Commit ab835497 by Richard Kenner

Initial revision

From-SVN: r193
parent a8efe40d
;;- Machine description for AMD Am29000 for GNU C compiler
;; Copyright (C) 1991 Free Software Foundation, Inc.
;; Contributed by Richard Kenner (kenner@nyu.edu)
;; This file is part of GNU CC.
;; GNU CC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.
;; GNU CC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU CC; see the file COPYING. If not, write to
;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
;;- See file "rtl.def" for documentation on define_insn, match_*, et. al.
;; The insns in this file are presented in the same order as the AMD 29000
;; User's Manual (i.e., alphabetical by machine op-code).
;;
;; DEFINE_EXPAND's are located near the first occurrance of the major insn
;; that they generate.
;; The only attribute we have is the type. We only care about calls, branches,
;; loads, stores, floating-point operations, and multi-word insns.
;; Everything else is miscellaneous.
(define_attr "type"
"call,branch,load,store,fadd,fmul,fam,fdiv,dmul,dam,ddiv,multi,misc"
(const_string "misc"))
;; ASM insns cannot go into a delay slot, so call them "multi".
(define_asm_attributes [(set_attr "type" "multi")])
(define_attr "in_delay_slot" "yes,no"
(if_then_else (eq_attr "type" "call,branch,multi") (const_string "no")
(const_string "yes")))
;; Branch and call insns require a single delay slot. Annulling is not
;; supported.
(define_delay (eq_attr "type" "call,branch")
[(eq_attr "in_delay_slot" "yes") (nil) (nil)])
;; Define the function unit usages. We first define memory as a unit.
(define_function_unit "memory" 1 2 (eq_attr "type" "load") 6 11)
(define_function_unit "memory" 1 2 (eq_attr "type" "store") 1 0)
;; Now define the function units for the floating-point support. Most
;; units are pipelined and can accept an input every cycle.
;;
;; Note that we have an inaccuracy here. If a fmac insn is issued, followed
;; 2 cycles later by a fadd, there will be a conflict for the floating
;; adder that we can't represent. Also, all insns will conflict for the
;; floating-point rounder. It isn't clear how to represent this.
(define_function_unit "multiplier" 1 0 (eq_attr "type" "fmul") 3 0)
(define_function_unit "multiplier" 1 0 (eq_attr "type" "dmul") 6 8)
(define_function_unit "multiplier" 1 0 (eq_attr "type" "fam") 6 8)
(define_function_unit "multiplier" 1 0 (eq_attr "type" "dam") 9 8)
(define_function_unit "adder" 1 0 (eq_attr "type" "fadd,fam,dam") 3 0)
(define_function_unit "divider" 1 1 (eq_attr "type" "fdiv") 11 20)
(define_function_unit "divider" 1 1 (eq_attr "type" "ddiv") 18 34)
;; ADD
(define_insn "addsi3"
[(set (match_operand:SI 0 "gen_reg_operand" "=r,r")
(plus:SI (match_operand:SI 1 "gen_reg_operand" "%r,r")
(match_operand:SI 2 "add_operand" "rI,N")))]
""
"@
add %0,%1,%2
sub %0,%1,%n2")
(define_insn "adddi3"
[(set (match_operand:DI 0 "gen_reg_operand" "=r")
(plus:DI (match_operand:DI 1 "gen_reg_operand" "%r")
(match_operand:DI 2 "gen_reg_operand" "r")))]
""
"add %L0,%L1,%L2\;addc %0,%1,%2"
[(set_attr "type" "multi")])
;; AND/ANDN
(define_insn "andsi3"
[(set (match_operand:SI 0 "gen_reg_operand" "=r,r")
(and:SI (match_operand:SI 1 "gen_reg_operand" "%r,r")
(match_operand:SI 2 "and_operand" "rI,K")))]
""
"@
and %0,%1,%2
andn %0,%1,%C2")
(define_insn ""
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(and:SI (not:SI (match_operand:SI 1 "srcb_operand" "rI"))
(match_operand:SI 2 "gen_reg_operand" "r")))]
""
"andn %0,%2,%1")
;; CALLI
;;
;; Start with a subroutine to write out CLOBBERs starting at lr2 up to,
;; but not including, the next parameter register. If operand[0] is null,
;; it means that all the argument registers have been used.
(define_expand "clobbers_to"
[(clobber (match_operand:SI 0 "" ""))]
""
"
{
int i;
int high_regno;
if (operands[0] == 0)
high_regno = R_LR (18);
else if (GET_CODE (operands[0]) != REG || REGNO (operands[0]) < R_LR (0)
|| REGNO (operands[0]) > R_LR (18))
abort ();
else
high_regno = REGNO (operands[0]);
for (i = R_LR (2); i < high_regno; i++)
emit_insn (gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, SImode, i)));
DONE;
}")
(define_expand "call"
[(parallel [(call (match_operand:SI 0 "" "")
(match_operand 1 "" ""))
(clobber (reg:SI 32))])
(match_operand 2 "" "")]
""
"
{
if (GET_CODE (operands[0]) != MEM)
abort ();
if (! TARGET_SMALL_MEMORY
&& GET_CODE (XEXP (operands[0], 0)) == SYMBOL_REF)
operands[0] = gen_rtx (MEM, GET_MODE (operands[0]),
force_reg (Pmode, XEXP (operands[0], 0)));
operands[2] = gen_clobbers_to (operands[2]);
}")
(define_insn ""
[(call (match_operand:SI 0 "memory_operand" "m")
(match_operand 1 "" ""))
(clobber (reg:SI 32))]
""
"calli lr0,%0%#"
[(set_attr "type" "call")])
(define_expand "call_value"
[(parallel [(set (match_operand:SI 0 "gen_reg_operand" "")
(call (match_operand:SI 1 "" "")
(match_operand 2 "" "")))
(clobber (reg:SI 32))])
(match_operand 3 "" "")]
""
"
{
if (GET_CODE (operands[1]) != MEM)
abort ();
if (! TARGET_SMALL_MEMORY
&& GET_CODE (XEXP (operands[1], 0)) == SYMBOL_REF)
operands[1] = gen_rtx (MEM, GET_MODE (operands[1]),
force_reg (Pmode, XEXP (operands[1], 0)));
operands[3] = gen_clobbers_to (operands[3]);
}")
(define_insn ""
[(set (match_operand 0 "gen_reg_operand" "=r")
(call (match_operand:SI 1 "memory_operand" "m")
(match_operand 2 "" "")))
(clobber (reg:SI 32))]
""
"calli lr0,%1%#"
[(set_attr "type" "call")])
(define_insn ""
[(call (mem:SI (match_operand:SI 0 "immediate_operand" "i"))
(match_operand:SI 1 "general_operand" "g"))
(clobber (reg:SI 32))]
"GET_CODE (operands[0]) == SYMBOL_REF
&& (TARGET_SMALL_MEMORY
|| ! strcmp (XSTR (operands[0], 0), current_function_name))"
"call lr0,%F0"
[(set_attr "type" "call")])
(define_insn ""
[(set (match_operand 0 "gen_reg_operand" "=r")
(call (mem:SI (match_operand:SI 1 "immediate_operand" "i"))
(match_operand:SI 2 "general_operand" "g")))
(clobber (reg:SI 32))]
"GET_CODE (operands[1]) == SYMBOL_REF
&& (TARGET_SMALL_MEMORY
|| ! strcmp (XSTR (operands[1], 0), current_function_name))"
"call lr0,%F1"
[(set_attr "type" "call")])
(define_expand "probe"
[(call (mem:SI (symbol_ref:SI "_msp_check"))
(const_int 1))]
"TARGET_STACK_CHECK"
"")
;; This is used for internal routine calls via TPC. Currently used only
;; in probe, above.
(define_insn ""
[(call (mem:SI (match_operand:SI 0 "immediate_operand" "s"))
(const_int 1))]
""
"call %*,%0"
[(set_attr "type" "call")])
;; CONST, CONSTH, CONSTN
;;
;; Many of these are generated from move insns.
(define_insn ""
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(and:SI (match_operand:SI 1 "immediate_operand" "i")
(const_int 65535)))]
""
"const %0,%1")
(define_insn ""
[(set (zero_extract:SI (match_operand:SI 0 "gen_reg_operand" "+r")
(const_int 16)
(match_operand:SI 1 "const_0_operand" ""))
(ashiftrt:SI (match_operand:SI 2 "immediate_operand" "i")
(const_int 16)))]
""
"consth %0,%2")
(define_insn ""
[(set (zero_extract:SI (match_operand:SI 0 "gen_reg_operand" "+r")
(const_int 16)
(match_operand:SI 1 "const_0_operand" ""))
(match_operand:SI 2 "cint_16_operand" "J"))]
""
"*
{ operands[2] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[2]) << 16);
return \"consth %0,%2\";
}")
(define_insn ""
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(ior:SI (and:SI (match_operand:SI 1 "gen_reg_operand" "0")
(const_int 65535))
(match_operand:SI 2 "const_int_operand" "n")))]
"(INTVAL (operands[1]) & 0xffff) == 0"
"consth %0,%2")
(define_insn ""
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(ior:SI (and:SI (match_operand:SI 1 "gen_reg_operand" "0")
(const_int 65535))
(and:SI (match_operand:SI 2 "immediate_operand" "i")
(const_int -65536))))]
""
"consth %0,%2")
;; CONVERT
(define_insn "fix_truncsfsi2"
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(fix:SI (match_operand:SF 1 "register_operand" "r")))]
""
"convert %0,%1,0,3,0,1")
(define_insn "fix_truncdfsi2"
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(fix:SI (match_operand:DF 1 "register_operand" "r")))]
""
"convert %0,%1,0,3,0,2")
(define_insn "fixuns_truncsfsi2"
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(unsigned_fix:SI (match_operand:SF 1 "register_operand" "r")))]
""
"convert %0,%1,1,3,0,1")
(define_insn "fixuns_truncdfsi2"
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(unsigned_fix:SI (match_operand:DF 1 "register_operand" "r")))]
""
"convert %0,%1,1,3,0,2")
(define_insn "truncdfsf2"
[(set (match_operand:SF 0 "register_operand" "=r")
(float_truncate:SF (match_operand:DF 1 "register_operand" "r")))]
""
"convert %0,%1,0,4,1,2")
(define_insn "extendsfdf2"
[(set (match_operand:DF 0 "register_operand" "=r")
(float_extend:DF (match_operand:SF 1 "register_operand" "r")))]
""
"convert %0,%1,0,4,2,1")
(define_insn "floatsisf2"
[(set (match_operand:SF 0 "register_operand" "=r")
(float:SF (match_operand:SI 1 "gen_reg_operand" "r")))]
""
"convert %0,%1,0,4,1,0")
(define_insn "floatsidf2"
[(set (match_operand:DF 0 "register_operand" "=r")
(float:DF (match_operand:SI 1 "gen_reg_operand" "r")))]
""
"convert %0,%1,0,4,2,0")
(define_insn "floatunssisf2"
[(set (match_operand:SF 0 "register_operand" "=r")
(unsigned_float:SF (match_operand:SI 1 "gen_reg_operand" "r")))]
""
"convert %0,%1,1,4,1,0")
(define_insn "floatunssidf2"
[(set (match_operand:DF 0 "register_operand" "=r")
(unsigned_float:DF (match_operand:SI 1 "gen_reg_operand" "r")))]
""
"convert %0,%1,1,4,2,0")
;; CPxxx, DEQ, DGT, DGE, FEQ, FGT, FGE
(define_insn ""
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(match_operator 3 "comparison_operator"
[(match_operand:SI 1 "gen_reg_operand" "r")
(match_operand:SI 2 "srcb_operand" "rI")]))]
""
"cp%J3 %0,%1,%2")
(define_insn ""
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(match_operator 3 "fp_comparison_operator"
[(match_operand:SF 1 "register_operand" "r")
(match_operand:SF 2 "register_operand" "r")]))]
""
"f%J3 %0,%1,%2"
[(set_attr "type" "fadd")])
(define_insn ""
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(match_operator 3 "fp_comparison_operator"
[(match_operand:DF 1 "register_operand" "r")
(match_operand:DF 2 "register_operand" "r")]))]
""
"d%J3 %0,%1,%2"
[(set_attr "type" "fadd")])
;; DADD
(define_expand "adddf3"
[(set (match_operand:DF 0 "register_operand" "")
(plus:DF (match_operand:DF 1 "register_operand" "")
(match_operand:DF 2 "register_operand" "")))]
""
"")
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=r")
(plus:DF (match_operand:DF 1 "register_operand" "%r")
(match_operand:DF 2 "register_operand" "r")))]
"! TARGET_29050 "
"dadd %0,%1,%2"
[(set_attr "type" "fadd")])
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=r,a")
(plus:DF (match_operand:DF 1 "register_operand" "%r,r")
(match_operand:DF 2 "register_operand" "r,0")))]
"TARGET_29050"
"@
dadd %0,%1,%2
dmac 8,%0,%1,0"
[(set_attr "type" "fadd,dam")])
;; DDIV
(define_insn "divdf3"
[(set (match_operand:DF 0 "register_operand" "=r")
(div:DF (match_operand:DF 1 "register_operand" "=r")
(match_operand:DF 2 "register_operand" "r")))]
""
"ddiv %0,%1,%2"
[(set_attr "type" "ddiv")])
;; DIVIDE
;;
;; We must set Q to the sign extension of the dividend first. For MOD, we
;; must get the remainder from Q.
;;
;; For divmod: operand 1 is divided by operand 2; quotient goes to operand
;; 0 and remainder to operand 3.
(define_expand "divmodsi4"
[(set (match_dup 4)
(ashiftrt:SI (match_operand:SI 1 "gen_reg_operand" "")
(const_int 31)))
(set (reg:SI 180)
(match_dup 4))
(parallel [(set (match_operand:SI 0 "gen_reg_operand" "")
(div:SI (match_dup 1)
(match_operand:SI 2 "gen_reg_operand" "")))
(set (reg:SI 180)
(mod:SI (match_dup 1)
(match_dup 2)))
(use (reg:SI 180))])
(set (match_operand:SI 3 "gen_reg_operand" "")
(reg:SI 180))]
""
"
{
operands[4] = gen_reg_rtx (SImode);
}")
(define_insn ""
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(div:SI (match_operand:SI 1 "gen_reg_operand" "r")
(match_operand:SI 2 "gen_reg_operand" "r")))
(set (reg:SI 180)
(mod:SI (match_dup 1)
(match_dup 2)))
(use (reg:SI 180))]
""
"divide %0,%1,%2")
;; DIVIDU
;;
;; Similar to DIVIDE.
(define_expand "udivmodsi4"
[(set (reg:SI 180)
(const_int 0))
(parallel [(set (match_operand:SI 0 "gen_reg_operand" "")
(udiv:SI (match_operand:SI 1 "gen_reg_operand" "")
(match_operand:SI 2 "gen_reg_operand" "")))
(set (reg:SI 180)
(umod:SI (match_dup 1)
(match_dup 2)))
(use (reg:SI 180))])
(set (match_operand:SI 3 "gen_reg_operand" "")
(reg:SI 180))]
""
"")
(define_insn ""
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(udiv:SI (match_operand:SI 1 "gen_reg_operand" "r")
(match_operand:SI 2 "gen_reg_operand" "r")))
(set (reg:SI 180)
(umod:SI (match_dup 1)
(match_dup 2)))
(use (reg:SI 180))]
""
"dividu %0,%1,%2")
;; DMAC/DMSM
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=a,*r")
(plus:DF (mult:DF (match_operand:DF 1 "register_operand" "%r,A")
(match_operand:DF 2 "register_operand" "r,r"))
(match_operand:DF 3 "register_operand" "0,*r")))]
"TARGET_29050"
"@
dmac 0,%0,%1,%2
dmsm %0,%2,%3"
[(set_attr "type" "dam")])
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=a")
(plus:DF (mult:DF (neg:DF (match_operand:DF 1 "register_operand" "r"))
(match_operand:DF 2 "register_operand" "r"))
(match_operand:DF 3 "register_operand" "0")))]
"TARGET_29050"
"dmac 1,%0,%2,%1"
[(set_attr "type" "dam")])
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=a")
(minus:DF (mult:DF (match_operand:DF 1 "register_operand" "%r")
(match_operand:DF 2 "register_operand" "r"))
(match_operand:DF 3 "register_operand" "0")))]
"TARGET_29050"
"dmac 2,%0,%1,%2"
[(set_attr "type" "dam")])
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=a")
(minus:DF (mult:DF (match_operand:DF 1 "register_operand" "r")
(neg:DF (match_operand:DF 2 "register_operand" "r")))
(match_operand:DF 3 "register_operand" "0")))]
"TARGET_29050"
"dmac 3,%0,%1,%2"
[(set_attr "type" "dam")])
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=a")
(mult:DF (neg:DF (match_operand:DF 1 "register_operand" "r"))
(match_operand:DF 2 "register_operand" "r")))]
"TARGET_29050"
"dmac 5,%0,%2,%1"
[(set_attr "type" "dam")])
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=a")
(minus:DF (neg:DF (match_operand:DF 1 "register_operand" "r"))
(match_operand:DF 2 "register_operand" "0")))]
"TARGET_29050"
"dmac 11,%0,%1,0"
[(set_attr "type" "dam")])
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=a")
(neg:DF (plus:DF (match_operand:DF 1 "register_operand" "%r")
(match_operand:DF 2 "register_operand" "0"))))]
"TARGET_29050"
"dmac 11,%0,%1,0"
[(set_attr "type" "dam")])
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=r,r,a")
(neg:DF (match_operand:DF 1 "register_operand" "0,r,r")))
(clobber (match_scratch:SI 2 "=&r,&r,X"))]
"TARGET_29050"
"@
cpeq %2,gr1,gr1\;xor %0,%1,%2
cpeq %2,gr1,gr1\;xor %0,%1,%2\;sll %L0,%L1,0
dmac 13,%0,%1,0"
[(set_attr "type" "multi,multi,dam")])
;; DMUL
(define_expand "muldf3"
[(set (match_operand:DF 0 "register_operand" "")
(mult:DF (match_operand:DF 1 "register_operand" "")
(match_operand:DF 2 "register_operand" "")))]
""
"")
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=r")
(mult:DF (match_operand:DF 1 "register_operand" "%r")
(match_operand:DF 2 "register_operand" "r")))]
"! TARGET_29050"
"dmul %0,%1,%2"
[(set_attr "type" "dmul")])
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=r,a")
(mult:DF (match_operand:DF 1 "register_operand" "%r,r")
(match_operand:DF 2 "register_operand" "r,r")))]
"TARGET_29050"
"@
dmul %0,%1,%2
dmac 4,%0,%1,%2"
[(set_attr "type" "dmul,dam")])
;; DSUB
(define_expand "subdf3"
[(set (match_operand:DF 0 "register_operand" "=r")
(minus:DF (match_operand:DF 1 "register_operand" "r")
(match_operand:DF 2 "register_operand" "r")))]
""
"")
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=r")
(minus:DF (match_operand:DF 1 "register_operand" "r")
(match_operand:DF 2 "register_operand" "r")))]
"! TARGET_29050"
"dsub %0,%1,%2"
[(set_attr "type" "fadd")])
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=r,a,a")
(minus:DF (match_operand:DF 1 "register_operand" "r,0,r")
(match_operand:DF 2 "register_operand" "r,r,0")))]
"TARGET_29050"
"@
dsub %0,%1,%2
dmac 9,%0,%2,0
dmac 10,%0,%1,0"
[(set_attr "type" "fadd,dam,dam")])
;; EXBYTE
(define_insn ""
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(ior:SI (and:SI (match_operand:SI 1 "srcb_operand" "rI")
(const_int -256))
(zero_extract:SI (match_operand:SI 2 "gen_reg_operand" "r")
(const_int 8)
(ashift:SI (match_operand:SI 3 "register_operand" "b")
(const_int 3)))))]
""
"exbyte %0,%2,%1")
(define_insn ""
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(zero_extract:SI (match_operand:SI 1 "gen_reg_operand" "r")
(const_int 8)
(ashift:SI (match_operand:SI 2 "register_operand" "b")
(const_int 3))))]
""
"exbyte %0,%1,0")
(define_insn ""
[(set (zero_extract:SI (match_operand:SI 0 "gen_reg_operand" "+r")
(const_int 8)
(match_operand:SI 1 "const_24_operand" ""))
(zero_extract:SI (match_operand:SI 2 "gen_reg_operand" "r")
(const_int 8)
(ashift:SI (match_operand:SI 3 "register_operand" "b")
(const_int 3))))]
""
"exbyte %0,%2,%0")
(define_expand "extzv"
[(set (match_operand:SI 0 "gen_reg_operand" "")
(zero_extract:SI (match_operand:SI 1 "gen_reg_operand" "")
(match_operand:SI 2 "general_operand" "")
(match_operand:SI 3 "general_operand" "")))]
""
"
{
int size, pos;
if (GET_CODE (operands[2]) != CONST_INT
|| GET_CODE (operands[3]) != CONST_INT)
FAIL;
size = INTVAL (operands[2]);
pos = INTVAL (operands[3]);
if ((size != 8 && size != 16) || pos % size != 0)
FAIL;
operands[3] = gen_rtx (ASHIFT, SImode,
force_reg (SImode,
gen_rtx (CONST_INT, VOIDmode, pos / 8)),
gen_rtx (CONST_INT, VOIDmode, 3));
}")
(define_expand "extv"
