETIC and
decimal <-> binary conversion. */
#define REAL_ARITHMETIC
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction. */
#define CASE_VECTOR_MODE Pmode
/* Define this if the case instruction drops through after the table
when the index is out of range. Don't define it if the case insn
jumps to the default label instead. */
#define CASE_DROPS_THROUGH
#define WORD_REGISTER_OPERATIONS
/* Byte and short loads sign extend the value to a word. */
#define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
/* Specify the tree operation to be used to convert reals to integers. */
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
/* This flag, if defined, says the same insns that convert to a signed fixnum
also convert validly to an unsigned one. */
#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
/* This is the kind of divide that is easiest to do in the general case. */
#define EASY_DIV_EXPR TRUNC_DIV_EXPR
/* Max number of bytes we can move from memory to memory
in one reasonably fast instruction. */
#define MOVE_MAX 4
/* Define if shifts truncate the shift count
which implies one can omit a sign-extension or zero-extension
of a shift count. */
#define SHIFT_COUNT_TRUNCATED 1
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
is done just by pretending it is already truncated. */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
#define STORE_FLAG_VALUE 1
/* Specify the machine mode that pointers have.
After generation of rtl, the compiler makes no further distinction
between pointers and any other objects of this machine mode. */
#define Pmode SImode
/* A function address in a call instruction
is a byte address (for indexing purposes)
so give the MEM rtx a byte's mode. */
#define FUNCTION_MODE QImode
/* A C expression whose value is nonzero if IDENTIFIER with arguments ARGS
is a valid machine specific attribute for DECL.
The attributes in ATTRIBUTES have previously been assigned to DECL. */
#define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, IDENTIFIER, ARGS) \
v850_valid_machine_decl_attribute (DECL, ATTRIBUTES, IDENTIFIER, ARGS)
/* Tell compiler we have {ZDA,TDA,SDA} small data regions */
#define HAVE_ZDA 1
#define HAVE_SDA 1
#define HAVE_TDA 1
/* Tell compiler we want to support GHS pragmas */
#define HANDLE_GHS_PRAGMA
/* The assembler op to to start the file. */
#define FILE_ASM_OP "\t.file\n"
/* Enable the register move pass to improve code. */
#define ENABLE_REGMOVE_PASS
/* Implement ZDA, TDA, and SDA */
#define EP_REGNUM 30 /* ep register number */
#define ENCODE_SECTION_INFO(DECL) \
do { \
if ((TREE_STATIC (DECL) || DECL_EXTERNAL (DECL)) \
&& TREE_CODE (DECL) == VAR_DECL) \
v850_encode_data_area (DECL); \
} while (0)
#define ZDA_NAME_FLAG_CHAR '@'
#define TDA_NAME_FLAG_CHAR '%'
#define SDA_NAME_FLAG_CHAR '&'
#define ZDA_NAME_P(NAME) (*(NAME) == ZDA_NAME_FLAG_CHAR)
#define TDA_NAME_P(NAME) (*(NAME) == TDA_NAME_FLAG_CHAR)
#define SDA_NAME_P(NAME) (*(NAME) == SDA_NAME_FLAG_CHAR)
#define ENCODED_NAME_P(SYMBOL_NAME) \
(ZDA_NAME_P (SYMBOL_NAME) \
|| TDA_NAME_P (SYMBOL_NAME) \
|| SDA_NAME_P (SYMBOL_NAME))
#define STRIP_NAME_ENCODING(VAR,SYMBOL_NAME) \
(VAR) = (SYMBOL_NAME) + (ENCODED_NAME_P (SYMBOL_NAME) || *(SYMBOL_NAME) == '*')
/* Define this if you have defined special-purpose predicates in the
file `MACHINE.c'. This macro is called within an initializer of an
array of structures. The first field in the structure is the name
of a predicate and the second field is an array of rtl codes. For
each predicate, list all rtl codes that can be in expressions
matched by the predicate. The list should have a trailing comma. */
#define PREDICATE_CODES \
{ "ep_memory_operand", { MEM }}, \
{ "reg_or_0_operand", { REG, SUBREG, CONST_INT, CONST_DOUBLE }}, \
{ "reg_or_int5_operand", { REG, SUBREG, CONST_INT }}, \
{ "call_address_operand", { REG, SYMBOL_REF }}, \
{ "movsi_source_operand", { LABEL_REF, SYMBOL_REF, CONST_INT, \
CONST_DOUBLE, CONST, HIGH, MEM, \
REG, SUBREG }}, \
{ "special_symbolref_operand", { SYMBOL_REF }}, \
{ "power_of_two_operand", { CONST_INT }}, \
{ "not_power_of_two_operand", { CONST_INT }},
extern void override_options ();
extern void asm_file_start ();
extern int function_arg_partial_nregs ();
extern int const_costs ();
extern void print_operand ();
extern void print_operand_address ();
extern char *output_move_double ();
extern char *output_move_single ();
extern int ep_operand ();
extern int reg_or_0_operand ();
extern int reg_or_int5_operand ();
extern int call_address_operand ();
extern int movsi_source_operand ();
extern int power_of_two_operand ();
extern int not_power_of_two_operand ();
extern void v850_reorg ();
extern int compute_register_save_size ();
extern int compute_frame_size ();
extern void expand_prologue ();
extern void expand_epilogue ();
extern void notice_update_cc ();
extern int v850_valid_machine_decl_attribute ();
extern int v850_interrupt_function_p ();
/* END CYGNUS LOCAL */
;; CYGNUS LOCAL entire file/law
;; GCC machine description for NEC V850
;; Copyright (C) 1996, 1997 Free Software Foundation, Inc.
;; Contributed by Jeff Law (law@cygnus.com).
;; This file is part of GNU CC.
;; GNU CC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.
;; GNU CC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU CC; see the file COPYING. If not, write to
;; the Free Software Foundation, 59 Temple Place - Suite 330,
;; Boston, MA 02111-1307, USA.
;; The original PO technology requires these to be ordered by speed,
;; so that assigner will pick the fastest.
;; See file "rtl.def" for documentation on define_insn, match_*, et. al.
;; The V851 manual states that the instruction address space is 16M;
;; the various branch/call instructions only have a 22bit offset (4M range).
;;
;; One day we'll probably need to handle calls to targets more than 4M
;; away.
;; The size of instructions in bytes.
(define_attr "length" ""
(const_int 200))
;; Types of instructions (for scheduling purposes).
(define_attr "type" "load,mult,other"
(const_string "other"))
;; Condition code settings.
;; none - insn does not affect cc
;; none_0hit - insn does not affect cc but it does modify operand 0
;; This attribute is used to keep track of when operand 0 changes.
;; See the description of NOTICE_UPDATE_CC for more info.
;; set_znv - sets z,n,v to useable values; c is unknown.
;; set_zn - sets z,n to usable values; v,c is unknown.
;; compare - compare instruction
;; clobber - value of cc is unknown
(define_attr "cc" "none,none_0hit,set_zn,set_znv,compare,clobber"
(const_string "clobber"))
;; Function units for the V850. As best as I can tell, there's
;; a traditional memory load/use stall as well as a stall if
;; the result of a multiply is used too early.