[(set (match_operand:SI 0 "gen_reg_operand" "")
(zero_extract:SI (match_operand:SI 1 "gen_reg_operand" "")
(match_operand:SI 2 "general_operand" "")
(match_operand:SI 3 "general_operand" "")))]
""
"
{
int pos;
if (GET_CODE (operands[2]) != CONST_INT
|| GET_CODE (operands[3]) != CONST_INT)
FAIL;
pos = INTVAL (operands[3]);
if (INTVAL (operands[2]) != 16 || pos % 16 != 0)
FAIL;
operands[3] = gen_rtx (ASHIFT, SImode,
force_reg (SImode,
gen_rtx (CONST_INT, VOIDmode, pos / 8)),
gen_rtx (CONST_INT, VOIDmode, 3));
}")
;; EXHW
(define_insn ""
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(ior:SI (and:SI (match_operand:SI 1 "srcb_operand" "rI")
(const_int -65536))
(zero_extract:SI (match_operand:SI 2 "gen_reg_operand" "r")
(const_int 16)
(ashift:SI (match_operand:SI 3 "register_operand" "b")
(const_int 3)))))]
""
"exhw %0,%2,%1")
(define_insn ""
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(zero_extract:SI (match_operand:SI 1 "gen_reg_operand" "r")
(const_int 16)
(ashift:SI (match_operand:SI 2 "register_operand" "b")
(const_int 3))))]
""
"exhw %0,%1,0")
(define_insn ""
[(set (zero_extract:SI (match_operand:SI 0 "gen_reg_operand" "+r")
(const_int 16)
(match_operand:SI 1 "const_16_operand" ""))
(zero_extract:SI (match_operand:SI 2 "gen_reg_operand" "r")
(const_int 16)
(ashift:SI (match_operand:SI 3 "register_operand" "b")
(const_int 3))))]
""
"exhw %0,%2,%0")
;; EXHWS
(define_insn ""
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(sign_extract:SI (match_operand:SI 1 "gen_reg_operand" "r")
(const_int 16)
(ashift:SI (match_operand:SI 2 "register_operand" "b")
(const_int 3))))]
""
"exhws %0,%1")
;; EXTRACT
(define_insn ""
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(rotate:SI (match_operand:SI 1 "gen_reg_operand" "r")
(reg:QI 178)))]
""
"extract %0,%1,%1")
(define_expand "rotlsi3"
[(set (reg:QI 178)
(match_operand: SI 2 "gen_reg_or_immediate_operand" ""))
(set (match_operand:SI 0 "gen_reg_operand" "")
(rotate:SI (match_operand:SI 1 "gen_reg_operand" "")
(reg:QI 178)))]
""
"
{ operands[2] = gen_lowpart (QImode, operands[2]); }")
;; FADD
(define_expand "addsf3"
[(set (match_operand:SF 0 "register_operand" "")
(plus:SF (match_operand:SF 1 "register_operand" "")
(match_operand:SF 2 "register_operand" "")))]
""
"")
(define_insn ""
[(set (match_operand:SF 0 "register_operand" "=r")
(plus:SF (match_operand:SF 1 "register_operand" "%r")
(match_operand:SF 2 "register_operand" "r")))]
"! TARGET_29050"
"fadd %0,%1,%2"
[(set_attr "type" "fadd")])
(define_insn ""
[(set (match_operand:SF 0 "register_operand" "=r,a")
(plus:SF (match_operand:SF 1 "register_operand" "%r,r")
(match_operand:SF 2 "register_operand" "r,0")))]
"TARGET_29050"
"@
fadd %0,%1,%2
fmac 8,%0,%1,0"
[(set_attr "type" "fadd,fam")])
;; FDIV
(define_insn "divsf3"
[(set (match_operand:SF 0 "register_operand" "=r")
(div:DF (match_operand:SF 1 "register_operand" "=r")
(match_operand:SF 2 "register_operand" "r")))]
""
"fdiv %0,%1,%2"
[(set_attr "type" "fdiv")])
;; FDMUL
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=r")
(mult:DF (float_extend:DF (match_operand:SF 1 "register_operand" "%r"))
(float_extend:DF (match_operand:SF 2 "register_operand" "r"))))]
""
"fdmul %0,%1,%2")
;; FMAC/FMSM
(define_insn ""
[(set (match_operand:SF 0 "register_operand" "=a,*r")
(plus:SF (mult:SF (match_operand:SF 1 "register_operand" "%r,A")
(match_operand:SF 2 "register_operand" "r,r"))
(match_operand:SF 3 "register_operand" "0,*r")))]
"TARGET_29050"
"@
fmac 0,%0,%1,%2
fmsm %0,%2,%3"
[(set_attr "type" "fam")])
(define_insn ""
[(set (match_operand:SF 0 "register_operand" "=a")
(plus:SF (mult:SF (neg:SF (match_operand:SF 1 "register_operand" "r"))
(match_operand:SF 2 "register_operand" "r"))
(match_operand:SF 3 "register_operand" "0")))]
"TARGET_29050"
"fmac 1,%0,%2,%1"
[(set_attr "type" "fam")])
(define_insn ""
[(set (match_operand:SF 0 "register_operand" "=a")
(minus:SF (mult:SF (match_operand:SF 1 "register_operand" "%r")
(match_operand:SF 2 "register_operand" "r"))
(match_operand:SF 3 "register_operand" "0")))]
"TARGET_29050"
"fmac 2,%0,%1,%2"
[(set_attr "type" "fam")])
(define_insn ""
[(set (match_operand:SF 0 "register_operand" "=a")
(minus:SF (mult:SF (neg:SF (match_operand:SF 1 "register_operand" "r"))
(match_operand:SF 2 "register_operand" "r"))
(match_operand:SF 3 "register_operand" "0")))]
"TARGET_29050"
"fmac 3,%0,%2,%1"
[(set_attr "type" "fam")])
(define_insn ""
[(set (match_operand:SF 0 "register_operand" "=a")
(mult:SF (neg:SF (match_operand:SF 1 "register_operand" "r"))
(match_operand:SF 2 "register_operand" "r")))]
"TARGET_29050"
"fmac 5,%0,%2,%1"
[(set_attr "type" "fam")])
(define_insn ""
[(set (match_operand:SF 0 "register_operand" "=a")
(minus:SF (neg:SF (match_operand:SF 1 "register_operand" "%r"))
(match_operand:SF 2 "register_operand" "0")))]
"TARGET_29050"
"fmac 11,%0,%1,0"
[(set_attr "type" "fam")])
(define_insn ""
[(set (match_operand:SF 0 "register_operand" "=a")
(neg:SF (plus:SF (match_operand:SF 1 "register_operand" "%r")
(match_operand:SF 2 "register_operand" "0"))))]
"TARGET_29050"
"fmac 11,%0,%1,0"
[(set_attr "type" "fam")])
(define_insn ""
[(set (match_operand:SF 0 "register_operand" "=r,a")
(neg:SF (match_operand:SF 1 "register_operand" "r,r")))
(clobber (match_scratch:SI 2 "=&r,X"))]
"TARGET_29050"
"@
cpeq %2,gr1,gr1\;xor %0,%1,%2
fmac 13,%0,%1,0"
[(set_attr "type" "multi,fam")])
;; FMUL
(define_expand "mulsf3"
[(set (match_operand:SF 0 "register_operand" "")
(mult:SF (match_operand:SF 1 "register_operand" "")
(match_operand:SF 2 "register_operand" "")))]
""
"")
(define_insn ""
[(set (match_operand:SF 0 "register_operand" "=r")
(mult:SF (match_operand:SF 1 "register_operand" "%r")
(match_operand:SF 2 "register_operand" "r")))]
"! TARGET_29050"
"fmul %0,%1,%2"
[(set_attr "type" "fmul")])
(define_insn ""
[(set (match_operand:SF 0 "register_operand" "=r,a")
(mult:SF (match_operand:SF 1 "register_operand" "%r,r")
(match_operand:SF 2 "register_operand" "r,r")))]
"TARGET_29050"
"@
fmul %0,%1,%2
fmac 4,%0,%1,%2"
[(set_attr "type" "fmul,fam")])
;; FSUB
(define_expand "subsf3"
[(set (match_operand:SF 0 "register_operand" "")
(minus:SF (match_operand:SF 1 "register_operand" "")
(match_operand:SF 2 "register_operand" "")))]
""
"")
(define_insn ""
[(set (match_operand:SF 0 "register_operand" "=r")
(minus:SF (match_operand:SF 1 "register_operand" "r")
(match_operand:SF 2 "register_operand" "r")))]
"! TARGET_29050"
"fsub %0,%1,%2"
[(set_attr "type" "fadd")])
(define_insn ""
[(set (match_operand:SF 0 "register_operand" "=r,a,a")
(minus:SF (match_operand:SF 1 "register_operand" "r,0,r")
(match_operand:SF 2 "register_operand" "r,r,0")))]
"TARGET_29050"
"@
fsub %0,%1,%2
fmac 9,%0,%2,0
fmac 10,%0,%1,0"
[(set_attr "type" "fadd,fam,fam")])
;; INBYTE
(define_insn ""
[(set (zero_extract:SI (match_operand:SI 0 "gen_reg_operand" "+r")
(const_int 8)
(ashift:SI (match_operand:SI 2 "register_operand" "b")
(const_int 3)))
(match_operand:SI 1 "srcb_operand" "rI"))]
""
"inbyte %0,%0,%1")
(define_insn ""
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(ior:SI (and:SI (not:SI (ashift:SI (const_int 255)
(ashift:SI (match_operand:SI 3 "register_operand" "b")
(const_int 3))))
(match_operand:SI 1 "gen_reg_operand" "r"))
(ashift:SI (and:SI (match_operand:SI 2 "srcb_operand" "rI")
(const_int 255))
(match_operand:SI 4 "const_24_operand" ""))))]
""
"inbyte %0,%1,%2")
(define_insn ""
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(ior:SI (and:SI (not:SI (ashift:SI (const_int 255)
(ashift:SI (match_operand:SI 3 "register_operand" "b")
(const_int 3))))
(match_operand:SI 1 "gen_reg_operand" "r"))
(ashift:SI (match_operand:SI 2 "srcb_operand" "rI")
(match_operand:SI 4 "const_24_operand" ""))))]
""
"inbyte %0,%1,%2")
;; INHW
(define_insn ""
[(set (zero_extract:SI (match_operand:SI 0 "gen_reg_operand" "+r")
(const_int 16)
(ashift:SI (match_operand:SI 2 "register_operand" "b")
(const_int 3)))
(match_operand:SI 1 "srcb_operand" "rI"))]
""
"inhw %0,%0,%1")
(define_insn ""
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(ior:SI (and:SI (not:SI (ashift:SI (const_int 65535)
(ashift:SI (match_operand:SI 3 "register_operand" "b")
(const_int 3))))
(match_operand:SI 1 "gen_reg_operand" "r"))
(ashift:SI (and:SI (match_operand:SI 2 "srcb_operand" "rI")
(const_int 65535))
(match_operand:SI 4 "const_24_operand" ""))))]
""
"inhw %0,%1,%2")
(define_insn ""
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(ior:SI (and:SI (not:SI (ashift:SI (const_int 65535)
(ashift:SI (match_operand:SI 3 "register_operand" "b")
(const_int 3))))
(match_operand:SI 1 "gen_reg_operand" "r"))
(ashift:SI (match_operand:SI 2 "srcb_operand" "rI")
(match_operand:SI 4 "const_24_operand" ""))))]
""
"inhw %0,%1,%2")
(define_expand "insv"
[(set (zero_extract:SI (match_operand:SI 0 "gen_reg_operand" "")
(match_operand:SI 1 "general_operand" "")
(match_operand:SI 2 "general_operand" ""))
(match_operand:SI 3 "srcb_operand" ""))]
""
"
{
int size, pos;
if (GET_CODE (operands[1]) != CONST_INT
|| GET_CODE (operands[2]) != CONST_INT)
FAIL;
size = INTVAL (operands[1]);
pos = INTVAL (operands[2]);
if ((size != 8 && size != 16) || pos % size != 0)
FAIL;
operands[2] = gen_rtx (ASHIFT, SImode,
force_reg (SImode,
gen_rtx (CONST_INT, VOIDmode, pos / 8)),
gen_rtx (CONST_INT, VOIDmode, 3));
}")
;; LOAD (also used by move insn).
(define_insn ""
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(mem:SI (and:SI (match_operand:SI 1 "gen_reg_operand" "r")
(const_int -4))))
(set (reg:SI 177)
(and:SI (match_dup 1)
(const_int 3)))]
"! TARGET_DW_ENABLE"
"load 0,17,%0,%1"
[(set_attr "type" "load")])
(define_insn ""
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(mem:SI (and:SI (match_operand:SI 1 "gen_reg_operand" "r")
(const_int -4))))
(set (reg:SI 177)
(and:SI (match_dup 1)
(const_int 2)))]
"! TARGET_DW_ENABLE"
"load 0,18,%0,%1"
[(set_attr "type" "load")])
(define_insn ""
[(set (match_operand 0 "gen_reg_operand" "=r")
(match_operator 2 "extend_operator"
[(match_operand 1 "memory_operand" "m")]))]
"TARGET_DW_ENABLE && GET_MODE (operands[0]) == GET_MODE (operands[2])"
"load 0,%X2,%0,%1"
[(set_attr "type" "load")])
;; LOADM
(define_expand "load_multiple"
[(set (reg:SI 179)
(match_dup 2))
(match_parallel 3 "" [(set (match_operand:SI 0 "" "")
(match_operand:SI 1 "" ""))])]
""
"
{
int regno;
int count;
rtx from;
int i;
/* Support only loading a constant number of hard registers from memory. */
if (GET_CODE (operands[2]) != CONST_INT
|| operands[2] == const1_rtx
|| GET_CODE (operands[1]) != MEM
|| GET_CODE (operands[0]) != REG
|| REGNO (operands[0]) >= FIRST_PSEUDO_REGISTER)
FAIL;
count = INTVAL (operands[2]);
regno = REGNO (operands[0]);
/* CR gets set to the number of registers minus one. */
operands[2] = gen_rtx (CONST_INT, VOIDmode, count - 1);
operands[3] = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (count + 2));
from = memory_address (SImode, XEXP (operands[1], 0));
XVECEXP (operands[3], 0, 0) = gen_rtx (SET, VOIDmode,
gen_rtx (REG, SImode, regno),
gen_rtx (MEM, SImode, from));
XVECEXP (operands[3], 0, 1)
= gen_rtx (USE, VOIDmode, gen_rtx (REG, SImode, R_CR));
XVECEXP (operands[3], 0, 2)
= gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, SImode, R_CR));
for (i = 1; i < count; i++)
XVECEXP (operands[3], 0, i + 2)
= gen_rtx (SET, VOIDmode, gen_rtx (REG, SImode, regno + i),
gen_rtx (MEM, SImode, plus_constant (from, i * 4)));
}")
;; Indicate that CR is used and is then clobbered.
(define_insn ""
[(set (match_operand 0 "gen_reg_operand" "=r")
(match_operand 1 "memory_operand" "m"))
(use (reg:SI 179))
(clobber (reg:SI 179))]
"GET_MODE (operands[0]) == GET_MODE (operands[1])
&& GET_MODE_SIZE (GET_MODE (operands[0])) > UNITS_PER_WORD
&& ! TARGET_29050"
"loadm 0,0,%0,%1"
[(set_attr "type" "load")])
(define_insn ""
[(set (match_operand 0 "gen_reg_operand" "=&r")
(match_operand 1 "memory_operand" "m"))
(use (reg:SI 179))
(clobber (reg:SI 179))]
"GET_MODE (operands[0]) == GET_MODE (operands[1])
&& GET_MODE_SIZE (GET_MODE (operands[0])) > UNITS_PER_WORD
&& TARGET_29050"
"loadm 0,0,%0,%1"
[(set_attr "type" "load")])
(define_insn ""
[(match_parallel 0 "load_multiple_operation"
[(set (match_operand:SI 1 "gen_reg_operand" "=r")
(match_operand:SI 2 "memory_operand" "m"))
(use (reg:SI 179))
(clobber (reg:SI 179))])]
"! TARGET_29050"
"loadm 0,0,%1,%2"
[(set_attr "type" "load")])
(define_insn ""
[(match_parallel 0 "load_multiple_operation"
[(set (match_operand:SI 1 "gen_reg_operand" "=&r")
(match_operand:SI 2 "memory_operand" "m"))
(use (reg:SI 179))
(clobber (reg:SI 179))])]
"TARGET_29050"
"loadm 0,0,%1,%2"
[(set_attr "type" "load")])
;; MTSR (used also by move insn)
(define_insn ""
[(set (match_operand:SI 0 "spec_reg_operand" "=*h,*h")
(and:SI (match_operand:SI 1 "gen_reg_or_immediate_operand" "r,i")
(match_operand:SI 2 "const_int_operand" "n,n")))]
"masks_bits_for_special (operands[0], operands[2])"
"@
mtsr %0,%1
mtsrim %0,%1")
;; MULTIPLY, MULTM, MULTMU
(define_insn "mulsi3"
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(mult:SI (match_operand:SI 1 "gen_reg_operand" "%r")
(match_operand:SI 2 "gen_reg_operand" "r")))]
""
"multiply %0,%1,%2")
(define_insn ""
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(subreg:SI
(mult:DI
(sign_extend:DI (match_operand:SI 1 "gen_reg_operand" "%r"))
(sign_extend:DI (match_operand:SI 2 "gen_reg_operand" "r"))) 0))]
""
"multm %0,%1,%2")
(define_insn ""
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(subreg:SI
(mult:DI
(zero_extend:DI (match_operand:SI 1 "gen_reg_operand" "%r"))
(zero_extend:DI (match_operand:SI 2 "gen_reg_operand" "r"))) 0))]
""
"multmu %0,%1,%2")
(define_insn "mulsidi3"
[(set (match_operand:DI 0 "gen_reg_operand" "=r")
(mult:DI (sign_extend:DI (match_operand:SI 1 "gen_reg_operand" "r"))
(sign_extend:DI (match_operand:SI 2 "gen_reg_operand" "r"))))]
""
"multiply %L0,%1,%2\;multm %0,%1,%2"
[(set_attr "type" "multi")])
(define_split
[(set (match_operand:DI 0 "gen_reg_operand" "")
(mult:DI (sign_extend:DI (match_operand:SI 1 "gen_reg_operand" ""))
(sign_extend:DI (match_operand:SI 2 "gen_reg_operand" ""))))]
"reload_completed"
[(set (match_dup 3)
(mult:SI (match_dup 1) (match_dup 2)))
(set (match_dup 4)
(subreg:SI (mult:DI
(sign_extend:DI (match_dup 1))
(sign_extend:DI (match_dup 2))) 0))]
"
{ operands[3] = operand_subword (operands[0], 1, 1, DImode);
operands[4] = operand_subword (operands[1], 0, 1, DImode); } ")
(define_insn "umulsidi3"
[(set (match_operand:DI 0 "gen_reg_operand" "=r")
(mult:DI (zero_extend:DI (match_operand:SI 1 "gen_reg_operand" "r"))
(zero_extend:DI (match_operand:SI 2 "gen_reg_operand" "r"))))]
""
"multiplu %L0,%1,%2\;multmu %0,%1,%2"
[(set_attr "type" "multi")])
(define_split
[(set (match_operand:DI 0 "gen_reg_operand" "")
(mult:DI (zero_extend:DI (match_operand:SI 1 "gen_reg_operand" ""))
(zero_extend:DI (match_operand:SI 2 "gen_reg_operand" ""))))]
"reload_completed"
[(set (match_dup 3)
(mult:SI (match_dup 1) (match_dup 2)))
(set (match_dup 4)
(subreg:SI (mult:DI (zero_extend:DI (match_dup 1))
(zero_extend:DI (match_dup 2))) 0))]
"
{ operands[3] = operand_subword (operands[0], 1, 1, DImode);
operands[4] = operand_subword (operands[1], 0, 1, DImode); } ")
;; NAND
(define_insn ""
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(ior:SI (not:SI (match_operand:SI 1 "gen_reg_operand" "%r"))
(not:SI (match_operand:SI 2 "srcb_operand" "rI"))))]
""
"nand %0,%1,%2")
(define_insn ""
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(ior:SI (not:SI (match_operand:SI 1 "gen_reg_operand" "r"))
(match_operand:SI 2 "const_int_operand" "K")))]
"((unsigned) ~ INTVAL (operands[2])) < 256"
"nand %0,%1,%C2")
;; NOR
(define_insn ""
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(and:SI (not:SI (match_operand:SI 1 "gen_reg_operand" "%r"))
(not:SI (match_operand:SI 2 "srcb_operand" "rI"))))]
""
"nor %0,%1,%2")
(define_insn ""
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(and:SI (not:SI (match_operand:SI 1 "gen_reg_operand" "r"))
(match_operand:SI 2 "const_int_operand" "K")))]
"((unsigned) ~ INTVAL (operands[2])) < 256"
"nor %0,%1,%C2")
(define_insn "one_cmplsi2"
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(not:SI (match_operand:SI 1 "gen_reg_operand" "r")))]
""
"nor %0,%1,0")
;; OR/ORN
(define_expand "iorsi3"
[(set (match_operand:SI 0 "gen_reg_operand" "")
(ior:SI (match_operand:SI 1 "gen_reg_operand" "")
(match_operand:SI 2 "srcb_operand" "")))]
""
"")
(define_insn ""
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(ior:SI (match_operand:SI 1 "gen_reg_operand" "%r")
(match_operand:SI 2 "srcb_operand" "rI")))]
"! TARGET_29050"
"or %0,%1,%2")
(define_insn ""
[(set (match_operand:SI 0 "gen_reg_operand" "=r,r")
(ior:SI (match_operand:SI 1 "gen_reg_operand" "%r,r")
(match_operand:SI 2 "srcb_operand" "rI,K")))]
"TARGET_29050"
"@
or %0,%1,%2
orn %0,%1,%C2")
;; SLL (also used by move insn)
(define_insn "nop"
[(const_int 0)]
""
"aseq 0x40,gr1,gr1")
(define_insn "ashlsi3"
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(ashift:SI (match_operand:SI 1 "gen_reg_operand" "r")
(match_operand:QI 2 "srcb_operand" "rn")))]
""
"sll %0,%1,%Q2")
;; SRA
(define_insn "ashrsi3"
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(ashiftrt:SI (match_operand:SI 1 "gen_reg_operand" "r")
(match_operand:QI 2 "srcb_operand" "rn")))]
""
"sra %0,%1,%Q2")
;; SRL
(define_insn "lshrsi3"
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(lshiftrt:SI (match_operand:SI 1 "gen_reg_operand" "r")
(match_operand:QI 2 "srcb_operand" "rn")))]
""
"srl %0,%1,%Q2")
;; STORE
;;
;; These somewhat bogus patterns exist to set OPT = 001/010 for partial-word
;; stores on systems with DW not set.
(define_insn ""
[(set (mem:SI (and:SI (match_operand:SI 0 "gen_reg_operand" "r")
(const_int -4)))
(match_operand:SI 1 "gen_reg_operand" "r"))]
"! TARGET_DW_ENABLE"
"store 0,1,%1,%0"
[(set_attr "type" "store")])
(define_insn ""
[(set (mem:SI (and:SI (match_operand:SI 0 "gen_reg_operand" "r")
(const_int -3)))
(match_operand:SI 1 "gen_reg_operand" "r"))]
"! TARGET_DW_ENABLE"
"store 0,2,%1,%0"
[(set_attr "type" "store")])
;; STOREM
(define_expand "store_multiple"
[(use (match_operand 0 "" ""))
(use (match_operand 1 "" ""))
(use (match_operand 2 "" ""))]
""
"
{ rtx pat;
if (TARGET_NO_STOREM_BUG)
pat = gen_store_multiple_no_bug (operands[0], operands[1], operands[2]);
else
pat = gen_store_multiple_bug (operands[0], operands[1], operands[2]);
if (pat)
emit_insn (pat);
else
FAIL;
DONE;
}")
(define_expand "store_multiple_no_bug"
[(set (reg:SI 179)
(match_dup 2))
(match_parallel 3 "" [(set (match_operand:SI 0 "" "")
(match_operand:SI 1 "" ""))])]
""
"
{
int regno;
int count;
rtx from;
int i;
/* Support only storing a constant number of hard registers to memory. */
if (GET_CODE (operands[2]) != CONST_INT
|| operands[2] == const1_rtx
|| GET_CODE (operands[0]) != MEM
|| GET_CODE (operands[1]) != REG
|| REGNO (operands[1]) >= FIRST_PSEUDO_REGISTER)
FAIL;
count = INTVAL (operands[2]);
regno = REGNO (operands[1]);
/* CR gets set to the number of registers minus one. */
operands[2] = gen_rtx (CONST_INT, VOIDmode, count - 1);
operands[3] = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (count + 2));
from = memory_address (SImode, XEXP (operands[0], 0));
XVECEXP (operands[3], 0, 0) = gen_rtx (SET, VOIDmode,
gen_rtx (MEM, SImode, from),
gen_rtx (REG, SImode, regno));
XVECEXP (operands[3], 0, 1)
= gen_rtx (USE, VOIDmode, gen_rtx (REG, SImode, R_CR));
XVECEXP (operands[3], 0, 2)
= gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, SImode, R_CR));
for (i = 1; i < count; i++)
XVECEXP (operands[3], 0, i + 2)
= gen_rtx (SET, VOIDmode,
gen_rtx (MEM, SImode, plus_constant (from, i * 4)),
gen_rtx (REG, SImode, regno + i));
}")
(define_expand "store_multiple_bug"
[(match_parallel 3 "" [(set (match_operand:SI 0 "" "")
(match_operand:SI 1 "" ""))])]
""
"
{
int regno;
int count;
rtx from;
int i;
/* Support only storing a constant number of hard registers to memory. */
if (GET_CODE (operands[2]) != CONST_INT
|| operands[2] == const1_rtx
|| GET_CODE (operands[0]) != MEM
|| GET_CODE (operands[1]) != REG
|| REGNO (operands[1]) >= FIRST_PSEUDO_REGISTER)
FAIL;
count = INTVAL (operands[2]);
regno = REGNO (operands[1]);
operands[3] = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (count + 1));
from = memory_address (SImode, XEXP (operands[0], 0));
XVECEXP (operands[3], 0, 0) = gen_rtx (SET, VOIDmode,
gen_rtx (MEM, SImode, from),
gen_rtx (REG, SImode, regno));
XVECEXP (operands[3], 0, 1)
= gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, SImode, R_CR));
for (i = 1; i < count; i++)
XVECEXP (operands[3], 0, i + 1)
= gen_rtx (SET, VOIDmode,
gen_rtx (MEM, SImode, plus_constant (from, i * 4)),
gen_rtx (REG, SImode, regno + i));
}")
(define_insn ""
[(set (match_operand 0 "memory_operand" "=m")
(match_operand 1 "gen_reg_operand" "r"))
(clobber (reg:SI 179))]
"!TARGET_NO_STOREM_BUG
&& GET_MODE (operands[0]) == GET_MODE (operands[1])
&& GET_MODE_SIZE (GET_MODE (operands[0])) > UNITS_PER_WORD"
"mtsrim cr,%S1\;storem 0,0,%1,%0"
[(set_attr "type" "multi")])
(define_insn ""
[(match_parallel 0 "store_multiple_operation"
[(set (match_operand:SI 1 "memory_operand" "=m")
(match_operand:SI 2 "gen_reg_operand" "r"))
(clobber (reg:SI 179))])]
"!TARGET_NO_STOREM_BUG"
"mtsrim cr,%V0\;storem 0,0,%2,%1"
[(set_attr "type" "multi")])
(define_insn ""
[(set (match_operand 0 "memory_operand" "=m")
(match_operand 1 "gen_reg_operand" "r"))
(use (reg:SI 179))
(clobber (reg:SI 179))]
"TARGET_NO_STOREM_BUG
&& GET_MODE (operands[0]) == GET_MODE (operands[1])
&& GET_MODE_SIZE (GET_MODE (operands[0])) > UNITS_PER_WORD"
"storem 0,0,%1,%0"
[(set_attr "type" "store")])
(define_insn ""
[(match_parallel 0 "store_multiple_operation"
[(set (match_operand:SI 1 "memory_operand" "=m")
(match_operand:SI 2 "gen_reg_operand" "r"))
(use (reg:SI 179))
(clobber (reg:SI 179))])]
"TARGET_NO_STOREM_BUG"
"storem 0,0,%2,%1"
[(set_attr "type" "store")])
;; SUB
;;
;; Either operand can be a register or an 8-bit constant, but both cannot be
;; constants (can't usually occur anyway).
(define_expand "subsi3"
[(set (match_operand:SI 0 "gen_reg_operand" "")
(minus:SI (match_operand:SI 1 "srcb_operand" "")
(match_operand:SI 2 "srcb_operand" "")))]
""
"
{
if (GET_CODE (operands[0]) == CONST_INT
&& GET_CODE (operands[1]) == CONST_INT)
operands[1] = force_reg (SImode, operands[1]);
}")
(define_insn ""
[(set (match_operand:SI 0 "gen_reg_operand" "=r,r")
(minus:SI (match_operand:SI 1 "srcb_operand" "r,I")
(match_operand:SI 2 "srcb_operand" "rI,r")))]
"register_operand (operands[1], SImode)
|| register_operand (operands[2], SImode)"
"@
sub %0,%1,%2
subr %0,%2,%1")
(define_insn "subdi3"
[(set (match_operand:DI 0 "gen_reg_operand" "=r")
(minus:DI (match_operand:DI 1 "gen_reg_operand" "r")
(match_operand:DI 2 "gen_reg_operand" "r")))]
""
"sub %L0,%L1,%L2\;subc %0,%1,%2"
[(set_attr "type" "multi")])
;; SUBR (also used above in SUB)
(define_insn "negdi2"
[(set (match_operand:DI 0 "gen_reg_operand" "=r")
(neg:DI (match_operand:DI 1 "gen_reg_operand" "r")))]
""
"subr %L0,%L1,0\;subrc %0,%1,0"
[(set_attr "type" "multi")])
(define_insn "negsi2"
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(neg:SI (match_operand:SI 1 "gen_reg_operand" "r")))]
""
"subr %0,%1,0")
;; XNOR
(define_insn ""
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(not:SI (xor:SI (match_operand:SI 1 "gen_reg_operand" "%r")
(match_operand:SI 2 "srcb_operand" "rI"))))]
""
"xnor %0,%1,%2")
;; XOR
(define_insn "xorsi3"
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(xor:SI (match_operand:SI 1 "gen_reg_operand" "%r")
(match_operand:SI 2 "srcb_operand" "rI")))]
""
"xor %0,%1,%2")
;; Can use XOR to negate floating-point values, but we are better off not doing
;; it that way on the 29050 so it can combine with the fmac insns.
(define_expand "negsf2"
[(parallel [(set (match_operand:SF 0 "register_operand" "")
(neg:SF (match_operand:SF 1 "register_operand" "")))
(clobber (match_scratch:SI 2 ""))])]
""
"
{
rtx result;
rtx target;
if (! TARGET_29050)
{
target = operand_subword_force (operands[0], 0, SFmode);
result = expand_binop (SImode, xor_optab,
operand_subword_force (operands[1], 0, SFmode),
gen_rtx (CONST_INT, VOIDmode, 0x80000000),
target, 0, OPTAB_WIDEN);
if (result == 0)
abort ();
if (result != target)
emit_move_insn (result, target);
/* Make a place for REG_EQUAL. */
emit_move_insn (operands[0], operands[0]);
DONE;
}
}")
(define_expand "negdf2"
[(parallel [(set (match_operand:DF 0 "register_operand" "")
(neg:DF (match_operand:DF 1 "register_operand" "")))
(clobber (match_scratch:SI 2 ""))])]
""
"
{
rtx result;
rtx target;
rtx insns;
if (! TARGET_29050)
{
start_sequence ();
target = operand_subword (operands[0], 0, 1, DFmode);
result = expand_binop (SImode, xor_optab,
operand_subword_force (operands[1], 0, DFmode),
gen_rtx (CONST_INT, VOIDmode, 0x80000000),
target, 0, OPTAB_WIDEN);
if (result == 0)
abort ();
if (result != target)
emit_move_insn (result, target);
emit_move_insn (operand_subword (operands[0], 1, 1, DFmode),
operand_subword_force (operands[1], 1, DFmode));
insns = get_insns ();
end_sequence ();
emit_no_conflict_block (insns, operands[0], operands[1], 0, 0);
DONE;
}
}")
;; Sign extend and truncation operations.
(define_insn "zero_extendqihi2"
[(set (match_operand:HI 0 "gen_reg_operand" "=r")
(zero_extend:HI (match_operand:QI 1 "gen_reg_operand" "r")))]
""
"and %0,%1,255")
(define_insn "zero_extendqisi2"
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(zero_extend:SI (match_operand:QI 1 "gen_reg_operand" "r")))]
""
"and %0,%1,255")
(define_insn "zero_extendhisi2"
[(set (match_operand:SI 0 "gen_reg_operand" "=r")
(zero_extend:SI (match_operand:HI 1 "gen_reg_operand" "0")))]
""
"consth %0,0")
(define_expand "extendqihi2"
[(set (match_dup 2)
(ashift:SI (match_operand:QI 1 "gen_reg_operand" "")
(const_int 24)))
(set (match_operand:HI 0 "gen_reg_operand" "")
(ashiftrt:SI (match_dup 2)
(const_int 24)))]
""
"
{ operands[0] = gen_lowpart (SImode, operands[0]);
operands[1] = gen_lowpart (SImode, operands[1]);
operands[2] = gen_reg_rtx (SImode); }")
(define_expand "extendqisi2"
[(set (match_dup 2)
(ashift:SI (match_operand:QI 1 "gen_reg_operand" "")
(const_int 24)))
(set (match_operand:SI 0 "gen_reg_operand" "")
(ashiftrt:SI (match_dup 2)
(const_int 24)))]
""
"
{ operands[1] = gen_lowpart (SImode, operands[1]);
operands[2] = gen_reg_rtx (SImode); }")
(define_expand "extendhisi2"
[(set (match_dup 2)
(ashift:SI (match_operand:HI 1 "gen_reg_operand" "")
(const_int 16)))
(set (match_operand:SI 0 "gen_reg_operand" "")
(ashiftrt:SI (match_dup 2)
(const_int 16)))]
""
"
{ operands[1] = gen_lowpart (SImode, operands[1]);
operands[2] = gen_reg_rtx (SImode); }")
;; Define the methods used to move data around.
;;
;; movsi:
;;
;; If storing into memory, force source into register.
(define_expand "movsi"
[(set (match_operand:SI 0 "general_operand" "")
(match_operand:SI 1 "general_operand" ""))]
""
"
{
if (GET_CODE (operands[0]) == MEM && ! gen_reg_operand (operands[1], SImode))
operands[1] = copy_to_mode_reg (SImode, operands[1]);
else if (spec_reg_operand (operands[0], SImode)
&& ! (register_operand (operands[1], SImode)
|| cint_16_operand (operands[1], SImode)))
operands[1] = force_reg (SImode, operands[1]);
}")
(define_split
[(set (match_operand:SI 0 "gen_reg_operand" "")
(match_operand:SI 1 "long_const_operand" ""))]
""
[(set (match_dup 0)
(and:SI (match_dup 1)
(const_int 65535)))
(set (match_dup 0)
(ior:SI (and:SI (match_dup 0)
(const_int 65535))
(and:SI (match_dup 1)
(const_int -65536))))]
"")
;; Subroutines to load/store halfwords. Use TAV (gr121) as scratch. We have
;; two versions of storehi, one when halfword writes are supported and one
;; where they aren't.
(define_expand "loadhi"
[(parallel [(set (match_dup 2)
(mem:SI (and:SI (match_operand:SI 0 "gen_reg_operand" "")
(const_int -4))))
(set (reg:SI 177)
(and:SI (match_dup 0)
(const_int 2)))])
(set (match_operand:HI 1 "gen_reg_operand" "")
(zero_extract:SI (match_dup 2)
(const_int 16)
(ashift:SI (reg:SI 177)
(const_int 3))))]
""
"
{ operands[1] = gen_lowpart (SImode, operands[1]);
if (reload_in_progress)
operands[2] = gen_rtx (REG, SImode, R_TAV);
else
operands[2] = gen_reg_rtx (SImode);
}")
(define_expand "storehinhww"
[(parallel [(set (match_dup 2)
(mem:SI (and:SI (match_operand:SI 0 "gen_reg_operand" "")
(const_int -4))))
(set (reg:SI 177)
(and:SI (match_dup 0)
(const_int 2)))])
(set (zero_extract:SI (match_dup 2)
(const_int 8)
(ashift:SI (reg:SI 177)
(const_int 3)))
(match_operand:HI 1 "gen_reg_operand" ""))
(set (mem:SI (match_dup 0))
(match_dup 2))]
""
"
{ operands[1] = gen_lowpart (SImode, operands[1]);
if (reload_in_progress)
operands[2] = gen_rtx (REG, SImode, R_TAV);
else
operands[2] = gen_reg_rtx (SImode);
}")
(define_expand "storehihww"
[(set (reg:SI 177)
(and:SI (match_operand:SI 0 "gen_reg_operand" "")
(const_int 3)))
(set (match_dup 2)
(ior:SI (and:SI (not:SI (ashift:SI (const_int 65535)
(ashift:SI (reg:SI 177)
(const_int 3))))
(match_operand:HI 1 "gen_reg_operand" ""))
(ashift:SI (and:SI (match_dup 1)
(const_int 65535))
(ashift:SI (reg:SI 177)
(const_int 3)))))
(set (mem:SI (and:SI (match_dup 0)
(const_int -3)))
(match_dup 2))]
""
"
{ operands[1] = gen_lowpart (SImode, operands[1]);
if (reload_in_progress)
operands[2] = gen_rtx (REG, SImode, R_TAV);
else
operands[2] = gen_reg_rtx (SImode);
}")
(define_expand "movhi"
[(set (match_operand:HI 0 "general_operand" "")
(match_operand:HI 1 "general_operand" ""))]
""
"
{ if (GET_CODE (operands[0]) == MEM)
{
if (! gen_reg_operand (operands[1], HImode))
operands[1] = copy_to_mode_reg (HImode, operands[1]);
if (! TARGET_DW_ENABLE)
{
if (TARGET_BYTE_WRITES)
emit_insn (gen_storehihww (XEXP (operands[0], 0), operands[1]));
else
emit_insn (gen_storehinhww (XEXP (operands[0], 0), operands[1]));
DONE;
}
}
else if (GET_CODE (operands[1]) == MEM)
{
if (! TARGET_DW_ENABLE)
{
emit_insn (gen_loadhi (XEXP (operands[1], 0), operands[0]));
DONE;
}
}
}")
;; Subroutines to load/store bytes. Use TAV (gr121) as scratch.
(define_expand "loadqi"
[(parallel [(set (match_dup 2)
(mem:SI (and:SI (match_operand:SI 0 "gen_reg_operand" "")
(const_int -4))))
(set (reg:SI 177)
(and:SI (match_dup 0)
(const_int 3)))])
(set (match_operand:QI 1 "gen_reg_operand" "")
(zero_extract:SI (match_dup 2)
(const_int 8)
(ashift:SI (reg:SI 177)
(const_int 3))))]
""
"
{ operands[1] = gen_lowpart (SImode, operands[1]);
if (reload_in_progress)
operands[2] = gen_rtx (REG, SImode, R_TAV);
else
operands[2] = gen_reg_rtx (SImode);
}")
(define_expand "storeqinhww"
[(parallel [(set (match_dup 2)
(mem:SI (and:SI (match_operand:SI 0 "gen_reg_operand" "")
(const_int -4))))
(set (reg:SI 177)
(and:SI (match_dup 0)
(const_int 3)))])
(set (zero_extract:SI (match_dup 2)
(const_int 8)
(ashift:SI (reg:SI 177)
(const_int 3)))
(match_operand:QI 1 "gen_reg_operand" ""))
(set (mem:SI (match_dup 0))
(match_dup 2))]
""
"
{ operands[1] = gen_lowpart (SImode, operands[1]);
if (reload_in_progress)
operands[2] = gen_rtx (REG, SImode, R_TAV);
else
operands[2] = gen_reg_rtx (SImode);
}")
(define_expand "storeqihww"
[(set (reg:SI 177)
(and:SI (match_operand:SI 0 "gen_reg_operand" "")
(const_int 3)))
(set (match_dup 2)
(ior:SI (and:SI (not:SI (ashift:SI (const_int 255)
(ashift:SI (reg:SI 177)
(const_int 3))))
(match_operand:HI 1 "gen_reg_operand" ""))
(ashift:SI (and:SI (match_dup 1)
(const_int 255))
(ashift:SI (reg:SI 177)
(const_int 3)))))
(set (mem:SI (and:SI (match_dup 0)
(const_int -4)))
(match_dup 2))]
""
"
{ operands[1] = gen_lowpart (SImode, operands[1]);
if (reload_in_progress)
operands[2] = gen_rtx (REG, SImode, R_TAV);
else
operands[2] = gen_reg_rtx (SImode);
}")
(define_expand "movqi"
[(set (match_operand:QI 0 "general_operand" "")
(match_operand:QI 1 "general_operand" ""))]
""
"
{ if (GET_CODE (operands[0]) == MEM)
{
if (! gen_reg_operand (operands[1], QImode))
operands[1] = copy_to_mode_reg (QImode, operands[1]);
if (! TARGET_DW_ENABLE)
{
if (TARGET_BYTE_WRITES)
emit_insn (gen_storeqihww (XEXP (operands[0], 0), operands[1]));
else
emit_insn (gen_storeqinhww (XEXP (operands[0], 0), operands[1]));
DONE;
}
}
else if (GET_CODE (operands[1]) == MEM)
{
if (! TARGET_DW_ENABLE)
{
emit_insn (gen_loadqi (XEXP (operands[1], 0), operands[0]));
DONE;
}
}
}")
;; Now the actual insns used to move data around. We include here the
;; DEFINE_SPLITs that may be needed. In some cases these will be
;; split again. For floating-point, if we can look inside the constant,
;; always split it. This can eliminate unnecessary insns.
(define_insn ""
[(set (match_operand:SF 0 "out_operand" "=r,r,r,r,m")
(match_operand:SF 1 "in_operand" "r,E,F,m,r"))]
"(gen_reg_operand (operands[0], SFmode)
|| gen_reg_operand (operands[1], SFmode))
&& ! TARGET_29050"
"@
sll %0,%1,0
#
const %0,%1\;consth %0,%1
load 0,0,%0,%1
store 0,0,%1,%0"
[(set_attr "type" "misc,multi,multi,load,store")])
(define_insn ""
[(set (match_operand:SF 0 "out_operand" "=r,r,r,r,m,*a,r")
(match_operand:SF 1 "in_operand" "r,E,F,m,r,r,*a"))]
"(gen_reg_operand (operands[0], SFmode)
|| gen_reg_operand (operands[1], SFmode))
&& TARGET_29050"
"@
sll %0,%1,0
#
const %0,%1\;consth %0,%1
load 0,0,%0,%1
store 0,0,%1,%0
mtacc %1,1,%0
mfacc %0,1,%1"
[(set_attr "type" "misc,multi,multi,load,store,fadd,fadd")])
;; Turn this into SImode. It will then be split up that way.
(define_split
[(set (match_operand:SF 0 "register_operand" "")
(match_operand:SF 1 "float_const_operand" ""))]
"HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT"
[(set (match_dup 0)
(match_dup 1))]
"
{ operands[0] = operand_subword (operands[0], 0, 0, SFmode);
operands[1] = operand_subword (operands[1], 0, 0, SFmode);
if (operands[0] == 0 || operands[1] == 0)
FAIL;
}")
(define_insn ""
[(set (match_operand:DF 0 "out_operand" "=r,r,r,m")
(match_operand:DF 1 "in_operand" "rE,F,m,r"))
(clobber (reg:SI 179))]
"(gen_reg_operand (operands[0], DFmode)
|| gen_reg_operand (operands[1], DFmode))
&& ! TARGET_29050"
"@
#
const %0,%1\;consth %0,%1\;const %L0,%L1\;consth %L0,%L1
mtsrim cr,1\;loadm 0,0,%0,%1
mtsrim cr,1\;storem 0,0,%1,%0"
[(set_attr "type" "multi")])
(define_insn ""
[(set (match_operand:DF 0 "out_operand" "=r,r,&r,m,*a,r")
(match_operand:DF 1 "in_operand" "rE,F,m,r,r,*a"))
(clobber (reg:SI 179))]
"(gen_reg_operand (operands[0], DFmode)
|| gen_reg_operand (operands[1], DFmode))
&& TARGET_29050"
"@
#
const %0,%1\;consth %0,%1\;const %L0,%L1\;consth %L0,%L1
mtsrim cr,1\;loadm 0,0,%0,%1
mtsrim cr,1\;storem 0,0,%1,%0
mtacc %1,2,%0
mfacc %0,2,%1"
[(set_attr "type" "multi,multi,multi,multi,fadd,fadd")])
;; Split register-register copies and constant loads into two SImode loads,
;; one for each word. In the constant case, they will get further split.
;; Don't so this until register allocation, though, since it will
;; interfere with register allocation. Normally copy the lowest-addressed
;; word first; the exception is if we are copying register to register and
;; the lowest register of the first operand is the highest register of the
;; second operand.
(define_split
[(set (match_operand:DF 0 "gen_reg_operand" "")
(match_operand:DF 1 "gen_reg_or_float_constant_operand" ""))
(clobber (reg:SI 179))]
"reload_completed"
[(set (match_dup 2) (match_dup 3))
(set (match_dup 4) (match_dup 5))]
"
{ if (GET_CODE (operands[1]) == REG
&& REGNO (operands[0]) == REGNO (operands[1]) + 1)
{
operands[2] = operand_subword (operands[0], 1, 1, DFmode);
operands[3] = operand_subword (operands[1], 1, 1, DFmode);
operands[4] = operand_subword (operands[0], 0, 1, DFmode);
operands[5] = operand_subword (operands[1], 0, 1, DFmode);
}
else
{
operands[2] = operand_subword (operands[0], 0, 1, DFmode);
operands[3] = operand_subword (operands[1], 0, 1, DFmode);
operands[4] = operand_subword (operands[0], 1, 1, DFmode);
operands[5] = operand_subword (operands[1], 1, 1, DFmode);
}
if (operands[2] == 0 || operands[3] == 0
|| operands[4] == 0 || operands[5] == 0)
FAIL;
}")
;; Split memory loads and stores into the MTSR and LOADM/STOREM.