;;
(define_function_unit "memory" 1 0 (eq_attr "type" "load") 2 0)
(define_function_unit "mult" 1 0 (eq_attr "type" "mult") 2 0)
;; ----------------------------------------------------------------------
;; MOVE INSTRUCTIONS
;; ----------------------------------------------------------------------
;; movqi
(define_expand "movqi"
[(set (match_operand:QI 0 "general_operand" "")
(match_operand:QI 1 "general_operand" ""))]
""
"
{
/* One of the ops has to be in a register or 0 */
if (!register_operand (operand0, QImode)
&& !reg_or_0_operand (operand1, QImode))
operands[1] = copy_to_mode_reg (QImode, operand1);
}")
(define_insn "*movqi_internal"
[(set (match_operand:QI 0 "general_operand" "=r,r,r,Q,r,m,m")
(match_operand:QI 1 "general_operand" "Jr,n,Q,Ir,m,r,I"))]
"register_operand (operands[0], QImode)
|| reg_or_0_operand (operands[1], QImode)"
"* return output_move_single (operands);"
[(set_attr "length" "2,4,2,2,4,4,4")
(set_attr "cc" "none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit")
(set_attr "type" "other,other,load,other,load,other,other")])
;; movhi
(define_expand "movhi"
[(set (match_operand:HI 0 "general_operand" "")
(match_operand:HI 1 "general_operand" ""))]
""
"
{
/* One of the ops has to be in a register or 0 */
if (!register_operand (operand0, HImode)
&& !reg_or_0_operand (operand1, HImode))
operands[1] = copy_to_mode_reg (HImode, operand1);
}")
(define_insn "*movhi_internal"
[(set (match_operand:HI 0 "general_operand" "=r,r,r,Q,r,m,m")
(match_operand:HI 1 "general_operand" "Jr,n,Q,Ir,m,r,I"))]
"register_operand (operands[0], HImode)
|| reg_or_0_operand (operands[1], HImode)"
"* return output_move_single (operands);"
[(set_attr "length" "2,4,2,2,4,4,4")
(set_attr "cc" "none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit")
(set_attr "type" "other,other,load,other,load,other,other")])
;; movsi and helpers
(define_insn "*movsi_high"
[(set (match_operand:SI 0 "register_operand" "=r")
(high:SI (match_operand 1 "" "")))]
""
"movhi hi(%1),%.,%0"
[(set_attr "length" "4")
(set_attr "cc" "none_0hit")
(set_attr "type" "other")])
(define_insn "*movsi_lo"
[(set (match_operand:SI 0 "register_operand" "=r")
(lo_sum:SI (match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "immediate_operand" "i")))]
""
"movea lo(%2),%1,%0"
[(set_attr "length" "4")
(set_attr "cc" "none_0hit")
(set_attr "type" "other")])
(define_expand "movsi"
[(set (match_operand:SI 0 "general_operand" "")
(match_operand:SI 1 "general_operand" ""))]
""
"
{
/* One of the ops has to be in a register or 0 */
if (!register_operand (operand0, SImode)
&& !reg_or_0_operand (operand1, SImode))
operands[1] = copy_to_mode_reg (SImode, operand1);
/* Some constants, as well as symbolic operands
must be done with HIGH & LO_SUM patterns. */
if (CONSTANT_P (operands[1])
&& GET_CODE (operands[1]) != HIGH
&& !special_symbolref_operand (operands[1], VOIDmode)
&& !(GET_CODE (operands[1]) == CONST_INT
&& (CONST_OK_FOR_J (INTVAL (operands[1]))
|| CONST_OK_FOR_K (INTVAL (operands[1]))
|| CONST_OK_FOR_L (INTVAL (operands[1])))))
{
rtx high;
rtx temp;
if (reload_in_progress || reload_completed)
temp = operands[0];
else
temp = gen_reg_rtx (SImode);
emit_insn (gen_rtx (SET, SImode, temp,
gen_rtx (HIGH, SImode, operand1)));
emit_insn (gen_rtx (SET, SImode, operand0,
gen_rtx (LO_SUM, SImode, temp, operand1)));
DONE;
}
}")
(define_insn "*movsi_internal"
[(set (match_operand:SI 0 "general_operand" "=r,r,r,r,Q,r,r,m,m")
(match_operand:SI 1 "movsi_source_operand" "Jr,K,L,Q,Ir,m,R,r,I"))]
"register_operand (operands[0], SImode)
|| reg_or_0_operand (operands[1], SImode)"
"* return output_move_single (operands);"
[(set_attr "length" "2,4,4,2,2,4,4,4,4")
(set_attr "cc" "none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit")
(set_attr "type" "other,other,other,load,other,load,other,other,other")])
(define_expand "movdi"
[(set (match_operand:DI 0 "general_operand" "")
(match_operand:DI 1 "general_operand" ""))]
""
"
{
/* One of the ops has to be in a register or 0 */
if (!register_operand (operand0, DImode)
&& !reg_or_0_operand (operand1, DImode))
operands[1] = copy_to_mode_reg (DImode, operand1);
}")
(define_insn "*movdi_internal"
[(set (match_operand:DI 0 "general_operand" "=r,r,r,r,r,m,m,r")
(match_operand:DI 1 "general_operand" "Jr,K,L,i,m,r,IG,iF"))]
"register_operand (operands[0], DImode)
|| reg_or_0_operand (operands[1], DImode)"
"* return output_move_double (operands);"
[(set_attr "length" "4,8,8,16,8,8,8,16")
(set_attr "cc" "none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit")
(set_attr "type" "other,other,other,other,load,other,other,other")])
(define_expand "movsf"
[(set (match_operand:SF 0 "general_operand" "")
(match_operand:SF 1 "general_operand" ""))]
""
"
{
/* One of the ops has to be in a register or 0 */
if (!register_operand (operand0, SFmode)
&& !reg_or_0_operand (operand1, SFmode))
operands[1] = copy_to_mode_reg (SFmode, operand1);
}")
(define_insn "*movsf_internal"
[(set (match_operand:SF 0 "general_operand" "=r,r,r,r,r,Q,r,m,m,r")
(match_operand:SF 1 "general_operand" "Jr,K,L,n,Q,Ir,m,r,IG,iF"))]
"register_operand (operands[0], SFmode)
|| reg_or_0_operand (operands[1], SFmode)"
"* return output_move_single (operands);"
[(set_attr "length" "2,4,4,8,2,2,4,4,4,8")
(set_attr "cc" "none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit")
(set_attr "type" "other,other,other,other,load,other,load,other,other,other")])
(define_expand "movdf"
[(set (match_operand:DF 0 "general_operand" "")
(match_operand:DF 1 "general_operand" ""))]
""
"
{
/* One of the ops has to be in a register or 0 */
if (!register_operand (operand0, DFmode)
&& !reg_or_0_operand (operand1, DFmode))
operands[1] = copy_to_mode_reg (DFmode, operand1);
}")
(define_insn "*movdf_internal"
[(set (match_operand:DF 0 "general_operand" "=r,r,r,r,r,m,m,r")
(match_operand:DF 1 "general_operand" "Jr,K,L,i,m,r,IG,iF"))]
"register_operand (operands[0], DFmode)
|| reg_or_0_operand (operands[1], DFmode)"
"* return output_move_double (operands);"
[(set_attr "length" "4,8,8,16,8,8,8,16")
(set_attr "cc" "none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit")
(set_attr "type" "other,other,other,other,load,other,other,other")])
;; ----------------------------------------------------------------------
;; TEST INSTRUCTIONS
;; ----------------------------------------------------------------------
(define_insn "*v850_tst1"
[(set (cc0) (zero_extract:SI (match_operand:QI 0 "memory_operand" "m")
(const_int 1)
(match_operand:QI 1 "const_int_operand" "n")))]
""
"tst1 %1,%0"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
(define_insn "tstsi"
[(set (cc0) (match_operand:SI 0 "register_operand" "r"))]
""
"cmp %.,%0"
[(set_attr "length" "2")
(set_attr "cc" "set_znv")])
(define_insn "cmpsi"
[(set (cc0)
(compare:SI (match_operand:SI 0 "register_operand" "r,r")
(match_operand:SI 1 "reg_or_int5_operand" "r,J")))]
""
"@
cmp %1,%0
cmp %1,%0"
[(set_attr "length" "2,2")
(set_attr "cc" "compare")])
;; ----------------------------------------------------------------------
;; ADD INSTRUCTIONS
;; ----------------------------------------------------------------------
(define_insn "addsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r,&r")
(plus:SI (match_operand:SI 1 "register_operand" "%0,r,r")
(match_operand:SI 2 "nonmemory_operand" "rJ,K,r")))]
""
"@
add %2,%0
addi %2,%1,%0
mov %1,%0\;add %2,%0"
[(set_attr "length" "2,4,6")
(set_attr "cc" "set_zn")])
;; ----------------------------------------------------------------------