(define_split
[(set (match_operand:DF 0 "out_operand" "")
(match_operand:DF 1 "in_operand" ""))
(clobber (reg:SI 179))]
"TARGET_NO_STOREM_BUG
&& (memory_operand (operands[0], DFmode)
|| memory_operand (operands[1], DFmode))"
[(set (reg:SI 179) (const_int 1))
(parallel [(set (match_dup 0) (match_dup 1))
(use (reg:SI 179))
(clobber (reg:SI 179))])]
"")
;; DI move is similar to DF move.
(define_insn ""
[(set (match_operand:DI 0 "out_operand" "=r,r,m")
(match_operand:DI 1 "in_operand" "rn,m,r"))
(clobber (reg:SI 179))]
"(gen_reg_operand (operands[0], DImode)
|| gen_reg_operand (operands[1], DImode))
&& ! TARGET_29050"
"@
#
mtsrim cr,1\;loadm 0,0,%0,%1
mtsrim cr,1\;storem 0,0,%1,%0"
[(set_attr "type" "multi")])
(define_insn ""
[(set (match_operand:DI 0 "out_operand" "=r,&r,m")
(match_operand:DI 1 "in_operand" "rn,m,r"))
(clobber (reg:SI 179))]
"(gen_reg_operand (operands[0], DImode)
|| gen_reg_operand (operands[1], DImode))
&& TARGET_29050"
"@
#
mtsrim cr,1\;loadm 0,0,%0,%1
mtsrim cr,1\;storem 0,0,%1,%0"
[(set_attr "type" "multi")])
(define_split
[(set (match_operand:DI 0 "gen_reg_operand" "")
(match_operand:DI 1 "gen_reg_or_integer_constant_operand" ""))
(clobber (reg:SI 179))]
"reload_completed"
[(set (match_dup 2) (match_dup 3))
(set (match_dup 4) (match_dup 5))]
"
{ if (GET_CODE (operands[1]) == REG
&& REGNO (operands[0]) == REGNO (operands[1]) + 1)
{
operands[2] = operand_subword (operands[0], 1, 1, DFmode);
operands[3] = operand_subword (operands[1], 1, 1, DFmode);
operands[4] = operand_subword (operands[0], 0, 1, DFmode);
operands[5] = operand_subword (operands[1], 0, 1, DFmode);
}
else
{
operands[2] = operand_subword (operands[0], 0, 1, DFmode);
operands[3] = operand_subword (operands[1], 0, 1, DFmode);
operands[4] = operand_subword (operands[0], 1, 1, DFmode);
operands[5] = operand_subword (operands[1], 1, 1, DFmode);
}
}")
(define_split
[(set (match_operand:DI 0 "out_operand" "")
(match_operand:DI 1 "in_operand" ""))
(clobber (reg:SI 179))]
"TARGET_NO_STOREM_BUG
&& (memory_operand (operands[0], DImode)
|| memory_operand (operands[1], DImode))"
[(set (reg:SI 179) (const_int 1))
(parallel [(set (match_dup 0) (match_dup 1))
(use (reg:SI 179))
(clobber (reg:SI 179))])]
"")
;; TImode moves are very similar to DImode moves, except that we can't
;; have constants.
(define_insn ""
[(set (match_operand:TI 0 "out_operand" "=r,r,m")
(match_operand:TI 1 "in_operand" "r,m,r"))
(clobber (reg:SI 179))]
"(gen_reg_operand (operands[0], TImode)
|| gen_reg_operand (operands[1], TImode))
&& ! TARGET_29050"
"@
#
mtsrim cr,3\;loadm 0,0,%0,%1
mtsrim cr,3\;storem 0,0,%1,%0"
[(set_attr "type" "multi,multi,multi")])
(define_insn ""
[(set (match_operand:TI 0 "out_operand" "=r,&r,m")
(match_operand:TI 1 "in_operand" "r,m,r"))
(clobber (reg:SI 179))]
"(gen_reg_operand (operands[0], TImode)
|| gen_reg_operand (operands[1], TImode))
&& TARGET_29050"
"@
#
mtsrim cr,3\;loadm 0,0,%0,%1
mtsrim cr,3\;storem 0,0,%1,%0"
[(set_attr "type" "multi,multi,multi")])
(define_split
[(set (match_operand:TI 0 "gen_reg_operand" "")
(match_operand:TI 1 "gen_reg_operand" ""))
(clobber (reg:SI 179))]
"reload_completed"
[(set (match_dup 2) (match_dup 3))
(set (match_dup 4) (match_dup 5))
(set (match_dup 6) (match_dup 7))
(set (match_dup 8) (match_dup 9))]
"
{
if (REGNO (operands[0]) >= REGNO (operands[1]) + 1
&& REGNO (operands[0]) <= REGNO (operands[1]) + 3)
{
operands[2] = gen_rtx (REG, SImode, REGNO (operands[0]) + 3);
operands[3] = gen_rtx (REG, SImode, REGNO (operands[1]) + 3);
operands[4] = gen_rtx (REG, SImode, REGNO (operands[0]) + 2);
operands[5] = gen_rtx (REG, SImode, REGNO (operands[1]) + 2);
operands[6] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
operands[7] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
operands[8] = gen_rtx (REG, SImode, REGNO (operands[0]));
operands[9] = gen_rtx (REG, SImode, REGNO (operands[1]));
}
else
{
operands[2] = gen_rtx (REG, SImode, REGNO (operands[0]));
operands[3] = gen_rtx (REG, SImode, REGNO (operands[1]));
operands[4] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
operands[5] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
operands[6] = gen_rtx (REG, SImode, REGNO (operands[0]) + 2);
operands[7] = gen_rtx (REG, SImode, REGNO (operands[1]) + 2);
operands[8] = gen_rtx (REG, SImode, REGNO (operands[0]) + 3);
operands[9] = gen_rtx (REG, SImode, REGNO (operands[1]) + 3);
}
}")
(define_split
[(set (match_operand:TI 0 "out_operand" "")
(match_operand:TI 1 "in_operand" ""))
(clobber (reg:SI 179))]
"TARGET_NO_STOREM_BUG
&& (memory_operand (operands[0], TImode)
|| memory_operand (operands[1], TImode))"
[(set (reg:SI 179) (const_int 1))
(parallel [(set (match_dup 0) (match_dup 1))
(use (reg:SI 179))
(clobber (reg:SI 179))])]
"")
(define_insn ""
[(set (match_operand:SI 0 "out_operand" "=r,r,r,r,r,r,r,m,*h,*h")
(match_operand:SI 1 "in_operand" "r,J,M,O,i,m,*h,r,r,J"))]
"(gen_reg_operand (operands[0], SImode)
|| gen_reg_operand (operands[1], SImode)
|| (spec_reg_operand (operands[0], SImode)
&& cint_16_operand (operands[1], SImode)))
&& ! TARGET_29050"
"@
sll %0,%1,0
const %0,%1
constn %0,%M1
cpeq %0,gr1,gr1
#
load 0,0,%0,%1
mfsr %0,%1
store 0,0,%1,%0
mtsr %0,%1
mtsrim %0,%1"
[(set_attr "type" "misc,misc,misc,misc,multi,load,misc,store,misc,misc")])
(define_insn ""
[(set (match_operand:SI 0 "out_operand" "=r,r,r,r,r,r,r,m,*h,*h")
(match_operand:SI 1 "in_operand" "r,J,M,O,i,m,*h,r,r,J"))]
"(gen_reg_operand (operands[0], SImode)
|| gen_reg_operand (operands[1], SImode)
|| (spec_reg_operand (operands[0], SImode)
&& cint_16_operand (operands[1], SImode)))
&& TARGET_29050"
"@
sll %0,%1,0
const %0,%1
constn %0,%M1
consthz %0,%1
#
load 0,0,%0,%1
mfsr %0,%1
store 0,0,%1,%0
mtsr %0,%1
mtsrim %0,%1"
[(set_attr "type" "misc,misc,misc,misc,multi,load,misc,store,misc,misc")])
(define_insn ""
[(set (match_operand:HI 0 "out_operand" "=r,r,r,m,r,*h,*h")
(match_operand:HI 1 "in_operand" "r,i,m,r,*h,r,i"))]
"gen_reg_operand (operands[0], HImode)
|| gen_reg_operand (operands[1], HImode)"
"@
sll %0,%1,0
const %0,%1
load 0,2,%0,%1
store 0,2,%1,%0
mfsr %0,%1
mtsr %0,%1
mtsrim %0,%1"
[(set_attr "type" "misc,misc,load,store,misc,misc,misc")])
(define_insn ""
[(set (match_operand:QI 0 "out_operand" "=r,r,r,m,r,*h,*h")
(match_operand:QI 1 "in_operand" "r,i,m,r,*h,r,i"))]
"gen_reg_operand (operands[0], QImode)
|| gen_reg_operand (operands[1], QImode)"
"@
sll %0,%1,0
const %0,%1
load 0,1,%0,%1
store 0,1,%1,%0
mfsr %0,%1
mtsr %0,%1
mtsrim %0,%1"
[(set_attr "type" "misc,misc,load,store,misc,misc,misc")])
;; Define move insns for DI, TI, SF, and DF.
;;
;; In no case do we support mem->mem directly.
;;
;; For DI move of constant to register, split apart at this time since these
;; can require anywhere from 2 to 4 insns and determining which is complex.
;;
;; In other cases, handle similarly to SImode moves.
;;
;; However, indicate that DI, TI, and DF moves (can) clobber CR (reg 179).
(define_expand "movdi"
[(parallel [(set (match_operand:DI 0 "general_operand" "")
(match_operand:DI 1 "general_operand" ""))
(clobber (reg:SI 179))])]
""
"
{
if (GET_CODE (operands[0]) == MEM)
operands[1] = force_reg (DImode, operands[1]);
}")
(define_expand "movsf"
[(set (match_operand:SF 0 "general_operand" "")
(match_operand:SF 1 "general_operand" ""))]
""
"
{ if (GET_CODE (operands[0]) == MEM)
operands[1] = force_reg (SFmode, operands[1]);
}")
(define_expand "movdf"
[(parallel [(set (match_operand:DF 0 "general_operand" "")
(match_operand:DF 1 "general_operand" ""))
(clobber (reg:SI 179))])]
""
"
{ if (GET_CODE (operands[0]) == MEM)
operands[1] = force_reg (DFmode, operands[1]);
}")
(define_expand "movti"
[(parallel [(set (match_operand:TI 0 "general_operand" "")
(match_operand:TI 1 "general_operand" ""))
(clobber (reg:SI 179))])]
""
"
{
if (GET_CODE (operands[0]) == MEM)
operands[1] = force_reg (TImode, operands[1]);
}")
;; For compare operations, we simply store the comparison operands and
;; do nothing else. The following branch or scc insn will output whatever
;; is needed.
(define_expand "cmpsi"
[(set (cc0)
(compare (match_operand:SI 0 "gen_reg_operand" "")
(match_operand:SI 1 "srcb_operand" "")))]
""
"
{
a29k_compare_op0 = operands[0];
a29k_compare_op1 = operands[1];
a29k_compare_fp_p = 0;
DONE;
}")
(define_expand "cmpsf"
[(set (cc0)
(compare (match_operand:SF 0 "gen_reg_operand" "")
(match_operand:SF 1 "gen_reg_operand" "")))]
""
"
{
a29k_compare_op0 = operands[0];
a29k_compare_op1 = operands[1];
a29k_compare_fp_p = 1;
DONE;
}")
(define_expand "cmpdf"
[(set (cc0)
(compare (match_operand:DF 0 "gen_reg_operand" "")
(match_operand:DF 1 "gen_reg_operand" "")))]
""
"
{
a29k_compare_op0 = operands[0];
a29k_compare_op1 = operands[1];
a29k_compare_fp_p = 1;
DONE;
}")
;; We can generate bit-tests better if we use NE instead of EQ, but we
;; don't have an NE for floating-point. So we have to have two patterns
;; for EQ and two for NE.
(define_expand "beq"
[(set (match_dup 1) (ne:SI (match_dup 2) (match_dup 3)))
(set (pc)
(if_then_else (ge (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
if (GET_MODE_CLASS (GET_MODE (a29k_compare_op0)) == MODE_FLOAT)
{
emit_insn (gen_beq_fp (operands[0]));
DONE;
}
operands[1] = gen_reg_rtx (SImode);
operands[2] = a29k_compare_op0;
operands[3] = a29k_compare_op1;
}")
(define_expand "beq_fp"
[(set (match_dup 1) (eq:SI (match_dup 2) (match_dup 3)))
(set (pc)
(if_then_else (lt (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
operands[1] = gen_reg_rtx (SImode);
operands[2] = a29k_compare_op0;
operands[3] = a29k_compare_op1;
}")
(define_expand "bne"
[(set (match_dup 1) (ne:SI (match_dup 2) (match_dup 3)))
(set (pc)
(if_then_else (lt (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
if (GET_MODE_CLASS (GET_MODE (a29k_compare_op0)) == MODE_FLOAT)
{
emit_insn (gen_bne_fp (operands[0]));
DONE;
}
operands[1] = gen_reg_rtx (SImode);
operands[2] = a29k_compare_op0;
operands[3] = a29k_compare_op1;
}")
(define_expand "bne_fp"
[(set (match_dup 1) (eq:SI (match_dup 2) (match_dup 3)))
(set (pc)
(if_then_else (ge (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
operands[1] = gen_reg_rtx (SImode);
operands[2] = a29k_compare_op0;
operands[3] = a29k_compare_op1;
}")
;; We don't have a floating-point "lt" insn, so we have to use "gt" in that
;; case with the operands swapped. The operands must both be registers in
;; the floating-point case, so we know that swapping them is OK.
(define_expand "blt"
[(set (match_dup 1) (match_dup 2))
(set (pc)
(if_then_else (lt (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
operands[1] = gen_reg_rtx (SImode);
if (a29k_compare_fp_p)
operands[2] = gen_rtx (GT, SImode, a29k_compare_op1, a29k_compare_op0);
else
operands[2] = gen_rtx (LT, SImode, a29k_compare_op0, a29k_compare_op1);
}")
;; Similarly for "le".
(define_expand "ble"
[(set (match_dup 1) (match_dup 2))
(set (pc)
(if_then_else (lt (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
operands[1] = gen_reg_rtx (SImode);
if (a29k_compare_fp_p)
operands[2] = gen_rtx (GE, SImode, a29k_compare_op1, a29k_compare_op0);
else
operands[2] = gen_rtx (LE, SImode, a29k_compare_op0, a29k_compare_op1);
}")
(define_expand "bltu"
[(set (match_dup 1) (ltu:SI (match_dup 2) (match_dup 3)))
(set (pc)
(if_then_else (lt (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
operands[1] = gen_reg_rtx (SImode);
operands[2] = a29k_compare_op0;
operands[3] = a29k_compare_op1;
}")
(define_expand "bleu"
[(set (match_dup 1) (leu:SI (match_dup 2) (match_dup 3)))
(set (pc)
(if_then_else (lt (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
operands[1] = gen_reg_rtx (SImode);
operands[2] = a29k_compare_op0;
operands[3] = a29k_compare_op1;
}")
(define_expand "bgt"
[(set (match_dup 1) (gt:SI (match_dup 2) (match_dup 3)))
(set (pc)
(if_then_else (lt (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
operands[1] = gen_reg_rtx (SImode);
operands[2] = a29k_compare_op0;
operands[3] = a29k_compare_op1;
}")
(define_expand "bge"
[(set (match_dup 1) (ge:SI (match_dup 2) (match_dup 3)))
(set (pc)
(if_then_else (lt (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
operands[1] = gen_reg_rtx (SImode);
operands[2] = a29k_compare_op0;
operands[3] = a29k_compare_op1;
}")
(define_expand "bgtu"
[(set (match_dup 1) (gtu:SI (match_dup 2) (match_dup 3)))
(set (pc)
(if_then_else (lt (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
operands[1] = gen_reg_rtx (SImode);
operands[2] = a29k_compare_op0;
operands[3] = a29k_compare_op1;
}")
(define_expand "bgeu"
[(set (match_dup 1) (geu:SI (match_dup 2) (match_dup 3)))
(set (pc)
(if_then_else (lt (match_dup 1) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
operands[1] = gen_reg_rtx (SImode);
operands[2] = a29k_compare_op0;
operands[3] = a29k_compare_op1;
}")
(define_expand "seq"
[(set (match_operand:SI 0 "gen_reg_operand" "")
(eq:SI (match_dup 1) (match_dup 2)))]
""
"
{
operands[1] = a29k_compare_op0;
operands[2] = a29k_compare_op1;
}")
;; This is the most complicated case, because we don't have a floating-point
;; "ne" insn. If integer, handle normally. If floating-point, write the
;; compare and then write an insn to reverse the test.
(define_expand "sne_fp"
[(set (match_dup 3)
(eq:SI (match_operand 1 "gen_reg_operand" "")
(match_operand 2 "gen_reg_operand" "")))
(set (match_operand:SI 0 "gen_reg_operand" "")
(ge:SI (match_dup 3) (const_int 0)))]
""
"
{ operands[3] = gen_reg_rtx (SImode);
}");
(define_expand "sne"
[(set (match_operand:SI 0 "gen_reg_operand" "")
(ne:SI (match_dup 1) (match_dup 2)))]
""
"
{
operands[1] = a29k_compare_op0;
operands[2] = a29k_compare_op1;
if (a29k_compare_fp_p)
{
emit_insn (gen_sne_fp (operands[0], operands[1], operands[2]));
DONE;
}
}")
;; We don't have a floating-point "lt" insn, so use "gt" and swap the
;; operands, the same as we do "blt".
(define_expand "slt"
[(set (match_operand:SI 0 "gen_reg_operand" "")
(match_dup 1))]
""
"
{
if (a29k_compare_fp_p)
operands[1] = gen_rtx (GT, SImode, a29k_compare_op1, a29k_compare_op0);
else
operands[1] = gen_rtx (LT, SImode, a29k_compare_op0, a29k_compare_op1);
}")
;; Similarly for "le"
(define_expand "sle"
[(set (match_operand:SI 0 "gen_reg_operand" "")
(match_dup 1))]
""
"
{
if (a29k_compare_fp_p)
operands[1] = gen_rtx (GE, SImode, a29k_compare_op1, a29k_compare_op0);
else
operands[1] = gen_rtx (LE, SImode, a29k_compare_op0, a29k_compare_op1);
}")
(define_expand "sltu"
[(set (match_operand:SI 0 "gen_reg_operand" "")
(ltu:SI (match_dup 1) (match_dup 2)))]
""
"
{
operands[1] = a29k_compare_op0;
operands[2] = a29k_compare_op1;
}")
(define_expand "sleu"
[(set (match_operand:SI 0 "gen_reg_operand" "")
(leu:SI (match_dup 1) (match_dup 2)))]
""
"
{
operands[1] = a29k_compare_op0;
operands[2] = a29k_compare_op1;
}")
(define_expand "sgt"
[(set (match_operand:SI 0 "gen_reg_operand" "")
(gt:SI (match_dup 1) (match_dup 2)))]
""
"
{
operands[1] = a29k_compare_op0;
operands[2] = a29k_compare_op1;
}")
(define_expand "sge"
[(set (match_operand:SI 0 "gen_reg_operand" "")
(ge:SI (match_dup 1) (match_dup 2)))]
""
"
{
operands[1] = a29k_compare_op0;
operands[2] = a29k_compare_op1;
}")
(define_expand "sgtu"
[(set (match_operand:SI 0 "gen_reg_operand" "")
(gtu:SI (match_dup 1) (match_dup 2)))]
""
"
{
operands[1] = a29k_compare_op0;
operands[2] = a29k_compare_op1;
}")
(define_expand "sgeu"
[(set (match_operand:SI 0 "gen_reg_operand" "")
(geu:SI (match_dup 1) (match_dup 2)))]
""
"
{
operands[1] = a29k_compare_op0;
operands[2] = a29k_compare_op1;
}")
;; Now define the actual jump insns.
(define_insn ""
[(set (pc)
(if_then_else (match_operator 0 "branch_operator"
[(match_operand:SI 1 "gen_reg_operand" "r")
(const_int 0)])
(label_ref (match_operand 2 "" ""))
(pc)))]
""
"jmp%b0 %1,%l2%#"
[(set_attr "type" "branch")])
(define_insn ""
[(set (pc)
(if_then_else (match_operator 0 "branch_operator"
[(match_operand:SI 1 "gen_reg_operand" "r")
(const_int 0)])
(return)
(pc)))]
"null_epilogue ()"
"jmp%b0i %1,lr0%#"
[(set_attr "type" "branch")])
(define_insn ""
[(set (pc)
(if_then_else (match_operator 0 "branch_operator"
[(match_operand:SI 1 "gen_reg_operand" "r")
(const_int 0)])
(pc)
(label_ref (match_operand 2 "" ""))))]
""
"jmp%B0 %1,%l2%#"
[(set_attr "type" "branch")])
(define_insn ""
[(set (pc)
(if_then_else (match_operator 0 "branch_operator"
[(match_operand:SI 1 "gen_reg_operand" "r")
(const_int 0)])
(pc)
(return)))]
"null_epilogue ()"
"jmp%B0i %1,lr0%#"
[(set_attr "type" "branch")])
(define_insn "jump"
[(set (pc)
(label_ref (match_operand 0 "" "")))]
""
"jmp %e0%E0"
[(set_attr "type" "branch")])
(define_insn "return"
[(return)]
"null_epilogue ()"
"jmpi lr0%#"
[(set_attr "type" "branch")])
(define_insn "indirect_jump"
[(set (pc)
(match_operand:SI 0 "gen_reg_operand" "r"))]
""
"jmpi %0%#"
[(set_attr "type" "branch")])
(define_insn "tablejump"
[(set (pc)
(match_operand:SI 0 "gen_reg_operand" "r"))
(use (label_ref (match_operand 1 "" "")))]
""
"jmpi %0%#"
[(set_attr "type" "branch")])
;; JMPFDEC
(define_insn ""
[(set (pc)
(if_then_else (ge (match_operand:SI 0 "gen_reg_operand" "r")
(const_int 0))
(label_ref (match_operand 1 "" ""))
(pc)))
(set (match_dup 0)
(plus:SI (match_dup 0)
(const_int -1)))]
""
"jmpfdec %0,%l1%#"
[(set_attr "type" "branch")])
;;- Local variables:
;;- mode:emacs-lisp
;;- comment-start: ";;- "
;;- eval: (set-syntax-table (copy-sequence (syntax-table)))
;;- eval: (modify-syntax-entry ?[ "(]")
;;- eval: (modify-syntax-entry ?] ")[")
;;- eval: (modify-syntax-entry ?{ "(}")
;;- eval: (modify-syntax-entry ?} "){")
;;- End:
/* Definitions of target machine for GNU compiler, for AMD Am29000 CPU, Unix.
Copyright (C) 1991 Free Software Foundation, Inc.
Contributed by Richard Kenner (kenner@nyu.edu)
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
/* This is mostly the same as a29k.h, except that we define unix instead of
EPI and define unix-style machine names. */
#include "a29k.h"
/* Set our default target to be the 29050; that is the more interesting chip
for Unix systems. */
#undef TARGET_DEFAULT
#define TARGET_DEFAULT (1+2+8+64)
#undef CPP_PREDEFINES
#define CPP_PREDEFINES "-Dam29k -Da29k -Dam29000"
#undef CPP_SPEC
#define CPP_SPEC "%{!m29000:-Dam29050 -D__am29050__}"
/* For some systems, it is best if double-word objects are aligned on a
doubleword boundary. We want to maintain compatibility with MetaWare in
a29k.h, but do not feel constrained to do so here. */
#undef BIGGEST_ALIGNMENT
#define BIGGEST_ALIGNMENT 64
/* Subroutines for insn-output.c for Sun SPARC.
Copyright (C) 1987, 1988, 1989, 1992 Free Software Foundation, Inc.
Contributed by Michael Tiemann (tiemann@cygnus.com)
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
#include <stdio.h>
#include "config.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "expr.h"
#include "recog.h"
/* Global variables for machine-dependent things. */
/* Save the operands last given to a compare for use when we
generate a scc or bcc insn. */
rtx sparc_compare_op0, sparc_compare_op1;
/* We may need an epilogue if we spill too many registers.
If this is non-zero, then we branch here for the epilogue. */
static rtx leaf_label;
#ifdef LEAF_REGISTERS
/* Vector to say how input registers are mapped to output
registers. FRAME_POINTER_REGNUM cannot be remapped by
this function to eliminate it. You must use -fomit-frame-pointer
to get that. */
char leaf_reg_remap[] =
{ 0, 1, 2, 3, 4, 5, 6, 7,
-1, -1, -1, -1, -1, -1, 14, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
8, 9, 10, 11, 12, 13, -1, 15,
32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63};
char leaf_reg_backmap[] =
{ 0, 1, 2, 3, 4, 5, 6, 7,
24, 25, 26, 27, 28, 29, 14, 31,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63};
#endif
/* Global variables set by FUNCTION_PROLOGUE. */
/* Size of frame. Need to know this to emit return insns from
leaf procedures. */
int apparent_fsize;
int actual_fsize;
/* Name of where we pretend to think the frame pointer points.
Normally, this is "%fp", but if we are in a leaf procedure,
this is "%sp+something". */
char *frame_base_name;
static rtx find_addr_reg ();
/* Return non-zero only if OP is a register of mode MODE,
or const0_rtx. */
int
reg_or_0_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (op == const0_rtx || register_operand (op, mode))
return 1;
if (GET_CODE (op) == CONST_DOUBLE
&& CONST_DOUBLE_HIGH (op) == 0
&& CONST_DOUBLE_LOW (op) == 0)
return 1;
return 0;
}
/* Nonzero if OP can appear as the dest of a RESTORE insn. */
int
restore_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return (GET_CODE (op) == REG && GET_MODE (op) == mode
&& (REGNO (op) < 8 || (REGNO (op) >= 24 && REGNO (op) < 32)));
}
/* PC-relative call insn on SPARC is independent of `memory_operand'. */
int
call_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) != MEM)
abort ();
op = XEXP (op, 0);
return (REG_P (op) || CONSTANT_P (op));
}
int
call_operand_address (op, mode)
rtx op;
enum machine_mode mode;
{
return (REG_P (op) || CONSTANT_P (op));
}
/* Returns 1 if OP is either a symbol reference or a sum of a symbol
reference and a constant. */
int
symbolic_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
switch (GET_CODE (op))
{
case SYMBOL_REF:
case LABEL_REF:
return 1;
case CONST:
op = XEXP (op, 0);
return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
|| GET_CODE (XEXP (op, 0)) == LABEL_REF)
&& GET_CODE (XEXP (op, 1)) == CONST_INT);
/* This clause seems to be irrelevant. */
case CONST_DOUBLE:
return GET_MODE (op) == mode;
default:
return 0;
}
}
/* Return truth value of statement that OP is a symbolic memory
operand of mode MODE. */
int
symbolic_memory_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
if (GET_CODE (op) != MEM)
return 0;
op = XEXP (op, 0);
return (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST
|| GET_CODE (op) == HIGH || GET_CODE (op) == LABEL_REF);
}
/* Return 1 if the operand is either a register or a memory operand that is
not symbolic. */
int
reg_or_nonsymb_mem_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
if (register_operand (op, mode))
return 1;
if (memory_operand (op, mode) && ! symbolic_memory_operand (op, mode))
return 1;
return 0;
}
int
sparc_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (register_operand (op, mode))
return 1;
if (GET_CODE (op) == CONST_INT)
return SMALL_INT (op);
if (GET_MODE (op) != mode)
return 0;
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
if (GET_CODE (op) != MEM)
return 0;
op = XEXP (op, 0);
if (GET_CODE (op) == LO_SUM)
return (GET_CODE (XEXP (op, 0)) == REG
&& symbolic_operand (XEXP (op, 1), Pmode));
return memory_address_p (mode, op);
}
int
move_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (mode == DImode && arith_double_operand (op, mode))
return 1;
if (register_operand (op, mode))
return 1;
if (GET_CODE (op) == CONST_INT)
return (SMALL_INT (op) || (INTVAL (op) & 0x3ff) == 0);
if (GET_MODE (op) != mode)
return 0;
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
if (GET_CODE (op) != MEM)
return 0;
op = XEXP (op, 0);
if (GET_CODE (op) == LO_SUM)
return (register_operand (XEXP (op, 0), Pmode)
&& CONSTANT_P (XEXP (op, 1)));
return memory_address_p (mode, op);
}
int
move_pic_label (op, mode)
rtx op;
enum machine_mode mode;
{
/* Special case for PIC. */
if (flag_pic && GET_CODE (op) == LABEL_REF)
return 1;
return 0;
}
/* The rtx for the global offset table which is a special form
that *is* a position independent symbolic constant. */
rtx pic_pc_rtx;
/* Ensure that we are not using patterns that are not OK with PIC. */
int
check_pic (i)
int i;
{
switch (flag_pic)
{
case 1:
if (GET_CODE (recog_operand[i]) == SYMBOL_REF
|| (GET_CODE (recog_operand[i]) == CONST
&& ! rtx_equal_p (pic_pc_rtx, recog_operand[i])))
abort ();
case 2:
default:
return 1;
}
}
/* Return true if X is an address which needs a temporary register when
reloaded while generating PIC code. */
int
pic_address_needs_scratch (x)
rtx x;
{
/* An address which is a symbolic plus a non SMALL_INT needs a temp reg. */
if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& ! SMALL_INT (XEXP (XEXP (x, 0), 1)))
return 1;
return 0;
}
int
memop (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) == MEM)
return (mode == VOIDmode || mode == GET_MODE (op));
return 0;
}
/* Return truth value of whether OP is EQ or NE. */
int
eq_or_neq (op, mode)
rtx op;
enum machine_mode mode;
{
return (GET_CODE (op) == EQ || GET_CODE (op) == NE);
}
/* Return 1 if this is a comparison operator, but not an EQ, NE, GEU,
or LTU for non-floating-point. We handle those specially. */
int
normal_comp_operator (op, mode)
rtx op;
enum machine_mode mode;
{
enum rtx_code code = GET_CODE (op);
if (GET_RTX_CLASS (code) != '<')
return 0;
if (GET_MODE (XEXP (op, 0)) == CCFPmode)
return 1;
return (code != NE && code != EQ && code != GEU && code != LTU);
}
/* Return 1 if this is a comparison operator. This allows the use of
MATCH_OPERATOR to recognize all the branch insns. */
int
noov_compare_op (op, mode)
register rtx op;
enum machine_mode mode;
{
enum rtx_code code = GET_CODE (op);
if (GET_RTX_CLASS (code) != '<')
return 0;
if (GET_MODE (XEXP (op, 0)) == CC_NOOVmode)
/* These are the only branches which work with CC_NOOVmode. */
return (code == EQ || code == NE || code == GE || code == LT);
return 1;
}
/* Return 1 if this is a SIGN_EXTEND or ZERO_EXTEND operation. */
int
extend_op (op, mode)
rtx op;
enum machine_mode mode;
{
return GET_CODE (op) == SIGN_EXTEND || GET_CODE (op) == ZERO_EXTEND;
}
/* Return nonzero if OP is an operator of mode MODE which can set
the condition codes explicitly. We do not include PLUS and MINUS
because these require CC_NOOVmode, which we handle explicitly. */
int
cc_arithop (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) == AND
|| GET_CODE (op) == IOR
|| GET_CODE (op) == XOR)
return 1;
return 0;
}
/* Return nonzero if OP is an operator of mode MODE which can bitwise
complement its second operand and set the condition codes explicitly. */
int
cc_arithopn (op, mode)
rtx op;
enum machine_mode mode;
{
/* XOR is not here because combine canonicalizes (xor (not ...) ...)
and (xor ... (not ...)) to (not (xor ...)). */
return (GET_CODE (op) == AND
|| GET_CODE (op) == IOR);
}
/* Return truth value of whether OP can be used as an operands in a three
address arithmetic insn (such as add %o1,7,%l2) of mode MODE. */
int
arith_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return (register_operand (op, mode)
|| (GET_CODE (op) == CONST_INT && SMALL_INT (op)));
}
/* Return truth value of whether OP can be used as an operand in a two
address arithmetic insn (such as set 123456,%o4) of mode MODE. */
int
arith32_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return (register_operand (op, mode) || GET_CODE (op) == CONST_INT);
}
/* Return truth value of whether OP is a register or a CONST_DOUBLE. */
int
arith_double_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return (register_operand (op, mode)
|| (GET_CODE (op) == CONST_DOUBLE
&& (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode)
&& (unsigned) (CONST_DOUBLE_LOW (op) + 0x1000) < 0x2000
&& ((CONST_DOUBLE_HIGH (op) == -1
&& (CONST_DOUBLE_LOW (op) & 0x1000) == 0x1000)
|| (CONST_DOUBLE_HIGH (op) == 0
&& (CONST_DOUBLE_LOW (op) & 0x1000) == 0)))
|| (GET_CODE (op) == CONST_INT
&& (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode)
&& (unsigned) (INTVAL (op) + 0x1000) < 0x2000));
}
/* Return truth value of whether OP is a integer which fits the
range constraining immediate operands in three-address insns. */
int
small_int (op, mode)
rtx op;
enum machine_mode mode;
{
return (GET_CODE (op) == CONST_INT && SMALL_INT (op));
}
/* Return truth value of statement that OP is a call-clobbered register. */
int
clobbered_register (op, mode)
rtx op;
enum machine_mode mode;
{
return (GET_CODE (op) == REG && call_used_regs[REGNO (op)]);
}
/* X and Y are two things to compare using CODE. Emit the compare insn and
return the rtx for register 0 in the proper mode. */
rtx
gen_compare_reg (code, x, y)
enum rtx_code code;
rtx x, y;
{
enum machine_mode mode = SELECT_CC_MODE (code, x);
rtx cc_reg = gen_rtx (REG, mode, 0);
emit_insn (gen_rtx (SET, VOIDmode, cc_reg,
gen_rtx (COMPARE, mode, x, y)));
return cc_reg;
}
/* Return nonzero if a return peephole merging return with
setting of output register is ok. */
int
leaf_return_peephole_ok ()
{
return (actual_fsize == 0);
}
/* Return nonzero if TRIAL can go into the function epilogue's
delay slot. SLOT is the slot we are trying to fill. */
int
eligible_for_epilogue_delay (trial, slot)
rtx trial;
int slot;
{
static char *this_function_name;
rtx pat, src;
if (slot >= 1)
return 0;
if (GET_CODE (trial) != INSN
|| GET_CODE (PATTERN (trial)) != SET)
return 0;
if (get_attr_length (trial) != 1)
return 0;
/* In the case of a true leaf function, anything can
go into the delay slot. */
if (leaf_function)
{
if (leaf_return_peephole_ok ())
return (get_attr_in_branch_delay (trial) == IN_BRANCH_DELAY_TRUE);
return 0;
}
/* Otherwise, only operations which can be done in tandem with
a `restore' insn can go into the delay slot. */
pat = PATTERN (trial);
if (GET_CODE (SET_DEST (pat)) != REG
|| REGNO (SET_DEST (pat)) == 0
|| (leaf_function
&& REGNO (SET_DEST (pat)) < 32
&& REGNO (SET_DEST (pat)) >= 16)
|| (! leaf_function
&& (REGNO (SET_DEST (pat)) >= 32
|| REGNO (SET_DEST (pat)) < 24)))
return 0;
src = SET_SRC (pat);
if (arith_operand (src, GET_MODE (src)))
return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (SImode);
if (arith_double_operand (src, GET_MODE (src)))
return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (DImode);
if (GET_CODE (src) == PLUS)
{
if (register_operand (XEXP (src, 0), SImode)
&& arith_operand (XEXP (src, 1), SImode))
return 1;
if (register_operand (XEXP (src, 1), SImode)
&& arith_operand (XEXP (src, 0), SImode))
return 1;
if (register_operand (XEXP (src, 0), DImode)
&& arith_double_operand (XEXP (src, 1), DImode))
return 1;
if (register_operand (XEXP (src, 1), DImode)
&& arith_double_operand (XEXP (src, 0), DImode))
return 1;
}
if (GET_CODE (src) == MINUS
&& register_operand (XEXP (src, 0), SImode)
&& small_int (XEXP (src, 1), VOIDmode))
return 1;
if (GET_CODE (src) == MINUS
&& register_operand (XEXP (src, 0), DImode)
&& !register_operand (XEXP (src, 1), DImode)
&& arith_double_operand (XEXP (src, 1), DImode))
return 1;
return 0;
}
int
short_branch (uid1, uid2)
int uid1, uid2;
{
unsigned int delta = insn_addresses[uid1] - insn_addresses[uid2];
if (delta + 1024 < 2048)
return 1;
/* warning ("long branch, distance %d", delta); */
return 0;
}
/* Return non-zero if REG is not used after INSN.
We assume REG is a reload reg, and therefore does
not live past labels or calls or jumps. */
int
reg_unused_after (reg, insn)
rtx reg;
rtx insn;
{
enum rtx_code code, prev_code = UNKNOWN;
while (insn = NEXT_INSN (insn))
{
if (prev_code == CALL_INSN && call_used_regs[REGNO (reg)])
return 1;
code = GET_CODE (insn);
if (GET_CODE (insn) == CODE_LABEL)
return 1;
if (GET_RTX_CLASS (code) == 'i')
{
rtx set = single_set (insn);
int in_src = set && reg_overlap_mentioned_p (reg, SET_SRC (set));
if (set && in_src)
return 0;
if (set && reg_overlap_mentioned_p (reg, SET_DEST (set)))
return 1;
if (set == 0 && reg_overlap_mentioned_p (reg, PATTERN (insn)))
return 0;
}
prev_code = code;
}
return 1;
}
/* Legitimize PIC addresses. If the address is already position-independent,
we return ORIG. Newly generated position-independent addresses go into a
reg. This is REG if non zero, otherwise we allocate register(s) as
necessary. If this is called during reload, and we need a second temp
register, then we use SCRATCH, which is provided via the
SECONDARY_INPUT_RELOAD_CLASS mechanism. */
rtx
legitimize_pic_address (orig, mode, reg, scratch)
rtx orig;
enum machine_mode mode;
rtx reg, scratch;
{
if (GET_CODE (orig) == SYMBOL_REF)
{
rtx pic_ref, address;
rtx insn;
if (reg == 0)
{
if (reload_in_progress)
abort ();
else
reg = gen_reg_rtx (Pmode);
}
if (flag_pic == 2)
{
/* If not during reload, allocate another temp reg here for loading
in the address, so that these instructions can be optimized
properly. */
rtx temp_reg = (reload_in_progress ? reg : gen_reg_rtx (Pmode));
emit_insn (gen_rtx (SET, VOIDmode, temp_reg,
gen_rtx (HIGH, Pmode, orig)));
emit_insn (gen_rtx (SET, VOIDmode, temp_reg,
gen_rtx (LO_SUM, Pmode, temp_reg, orig)));
address = temp_reg;
}
else
address = orig;
pic_ref = gen_rtx (MEM, Pmode,
gen_rtx (PLUS, Pmode,
pic_offset_table_rtx, address));
current_function_uses_pic_offset_table = 1;
RTX_UNCHANGING_P (pic_ref) = 1;
insn = emit_move_insn (reg, pic_ref);
/* Put a REG_EQUAL note on this insn, so that it can be optimized
by loop. */
REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, orig,
REG_NOTES (insn));
return reg;
}
else if (GET_CODE (orig) == CONST)
{
rtx base, offset;
if (GET_CODE (XEXP (orig, 0)) == PLUS
&& XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
return orig;
if (reg == 0)
{
if (reload_in_progress)
abort ();
else
reg = gen_reg_rtx (Pmode);
}
if (GET_CODE (XEXP (orig, 0)) == PLUS)
{
base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode,
reg, 0);
offset = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
base == reg ? 0 : reg, 0);
}
else
abort ();
if (GET_CODE (offset) == CONST_INT)
{
if (SMALL_INT (offset))
return plus_constant_for_output (base, INTVAL (offset));
else if (! reload_in_progress)
offset = force_reg (Pmode, offset);
/* We can't create any new registers during reload, so use the
SCRATCH reg provided by the reload_insi pattern. */
else if (scratch)
{
emit_move_insn (scratch, offset);
offset = scratch;
}
else
/* If we reach here, then the SECONDARY_INPUT_RELOAD_CLASS
macro needs to be adjusted so that a scratch reg is provided
for this address. */
abort ();
}
return gen_rtx (PLUS, Pmode, base, offset);
}
else if (GET_CODE (orig) == LABEL_REF)
current_function_uses_pic_offset_table = 1;
return orig;
}
/* Set up PIC-specific rtl. This should not cause any insns
to be emitted. */
void
initialize_pic ()
{
}
/* Emit special PIC prologues and epilogues. */
void
finalize_pic ()
{
/* The table we use to reference PIC data. */
rtx global_offset_table;
/* Labels to get the PC in the prologue of this function. */
rtx l1, l2;
rtx seq;
int orig_flag_pic = flag_pic;
if (current_function_uses_pic_offset_table == 0)
return;
if (! flag_pic)
abort ();
flag_pic = 0;
l1 = gen_label_rtx ();
l2 = gen_label_rtx ();
start_sequence ();
emit_label (l1);
/* Note that we pun calls and jumps here! */
emit_jump_insn (gen_rtx (PARALLEL, VOIDmode,
gen_rtvec (2,
gen_rtx (SET, VOIDmode, pc_rtx, gen_rtx (LABEL_REF, VOIDmode, l2)),
gen_rtx (SET, VOIDmode, gen_rtx (REG, SImode, 15), gen_rtx (LABEL_REF, VOIDmode, l2)))));
emit_label (l2);
/* Initialize every time through, since we can't easily
know this to be permanent. */
global_offset_table = gen_rtx (SYMBOL_REF, Pmode, "*__GLOBAL_OFFSET_TABLE_");
pic_pc_rtx = gen_rtx (CONST, Pmode,
gen_rtx (MINUS, Pmode,
global_offset_table,
gen_rtx (CONST, Pmode,
gen_rtx (MINUS, Pmode,
gen_rtx (LABEL_REF, VOIDmode, l1),
pc_rtx))));
emit_insn (gen_rtx (SET, VOIDmode, pic_offset_table_rtx,
gen_rtx (HIGH, Pmode, pic_pc_rtx)));
emit_insn (gen_rtx (SET, VOIDmode,
pic_offset_table_rtx,
gen_rtx (LO_SUM, Pmode,
pic_offset_table_rtx, pic_pc_rtx)));
emit_insn (gen_rtx (SET, VOIDmode,
pic_offset_table_rtx,
gen_rtx (PLUS, Pmode,
pic_offset_table_rtx, gen_rtx (REG, Pmode, 15))));
/* emit_insn (gen_rtx (ASM_INPUT, VOIDmode, "!#PROLOGUE# 1")); */
LABEL_PRESERVE_P (l1) = 1;
LABEL_PRESERVE_P (l2) = 1;
flag_pic = orig_flag_pic;
seq = gen_sequence ();
end_sequence ();
emit_insn_after (seq, get_insns ());
/* Need to emit this whether or not we obey regdecls,
since setjmp/longjmp can cause life info to screw up. */
emit_insn (gen_rtx (USE, VOIDmode, pic_offset_table_rtx));
}
/* For the SPARC, REG and REG+CONST is cost 0, REG+REG is cost 1,
and addresses involving symbolic constants are cost 2.
We make REG+REG slightly more expensive because it might keep
a register live for longer than we might like.
PIC addresses are very expensive.
It is no coincidence that this has the same structure
as GO_IF_LEGITIMATE_ADDRESS. */
int
sparc_address_cost (X)
rtx X;
{
#if 0
/* Handled before calling here. */
if (GET_CODE (X) == REG)
{ return 1; }
#endif
if (GET_CODE (X) == PLUS)
{
if (GET_CODE (XEXP (X, 0)) == REG
&& GET_CODE (XEXP (X, 1)) == REG)
return 2;
return 1;
}
else if (GET_CODE (X) == LO_SUM)
return 1;
else if (GET_CODE (X) == HIGH)
return 2;
return 4;
}
/* Emit insns to move operands[1] into operands[0].
Return 1 if we have written out everything that needs to be done to
do the move. Otherwise, return 0 and the caller will emit the move
normally.