;; SUBTRACT INSTRUCTIONS
;; ----------------------------------------------------------------------
(define_insn "subsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(minus:SI (match_operand:SI 1 "register_operand" "0,r")
(match_operand:SI 2 "register_operand" "r,0")))]
""
"@
sub %2,%0
subr %1,%0"
[(set_attr "length" "2,2")
(set_attr "cc" "set_zn")])
(define_insn "negsi2"
[(set (match_operand:SI 0 "register_operand" "=r")
(neg:SI (match_operand:SI 1 "register_operand" "0")))]
""
"subr %.,%0"
[(set_attr "length" "2")
(set_attr "cc" "set_zn")])
;; ----------------------------------------------------------------------
;; MULTIPLY INSTRUCTIONS
;; ----------------------------------------------------------------------
(define_expand "mulhisi3"
[(set (match_operand:SI 0 "register_operand" "")
(mult:SI
(sign_extend:SI (match_operand:HI 1 "register_operand" ""))
(sign_extend:SI (match_operand:HI 2 "nonmemory_operand" ""))))]
""
"")
(define_insn "*mulhisi3_internal1"
[(set (match_operand:SI 0 "register_operand" "=r")
(mult:SI
(sign_extend:SI (match_operand:HI 1 "register_operand" "%0"))
(sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
""
"mulh %2,%0"
[(set_attr "length" "2")
(set_attr "cc" "none_0hit")
(set_attr "type" "mult")])
(define_insn "*mulhisi3_internal2"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(mult:SI
(sign_extend:SI (match_operand:HI 1 "register_operand" "%0,r"))
(sign_extend:SI (match_operand 2 "const_int_operand" "J,K"))))]
""
"@
mulh %2,%0
mulhi %2,%1,%0"
[(set_attr "length" "2,4")
(set_attr "cc" "none_0hit,none_0hit")
(set_attr "type" "mult")])
;; ----------------------------------------------------------------------
;; AND INSTRUCTIONS
;; ----------------------------------------------------------------------
(define_insn "*v850_clr1_1"
[(set (match_operand:QI 0 "memory_operand" "=m")
(subreg:QI
(and:SI (subreg:SI (match_dup 0) 0)
(match_operand:QI 1 "not_power_of_two_operand" "")) 0))]
""
"*
{
rtx xoperands[2];
xoperands[0] = operands[0];
xoperands[1] = GEN_INT (~INTVAL (operands[1]) & 0xff);
output_asm_insn (\"clr1 %M1,%0\", xoperands);
return \"\";
}"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
(define_insn "*v850_clr1_2"
[(set (match_operand:HI 0 "memory_operand" "=m")
(subreg:HI
(and:SI (subreg:SI (match_dup 0) 0)
(match_operand:HI 1 "not_power_of_two_operand" "")) 0))]
""
"*
{
int log2 = exact_log2 (~INTVAL (operands[1]) & 0xffff);
rtx xoperands[2];
xoperands[0] = gen_rtx (MEM, QImode,
plus_constant (XEXP (operands[0], 0), log2 / 8));
xoperands[1] = GEN_INT (log2 % 8);
output_asm_insn (\"clr1 %1,%0\", xoperands);
return \"\";
}"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
(define_insn "*v850_clr1_3"
[(set (match_operand:SI 0 "memory_operand" "=m")
(and:SI (match_dup 0)
(match_operand:SI 1 "not_power_of_two_operand" "")))]
""
"*
{
int log2 = exact_log2 (~INTVAL (operands[1]) & 0xffffffff);
rtx xoperands[2];
xoperands[0] = gen_rtx (MEM, QImode,
plus_constant (XEXP (operands[0], 0), log2 / 8));
xoperands[1] = GEN_INT (log2 % 8);
output_asm_insn (\"clr1 %1,%0\", xoperands);
return \"\";
}"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
(define_insn "andsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r,r")
(and:SI (match_operand:SI 1 "register_operand" "%0,0,r")
(match_operand:SI 2 "nonmemory_operand" "r,I,M")))]
""
"@
and %2,%0
and %.,%0
andi %2,%1,%0"
[(set_attr "length" "2,2,4")
(set_attr "cc" "set_znv")])
;; ----------------------------------------------------------------------
;; OR INSTRUCTIONS
;; ----------------------------------------------------------------------
(define_insn "*v850_set1_1"
[(set (match_operand:QI 0 "memory_operand" "=m")
(subreg:QI (ior:SI (subreg:SI (match_dup 0) 0)
(match_operand 1 "power_of_two_operand" "")) 0))]
""
"set1 %M1,%0"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
(define_insn "*v850_set1_2"
[(set (match_operand:HI 0 "memory_operand" "=m")
(subreg:HI (ior:SI (subreg:SI (match_dup 0) 0)
(match_operand 1 "power_of_two_operand" "")) 0))]
""
"*
{
int log2 = exact_log2 (INTVAL (operands[1]));
if (log2 < 8)
return \"set1 %M1,%0\";
else
{
rtx xoperands[2];
xoperands[0] = gen_rtx (MEM, QImode,
plus_constant (XEXP (operands[0], 0), log2 / 8));
xoperands[1] = GEN_INT (log2 % 8);
output_asm_insn (\"set1 %1,%0\", xoperands);
}
return \"\";
}"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
(define_insn "*v850_set1_3"
[(set (match_operand:SI 0 "memory_operand" "=m")
(ior:SI (match_dup 0)
(match_operand 1 "power_of_two_operand" "")))]
""
"*
{
int log2 = exact_log2 (INTVAL (operands[1]));
if (log2 < 8)
return \"set1 %M1,%0\";
else
{
rtx xoperands[2];
xoperands[0] = gen_rtx (MEM, QImode,
plus_constant (XEXP (operands[0], 0), log2 / 8));
xoperands[1] = GEN_INT (log2 % 8);
output_asm_insn (\"set1 %1,%0\", xoperands);
}
return \"\";
}"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
(define_insn "iorsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r,r")
(ior:SI (match_operand:SI 1 "register_operand" "%0,0,r")
(match_operand:SI 2 "nonmemory_operand" "r,I,M")))]
""
"@
or %2,%0
or %.,%0
ori %2,%1,%0"
[(set_attr "length" "2,2,4")
(set_attr "cc" "set_znv")])
;; ----------------------------------------------------------------------
;; XOR INSTRUCTIONS
;; ----------------------------------------------------------------------
(define_insn "*v850_not1_1"
[(set (match_operand:QI 0 "memory_operand" "=m")
(subreg:QI (xor:SI (subreg:SI (match_dup 0) 0)
(match_operand 1 "power_of_two_operand" "")) 0))]
""
"not1 %M1,%0"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
(define_insn "*v850_not1_2"
[(set (match_operand:HI 0 "memory_operand" "=m")
(subreg:HI (xor:SI (subreg:SI (match_dup 0) 0)
(match_operand 1 "power_of_two_operand" "")) 0))]
""
"*
{
int log2 = exact_log2 (INTVAL (operands[1]));
if (log2 < 8)
return \"not1 %M1,%0\";
else
{
rtx xoperands[2];
xoperands[0] = gen_rtx (MEM, QImode,
plus_constant (XEXP (operands[0], 0), log2 / 8));
xoperands[1] = GEN_INT (log2 % 8);
output_asm_insn (\"not1 %1,%0\", xoperands);
}
return \"\";
}"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
(define_insn "*v850_not1_3"
[(set (match_operand:SI 0 "memory_operand" "=m")
(xor:SI (match_dup 0)
(match_operand 1 "power_of_two_operand" "")))]
""
"*
{
int log2 = exact_log2 (INTVAL (operands[1]));
if (log2 < 8)
return \"not1 %M1,%0\";
else
{
rtx xoperands[2];
xoperands[0] = gen_rtx (MEM, QImode,
plus_constant (XEXP (operands[0], 0), log2 / 8));
xoperands[1] = GEN_INT (log2 % 8);
output_asm_insn (\"not1 %1,%0\", xoperands);
}
return \"\";
}"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
(define_insn "xorsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r,r")
(xor:SI (match_operand:SI 1 "register_operand" "%0,0,r")
(match_operand:SI 2 "nonmemory_operand" "r,I,M")))]
""
"@
xor %2,%0
xor %.,%0
xori %2,%1,%0"
[(set_attr "length" "2,2,4")
(set_attr "cc" "set_znv")])
;; ----------------------------------------------------------------------
;; NOT INSTRUCTIONS
;; ----------------------------------------------------------------------
(define_insn "one_cmplsi2"
[(set (match_operand:SI 0 "register_operand" "=r")
(not:SI (match_operand:SI 1 "register_operand" "r")))]
""
"not %1,%0"
[(set_attr "length" "2")
(set_attr "cc" "set_znv")])
;; -----------------------------------------------------------------
;; BIT FIELDS
;; -----------------------------------------------------------------
;; Is it worth defining insv and extv for the V850 series?!?