SCRATCH_REG if non zero can be used as a scratch register for the move
operation. It is provided by a SECONDARY_RELOAD_* macro if needed. */
int
emit_move_sequence (operands, mode, scratch_reg)
rtx *operands;
enum machine_mode mode;
rtx scratch_reg;
{
register rtx operand0 = operands[0];
register rtx operand1 = operands[1];
/* Handle most common case first: storing into a register. */
if (register_operand (operand0, mode))
{
if (register_operand (operand1, mode)
|| (GET_CODE (operand1) == CONST_INT && SMALL_INT (operand1))
|| (GET_CODE (operand1) == CONST_DOUBLE
&& arith_double_operand (operand1, DImode))
|| (GET_CODE (operand1) == HIGH && GET_MODE (operand1) != DImode)
/* Only `general_operands' can come here, so MEM is ok. */
|| GET_CODE (operand1) == MEM)
{
/* Run this case quickly. */
emit_insn (gen_rtx (SET, VOIDmode, operand0, operand1));
return 1;
}
}
else if (GET_CODE (operand0) == MEM)
{
if (register_operand (operand1, mode) || operand1 == const0_rtx)
{
/* Run this case quickly. */
emit_insn (gen_rtx (SET, VOIDmode, operand0, operand1));
return 1;
}
if (! reload_in_progress)
{
operands[0] = validize_mem (operand0);
operands[1] = operand1 = force_reg (mode, operand1);
}
}
/* Simplify the source if we need to. Must handle DImode HIGH operators
here because such a move needs a clobber added. */
if ((GET_CODE (operand1) != HIGH && immediate_operand (operand1, mode))
|| (GET_CODE (operand1) == HIGH && GET_MODE (operand1) == DImode))
{
if (flag_pic && symbolic_operand (operand1, mode))
{
rtx temp_reg = reload_in_progress ? operand0 : 0;
operands[1] = legitimize_pic_address (operand1, mode, temp_reg,
scratch_reg);
}
else if (GET_CODE (operand1) == CONST_INT
? (! SMALL_INT (operand1)
&& (INTVAL (operand1) & 0x3ff) != 0)
: (GET_CODE (operand1) == CONST_DOUBLE
? ! arith_double_operand (operand1, DImode)
: 1))
{
/* For DImode values, temp must be operand0 because of the way
HI and LO_SUM work. The LO_SUM operator only copies half of
the LSW from the dest of the HI operator. If the LO_SUM dest is
not the same as the HI dest, then the MSW of the LO_SUM dest will
never be set.
??? The real problem here is that the ...(HI:DImode pattern emits
multiple instructions, and the ...(LO_SUM:DImode pattern emits
one instruction. This fails, because the compiler assumes that
LO_SUM copies all bits of the first operand to its dest. Better
would be to have the HI pattern emit one instruction and the
LO_SUM pattern multiple instructions. Even better would be
to use four rtl insns. */
rtx temp = ((reload_in_progress || mode == DImode)
? operand0 : gen_reg_rtx (mode));
emit_insn (gen_rtx (SET, VOIDmode, temp,
gen_rtx (HIGH, mode, operand1)));
operands[1] = gen_rtx (LO_SUM, mode, temp, operand1);
}
}
if (GET_CODE (operand1) == LABEL_REF && flag_pic)
{
/* The procedure for doing this involves using a call instruction to
get the pc into o7. We need to indicate this explicitly because
the tablejump pattern assumes that it can use this value also. */
emit_insn (gen_rtx (PARALLEL, VOIDmode,
gen_rtvec (2,
gen_rtx (SET, VOIDmode, operand0,
operand1),
gen_rtx (SET, VOIDmode,
gen_rtx (REG, mode, 15),
pc_rtx))));
return 1;
}
/* Now have insn-emit do whatever it normally does. */
return 0;
}
/* Return the best assembler insn template
for moving operands[1] into operands[0] as a fullword. */
char *
singlemove_string (operands)
rtx *operands;
{
if (GET_CODE (operands[0]) == MEM)
{
if (GET_CODE (operands[1]) != MEM)
return "st %r1,%0";
else
abort ();
}
if (GET_CODE (operands[1]) == MEM)
return "ld %1,%0";
if (GET_CODE (operands[1]) == CONST_INT
&& ! CONST_OK_FOR_LETTER_P (INTVAL (operands[1]), 'I'))
{
int i = INTVAL (operands[1]);
/* If all low order 12 bits are clear, then we only need a single
sethi insn to load the constant. */
if (i & 0x00000FFF)
return "sethi %%hi(%a1),%0\n\tor %0,%%lo(%a1),%0";
else
return "sethi %%hi(%a1),%0";
}
/* ??? Wrong if target is DImode? */
return "mov %1,%0";
}
/* Output assembler code to perform a doubleword move insn
with operands OPERANDS. */
char *
output_move_double (operands)
rtx *operands;
{
enum { REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP } optype0, optype1;
rtx latehalf[2];
rtx addreg0 = 0, addreg1 = 0;
/* First classify both operands. */
if (REG_P (operands[0]))
optype0 = REGOP;
else if (offsettable_memref_p (operands[0]))
optype0 = OFFSOP;
else if (GET_CODE (operands[0]) == MEM)
optype0 = MEMOP;
else
optype0 = RNDOP;
if (REG_P (operands[1]))
optype1 = REGOP;
else if (CONSTANT_P (operands[1]))
optype1 = CNSTOP;
else if (offsettable_memref_p (operands[1]))
optype1 = OFFSOP;
else if (GET_CODE (operands[1]) == MEM)
optype1 = MEMOP;
else
optype1 = RNDOP;
/* Check for the cases that the operand constraints are not
supposed to allow to happen. Abort if we get one,
because generating code for these cases is painful. */
if (optype0 == RNDOP || optype1 == RNDOP)
abort ();
/* If an operand is an unoffsettable memory ref, find a register
we can increment temporarily to make it refer to the second word. */
if (optype0 == MEMOP)
addreg0 = find_addr_reg (XEXP (operands[0], 0));
if (optype1 == MEMOP)
addreg1 = find_addr_reg (XEXP (operands[1], 0));
/* Ok, we can do one word at a time.
Normally we do the low-numbered word first,
but if either operand is autodecrementing then we
do the high-numbered word first.
In either case, set up in LATEHALF the operands to use for the
high-numbered (least significant) word and in some cases alter the
operands in OPERANDS to be suitable for the low-numbered word. */
if (optype0 == REGOP)
latehalf[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
else if (optype0 == OFFSOP)
latehalf[0] = adj_offsettable_operand (operands[0], 4);
else
latehalf[0] = operands[0];
if (optype1 == REGOP)
latehalf[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
else if (optype1 == OFFSOP)
latehalf[1] = adj_offsettable_operand (operands[1], 4);
else if (optype1 == CNSTOP)
split_double (operands[1], &operands[1], &latehalf[1]);
else
latehalf[1] = operands[1];
/* If the first move would clobber the source of the second one,
do them in the other order.
RMS says "This happens only for registers;
such overlap can't happen in memory unless the user explicitly
sets it up, and that is an undefined circumstance."
but it happens on the sparc when loading parameter registers,
so I am going to define that circumstance, and make it work
as expected. */
/* Easy case: try moving both words at once. */
/* First check for moving between an even/odd register pair
and a memory location. */
if ((optype0 == REGOP && optype1 != REGOP && optype1 != CNSTOP
&& (REGNO (operands[0]) & 1) == 0)
|| (optype0 != REGOP && optype0 != CNSTOP && optype1 == REGOP
&& (REGNO (operands[1]) & 1) == 0))
{
rtx op1, op2;
rtx base = 0, offset = const0_rtx;
/* OP1 gets the register pair, and OP2 gets the memory address. */
if (optype0 == REGOP)
op1 = operands[0], op2 = operands[1];
else
op1 = operands[1], op2 = operands[0];
/* Now see if we can trust the address to be 8-byte aligned. */
/* Trust global variables. */
if (GET_CODE (op2) == LO_SUM)
{
operands[0] = op1;
operands[1] = op2;
if (final_sequence)
abort ();
return "ldd %1,%0";
}
if (GET_CODE (XEXP (op2, 0)) == PLUS)
{
rtx temp = XEXP (op2, 0);
if (GET_CODE (XEXP (temp, 0)) == REG)
base = XEXP (temp, 0), offset = XEXP (temp, 1);
else if (GET_CODE (XEXP (temp, 1)) == REG)
base = XEXP (temp, 1), offset = XEXP (temp, 0);
}
/* Trust round enough offsets from the stack or frame pointer. */
if (base
&& (REGNO (base) == FRAME_POINTER_REGNUM
|| REGNO (base) == STACK_POINTER_REGNUM))
{
if (GET_CODE (offset) == CONST_INT
&& (INTVAL (offset) & 0x7) == 0)
{
if (op1 == operands[0])
return "ldd %1,%0";
else
return "std %1,%0";
}
}
/* We know structs not on the stack are properly aligned. Since a
double asks for 8-byte alignment, we know it must have got that
if it is in a struct. But a DImode need not be 8-byte aligned,
because it could be a struct containing two ints or pointers. */
else if (GET_CODE (operands[1]) == MEM
&& GET_MODE (operands[1]) == DFmode
&& (CONSTANT_P (XEXP (operands[1], 0))
/* Let user ask for it anyway. */
|| TARGET_ALIGN))
return "ldd %1,%0";
else if (GET_CODE (operands[0]) == MEM
&& GET_MODE (operands[0]) == DFmode
&& (CONSTANT_P (XEXP (operands[0], 0))
|| TARGET_ALIGN))
return "std %1,%0";
}
if (optype0 == REGOP && optype1 == REGOP
&& REGNO (operands[0]) == REGNO (latehalf[1]))
{
/* Make any unoffsettable addresses point at high-numbered word. */
if (addreg0)
output_asm_insn ("add %0,0x4,%0", &addreg0);
if (addreg1)
output_asm_insn ("add %0,0x4,%0", &addreg1);
/* Do that word. */
output_asm_insn (singlemove_string (latehalf), latehalf);
/* Undo the adds we just did. */
if (addreg0)
output_asm_insn ("add %0,-0x4,%0", &addreg0);
if (addreg1)
output_asm_insn ("add %0,-0x4,%0", &addreg1);
/* Do low-numbered word. */
return singlemove_string (operands);
}
else if (optype0 == REGOP && optype1 != REGOP
&& reg_overlap_mentioned_p (operands[0], operands[1]))
{
/* Do the late half first. */
output_asm_insn (singlemove_string (latehalf), latehalf);
/* Then clobber. */
return singlemove_string (operands);
}
/* Normal case: do the two words, low-numbered first. */
output_asm_insn (singlemove_string (operands), operands);
/* Make any unoffsettable addresses point at high-numbered word. */
if (addreg0)
output_asm_insn ("add %0,0x4,%0", &addreg0);
if (addreg1)
output_asm_insn ("add %0,0x4,%0", &addreg1);
/* Do that word. */
output_asm_insn (singlemove_string (latehalf), latehalf);
/* Undo the adds we just did. */
if (addreg0)
output_asm_insn ("add %0,-0x4,%0", &addreg0);
if (addreg1)
output_asm_insn ("add %0,-0x4,%0", &addreg1);
return "";
}
char *
output_fp_move_double (operands)
rtx *operands;
{
rtx addr;
if (FP_REG_P (operands[0]))
{
if (FP_REG_P (operands[1]))
return "fmovs %1,%0\n\tfmovs %R1,%R0";
if (GET_CODE (operands[1]) == REG)
{
if ((REGNO (operands[1]) & 1) == 0)
return "std %1,[%@-8]\n\tldd [%@-8],%0";
else
return "st %R1,[%@-4]\n\tst %1,[%@-8]\n\tldd [%@-8],%0";
}
addr = XEXP (operands[1], 0);
/* Use ldd if known to be aligned. */
if (TARGET_ALIGN
|| (GET_CODE (addr) == PLUS
&& (((XEXP (addr, 0) == frame_pointer_rtx
|| XEXP (addr, 0) == stack_pointer_rtx)
&& GET_CODE (XEXP (addr, 1)) == CONST_INT
&& (INTVAL (XEXP (addr, 1)) & 0x7) == 0)
/* Arrays are known to be aligned,
and reg+reg addresses are used (on this machine)
only for array accesses. */
|| (REG_P (XEXP (addr, 0)) && REG_P (XEXP (addr, 1)))))
|| (GET_MODE (operands[0]) == DFmode
&& (GET_CODE (addr) == LO_SUM || CONSTANT_P (addr))))
return "ldd %1,%0";
/* Otherwise use two ld insns. */
operands[2]
= gen_rtx (MEM, GET_MODE (operands[1]),
plus_constant_for_output (addr, 4));
return "ld %1,%0\n\tld %2,%R0";
}
else if (FP_REG_P (operands[1]))
{
if (GET_CODE (operands[0]) == REG)
{
if ((REGNO (operands[0]) & 1) == 0)
return "std %1,[%@-8]\n\tldd [%@-8],%0";
else
return "std %1,[%@-8]\n\tld [%@-4],%R0\n\tld [%@-8],%0";
}
addr = XEXP (operands[0], 0);
/* Use std if we can be sure it is well-aligned. */
if (TARGET_ALIGN
|| (GET_CODE (addr) == PLUS
&& (((XEXP (addr, 0) == frame_pointer_rtx
|| XEXP (addr, 0) == stack_pointer_rtx)
&& GET_CODE (XEXP (addr, 1)) == CONST_INT
&& (INTVAL (XEXP (addr, 1)) & 0x7) == 0)
/* Arrays are known to be aligned,
and reg+reg addresses are used (on this machine)
only for array accesses. */
|| (REG_P (XEXP (addr, 0)) && REG_P (XEXP (addr, 1)))))
|| (GET_MODE (operands[1]) == DFmode
&& (GET_CODE (addr) == LO_SUM || CONSTANT_P (addr))))
return "std %1,%0";
/* Otherwise use two st insns. */
operands[2]
= gen_rtx (MEM, GET_MODE (operands[0]),
plus_constant_for_output (addr, 4));
return "st %r1,%0\n\tst %R1,%2";
}
else abort ();
}
/* Return a REG that occurs in ADDR with coefficient 1.
ADDR can be effectively incremented by incrementing REG. */
static rtx
find_addr_reg (addr)
rtx addr;
{
while (GET_CODE (addr) == PLUS)
{
/* We absolutely can not fudge the frame pointer here, because the
frame pointer must always be 8 byte aligned. It also confuses
debuggers. */
if (GET_CODE (XEXP (addr, 0)) == REG
&& REGNO (XEXP (addr, 0)) != FRAME_POINTER_REGNUM)
addr = XEXP (addr, 0);
else if (GET_CODE (XEXP (addr, 1)) == REG
&& REGNO (XEXP (addr, 1)) != FRAME_POINTER_REGNUM)
addr = XEXP (addr, 1);
else if (CONSTANT_P (XEXP (addr, 0)))
addr = XEXP (addr, 1);
else if (CONSTANT_P (XEXP (addr, 1)))
addr = XEXP (addr, 0);
else
abort ();
}
if (GET_CODE (addr) == REG)
return addr;
abort ();
}
void
output_sized_memop (opname, mode, signedp)
char *opname;
enum machine_mode mode;
int signedp;
{
static char *ld_size_suffix_u[] = { "ub", "uh", "", "?", "d" };
static char *ld_size_suffix_s[] = { "sb", "sh", "", "?", "d" };
static char *st_size_suffix[] = { "b", "h", "", "?", "d" };
char **opnametab, *modename;
if (opname[0] == 'l')
if (signedp)
opnametab = ld_size_suffix_s;
else
opnametab = ld_size_suffix_u;
else
opnametab = st_size_suffix;
modename = opnametab[GET_MODE_SIZE (mode) >> 1];
fprintf (asm_out_file, "\t%s%s", opname, modename);
}
void
output_move_with_extension (operands)
rtx *operands;
{
if (GET_MODE (operands[2]) == HImode)
output_asm_insn ("sll %2,0x10,%0", operands);
else if (GET_MODE (operands[2]) == QImode)
output_asm_insn ("sll %2,0x18,%0", operands);
else
abort ();
}
/* Load the address specified by OPERANDS[3] into the register
specified by OPERANDS[0].
OPERANDS[3] may be the result of a sum, hence it could either be:
(1) CONST
(2) REG
(2) REG + CONST_INT
(3) REG + REG + CONST_INT
(4) REG + REG (special case of 3).
Note that (3) is not a legitimate address.
All cases are handled here. */
void
output_load_address (operands)
rtx *operands;
{
rtx base, offset;
if (CONSTANT_P (operands[3]))
{
output_asm_insn ("set %3,%0", operands);
return;
}
if (REG_P (operands[3]))
{
if (REGNO (operands[0]) != REGNO (operands[3]))
output_asm_insn ("mov %3,%0", operands);
return;
}
if (GET_CODE (operands[3]) != PLUS)
abort ();
base = XEXP (operands[3], 0);
offset = XEXP (operands[3], 1);
if (GET_CODE (base) == CONST_INT)
{
rtx tmp = base;
base = offset;
offset = tmp;
}
if (GET_CODE (offset) != CONST_INT)
{
/* Operand is (PLUS (REG) (REG)). */
base = operands[3];
offset = const0_rtx;
}
if (REG_P (base))
{
operands[6] = base;
operands[7] = offset;
if (SMALL_INT (offset))
output_asm_insn ("add %6,%7,%0", operands);
else
output_asm_insn ("set %7,%0\n\tadd %0,%6,%0", operands);
}
else if (GET_CODE (base) == PLUS)
{
operands[6] = XEXP (base, 0);
operands[7] = XEXP (base, 1);
operands[8] = offset;
if (SMALL_INT (offset))
output_asm_insn ("add %6,%7,%0\n\tadd %0,%8,%0", operands);
else
output_asm_insn ("set %8,%0\n\tadd %0,%6,%0\n\tadd %0,%7,%0", operands);
}
else
abort ();
}
/* Output code to place a size count SIZE in register REG.
ALIGN is the size of the unit of transfer.
Because block moves are pipelined, we don't include the
first element in the transfer of SIZE to REG. */
static void
output_size_for_block_move (size, reg, align)
rtx size, reg;
rtx align;
{
rtx xoperands[3];
xoperands[0] = reg;
xoperands[1] = size;
xoperands[2] = align;
if (GET_CODE (size) == REG)
output_asm_insn ("sub %1,%2,%0", xoperands);
else
{
xoperands[1]
= gen_rtx (CONST_INT, VOIDmode, INTVAL (size) - INTVAL (align));
output_asm_insn ("set %1,%0", xoperands);
}
}
/* Emit code to perform a block move.
OPERANDS[0] is the destination.
OPERANDS[1] is the source.
OPERANDS[2] is the size.
OPERANDS[3] is the alignment safe to use.
OPERANDS[4] is a register we can safely clobber as a temp. */
char *
output_block_move (operands)
rtx *operands;
{
/* A vector for our computed operands. Note that load_output_address
makes use of (and can clobber) up to the 8th element of this vector. */
rtx xoperands[10];
rtx zoperands[10];
static int movstrsi_label = 0;
int i;
rtx temp1 = operands[4];
rtx sizertx = operands[2];
rtx alignrtx = operands[3];
int align = INTVAL (alignrtx);
xoperands[0] = operands[0];
xoperands[1] = operands[1];
xoperands[2] = temp1;
/* We can't move more than this many bytes at a time
because we have only one register to move them through. */
if (align > GET_MODE_SIZE (GET_MODE (temp1)))
{
align = GET_MODE_SIZE (GET_MODE (temp1));
alignrtx = gen_rtx (CONST_INT, VOIDmode, GET_MODE_SIZE (GET_MODE (temp1)));
}
/* If the size isn't known to be a multiple of the alignment,
we have to do it in smaller pieces. If we could determine that
the size was a multiple of 2 (or whatever), we could be smarter
about this. */
if (GET_CODE (sizertx) != CONST_INT)
align = 1;
else
{
int size = INTVAL (sizertx);
while (size % align)
align >>= 1;
}
if (align != INTVAL (alignrtx))
alignrtx = gen_rtx (CONST_INT, VOIDmode, align);
/* Recognize special cases of block moves. These occur
when GNU C++ is forced to treat something as BLKmode
to keep it in memory, when its mode could be represented
with something smaller.
We cannot do this for global variables, since we don't know
what pages they don't cross. Sigh. */
if (GET_CODE (sizertx) == CONST_INT && INTVAL (sizertx) <= 16)
{
int size = INTVAL (sizertx);
if (align == 1)
{
if (memory_address_p (QImode,
plus_constant_for_output (xoperands[0], size))
&& memory_address_p (QImode,
plus_constant_for_output (xoperands[1],
size)))
{
/* We will store different integers into this particular RTX. */
xoperands[2] = rtx_alloc (CONST_INT);
PUT_MODE (xoperands[2], VOIDmode);
for (i = size-1; i >= 0; i--)
{
INTVAL (xoperands[2]) = i;
output_asm_insn ("ldub [%a1+%2],%%g1\n\tstb %%g1,[%a0+%2]",
xoperands);
}
return "";
}
}
else if (align == 2)
{
if (memory_address_p (HImode,
plus_constant_for_output (xoperands[0], size))
&& memory_address_p (HImode,
plus_constant_for_output (xoperands[1],
size)))
{
/* We will store different integers into this particular RTX. */
xoperands[2] = rtx_alloc (CONST_INT);
PUT_MODE (xoperands[2], VOIDmode);
for (i = (size>>1)-1; i >= 0; i--)
{
INTVAL (xoperands[2]) = i<<1;
output_asm_insn ("lduh [%a1+%2],%%g1\n\tsth %%g1,[%a0+%2]",
xoperands);
}
return "";
}
}
else
{
if (memory_address_p (SImode,
plus_constant_for_output (xoperands[0], size))
&& memory_address_p (SImode,
plus_constant_for_output (xoperands[1],
size)))
{
/* We will store different integers into this particular RTX. */
xoperands[2] = rtx_alloc (CONST_INT);
PUT_MODE (xoperands[2], VOIDmode);
for (i = (size>>2)-1; i >= 0; i--)
{
INTVAL (xoperands[2]) = i<<2;
output_asm_insn ("ld [%a1+%2],%%g1\n\tst %%g1,[%a0+%2]",
xoperands);
}
return "";
}
}
}
xoperands[3] = gen_rtx (CONST_INT, VOIDmode, movstrsi_label++);
xoperands[4] = gen_rtx (CONST_INT, VOIDmode, align);
xoperands[5] = gen_rtx (CONST_INT, VOIDmode, movstrsi_label++);
/* This is the size of the transfer.
Either use the register which already contains the size,
or use a free register (used by no operands).
Also emit code to decrement the size value by ALIGN. */
output_size_for_block_move (sizertx, temp1, alignrtx);
/* Must handle the case when the size is zero or negative, so the first thing
we do is compare the size against zero, and only copy bytes if it is
zero or greater. Note that we have already subtracted off the alignment
once, so we must copy 1 alignment worth of bytes if the size is zero
here.
The SUN assembler complains about labels in branch delay slots, so we
do this before outputing the load address, so that there will always
be a harmless insn between the branch here and the next label emitted
below. */
#ifdef NO_UNDERSCORES
output_asm_insn ("cmp %2,0\n\tbl .Lm%5", xoperands);
#else
output_asm_insn ("cmp %2,0\n\tbl Lm%5", xoperands);
#endif
zoperands[0] = operands[0];
zoperands[3] = plus_constant_for_output (operands[0], align);
output_load_address (zoperands);
/* ??? This might be much faster if the loops below were preconditioned
and unrolled.