;; -----------------------------------------------------------------
;; Scc INSTRUCTIONS
;; -----------------------------------------------------------------
(define_insn "sle"
[(set (match_operand:SI 0 "register_operand" "=r")
(le:SI (cc0) (const_int 0)))]
""
"*
{
if ((cc_status.flags & CC_OVERFLOW_UNUSABLE) != 0)
return 0;
return \"setf le,%0\";
}"
[(set_attr "length" "4")
(set_attr "cc" "none_0hit")])
(define_insn "sleu"
[(set (match_operand:SI 0 "register_operand" "=r")
(leu:SI (cc0) (const_int 0)))]
""
"setf nh,%0"
[(set_attr "length" "4")
(set_attr "cc" "none_0hit")])
(define_insn "sge"
[(set (match_operand:SI 0 "register_operand" "=r")
(ge:SI (cc0) (const_int 0)))]
""
"*
{
if ((cc_status.flags & CC_OVERFLOW_UNUSABLE) != 0)
return 0;
return \"setf ge,%0\";
}"
[(set_attr "length" "4")
(set_attr "cc" "none_0hit")])
(define_insn "sgeu"
[(set (match_operand:SI 0 "register_operand" "=r")
(geu:SI (cc0) (const_int 0)))]
""
"setf nl,%0"
[(set_attr "length" "4")
(set_attr "cc" "none_0hit")])
(define_insn "slt"
[(set (match_operand:SI 0 "register_operand" "=r")
(lt:SI (cc0) (const_int 0)))]
""
"*
{
if ((cc_status.flags & CC_OVERFLOW_UNUSABLE) != 0)
return 0;
return \"setf lt,%0\";
}"
[(set_attr "length" "4")
(set_attr "cc" "none_0hit")])
(define_insn "sltu"
[(set (match_operand:SI 0 "register_operand" "=r")
(ltu:SI (cc0) (const_int 0)))]
""
"setf l,%0"
[(set_attr "length" "4")
(set_attr "cc" "none_0hit")])
(define_insn "sgt"
[(set (match_operand:SI 0 "register_operand" "=r")
(gt:SI (cc0) (const_int 0)))]
""
"*
{
if ((cc_status.flags & CC_OVERFLOW_UNUSABLE) != 0)
return 0;
return \"setf gt,%0\";
}"
[(set_attr "length" "4")
(set_attr "cc" "none_0hit")])
(define_insn "sgtu"
[(set (match_operand:SI 0 "register_operand" "=r")
(gtu:SI (cc0) (const_int 0)))]
""
"setf h,%0"
[(set_attr "length" "4")
(set_attr "cc" "none_0hit")])
(define_insn "seq"
[(set (match_operand:SI 0 "register_operand" "=r")
(eq:SI (cc0) (const_int 0)))]
""
"setf z,%0"
[(set_attr "length" "4")
(set_attr "cc" "none_0hit")])
(define_insn "sne"
[(set (match_operand:SI 0 "register_operand" "=r")
(ne:SI (cc0) (const_int 0)))]
""
"setf nz,%0"
[(set_attr "length" "4")
(set_attr "cc" "none_0hit")])
;; ----------------------------------------------------------------------
;; JUMP INSTRUCTIONS
;; ----------------------------------------------------------------------
;; Conditional jump instructions
(define_expand "ble"
[(set (pc)
(if_then_else (le (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"")
(define_expand "bleu"
[(set (pc)
(if_then_else (leu (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"")
(define_expand "bge"
[(set (pc)
(if_then_else (ge (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"")
(define_expand "bgeu"
[(set (pc)
(if_then_else (geu (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"")
(define_expand "blt"
[(set (pc)
(if_then_else (lt (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"")
(define_expand "bltu"
[(set (pc)
(if_then_else (ltu (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"")
(define_expand "bgt"
[(set (pc)
(if_then_else (gt (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"")
(define_expand "bgtu"
[(set (pc)
(if_then_else (gtu (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"")
(define_expand "beq"
[(set (pc)
(if_then_else (eq (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"")
(define_expand "bne"
[(set (pc)
(if_then_else (ne (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"")
(define_insn "*branch_normal"
[(set (pc)
(if_then_else (match_operator 1 "comparison_operator"
[(cc0) (const_int 0)])
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"*
{
if ((cc_status.flags & CC_OVERFLOW_UNUSABLE) != 0
&& (GET_CODE (operands[1]) == GT
|| GET_CODE (operands[1]) == GE
|| GET_CODE (operands[1]) == LE
|| GET_CODE (operands[1]) == LT))
return 0;
if (get_attr_length (insn) == 2)
return \"%b1 %l0\";
else
return \"%B1 .+6\;jr %l0\";
}"
[(set (attr "length")
(if_then_else (lt (abs (minus (match_dup 0) (pc)))
(const_int 256))
(const_int 2)
(const_int 6)))
(set_attr "cc" "none")])
(define_insn "*branch_invert"
[(set (pc)
(if_then_else (match_operator 1 "comparison_operator"
[(cc0) (const_int 0)])
(pc)
(label_ref (match_operand 0 "" ""))))]
""
"*
{
if ((cc_status.flags & CC_OVERFLOW_UNUSABLE) != 0
&& (GET_CODE (operands[1]) == GT
|| GET_CODE (operands[1]) == GE
|| GET_CODE (operands[1]) == LE
|| GET_CODE (operands[1]) == LT))
return 0;
if (get_attr_length (insn) == 2)
return \"%B1 %l0\";
else
return \"%b1 .+6\;jr %l0\";
}"
[(set (attr "length")
(if_then_else (lt (abs (minus (match_dup 0) (pc)))
(const_int 256))
(const_int 2)
(const_int 6)))
(set_attr "cc" "none")])
;; Unconditional and other jump instructions.
(define_insn "jump"
[(set (pc)
(label_ref (match_operand 0 "" "")))]
""
"*
{
if (get_attr_length (insn) == 2)
return \"br %0\";
else
return \"jr %0\";
}"
[(set (attr "length")
(if_then_else (lt (abs (minus (match_dup 0) (pc)))
(const_int 256))
(const_int 2)
(const_int 4)))
(set_attr "cc" "none")])
(define_insn "indirect_jump"
[(set (pc) (match_operand:SI 0 "register_operand" "r"))]
""
"jmp %0"
[(set_attr "length" "2")
(set_attr "cc" "none")])
(define_insn "tablejump"
[(set (pc) (match_operand:SI 0 "register_operand" "r"))
(use (label_ref (match_operand 1 "" "")))]
""
"jmp %0"
[(set_attr "length" "2")
(set_attr "cc" "none")])
;; Call subroutine with no return value.
(define_expand "call"
[(call (match_operand:QI 0 "general_operand" "")
(match_operand:SI 1 "general_operand" ""))]
""
"
{
if (! call_address_operand (XEXP (operands[0], 0))
|| TARGET_LONG_CALLS)
XEXP (operands[0], 0) = force_reg (SImode, XEXP (operands[0], 0));
emit_call_insn (gen_call_internal (XEXP (operands[0], 0), operands[1]));
DONE;
}")
(define_insn "call_internal"
[(call (mem:QI (match_operand:SI 0 "call_address_operand" "S,r"))
(match_operand:SI 1 "general_operand" "g,g"))
(clobber (reg:SI 31))]
""
"@
jarl %0,r31
jarl .+4,r31\\n\\tadd 4,r31\\n\\tjmp %0"
[(set_attr "length" "4,8")])
;; Call subroutine, returning value in operand 0
;; (which must be a hard register).
(define_expand "call_value"
[(set (match_operand 0 "" "")
(call (match_operand:QI 1 "general_operand" "")
(match_operand:SI 2 "general_operand" "")))]
""
"
{
if (! call_address_operand (XEXP (operands[1], 0))
|| TARGET_LONG_CALLS)
XEXP (operands[1], 0) = force_reg (SImode, XEXP (operands[1], 0));
emit_call_insn (gen_call_value_internal (operands[0],
XEXP (operands[1], 0),
operands[2]));
DONE;
}")
(define_insn "call_value_internal"
[(set (match_operand 0 "" "=r,r")
(call (mem:QI (match_operand:SI 1 "call_address_operand" "S,r"))
(match_operand:SI 2 "general_operand" "g,g")))
(clobber (reg:SI 31))]
""
"@
jarl %1,r31
jarl .+4,r31\\n\\tadd 4,r31\\n\\tjmp %1"
[(set_attr "length" "4,8")])
(define_insn "nop"
[(const_int 0)]
""
"nop"
[(set_attr "length" "2")
(set_attr "cc" "none")])
;; ----------------------------------------------------------------------
;; EXTEND INSTRUCTIONS
;; ----------------------------------------------------------------------
(define_insn "zero_extendhisi2"
[(set (match_operand:SI 0 "register_operand" "=r")
(zero_extend:SI
(match_operand:HI 1 "register_operand" "r")))]
""
"andi 65535,%1,%0"
[(set_attr "length" "4")
(set_attr "cc" "set_znv")])
(define_insn "zero_extendqisi2"
[(set (match_operand:SI 0 "register_operand" "=r")
(zero_extend:SI
(match_operand:QI 1 "register_operand" "r")))]
""
"andi 255,%1,%0"
[(set_attr "length" "4")
(set_attr "cc" "set_znv")])
;;- sign extension instructions
(define_expand "extendhisi2"
[(set (match_dup 2)
(ashift:SI (match_operand:HI 1 "register_operand" "")
(const_int 16)))
(set (match_operand:SI 0 "register_operand" "")
(ashiftrt:SI (match_dup 2)
(const_int 16)))]
""
"
{
operands[1] = gen_lowpart (SImode, operands[1]);
operands[2] = gen_reg_rtx (SImode);
}")
(define_expand "extendqisi2"
[(set (match_dup 2)
(ashift:SI (match_operand:QI 1 "register_operand" "")
(const_int 24)))
(set (match_operand:SI 0 "register_operand" "")
(ashiftrt:SI (match_dup 2)
(const_int 24)))]
""
"
{
operands[1] = gen_lowpart (SImode, operands[1]);
operands[2] = gen_reg_rtx (SImode);
}")
;; ----------------------------------------------------------------------
;; SHIFTS
;; ----------------------------------------------------------------------
(define_insn "ashlsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(ashift:SI
(match_operand:SI 1 "register_operand" "0,0")
(match_operand:QI 2 "nonmemory_operand" "r,N")))]
""
"@
shl %2,%0
shl %2,%0"
[(set_attr "length" "4,2")
(set_attr "cc" "set_znv")])
(define_insn "lshrsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(lshiftrt:SI
(match_operand:SI 1 "register_operand" "0,0")
(match_operand:QI 2 "nonmemory_operand" "r,J")))]
""
"@
shr %2,%0
shr %2,%0"
[(set_attr "length" "4,2")
(set_attr "cc" "set_znv")])
(define_insn "ashrsi3"
[(set (match_operand:SI 0 "register_operand" "=r,r")
(ashiftrt:SI
(match_operand:SI 1 "register_operand" "0,0")
(match_operand:SI 2 "nonmemory_operand" "r,N")))]
""
"@
sar %2,%0
sar %2,%0"
[(set_attr "length" "4,2")
(set_attr "cc" "set_znv")])
;; ----------------------------------------------------------------------
;; PROLOGUE/EPILOGUE
;; ----------------------------------------------------------------------
(define_expand "prologue"
[(const_int 0)]
""
"expand_prologue (); DONE;")
(define_expand "epilogue"
[(return)]
""
"
{
/* Try to use the trivial return first. Else use the
full epilogue. */
if (0)
emit_jump_insn (gen_return ());
else
expand_epilogue ();
DONE;
}")
(define_insn "return"
[(return)]
"reload_completed && compute_frame_size (get_frame_size (), (long *)0) == 0"
"jmp [r31]"
[(set_attr "length" "2")
(set_attr "cc" "none")])
(define_insn "return_internal"
[(return)
(use (reg:SI 31))]
""
"jmp [r31]"
[(set_attr "length" "2")
(set_attr "cc" "none")])
;; ----------------------------------------------------------------------
;; HELPER INSTRUCTIONS for saving the prologue and epilog registers
;; ----------------------------------------------------------------------
;; Save r2, r20-r29, r31, and create 16 byte register call area
(define_insn "save_r2_r31"
[(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int -64)))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -16))) (reg:SI 2))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -20))) (reg:SI 20))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -24))) (reg:SI 21))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -28))) (reg:SI 22))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -32))) (reg:SI 23))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -36))) (reg:SI 24))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -40))) (reg:SI 25))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -44))) (reg:SI 26))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -48))) (reg:SI 27))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -52))) (reg:SI 28))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -56))) (reg:SI 29))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -60))) (reg:SI 31))
(clobber (reg:SI 10))]
"TARGET_PROLOG_FUNCTION"
"jarl __save_r2_r31,r10"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Save r20-r29, r31, and create 16 byte register call area
(define_insn "save_r20_r31"
[(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int -60)))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -16))) (reg:SI 20))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -20))) (reg:SI 21))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -24))) (reg:SI 22))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -28))) (reg:SI 23))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -32))) (reg:SI 24))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -36))) (reg:SI 25))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -40))) (reg:SI 26))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -44))) (reg:SI 27))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -48))) (reg:SI 28))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -52))) (reg:SI 29))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -56))) (reg:SI 31))
(clobber (reg:SI 10))]
"TARGET_PROLOG_FUNCTION"
"jarl __save_r20_r31,r10"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Save r21-r29, r31, and create 16 byte register call area
(define_insn "save_r21_r31"
[(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int -56)))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -16))) (reg:SI 21))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -20))) (reg:SI 22))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -24))) (reg:SI 23))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -28))) (reg:SI 24))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -32))) (reg:SI 25))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -36))) (reg:SI 26))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -40))) (reg:SI 27))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -44))) (reg:SI 28))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -48))) (reg:SI 29))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -52))) (reg:SI 31))
(clobber (reg:SI 10))]
"TARGET_PROLOG_FUNCTION"
"jarl __save_r21_r31,r10"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Save r22-r29, r31, and create 16 byte register call area
(define_insn "save_r22_r31"
[(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int -52)))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -16))) (reg:SI 22))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -20))) (reg:SI 23))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -24))) (reg:SI 24))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -28))) (reg:SI 25))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -32))) (reg:SI 26))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -36))) (reg:SI 27))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -40))) (reg:SI 28))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -44))) (reg:SI 29))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -48))) (reg:SI 31))
(clobber (reg:SI 10))]
"TARGET_PROLOG_FUNCTION"
"jarl __save_r22_r31,r10"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Save r23-r29, r31, and create 16 byte register call area
(define_insn "save_r23_r31"
[(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int -48)))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -16))) (reg:SI 23))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -20))) (reg:SI 24))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -24))) (reg:SI 25))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -28))) (reg:SI 26))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -32))) (reg:SI 27))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -36))) (reg:SI 28))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -40))) (reg:SI 29))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -44))) (reg:SI 31))
(clobber (reg:SI 10))]
"TARGET_PROLOG_FUNCTION"
"jarl __save_r23_r31,r10"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Save r24-r29, r31, and create 16 byte register call area
(define_insn "save_r24_r31"
[(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int -44)))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -16))) (reg:SI 24))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -20))) (reg:SI 25))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -24))) (reg:SI 26))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -28))) (reg:SI 27))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -32))) (reg:SI 28))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -36))) (reg:SI 29))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -40))) (reg:SI 31))
(clobber (reg:SI 10))]
"TARGET_PROLOG_FUNCTION"
"jarl __save_r24_r31,r10"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Save r25-r29, r31, and create 16 byte register call area
(define_insn "save_r25_r31"
[(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int -40)))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -16))) (reg:SI 25))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -20))) (reg:SI 26))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -24))) (reg:SI 27))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -28))) (reg:SI 28))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -32))) (reg:SI 29))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -36))) (reg:SI 31))
(clobber (reg:SI 10))]
"TARGET_PROLOG_FUNCTION"
"jarl __save_r25_r31,r10"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Save r26-r29, r31, and create 16 byte register call area
(define_insn "save_r26_r31"
[(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int -36)))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -16))) (reg:SI 26))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -20))) (reg:SI 27))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -24))) (reg:SI 28))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -28))) (reg:SI 29))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -32))) (reg:SI 31))
(clobber (reg:SI 10))]
"TARGET_PROLOG_FUNCTION"
"jarl __save_r26_r31,r10"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Save r27-r29, r31, and create 16 byte register call area
(define_insn "save_r27_r31"
[(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int -32)))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -16))) (reg:SI 27))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -20))) (reg:SI 28))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -24))) (reg:SI 29))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -28))) (reg:SI 31))
(clobber (reg:SI 10))]
"TARGET_PROLOG_FUNCTION"
"jarl __save_r27_r31,r10"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Save r28-r29, r31, and create 16 byte register call area