That is, at run time, copy enough bytes one at a time to ensure that the
target and source addresses are aligned to the the largest possible
alignment. Then use a preconditioned unrolled loop to copy say 16
bytes at a time. Then copy bytes one at a time until finish the rest. */
/* Output the first label separately, so that it is spaced properly. */
#ifdef NO_UNDERSCORES
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, ".Lm", INTVAL (xoperands[3]));
#else
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "Lm", INTVAL (xoperands[3]));
#endif
#ifdef NO_UNDERSCORES
if (align == 1)
output_asm_insn ("ldub [%1+%2],%%g1\n\tsubcc %2,%4,%2\n\tbge .Lm%3\n\tstb %%g1,[%0+%2]\n.Lm%5:", xoperands);
else if (align == 2)
output_asm_insn ("lduh [%1+%2],%%g1\n\tsubcc %2,%4,%2\n\tbge .Lm%3\n\tsth %%g1,[%0+%2]\n.Lm%5:", xoperands);
else
output_asm_insn ("ld [%1+%2],%%g1\n\tsubcc %2,%4,%2\n\tbge .Lm%3\n\tst %%g1,[%0+%2]\n.Lm%5:", xoperands);
return "";
#else
if (align == 1)
output_asm_insn ("ldub [%1+%2],%%g1\n\tsubcc %2,%4,%2\n\tbge Lm%3\n\tstb %%g1,[%0+%2]\nLm%5:", xoperands);
else if (align == 2)
output_asm_insn ("lduh [%1+%2],%%g1\n\tsubcc %2,%4,%2\n\tbge Lm%3\n\tsth %%g1,[%0+%2]\nLm%5:", xoperands);
else
output_asm_insn ("ld [%1+%2],%%g1\n\tsubcc %2,%4,%2\n\tbge Lm%3\n\tst %%g1,[%0+%2]\nLm%5:", xoperands);
return "";
#endif
}
/* Output reasonable peephole for set-on-condition-code insns.
Note that these insns assume a particular way of defining
labels. Therefore, *both* sparc.h and this function must
be changed if a new syntax is needed. */
char *
output_scc_insn (operands, insn)
rtx operands[];
rtx insn;
{
static char string[100];
rtx label = 0, next = insn;
int need_label = 0;
/* Try doing a jump optimization which jump.c can't do for us
because we did not expose that setcc works by using branches.
If this scc insn is followed by an unconditional branch, then have
the jump insn emitted here jump to that location, instead of to
the end of the scc sequence as usual. */
do
{
if (GET_CODE (next) == CODE_LABEL)
label = next;
next = NEXT_INSN (next);
if (next == 0)
break;
}
while (GET_CODE (next) == NOTE || GET_CODE (next) == CODE_LABEL);
/* If we are in a sequence, and the following insn is a sequence also,
then just following the current insn's next field will take us to the
first insn of the next sequence, which is the wrong place. We don't
want to optimize with a branch that has had its delay slot filled.
Avoid this by verifying that NEXT_INSN (PREV_INSN (next)) == next
which fails only if NEXT is such a branch. */
if (next && GET_CODE (next) == JUMP_INSN && simplejump_p (next)
&& (! final_sequence || NEXT_INSN (PREV_INSN (next)) == next))
label = JUMP_LABEL (next);
/* If not optimizing, jump label fields are not set. To be safe, always
check here to whether label is still zero. */
if (label == 0)
{
label = gen_label_rtx ();
need_label = 1;
}
LABEL_NUSES (label) += 1;
operands[2] = label;
/* If we are in a delay slot, assume it is the delay slot of an fpcc
insn since our type isn't allowed anywhere else. */
/* ??? Fpcc instructions no longer have delay slots, so this code is
probably obsolete. */
/* The fastest way to emit code for this is an annulled branch followed
by two move insns. This will take two cycles if the branch is taken,
and three cycles if the branch is not taken.
However, if we are in the delay slot of another branch, this won't work,
because we can't put a branch in the delay slot of another branch.
The above sequence would effectively take 3 or 4 cycles respectively
since a no op would have be inserted between the two branches.
In this case, we want to emit a move, annulled branch, and then the
second move. This sequence always takes 3 cycles, and hence is faster
when we are in a branch delay slot. */
if (final_sequence)
{
strcpy (string, "mov 0,%0\n\t");
strcat (string, output_cbranch (operands[1], 2, 0, 1, 0));
strcat (string, "\n\tmov 1,%0");
}
else
{
strcpy (string, output_cbranch (operands[1], 2, 0, 1, 0));
strcat (string, "\n\tmov 1,%0\n\tmov 0,%0");
}
if (need_label)
strcat (string, "\n%l2:");
return string;
}
/* Vectors to keep interesting information about registers where
it can easily be got. */
/* Modes for condition codes. */
#define C_MODES \
((1 << (int) CCmode) | (1 << (int) CC_NOOVmode) | (1 << (int) CCFPmode))
/* Modes for single-word (and smaller) quantities. */
#define S_MODES \
(~C_MODES \
& ~ ((1 << (int) DImode) | (1 << (int) TImode) \
| (1 << (int) DFmode) | (1 << (int) TFmode)))
/* Modes for double-word (and smaller) quantities. */
#define D_MODES \
(~C_MODES \
& ~ ((1 << (int) TImode) | (1 << (int) TFmode)))
/* Modes for quad-word quantities. */
#define T_MODES (~C_MODES)
/* Modes for single-float quantities. */
#define SF_MODES ((1 << (int) SFmode))
/* Modes for double-float quantities. */
#define DF_MODES (SF_MODES | (1 << (int) DFmode) | (1 << (int) SCmode))
/* Modes for quad-float quantities. */
#define TF_MODES (DF_MODES | (1 << (int) TFmode) | (1 << (int) DCmode))
/* Value is 1 if register/mode pair is acceptable on sparc.
The funny mixture of D and T modes is because integer operations
do not specially operate on tetra quantities, so non-quad-aligned
registers can hold quadword quantities (except %o4 and %i4 because
they cross fixed registers. */
int hard_regno_mode_ok[] = {
C_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES,
T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, D_MODES, S_MODES,
T_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES,
T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, D_MODES, S_MODES,
TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES,
TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES,
TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES,
TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES};
#ifdef __GNUC__
inline
#endif
static int
save_regs (file, low, high, base, offset, n_fregs)
FILE *file;
int low, high;
char *base;
int offset;
int n_fregs;
{
int i;
for (i = low; i < high; i += 2)
{
if (regs_ever_live[i] && ! call_used_regs[i])
if (regs_ever_live[i+1] && ! call_used_regs[i+1])
fprintf (file, "\tstd %s,[%s+%d]\n",
reg_names[i], base, offset + 4 * n_fregs),
n_fregs += 2;
else
fprintf (file, "\tst %s,[%s+%d]\n",
reg_names[i], base, offset + 4 * n_fregs),
n_fregs += 2;
else if (regs_ever_live[i+1] && ! call_used_regs[i+1])
fprintf (file, "\tst %s,[%s+%d]\n",
reg_names[i+1], base, offset + 4 * n_fregs),
n_fregs += 2;
}
return n_fregs;
}
#ifdef __GNUC__
inline
#endif
static int
restore_regs (file, low, high, base, offset, n_fregs)
FILE *file;
int low, high;
char *base;
int offset;
{
int i;
for (i = low; i < high; i += 2)
{
if (regs_ever_live[i] && ! call_used_regs[i])
if (regs_ever_live[i+1] && ! call_used_regs[i+1])
fprintf (file, "\tldd [%s+%d], %s\n",
base, offset + 4 * n_fregs, reg_names[i]),
n_fregs += 2;
else
fprintf (file, "\tld [%s+%d],%s\n",
base, offset + 4 * n_fregs, reg_names[i]),
n_fregs += 2;
else if (regs_ever_live[i+1] && ! call_used_regs[i+1])
fprintf (file, "\tld [%s+%d],%s\n",
base, offset + 4 * n_fregs, reg_names[i+1]),
n_fregs += 2;
}
return n_fregs;
}
/* Static variables we want to share between prologue and epilogue. */
/* Number of live floating point registers needed to be saved. */
static int num_fregs;
/* Nonzero if any floating point register was ever used. */
static int fregs_ever_live;
int
compute_frame_size (size, leaf_function)
int size;
int leaf_function;
{
int fregs_ever_live = 0;
int n_fregs = 0, i;
int outgoing_args_size = (current_function_outgoing_args_size
+ REG_PARM_STACK_SPACE (current_function_decl));
apparent_fsize = ((size) + 7 - STARTING_FRAME_OFFSET) & -8;
for (i = 32; i < FIRST_PSEUDO_REGISTER; i += 2)
fregs_ever_live |= regs_ever_live[i]|regs_ever_live[i+1];
if (TARGET_EPILOGUE && fregs_ever_live)
{
for (i = 32; i < FIRST_PSEUDO_REGISTER; i += 2)
if ((regs_ever_live[i] && ! call_used_regs[i])
|| (regs_ever_live[i+1] && ! call_used_regs[i+1]))
n_fregs += 2;
}
/* Set up values for use in `function_epilogue'. */
num_fregs = n_fregs;
apparent_fsize += (outgoing_args_size+7) & -8;
if (leaf_function && n_fregs == 0
&& apparent_fsize == (REG_PARM_STACK_SPACE (current_function_decl)
- STARTING_FRAME_OFFSET))
apparent_fsize = 0;
actual_fsize = apparent_fsize + n_fregs*4;
/* Make sure nothing can clobber our register windows.
If a SAVE must be done, or there is a stack-local variable,
the register window area must be allocated. */
if (leaf_function == 0 || size > 0)
actual_fsize += (16 * UNITS_PER_WORD)+8;
return actual_fsize;
}
void
output_function_prologue (file, size, leaf_function)
FILE *file;
int size;
{
if (leaf_function)
frame_base_name = "%sp+80";
else
frame_base_name = "%fp";
actual_fsize = compute_frame_size (size, leaf_function);
fprintf (file, "\t!#PROLOGUE# 0\n");
if (actual_fsize == 0) /* do nothing. */ ;
else if (actual_fsize < 4096)
{
if (! leaf_function)
fprintf (file, "\tsave %%sp,-%d,%%sp\n", actual_fsize);
else
fprintf (file, "\tadd %%sp,-%d,%%sp\n", actual_fsize);
}
else if (! leaf_function)
{
/* Need to use actual_fsize, since we are also allocating space for
our callee (and our own register save area). */
fprintf (file, "\tsethi %%hi(%d),%%g1\n\tor %%g1,%%lo(%d),%%g1\n",
-actual_fsize, -actual_fsize);
fprintf (file, "\tsave %%sp,%%g1,%%sp\n");
}
else
{
/* Put pointer to parameters into %g4, and allocate
frame space using result computed into %g1. actual_fsize
used instead of apparent_fsize for reasons stated above. */
abort ();
fprintf (file, "\tsethi %%hi(%d),%%g1\n\tor %%g1,%%lo(%d),%%g1\n",
-actual_fsize, -actual_fsize);
fprintf (file, "\tadd %%sp,64,%%g4\n\tadd %%sp,%%g1,%%sp\n");
}
/* If doing anything with PIC, do it now. */
if (! flag_pic)
fprintf (file, "\t!#PROLOGUE# 1\n");
/* Figure out where to save any special registers. */
if (num_fregs)
{
int offset, n_fregs = num_fregs;
if (! leaf_function)
offset = -apparent_fsize;
else
offset = 0;
if (TARGET_EPILOGUE && ! leaf_function)
n_fregs = save_regs (file, 0, 16, frame_base_name, offset, 0);
else if (leaf_function)
n_fregs = save_regs (file, 0, 32, frame_base_name, offset, 0);
if (TARGET_EPILOGUE)
save_regs (file, 32, FIRST_PSEUDO_REGISTER,
frame_base_name, offset, n_fregs);
}
if (regs_ever_live[62])
fprintf (file, "\tst %s,[%s-16]\n\tst %s,[%s-12]\n",
reg_names[0], frame_base_name,
reg_names[0], frame_base_name);
leaf_label = 0;
if (leaf_function && actual_fsize != 0)
{
/* warning ("leaf procedure with frame size %d", actual_fsize); */
if (! TARGET_EPILOGUE)
leaf_label = gen_label_rtx ();
}
}
void
output_function_epilogue (file, size, leaf_function, true_epilogue)
FILE *file;
int size;
{
int n_fregs, i;
char *ret;
if (leaf_label)
{
if (leaf_function < 0)
abort ();
emit_label_after (leaf_label, get_last_insn ());
final_scan_insn (get_last_insn (), file, 0, 0, 1);
}
if (num_fregs)
{
int offset, n_fregs = num_fregs;
if (! leaf_function)
offset = -apparent_fsize;
else
offset = 0;
if (TARGET_EPILOGUE && ! leaf_function)
n_fregs = restore_regs (file, 0, 16, frame_base_name, offset, 0);
else if (leaf_function)
n_fregs = restore_regs (file, 0, 32, frame_base_name, offset, 0);
if (TARGET_EPILOGUE)
restore_regs (file, 32, FIRST_PSEUDO_REGISTER,
frame_base_name, offset, n_fregs);
}
/* Work out how to skip the caller's unimp instruction if required. */
if (leaf_function)
ret = (current_function_returns_struct ? "jmp %o7+12" : "retl");
else
ret = (current_function_returns_struct ? "jmp %i7+12" : "ret");
/* Tail calls have to do this work themselves. */
if (leaf_function >= 0)
{
if (TARGET_EPILOGUE || leaf_label)
{
int old_target_epilogue = TARGET_EPILOGUE;
target_flags &= ~old_target_epilogue;
if (! leaf_function)
{
/* If we wound up with things in our delay slot,
flush them here. */
if (current_function_epilogue_delay_list)
{
rtx insn = emit_jump_insn_after (gen_rtx (RETURN, VOIDmode),
get_last_insn ());
PATTERN (insn) = gen_rtx (PARALLEL, VOIDmode,
gen_rtvec (2,
PATTERN (XEXP (current_function_epilogue_delay_list, 0)),
PATTERN (insn)));
final_scan_insn (insn, file, 1, 0, 1);
}
else
fprintf (file, "\t%s\n\trestore\n", ret);
}
else if (actual_fsize < 4096)
{
if (current_function_epilogue_delay_list)
{
fprintf (file, "\t%s\n", ret);
final_scan_insn (XEXP (current_function_epilogue_delay_list, 0),
file, 1, 0, 1);
}
else
fprintf (file, "\t%s\n\tadd %%sp,%d,%%sp\n",
ret, actual_fsize);
}
else
{
if (current_function_epilogue_delay_list)
abort ();
fprintf (file, "\tsethi %%hi(%d),%%g1\n\tor %%g1,%%lo(%d),%%g1\n\t%s\n\tadd %%sp,%%g1,%%sp\n",
actual_fsize, actual_fsize, ret);
}
target_flags |= old_target_epilogue;
}
}
else if (true_epilogue)
{
/* We may still need a return insn! Somebody could jump around
the tail-calls that this function makes. */
if (TARGET_EPILOGUE)
{
rtx last = get_last_insn ();
last = prev_nonnote_insn (last);
if (last == 0
|| (GET_CODE (last) != JUMP_INSN && GET_CODE (last) != BARRIER))
fprintf (file, "\t%s\n\tnop\n", ret);
}
}
}
/* Return the string to output a conditional branch to LABEL, which is
the operand number of the label. OP is the conditional expression. The
mode of register 0 says what kind of comparison we made.
REVERSED is non-zero if we should reverse the sense of the comparison.
ANNUL is non-zero if we should generate an annulling branch.
NOOP is non-zero if we have to follow this branch by a noop. */
char *
output_cbranch (op, label, reversed, annul, noop)
rtx op;
int label;
int reversed, annul, noop;
{
static char string[20];
enum rtx_code code = GET_CODE (op);
enum machine_mode mode = GET_MODE (XEXP (op, 0));
static char labelno[] = " %lX";
/* ??? FP branches can not be preceeded by another floating point insn.
Because there is currently no concept of pre-delay slots, we can fix
this only by always emitting a nop before a floating point branch. */
if (mode == CCFPmode)
strcpy (string, "nop\n\t");
/* If not floating-point or if EQ or NE, we can just reverse the code. */
if (reversed && (mode != CCFPmode || code == EQ || code == NE))
code = reverse_condition (code), reversed = 0;
/* Start by writing the branch condition. */
switch (code)
{
case NE:
if (mode == CCFPmode)
strcat (string, "fbne");
else
strcpy (string, "bne");
break;
case EQ:
if (mode == CCFPmode)
strcat (string, "fbe");
else
strcpy (string, "be");
break;
case GE:
if (mode == CCFPmode)
{
if (reversed)
strcat (string, "fbul");
else
strcat (string, "fbge");
}
else if (mode == CC_NOOVmode)
strcpy (string, "bpos");
else
strcpy (string, "bge");
break;
case GT:
if (mode == CCFPmode)
{
if (reversed)
strcat (string, "fbule");
else
strcat (string, "fbg");
}
else
strcpy (string, "bg");
break;
case LE:
if (mode == CCFPmode)
{
if (reversed)
strcat (string, "fbug");
else
strcat (string, "fble");
}
else
strcpy (string, "ble");
break;
case LT:
if (mode == CCFPmode)
{
if (reversed)
strcat (string, "fbuge");
else
strcat (string, "fbl");
}
else if (mode == CC_NOOVmode)
strcpy (string, "bneg");
else
strcpy (string, "bl");
break;
case GEU:
strcpy (string, "bgeu");
break;
case GTU:
strcpy (string, "bgu");
break;
case LEU:
strcpy (string, "bleu");
break;
case LTU:
strcpy (string, "blu");
break;
}
/* Now add the annulling, the label, and a possible noop. */
if (annul)
strcat (string, ",a");
labelno[3] = label + '0';
strcat (string, labelno);
if (noop)
strcat (string, "\n\tnop");
return string;
}
char *
output_return (operands)
rtx *operands;
{
if (leaf_label)
{
operands[0] = leaf_label;
return "b,a %l0";
}
else if (leaf_function)
{
operands[0] = gen_rtx (CONST_INT, VOIDmode, actual_fsize);
if (actual_fsize < 4096)
{
if (current_function_returns_struct)
return "jmp %%o7+12\n\tadd %%sp,%0,%%sp";
else
return "retl\n\tadd %%sp,%0,%%sp";
}
else
{
if (current_function_returns_struct)
return "sethi %%hi(%a0),%%g1\n\tor %%g1,%%lo(%a0),%%g1\n\tjmp %%o7+12\n\tadd %%sp,%%g1,%%sp";
else
return "sethi %%hi(%a0),%%g1\n\tor %%g1,%%lo(%a0),%%g1\n\tretl\n\tadd %%sp,%%g1,%%sp";
}
}
else
{
if (current_function_returns_struct)
return "jmp %%i7+12\n\trestore";
else
return "ret\n\trestore";
}
}
char *
output_floatsisf2 (operands)
rtx *operands;
{
if (GET_CODE (operands[1]) == MEM)
return "ld %1,%0\n\tfitos %0,%0";
else if (FP_REG_P (operands[1]))
return "fitos %1,%0";
return "st %r1,[%%fp-4]\n\tld [%%fp-4],%0\n\tfitos %0,%0";
}
char *
output_floatsidf2 (operands)
rtx *operands;
{
if (GET_CODE (operands[1]) == MEM)
return "ld %1,%0\n\tfitod %0,%0";
else if (FP_REG_P (operands[1]))
return "fitod %1,%0";
return "st %r1,[%%fp-4]\n\tld [%%fp-4],%0\n\tfitod %0,%0";
}
int
tail_call_valid_p ()
{
static int checked = 0;
static int valid_p = 0;
if (! checked)
{
register int i;
checked = 1;
for (i = 32; i < FIRST_PSEUDO_REGISTER; i++)
if (! fixed_regs[i] && ! call_used_regs[i])
return 0;
valid_p = 1;
}
return valid_p;
}
/* Leaf functions and non-leaf functions have different needs. */
static int
reg_leaf_alloc_order[] = REG_LEAF_ALLOC_ORDER;
static int
reg_nonleaf_alloc_order[] = REG_ALLOC_ORDER;
static int *reg_alloc_orders[] = {
reg_leaf_alloc_order,
reg_nonleaf_alloc_order};
void
order_regs_for_local_alloc ()
{
static int last_order_nonleaf = 1;
if (regs_ever_live[15] != last_order_nonleaf)
{
last_order_nonleaf = !last_order_nonleaf;
bcopy (reg_alloc_orders[last_order_nonleaf], reg_alloc_order,
FIRST_PSEUDO_REGISTER * sizeof (int));
}
}
/* Machine dependent routines for the branch probability, arc profiling
code. */
/* The label used by the arc profiling code. */
static rtx profiler_label;
void
init_arc_profiler ()
{
/* Generate and save a copy of this so it can be shared. */
profiler_label = gen_rtx (SYMBOL_REF, Pmode, "*LPBX2");
}
void
output_arc_profiler (arcno, insert_after)
int arcno;
rtx insert_after;
{
rtx profiler_target_addr
= gen_rtx (CONST, Pmode,
gen_rtx (PLUS, Pmode, profiler_label,
gen_rtx (CONST_INT, VOIDmode, 4 * arcno)));
register rtx profiler_reg = gen_reg_rtx (SImode);
register rtx temp = gen_reg_rtx (Pmode);
register rtx profiler_target = gen_rtx (MEM, SImode,
gen_rtx (LO_SUM, Pmode, temp,
profiler_target_addr));
/* The insns are emitted from last to first after the insn insert_after.