(define_insn "save_r28_r31"
[(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int -28)))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -16))) (reg:SI 28))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -20))) (reg:SI 29))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -24))) (reg:SI 31))
(clobber (reg:SI 10))]
"TARGET_PROLOG_FUNCTION"
"jarl __save_r28_r31,r10"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Save r29, r31, and create 16 byte register call area
(define_insn "save_r29_r31"
[(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int -24)))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -16))) (reg:SI 29))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -20))) (reg:SI 31))
(clobber (reg:SI 10))]
"TARGET_PROLOG_FUNCTION"
"jarl __save_r29_r31,r10"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Save r31, and create 16 byte register call area
(define_insn "save_r31"
[(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int -20)))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -16))) (reg:SI 31))
(clobber (reg:SI 10))]
"TARGET_PROLOG_FUNCTION"
"jarl __save_r31,r10"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Save r2, r20-r29
(define_insn "save_r2_r29"
[(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int -44)))
(set (mem:SI (reg:SI 3)) (reg:SI 2))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -4))) (reg:SI 20))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -8))) (reg:SI 21))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -12))) (reg:SI 22))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -16))) (reg:SI 23))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -20))) (reg:SI 24))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -24))) (reg:SI 25))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -28))) (reg:SI 26))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -32))) (reg:SI 27))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -36))) (reg:SI 28))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -40))) (reg:SI 29))
(clobber (reg:SI 10))]
"TARGET_PROLOG_FUNCTION"
"jarl __save_r2_r29,r10"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Save r20-r29
(define_insn "save_r20_r29"
[(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int -40)))
(set (mem:SI (reg:SI 3)) (reg:SI 20))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -4))) (reg:SI 21))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -8))) (reg:SI 22))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -12))) (reg:SI 23))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -16))) (reg:SI 24))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -20))) (reg:SI 25))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -24))) (reg:SI 26))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -28))) (reg:SI 27))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -32))) (reg:SI 28))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -36))) (reg:SI 29))
(clobber (reg:SI 10))]
"TARGET_PROLOG_FUNCTION"
"jarl __save_r20_r29,r10"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Save r21-r29
(define_insn "save_r21_r29"
[(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int -36)))
(set (mem:SI (reg:SI 3)) (reg:SI 21))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -4))) (reg:SI 22))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -8))) (reg:SI 23))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -12))) (reg:SI 24))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -16))) (reg:SI 25))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -20))) (reg:SI 26))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -24))) (reg:SI 27))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -28))) (reg:SI 28))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -32))) (reg:SI 29))
(clobber (reg:SI 10))]
"TARGET_PROLOG_FUNCTION"
"jarl __save_r21_r29,r10"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Save r22-r29
(define_insn "save_r22_r29"
[(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int -32)))
(set (mem:SI (reg:SI 3)) (reg:SI 22))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -4))) (reg:SI 23))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -8))) (reg:SI 24))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -12))) (reg:SI 25))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -16))) (reg:SI 26))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -20))) (reg:SI 27))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -24))) (reg:SI 28))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -28))) (reg:SI 29))
(clobber (reg:SI 10))]
"TARGET_PROLOG_FUNCTION"
"jarl __save_r22_r29,r10"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Save r23-r29
(define_insn "save_r23_r29"
[(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int -28)))
(set (mem:SI (reg:SI 3)) (reg:SI 23))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -4))) (reg:SI 24))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -8))) (reg:SI 25))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -12))) (reg:SI 26))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -16))) (reg:SI 27))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -20))) (reg:SI 28))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -24))) (reg:SI 29))
(clobber (reg:SI 10))]
"TARGET_PROLOG_FUNCTION"
"jarl __save_r23_r29,r10"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Save r24-r29
(define_insn "save_r24_r29"
[(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int -24)))
(set (mem:SI (reg:SI 3)) (reg:SI 24))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -4))) (reg:SI 25))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -8))) (reg:SI 26))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -12))) (reg:SI 27))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -16))) (reg:SI 28))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -20))) (reg:SI 29))
(clobber (reg:SI 10))]
"TARGET_PROLOG_FUNCTION"
"jarl __save_r24_r29,r10"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Save r25-r29
(define_insn "save_r25_r29"
[(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int -20)))
(set (mem:SI (reg:SI 3)) (reg:SI 25))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -4))) (reg:SI 26))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -8))) (reg:SI 27))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -12))) (reg:SI 28))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -16))) (reg:SI 29))
(clobber (reg:SI 10))]
"TARGET_PROLOG_FUNCTION"
"jarl __save_r25_r29,r10"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Save r26-r29
(define_insn "save_r26_r29"
[(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int -16)))
(set (mem:SI (reg:SI 3)) (reg:SI 26))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -4))) (reg:SI 27))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -8))) (reg:SI 28))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -12))) (reg:SI 29))
(clobber (reg:SI 10))]
"TARGET_PROLOG_FUNCTION"
"jarl __save_r26_r29,r10"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Save r27-r29
(define_insn "save_r27_r29"
[(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int -12)))
(set (mem:SI (reg:SI 3)) (reg:SI 27))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -4))) (reg:SI 28))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -8))) (reg:SI 29))
(clobber (reg:SI 10))]
"TARGET_PROLOG_FUNCTION"
"jarl __save_r27_r29,r10"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Save r28-r29
(define_insn "save_r28_r29"
[(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int -8)))
(set (mem:SI (reg:SI 3)) (reg:SI 28))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -4))) (reg:SI 29))
(clobber (reg:SI 10))]
"TARGET_PROLOG_FUNCTION"
"jarl __save_r28_r29,r10"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Save r29
(define_insn "save_r29"
[(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int -4)))
(set (mem:SI (reg:SI 3)) (reg:SI 29))
(clobber (reg:SI 10))]
"TARGET_PROLOG_FUNCTION"
"jarl __save_r29,r10"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Initialize an interrupt function. Do not depend on TARGET_PROLOG_FUNCTION.
(define_insn "save_interrupt"
[(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int -16)))
(set (mem:SI (reg:SI 3)) (reg:SI 30))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -4))) (reg:SI 10))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -8))) (reg:SI 5))
(set (mem:SI (plus:SI (reg:SI 3) (const_int -12))) (reg:SI 1))]
""
"add -16,sp\;st.w r10,12[sp]\;jarl __save_interrupt,r10"
[(set_attr "length" "12")
(set_attr "cc" "clobber")])
;; Save all registers except for the registers saved in save_interrupt when
;; an interrupt function makes a call.
;; UNSPEC_VOLATILE is considered to use and clobber all hard registers and
;; all of memory. This blocks insns from being moved across this point.
;; This is needed because the rest of the compiler is not reading to handle
;; insns this compilcated
(define_insn "save_all_interrupt"
[(unspec_volatile [(const_int 0)] 0)]
""
"jarl __save_all_interrupt,r10"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Restore r2, r20-r29, r31, eliminate 16 byte register call area, and return to user
(define_insn "restore_r2_r31"
[(return)
(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int 64)))
(set (reg:SI 2) (mem:SI (plus:SI (reg:SI 3) (const_int 60))))
(set (reg:SI 20) (mem:SI (plus:SI (reg:SI 3) (const_int 56))))
(set (reg:SI 21) (mem:SI (plus:SI (reg:SI 3) (const_int 52))))
(set (reg:SI 22) (mem:SI (plus:SI (reg:SI 3) (const_int 48))))
(set (reg:SI 23) (mem:SI (plus:SI (reg:SI 3) (const_int 44))))
(set (reg:SI 24) (mem:SI (plus:SI (reg:SI 3) (const_int 40))))
(set (reg:SI 25) (mem:SI (plus:SI (reg:SI 3) (const_int 36))))
(set (reg:SI 26) (mem:SI (plus:SI (reg:SI 3) (const_int 32))))
(set (reg:SI 27) (mem:SI (plus:SI (reg:SI 3) (const_int 28))))
(set (reg:SI 28) (mem:SI (plus:SI (reg:SI 3) (const_int 24))))
(set (reg:SI 29) (mem:SI (plus:SI (reg:SI 3) (const_int 20))))
(set (reg:SI 31) (mem:SI (plus:SI (reg:SI 3) (const_int 16))))]
"TARGET_PROLOG_FUNCTION"
"jr __return_r2_r31"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Restore r20-r29, r31, eliminate 16 byte register call area, and return to user
(define_insn "restore_r20_r31"
[(return)
(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int 60)))
(set (reg:SI 20) (mem:SI (plus:SI (reg:SI 3) (const_int 56))))
(set (reg:SI 21) (mem:SI (plus:SI (reg:SI 3) (const_int 52))))
(set (reg:SI 22) (mem:SI (plus:SI (reg:SI 3) (const_int 48))))
(set (reg:SI 23) (mem:SI (plus:SI (reg:SI 3) (const_int 44))))
(set (reg:SI 24) (mem:SI (plus:SI (reg:SI 3) (const_int 40))))
(set (reg:SI 25) (mem:SI (plus:SI (reg:SI 3) (const_int 36))))
(set (reg:SI 26) (mem:SI (plus:SI (reg:SI 3) (const_int 32))))
(set (reg:SI 27) (mem:SI (plus:SI (reg:SI 3) (const_int 28))))
(set (reg:SI 28) (mem:SI (plus:SI (reg:SI 3) (const_int 24))))
(set (reg:SI 29) (mem:SI (plus:SI (reg:SI 3) (const_int 20))))
(set (reg:SI 31) (mem:SI (plus:SI (reg:SI 3) (const_int 16))))]
"TARGET_PROLOG_FUNCTION"
"jr __return_r20_r31"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Restore r21-r29, r31, eliminate 16 byte register call area, and return to user
(define_insn "restore_r21_r31"
[(return)
(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int 56)))
(set (reg:SI 21) (mem:SI (plus:SI (reg:SI 3) (const_int 52))))
(set (reg:SI 22) (mem:SI (plus:SI (reg:SI 3) (const_int 48))))
(set (reg:SI 23) (mem:SI (plus:SI (reg:SI 3) (const_int 44))))
(set (reg:SI 24) (mem:SI (plus:SI (reg:SI 3) (const_int 40))))
(set (reg:SI 25) (mem:SI (plus:SI (reg:SI 3) (const_int 36))))
(set (reg:SI 26) (mem:SI (plus:SI (reg:SI 3) (const_int 32))))
(set (reg:SI 27) (mem:SI (plus:SI (reg:SI 3) (const_int 28))))
(set (reg:SI 28) (mem:SI (plus:SI (reg:SI 3) (const_int 24))))
(set (reg:SI 29) (mem:SI (plus:SI (reg:SI 3) (const_int 20))))
(set (reg:SI 31) (mem:SI (plus:SI (reg:SI 3) (const_int 16))))]
"TARGET_PROLOG_FUNCTION"
"jr __return_r21_r31"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Restore r22-r29, r31, eliminate 16 byte register call area, and return to user
(define_insn "restore_r22_r31"
[(return)
(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int 52)))
(set (reg:SI 22) (mem:SI (plus:SI (reg:SI 3) (const_int 48))))
(set (reg:SI 23) (mem:SI (plus:SI (reg:SI 3) (const_int 44))))
(set (reg:SI 24) (mem:SI (plus:SI (reg:SI 3) (const_int 40))))
(set (reg:SI 25) (mem:SI (plus:SI (reg:SI 3) (const_int 36))))
(set (reg:SI 26) (mem:SI (plus:SI (reg:SI 3) (const_int 32))))
(set (reg:SI 27) (mem:SI (plus:SI (reg:SI 3) (const_int 28))))
(set (reg:SI 28) (mem:SI (plus:SI (reg:SI 3) (const_int 24))))
(set (reg:SI 29) (mem:SI (plus:SI (reg:SI 3) (const_int 20))))
(set (reg:SI 31) (mem:SI (plus:SI (reg:SI 3) (const_int 16))))]
"TARGET_PROLOG_FUNCTION"
"jr __return_r22_r31"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Restore r23-r29, r31, eliminate 16 byte register call area, and return to user
(define_insn "restore_r23_r31"
[(return)
(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int 48)))
(set (reg:SI 23) (mem:SI (plus:SI (reg:SI 3) (const_int 44))))
(set (reg:SI 24) (mem:SI (plus:SI (reg:SI 3) (const_int 40))))
(set (reg:SI 25) (mem:SI (plus:SI (reg:SI 3) (const_int 36))))
(set (reg:SI 26) (mem:SI (plus:SI (reg:SI 3) (const_int 32))))
(set (reg:SI 27) (mem:SI (plus:SI (reg:SI 3) (const_int 28))))
(set (reg:SI 28) (mem:SI (plus:SI (reg:SI 3) (const_int 24))))
(set (reg:SI 29) (mem:SI (plus:SI (reg:SI 3) (const_int 20))))
(set (reg:SI 31) (mem:SI (plus:SI (reg:SI 3) (const_int 16))))]
"TARGET_PROLOG_FUNCTION"
"jr __return_r23_r31"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Restore r24-r29, r31, eliminate 16 byte register call area, and return to user
(define_insn "restore_r24_r31"
[(return)
(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int 44)))
(set (reg:SI 24) (mem:SI (plus:SI (reg:SI 3) (const_int 40))))
(set (reg:SI 25) (mem:SI (plus:SI (reg:SI 3) (const_int 36))))
(set (reg:SI 26) (mem:SI (plus:SI (reg:SI 3) (const_int 32))))
(set (reg:SI 27) (mem:SI (plus:SI (reg:SI 3) (const_int 28))))
(set (reg:SI 28) (mem:SI (plus:SI (reg:SI 3) (const_int 24))))
(set (reg:SI 29) (mem:SI (plus:SI (reg:SI 3) (const_int 20))))
(set (reg:SI 31) (mem:SI (plus:SI (reg:SI 3) (const_int 16))))]
"TARGET_PROLOG_FUNCTION"
"jr __return_r24_r31"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Restore r25-r29, r31, eliminate 16 byte register call area, and return to user
(define_insn "restore_r25_r31"
[(return)
(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int 40)))
(set (reg:SI 25) (mem:SI (plus:SI (reg:SI 3) (const_int 36))))
(set (reg:SI 26) (mem:SI (plus:SI (reg:SI 3) (const_int 32))))
(set (reg:SI 27) (mem:SI (plus:SI (reg:SI 3) (const_int 28))))
(set (reg:SI 28) (mem:SI (plus:SI (reg:SI 3) (const_int 24))))
(set (reg:SI 29) (mem:SI (plus:SI (reg:SI 3) (const_int 20))))
(set (reg:SI 31) (mem:SI (plus:SI (reg:SI 3) (const_int 16))))]
"TARGET_PROLOG_FUNCTION"
"jr __return_r25_r31"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Restore r26-r29, r31, eliminate 16 byte register call area, and return to user
(define_insn "restore_r26_r31"
[(return)
(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int 36)))
(set (reg:SI 26) (mem:SI (plus:SI (reg:SI 3) (const_int 32))))
(set (reg:SI 27) (mem:SI (plus:SI (reg:SI 3) (const_int 28))))
(set (reg:SI 28) (mem:SI (plus:SI (reg:SI 3) (const_int 24))))
(set (reg:SI 29) (mem:SI (plus:SI (reg:SI 3) (const_int 20))))
(set (reg:SI 31) (mem:SI (plus:SI (reg:SI 3) (const_int 16))))]
"TARGET_PROLOG_FUNCTION"
"jr __return_r26_r31"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Restore r27-r29, r31, eliminate 16 byte register call area, and return to user
(define_insn "restore_r27_r31"
[(return)
(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int 32)))
(set (reg:SI 27) (mem:SI (plus:SI (reg:SI 3) (const_int 28))))
(set (reg:SI 28) (mem:SI (plus:SI (reg:SI 3) (const_int 24))))
(set (reg:SI 29) (mem:SI (plus:SI (reg:SI 3) (const_int 20))))
(set (reg:SI 31) (mem:SI (plus:SI (reg:SI 3) (const_int 16))))]
"TARGET_PROLOG_FUNCTION"
"jr __return_r27_r31"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Restore r28-r29, r31, eliminate 16 byte register call area, and return to user
(define_insn "restore_r28_r31"
[(return)
(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int 28)))
(set (reg:SI 28) (mem:SI (plus:SI (reg:SI 3) (const_int 24))))
(set (reg:SI 29) (mem:SI (plus:SI (reg:SI 3) (const_int 20))))
(set (reg:SI 31) (mem:SI (plus:SI (reg:SI 3) (const_int 16))))]
"TARGET_PROLOG_FUNCTION"
"jr __return_r28_r31"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Restore r29, r31, eliminate 16 byte register call area, and return to user
(define_insn "restore_r29_r31"
[(return)
(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int 24)))
(set (reg:SI 29) (mem:SI (plus:SI (reg:SI 3) (const_int 20))))
(set (reg:SI 31) (mem:SI (plus:SI (reg:SI 3) (const_int 16))))]
"TARGET_PROLOG_FUNCTION"
"jr __return_r29_r31"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Restore r31, eliminate 16 byte register call area, and return to user
(define_insn "restore_r31"
[(return)
(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int 20)))
(set (reg:SI 31) (mem:SI (plus:SI (reg:SI 3) (const_int 16))))]
"TARGET_PROLOG_FUNCTION"
"jr __return_r31"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Restore r2, r20-r29, and return to user
(define_insn "restore_r2_r29"
[(return)
(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int 48)))
(set (reg:SI 2) (mem:SI (plus:SI (reg:SI 3) (const_int 44))))