Emit_insn_after is used because sometimes we want to put the
instrumentation code after the last insn of the function. */
emit_insn_after (gen_rtx (SET, VOIDmode, profiler_target, profiler_reg),
insert_after);
emit_insn_after (gen_rtx (SET, VOIDmode, profiler_reg,
gen_rtx (PLUS, SImode, profiler_reg, const1_rtx)),
insert_after);
emit_insn_after (gen_rtx (SET, VOIDmode, profiler_reg, profiler_target),
insert_after);
emit_insn_after (gen_rtx (SET, VOIDmode, temp,
gen_rtx (HIGH, Pmode, profiler_target_addr)),
insert_after);
}
/* All the remaining routines in this file have been turned off. */
#if 0
char *
output_tail_call (operands, insn)
rtx *operands;
rtx insn;
{
int this_fsize = actual_fsize;
rtx next;
int need_nop_at_end = 0;
next = next_real_insn (insn);
while (next && GET_CODE (next) == CODE_LABEL)
next = next_real_insn (insn);
if (final_sequence && this_fsize > 0)
{
rtx xoperands[1];
/* If we have to restore any registers, don't take any chances
restoring a register before we discharge it into
its home. If the frame size is only 88, we are guaranteed
that the epilogue will fit in the delay slot. */
rtx delay_insn = XVECEXP (final_sequence, 0, 1);
if (GET_CODE (PATTERN (delay_insn)) == SET)
{
rtx dest = SET_DEST (PATTERN (delay_insn));
if (GET_CODE (dest) == REG
&& reg_mentioned_p (dest, insn))
abort ();
}
else if (GET_CODE (PATTERN (delay_insn)) == PARALLEL)
abort ();
xoperands[0] = operands[0];
final_scan_insn (delay_insn, asm_out_file, 0, 0, 1);
operands[0] = xoperands[0];
final_sequence = 0;
}
/* Make sure we are clear to return. */
output_function_epilogue (asm_out_file, get_frame_size (), -1, 0);
/* Strip the MEM. */
operands[0] = XEXP (operands[0], 0);
if (final_sequence == 0
&& (next == 0
|| GET_CODE (next) == CALL_INSN
|| GET_CODE (next) == JUMP_INSN))
need_nop_at_end = 1;
if (flag_pic)
return output_pic_sequence_2 (2, 3, 0, "jmpl %%g1+%3", operands, need_nop_at_end);
if (GET_CODE (operands[0]) == REG)
output_asm_insn ("jmpl %a0,%%g0", operands);
else if (TARGET_TAIL_CALL)
{
/* We assume all labels will be within 16 MB of our call. */
if (need_nop_at_end || final_sequence)
output_asm_insn ("b %a0", operands);
else
output_asm_insn ("b,a %a0", operands);
}
else if (! final_sequence)
{
output_asm_insn ("sethi %%hi(%a0),%%g1\n\tjmpl %%g1+%%lo(%a0),%%g1",
operands);
}
else
{
int i;
rtx x = PATTERN (XVECEXP (final_sequence, 0, 1));
for (i = 1; i < 32; i++)
if ((i == 1 || ! fixed_regs[i])
&& call_used_regs[i]
&& ! refers_to_regno_p (i, i+1, x, 0))
break;
if (i == 32)
abort ();
operands[1] = gen_rtx (REG, SImode, i);
output_asm_insn ("sethi %%hi(%a0),%1\n\tjmpl %1+%%lo(%a0),%1", operands);
}
return (need_nop_at_end ? "nop" : "");
}
#endif
/* Print operand X (an rtx) in assembler syntax to file FILE.
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
For `%' followed by punctuation, CODE is the punctuation and X is null. */
void
print_operand (file, x, code)
FILE *file;
rtx x;
int code;
{
switch (code)
{
case '#':
/* Output a 'nop' if there's nothing for the delay slot. */
if (dbr_sequence_length () == 0)
fputs ("\n\tnop", file);
return;
case '*':
/* Output an annul flag if there's nothing for the delay slot. */
if (dbr_sequence_length () == 0)
fputs (",a", file);
return;
case 'Y':
/* Adjust the operand to take into account a RESTORE operation. */
if (GET_CODE (x) != REG)
abort ();
if (REGNO (x) < 8)
fputs (reg_names[REGNO (x)], file);
else if (REGNO (x) >= 24 && REGNO (x) < 32)
fputs (reg_names[REGNO (x)-16], file);
else
abort ();
return;
case '@':
/* Print out what we are using as the frame pointer. This might
be %fp, or might be %sp+offset. */
fputs (frame_base_name, file);
return;
case 'R':
/* Print out the second register name of a register pair.
I.e., R (%o0) => %o1. */
fputs (reg_names[REGNO (x)+1], file);
return;
case 'm':
/* Print the operand's address only. */
output_address (XEXP (x, 0));
return;
case 'r':
/* In this case we need a register. Use %g0 if the
operand in const0_rtx. */
if (x == const0_rtx)
{
fputs ("%g0", file);
return;
}
else
break;
case 'A':
switch (GET_CODE (x))
{
case IOR: fputs ("or", file); break;
case AND: fputs ("and", file); break;
case XOR: fputs ("xor", file); break;
default: abort ();
}
return;
case 'B':
switch (GET_CODE (x))
{
case IOR: fputs ("orn", file); break;
case AND: fputs ("andn", file); break;
case XOR: fputs ("xnor", file); break;
default: abort ();
}
return;
case 'b':
{
/* Print a sign-extended character. */
int i = INTVAL (x) & 0xff;
if (i & 0x80)
i |= 0xffffff00;
fprintf (file, "%d", i);
return;
}
case 0:
/* Do nothing special. */
break;
default:
/* Undocumented flag. */
abort ();
}
if (GET_CODE (x) == REG)
fputs (reg_names[REGNO (x)], file);
else if (GET_CODE (x) == MEM)
{
fputc ('[', file);
if (CONSTANT_P (XEXP (x, 0)))
/* Poor Sun assembler doesn't understand absolute addressing. */
fputs ("%g0+", file);
output_address (XEXP (x, 0));
fputc (']', file);
}
else if (GET_CODE (x) == HIGH)
{
fputs ("%hi(", file);
output_addr_const (file, XEXP (x, 0));
fputc (')', file);
}
else if (GET_CODE (x) == LO_SUM)
{
print_operand (file, XEXP (x, 0), 0);
fputs ("+%lo(", file);
output_addr_const (file, XEXP (x, 1));
fputc (')', file);
}
else if (GET_CODE (x) == CONST_DOUBLE)
{
if (CONST_DOUBLE_HIGH (x) == 0)
fprintf (file, "%u", CONST_DOUBLE_LOW (x));
else if (CONST_DOUBLE_HIGH (x) == -1
&& CONST_DOUBLE_LOW (x) < 0)
fprintf (file, "%d", CONST_DOUBLE_LOW (x));
else
abort ();
}
else { output_addr_const (file, x); }
}
/* This function outputs assembler code for VALUE to FILE, where VALUE is
a 64 bit (DImode) value. */
/* ??? If there is a 64 bit counterpart to .word that the assembler
understands, then using that would simply this code greatly. */
void
output_double_int (file, value)
FILE *file;
rtx value;
{
if (GET_CODE (value) == CONST_INT)
{
if (INTVAL (value) < 0)
ASM_OUTPUT_INT (file, constm1_rtx);
else
ASM_OUTPUT_INT (file, const0_rtx);
ASM_OUTPUT_INT (file, value);
}
else if (GET_CODE (value) == CONST_DOUBLE)
{
ASM_OUTPUT_INT (file, gen_rtx (CONST_INT, VOIDmode,
CONST_DOUBLE_HIGH (value)));
ASM_OUTPUT_INT (file, gen_rtx (CONST_INT, VOIDmode,
CONST_DOUBLE_LOW (value)));
}
else if (GET_CODE (value) == SYMBOL_REF
|| GET_CODE (value) == CONST
|| GET_CODE (value) == PLUS)
{
/* Addresses are only 32 bits. */
ASM_OUTPUT_INT (file, const0_rtx);
ASM_OUTPUT_INT (file, value);
}
else
abort ();
}
/* Definitions of target machine for GNU compiler. Vax version.
Copyright (C) 1987, 1988, 1991 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
/* Names to predefine in the preprocessor for this target machine. */
#define CPP_PREDEFINES "-Dvax -Dunix"
/* If using g-format floating point, alter math.h. */
#define CPP_SPEC "%{mg:-DGFLOAT}"
/* Choose proper libraries depending on float format.
Note that there are no profiling libraries for g-format.
Also use -lg for the sake of dbx. */
#define LIB_SPEC "%{g:-lg}\
%{mg:%{lm:-lmg} -lcg \
%{p:%eprofiling not supported with -mg\n}\
%{pg:%eprofiling not supported with -mg\n}}\
%{!mg:%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}}"
/* Print subsidiary information on the compiler version in use. */
#define TARGET_VERSION fprintf (stderr, " (vax)");
/* Run-time compilation parameters selecting different hardware subsets. */
extern int target_flags;
/* Macros used in the machine description to test the flags. */
/* Nonzero if compiling code that Unix assembler can assemble. */
#define TARGET_UNIX_ASM (target_flags & 1)
/* Nonzero if compiling with VAX-11 "C" style structure alignment */
#define TARGET_VAXC_ALIGNMENT (target_flags & 2)
/* Nonzero if compiling with `G'-format floating point */
#define TARGET_G_FLOAT (target_flags & 4)
/* Macro to define tables used to set the flags.
This is a list in braces of pairs in braces,
each pair being { "NAME", VALUE }
where VALUE is the bits to set or minus the bits to clear.
An empty string NAME is used to identify the default VALUE. */
#define TARGET_SWITCHES \
{ {"unix", 1}, \
{"gnu", -1}, \
{"vaxc-alignment", 2}, \
{"g", 4}, \
{"g-float", 4}, \
{"d", -4}, \
{"d-float", -4}, \
{ "", TARGET_DEFAULT}}
/* Default target_flags if no switches specified. */
#ifndef TARGET_DEFAULT
#define TARGET_DEFAULT 1
#endif
/* Target machine storage layout */
/* Define this if most significant bit is lowest numbered
in instructions that operate on numbered bit-fields.
This is not true on the vax. */
#define BITS_BIG_ENDIAN 0
/* Define this if most significant byte of a word is the lowest numbered. */
/* That is not true on the vax. */
#define BYTES_BIG_ENDIAN 0
/* Define this if most significant word of a multiword number is the lowest
numbered. */
/* This is not true on the vax. */
#define WORDS_BIG_ENDIAN 0
/* Number of bits in an addressible storage unit */
#define BITS_PER_UNIT 8
/* Width in bits of a "word", which is the contents of a machine register.
Note that this is not necessarily the width of data type `int';
if using 16-bit ints on a 68000, this would still be 32.
But on a machine with 16-bit registers, this would be 16. */
#define BITS_PER_WORD 32
/* Width of a word, in units (bytes). */
#define UNITS_PER_WORD 4
/* Width in bits of a pointer.
See also the macro `Pmode' defined below. */
#define POINTER_SIZE 32
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
#define PARM_BOUNDARY 32
/* Allocation boundary (in *bits*) for the code of a function. */
#define FUNCTION_BOUNDARY 16
/* Alignment of field after `int : 0' in a structure. */
#define EMPTY_FIELD_BOUNDARY (TARGET_VAXC_ALIGNMENT ? 8 : 32)
/* Every structure's size must be a multiple of this. */
#define STRUCTURE_SIZE_BOUNDARY 8
/* A bitfield declared as `int' forces `int' alignment for the struct. */
#define PCC_BITFIELD_TYPE_MATTERS (! TARGET_VAXC_ALIGNMENT)
/* No data type wants to be aligned rounder than this. */
#define BIGGEST_ALIGNMENT 32
/* No structure field wants to be aligned rounder than this. */
#define BIGGEST_FIELD_ALIGNMENT (TARGET_VAXC_ALIGNMENT ? 8 : 32)
/* Define this if move instructions will actually fail to work
when given unaligned data. */
/* #define STRICT_ALIGNMENT */
/* Standard register usage. */
/* Number of actual hardware registers.
The hardware registers are assigned numbers for the compiler
from 0 to just below FIRST_PSEUDO_REGISTER.
All registers that the compiler knows about must be given numbers,
even those that are not normally considered general registers. */
#define FIRST_PSEUDO_REGISTER 16
/* 1 for registers that have pervasive standard uses
and are not available for the register allocator.
On the vax, these are the AP, FP, SP and PC. */
#define FIXED_REGISTERS {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
Aside from that, you can include as many other registers as you like. */
#define CALL_USED_REGISTERS {1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
/* Return number of consecutive hard regs needed starting at reg REGNO
to hold something of mode MODE.
This is ordinarily the length in words of a value of mode MODE
but can be less for certain modes in special long registers.
On the vax, all registers are one word long. */
#define HARD_REGNO_NREGS(REGNO, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
On the vax, all registers can hold all modes. */
#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
/* Value is 1 if it is a good idea to tie two pseudo registers
when one has mode MODE1 and one has mode MODE2.
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
for any hard reg, then this must be 0 for correct output. */
#define MODES_TIEABLE_P(MODE1, MODE2) 1
/* Specify the registers used for certain standard purposes.
The values of these macros are register numbers. */
/* Vax pc is overloaded on a register. */
#define PC_REGNUM 15
/* Register to use for pushing function arguments. */
#define STACK_POINTER_REGNUM 14
/* Base register for access to local variables of the function. */
#define FRAME_POINTER_REGNUM 13
/* Value should be nonzero if functions must have frame pointers.
Zero means the frame pointer need not be set up (and parms
may be accessed via the stack pointer) in functions that seem suitable.
This is computed in `reload', in reload1.c. */
#define FRAME_POINTER_REQUIRED 1
/* Base register for access to arguments of the function. */
#define ARG_POINTER_REGNUM 12
/* Register in which static-chain is passed to a function. */
#define STATIC_CHAIN_REGNUM 0
/* Register in which address to store a structure value
is passed to a function. */
#define STRUCT_VALUE_REGNUM 1
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
For any two classes, it is very desirable that there be another
class that represents their union. */
/* The vax has only one kind of registers, so NO_REGS and ALL_REGS
are the only classes. */
enum reg_class { NO_REGS, ALL_REGS, LIM_REG_CLASSES };
#define N_REG_CLASSES (int) LIM_REG_CLASSES
/* Since GENERAL_REGS is the same class as ALL_REGS,
don't give it a different class number; just make it an alias. */
#define GENERAL_REGS ALL_REGS
/* Give names of register classes as strings for dump file. */
#define REG_CLASS_NAMES \
{"NO_REGS", "ALL_REGS" }
/* Define which registers fit in which classes.
This is an initializer for a vector of HARD_REG_SET
of length N_REG_CLASSES. */
#define REG_CLASS_CONTENTS {0, 0xffff}
/* The same information, inverted:
Return the class number of the smallest class containing
reg number REGNO. This could be a conditional expression
or could index an array. */
#define REGNO_REG_CLASS(REGNO) ALL_REGS
/* The class value for index registers, and the one for base regs. */
#define INDEX_REG_CLASS ALL_REGS
#define BASE_REG_CLASS ALL_REGS
/* Get reg_class from a letter such as appears in the machine description. */
#define REG_CLASS_FROM_LETTER(C) NO_REGS
/* The letters I, J, K, L and M in a register constraint string
can be used to stand for particular ranges of immediate operands.
This macro defines what the ranges are.
C is the letter, and VALUE is a constant value.
Return 1 if VALUE is in the range specified by C.
`I' is the constant zero. */
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'I' ? (VALUE) == 0 \
: 0)
/* Similar, but for floating constants, and defining letters G and H.
Here VALUE is the CONST_DOUBLE rtx itself.
`G' is a floating-point zero. */
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'G' ? ((VALUE) == CONST0_RTX (DFmode) \
|| (VALUE) == CONST0_RTX (SFmode)) \
: 0)
/* Given an rtx X being reloaded into a reg required to be
in class CLASS, return the class of reg to actually use.
In general this is just CLASS; but on some machines
in some cases it is preferable to use a more restrictive class. */
#define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS. */
/* On the vax, this is always the size of MODE in words,
since all registers are the same size. */
#define CLASS_MAX_NREGS(CLASS, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
/* Stack layout; function entry, exit and calling. */
/* Define this if pushing a word on the stack
makes the stack pointer a smaller address. */
#define STACK_GROWS_DOWNWARD
/* Define this if longjmp restores from saved registers
rather than from what setjmp saved. */
#define LONGJMP_RESTORE_FROM_STACK
/* Define this if the nominal address of the stack frame
is at the high-address end of the local variables;
that is, each additional local variable allocated
goes at a more negative offset in the frame. */
#define FRAME_GROWS_DOWNWARD
/* Offset within stack frame to start allocating local variables at.
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
first local allocated. Otherwise, it is the offset to the BEGINNING
of the first local allocated. */
#define STARTING_FRAME_OFFSET 0
/* If we generate an insn to push BYTES bytes,
this says how many the stack pointer really advances by.
On the vax, -(sp) pushes only the bytes of the operands. */
#define PUSH_ROUNDING(BYTES) (BYTES)
/* Offset of first parameter from the argument pointer register value. */
#define FIRST_PARM_OFFSET(FNDECL) 4
/* Value is the number of bytes of arguments automatically
popped when returning from a subroutine call.
FUNTYPE is the data type of the function (as a tree),
or for a library call it is an identifier node for the subroutine name.
SIZE is the number of bytes of arguments passed on the stack.
On the Vax, the RET insn always pops all the args for any function. */
#define RETURN_POPS_ARGS(FUNTYPE,SIZE) (SIZE)
/* Define how to find the value returned by a function.
VALTYPE is the data type of the value (as a tree).
If the precise function being called is known, FUNC is its FUNCTION_DECL;
otherwise, FUNC is 0. */
/* On the Vax the return value is in R0 regardless. */
#define FUNCTION_VALUE(VALTYPE, FUNC) \
gen_rtx (REG, TYPE_MODE (VALTYPE), 0)
/* Define how to find the value returned by a library function
assuming the value has mode MODE. */
/* On the Vax the return value is in R0 regardless. */
#define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 0)
/* Define this if PCC uses the nonreentrant convention for returning
structure and union values. */
#define PCC_STATIC_STRUCT_RETURN
/* 1 if N is a possible register number for a function value.
On the Vax, R0 is the only register thus used. */
#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
/* 1 if N is a possible register number for function argument passing.
On the Vax, no registers are used in this way. */
#define FUNCTION_ARG_REGNO_P(N) 0
/* Define a data type for recording info about an argument list
during the scan of that argument list. This data type should
hold all necessary information about the function itself
and about the args processed so far, enough to enable macros
such as FUNCTION_ARG to determine where the next arg should go.
On the vax, this is a single integer, which is a number of bytes
of arguments scanned so far. */
#define CUMULATIVE_ARGS int
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0.
On the vax, the offset starts at 0. */
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
((CUM) = 0)
/* Update the data in CUM to advance over an argument
of mode MODE and data type TYPE.
(TYPE is null for libcalls where that information may not be available.) */
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
((CUM) += ((MODE) != BLKmode \
? (GET_MODE_SIZE (MODE) + 3) & ~3 \
: (int_size_in_bytes (TYPE) + 3) & ~3))
/* Define where to put the arguments to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis). */
/* On the vax all args are pushed. */
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
/* This macro generates the assembly code for function entry.
FILE is a stdio stream to output the code to.
SIZE is an int: how many units of temporary storage to allocate.
Refer to the array `regs_ever_live' to determine which registers
to save; `regs_ever_live[I]' is nonzero if register number I
is ever used in the function. This macro is responsible for
knowing which registers should not be saved even if used. */
#define FUNCTION_PROLOGUE(FILE, SIZE) \
{ register int regno; \
register int mask = 0; \
extern char call_used_regs[]; \
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
if (regs_ever_live[regno] && !call_used_regs[regno]) \
mask |= 1 << regno; \
fprintf (FILE, "\t.word 0x%x\n", mask); \
MAYBE_VMS_FUNCTION_PROLOGUE(FILE) \
if ((SIZE) >= 64) fprintf (FILE, "\tmovab %d(sp),sp\n", -SIZE);\
else if (SIZE) fprintf (FILE, "\tsubl2 $%d,sp\n", (SIZE)); }
/* vms.h redefines this. */
#define MAYBE_VMS_FUNCTION_PROLOGUE(FILE)
/* Output assembler code to FILE to increment profiler label # LABELNO
for profiling a function entry. */
#define FUNCTION_PROFILER(FILE, LABELNO) \
fprintf (FILE, "\tmovab LP%d,r0\n\tjsb mcount\n", (LABELNO));
/* Output assembler code to FILE to initialize this source file's
basic block profiling info, if that has not already been done. */
#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
fprintf (FILE, "\ttstl LPBX0\n\tjneq LPI%d\n\tpushal LPBX0\n\tcalls $1,__bb_init_func\nLPI%d:\n", \
LABELNO, LABELNO);
/* Output assembler code to FILE to increment the entry-count for
the BLOCKNO'th basic block in this source file. This is a real pain in the
sphincter on a VAX, since we do not want to change any of the bits in the
processor status word. The way it is done here, it is pushed onto the stack
before any flags have changed, and then the stack is fixed up to account for
the fact that the instruction to restore the flags only reads a word.
It may seem a bit clumsy, but at least it works.
*/
#define BLOCK_PROFILER(FILE, BLOCKNO) \
fprintf (FILE, "\tmovpsl -(sp)\n\tmovw (sp),2(sp)\n\taddl2 $2,sp\n\taddl2 $1,LPBX2+%d\n\tbicpsw $255\n\tbispsw (sp)+\n", \
4 * BLOCKNO)
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. The value is tested only in
functions that have frame pointers.
No definition is equivalent to always zero. */
#define EXIT_IGNORE_STACK 1
/* This macro generates the assembly code for function exit,
on machines that need it. If FUNCTION_EPILOGUE is not defined
then individual return instructions are generated for each
return statement. Args are same as for FUNCTION_PROLOGUE. */
/* #define FUNCTION_EPILOGUE(FILE, SIZE) */
/* Store in the variable DEPTH the initial difference between the
frame pointer reg contents and the stack pointer reg contents,
as of the start of the function body. This depends on the layout
of the fixed parts of the stack frame and on how registers are saved.
On the Vax, FRAME_POINTER_REQUIRED is always 1, so the definition of this
macro doesn't matter. But it must be defined. */
#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0;
/* Output assembler code for a block containing the constant parts
of a trampoline, leaving space for the variable parts. */
/* On the vax, the trampoline contains an entry mask and two instructions:
.word NN
movl $STATIC,r0 (store the functions static chain)
jmp *$FUNCTION (jump to function code at address FUNCTION) */
#define TRAMPOLINE_TEMPLATE(FILE) \
{ \
ASM_OUTPUT_SHORT (FILE, const0_rtx); \
ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x8fd0)); \
ASM_OUTPUT_INT (FILE, const0_rtx); \
ASM_OUTPUT_BYTE (FILE, 0x50+STATIC_CHAIN_REGNUM); \
ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x9f17)); \
ASM_OUTPUT_INT (FILE, const0_rtx); \
}
/* Length in units of the trampoline for entering a nested function. */
#define TRAMPOLINE_SIZE 15
/* Emit RTL insns to initialize the variable parts of a trampoline.
FNADDR is an RTX for the address of the function's pure code.
CXT is an RTX for the static chain value for the function. */
/* We copy the register-mask from the function's pure code
to the start of the trampoline. */
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
{ \
emit_move_insn (gen_rtx (MEM, HImode, TRAMP), \
gen_rtx (MEM, HImode, FNADDR)); \
emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 4)), CXT);\
emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 11)), \
plus_constant (FNADDR, 2)); \
}
/* Addressing modes, and classification of registers for them. */
#define HAVE_POST_INCREMENT
/* #define HAVE_POST_DECREMENT */
#define HAVE_PRE_DECREMENT
/* #define HAVE_PRE_INCREMENT */
/* Macros to check register numbers against specific register classes. */
/* These assume that REGNO is a hard or pseudo reg number.
They give nonzero only if REGNO is a hard reg of the suitable class
or a pseudo reg currently allocated to a suitable