(set (reg:SI 20) (mem:SI (plus:SI (reg:SI 3) (const_int 40))))
(set (reg:SI 21) (mem:SI (plus:SI (reg:SI 3) (const_int 36))))
(set (reg:SI 22) (mem:SI (plus:SI (reg:SI 3) (const_int 32))))
(set (reg:SI 23) (mem:SI (plus:SI (reg:SI 3) (const_int 28))))
(set (reg:SI 24) (mem:SI (plus:SI (reg:SI 3) (const_int 24))))
(set (reg:SI 25) (mem:SI (plus:SI (reg:SI 3) (const_int 20))))
(set (reg:SI 26) (mem:SI (plus:SI (reg:SI 3) (const_int 16))))
(set (reg:SI 27) (mem:SI (plus:SI (reg:SI 3) (const_int 12))))
(set (reg:SI 28) (mem:SI (plus:SI (reg:SI 3) (const_int 8))))
(set (reg:SI 29) (mem:SI (plus:SI (reg:SI 3) (const_int 4))))]
"TARGET_PROLOG_FUNCTION"
"jr __return_r2_r29"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Restore r20-r29, and return to user
(define_insn "restore_r20_r29"
[(return)
(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int 44)))
(set (reg:SI 20) (mem:SI (plus:SI (reg:SI 3) (const_int 40))))
(set (reg:SI 21) (mem:SI (plus:SI (reg:SI 3) (const_int 36))))
(set (reg:SI 22) (mem:SI (plus:SI (reg:SI 3) (const_int 32))))
(set (reg:SI 23) (mem:SI (plus:SI (reg:SI 3) (const_int 28))))
(set (reg:SI 24) (mem:SI (plus:SI (reg:SI 3) (const_int 24))))
(set (reg:SI 25) (mem:SI (plus:SI (reg:SI 3) (const_int 20))))
(set (reg:SI 26) (mem:SI (plus:SI (reg:SI 3) (const_int 16))))
(set (reg:SI 27) (mem:SI (plus:SI (reg:SI 3) (const_int 12))))
(set (reg:SI 28) (mem:SI (plus:SI (reg:SI 3) (const_int 8))))
(set (reg:SI 29) (mem:SI (plus:SI (reg:SI 3) (const_int 4))))]
"TARGET_PROLOG_FUNCTION"
"jr __return_r20_r29"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Restore r21-r29, and return to user
(define_insn "restore_r21_r29"
[(return)
(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int 40)))
(set (reg:SI 21) (mem:SI (plus:SI (reg:SI 3) (const_int 36))))
(set (reg:SI 22) (mem:SI (plus:SI (reg:SI 3) (const_int 32))))
(set (reg:SI 23) (mem:SI (plus:SI (reg:SI 3) (const_int 28))))
(set (reg:SI 24) (mem:SI (plus:SI (reg:SI 3) (const_int 24))))
(set (reg:SI 25) (mem:SI (plus:SI (reg:SI 3) (const_int 20))))
(set (reg:SI 26) (mem:SI (plus:SI (reg:SI 3) (const_int 16))))
(set (reg:SI 27) (mem:SI (plus:SI (reg:SI 3) (const_int 12))))
(set (reg:SI 28) (mem:SI (plus:SI (reg:SI 3) (const_int 8))))
(set (reg:SI 29) (mem:SI (plus:SI (reg:SI 3) (const_int 4))))]
"TARGET_PROLOG_FUNCTION"
"jr __return_r21_r29"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Restore r22-r29, and return to user
(define_insn "restore_r22_r29"
[(return)
(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int 36)))
(set (reg:SI 22) (mem:SI (plus:SI (reg:SI 3) (const_int 32))))
(set (reg:SI 23) (mem:SI (plus:SI (reg:SI 3) (const_int 28))))
(set (reg:SI 24) (mem:SI (plus:SI (reg:SI 3) (const_int 24))))
(set (reg:SI 25) (mem:SI (plus:SI (reg:SI 3) (const_int 20))))
(set (reg:SI 26) (mem:SI (plus:SI (reg:SI 3) (const_int 16))))
(set (reg:SI 27) (mem:SI (plus:SI (reg:SI 3) (const_int 12))))
(set (reg:SI 28) (mem:SI (plus:SI (reg:SI 3) (const_int 8))))
(set (reg:SI 29) (mem:SI (plus:SI (reg:SI 3) (const_int 4))))]
"TARGET_PROLOG_FUNCTION"
"jr __return_r22_r29"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Restore r23-r29, and return to user
(define_insn "restore_r23_r29"
[(return)
(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int 32)))
(set (reg:SI 23) (mem:SI (plus:SI (reg:SI 3) (const_int 28))))
(set (reg:SI 24) (mem:SI (plus:SI (reg:SI 3) (const_int 24))))
(set (reg:SI 25) (mem:SI (plus:SI (reg:SI 3) (const_int 20))))
(set (reg:SI 26) (mem:SI (plus:SI (reg:SI 3) (const_int 16))))
(set (reg:SI 27) (mem:SI (plus:SI (reg:SI 3) (const_int 12))))
(set (reg:SI 28) (mem:SI (plus:SI (reg:SI 3) (const_int 8))))
(set (reg:SI 29) (mem:SI (plus:SI (reg:SI 3) (const_int 4))))]
"TARGET_PROLOG_FUNCTION"
"jr __return_r23_r29"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Restore r24-r29, and return to user
(define_insn "restore_r24_r29"
[(return)
(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int 28)))
(set (reg:SI 24) (mem:SI (plus:SI (reg:SI 3) (const_int 24))))
(set (reg:SI 25) (mem:SI (plus:SI (reg:SI 3) (const_int 20))))
(set (reg:SI 26) (mem:SI (plus:SI (reg:SI 3) (const_int 16))))
(set (reg:SI 27) (mem:SI (plus:SI (reg:SI 3) (const_int 12))))
(set (reg:SI 28) (mem:SI (plus:SI (reg:SI 3) (const_int 8))))
(set (reg:SI 29) (mem:SI (plus:SI (reg:SI 3) (const_int 4))))]
"TARGET_PROLOG_FUNCTION"
"jr __return_r24_r29"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Restore r25-r29, and return to user
(define_insn "restore_r25_r29"
[(return)
(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int 24)))
(set (reg:SI 25) (mem:SI (plus:SI (reg:SI 3) (const_int 20))))
(set (reg:SI 26) (mem:SI (plus:SI (reg:SI 3) (const_int 16))))
(set (reg:SI 27) (mem:SI (plus:SI (reg:SI 3) (const_int 12))))
(set (reg:SI 28) (mem:SI (plus:SI (reg:SI 3) (const_int 8))))
(set (reg:SI 29) (mem:SI (plus:SI (reg:SI 3) (const_int 4))))]
"TARGET_PROLOG_FUNCTION"
"jr __return_r25_r29"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Restore r26-r29, and return to user
(define_insn "restore_r26_r29"
[(return)
(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int 20)))
(set (reg:SI 26) (mem:SI (plus:SI (reg:SI 3) (const_int 16))))
(set (reg:SI 27) (mem:SI (plus:SI (reg:SI 3) (const_int 12))))
(set (reg:SI 28) (mem:SI (plus:SI (reg:SI 3) (const_int 8))))
(set (reg:SI 29) (mem:SI (plus:SI (reg:SI 3) (const_int 4))))]
"TARGET_PROLOG_FUNCTION"
"jr __return_r26_r29"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Restore r27-r29, and return to user
(define_insn "restore_r27_r29"
[(return)
(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int 16)))
(set (reg:SI 27) (mem:SI (plus:SI (reg:SI 3) (const_int 12))))
(set (reg:SI 28) (mem:SI (plus:SI (reg:SI 3) (const_int 8))))
(set (reg:SI 29) (mem:SI (plus:SI (reg:SI 3) (const_int 4))))]
"TARGET_PROLOG_FUNCTION"
"jr __return_r27_r29"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Restore r28-r29, and return to user
(define_insn "restore_r28_r29"
[(return)
(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int 12)))
(set (reg:SI 28) (mem:SI (plus:SI (reg:SI 3) (const_int 8))))
(set (reg:SI 29) (mem:SI (plus:SI (reg:SI 3) (const_int 4))))]
"TARGET_PROLOG_FUNCTION"
"jr __return_r28_r29"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Restore r29, and return to user
(define_insn "restore_r29"
[(return)
(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int 8)))
(set (reg:SI 29) (mem:SI (plus:SI (reg:SI 3) (const_int 4))))]
"TARGET_PROLOG_FUNCTION"
"jr __return_r29"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Restore r1, r5, r10, and return from the interrupt
(define_insn "restore_interrupt"
[(return)
(set (reg:SI 3) (plus:SI (reg:SI 3) (const_int 16)))
(set (reg:SI 30) (mem:SI (plus:SI (reg:SI 3) (const_int 12))))
(set (reg:SI 10) (mem:SI (plus:SI (reg:SI 3) (const_int 8))))
(set (reg:SI 5) (mem:SI (plus:SI (reg:SI 3) (const_int 4))))
(set (reg:SI 1) (mem:SI (reg:SI 3)))]
""
"jr __return_interrupt"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Restore all registers saved when an interrupt function makes a call.
;; UNSPEC_VOLATILE is considered to use and clobber all hard registers and
;; all of memory. This blocks insns from being moved across this point.
;; This is needed because the rest of the compiler is not reading to handle
;; insns this compilcated
(define_insn "restore_all_interrupt"
[(unspec_volatile [(const_int 0)] 1)]
""
"jarl __restore_all_interrupt,r10"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; Save r6-r9 for a variable argument function
(define_insn "save_r6_r9"
[(set (mem:SI (reg:SI 3)) (reg:SI 6))
(set (mem:SI (plus:SI (reg:SI 3) (const_int 4))) (reg:SI 7))
(set (mem:SI (plus:SI (reg:SI 3) (const_int 8))) (reg:SI 8))
(set (mem:SI (plus:SI (reg:SI 3) (const_int 12))) (reg:SI 9))
(clobber (reg:SI 10))]
"TARGET_PROLOG_FUNCTION"
"jarl __save_r6_r9,r10"
[(set_attr "length" "4")
(set_attr "cc" "clobber")])
;; END CYGNUS LOCAL
/* CYGNUS LOCAL entire file v850/law */
/* Configuration for NEC V850.
Copyright (C) 1996 Free Software Foundation, Inc.
Contributed by Cygnus Support.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* #defines that need visibility everywhere. */
#define FALSE 0
#define TRUE 1
/* This describes the machine the compiler is hosted on. */
#define HOST_BITS_PER_CHAR 8
#define HOST_BITS_PER_SHORT 16
#define HOST_BITS_PER_INT 32
#define HOST_BITS_PER_LONG 32
#define HOST_BITS_PER_LONGLONG 64
/* Arguments to use with `exit'. */
#define SUCCESS_EXIT_CODE 0
#define FATAL_EXIT_CODE 33
#ifdef __v850__
#ifndef __STDC__
extern char *malloc (), *realloc (), *calloc ();
#else
extern void *malloc (), *realloc (), *calloc ();
#endif
extern void free ();
#endif
/* target machine dependencies.
tm.h is a symbolic link to the actual target specific file. */
#include "tm.h"
/* END CYGNUS LOCAL */
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment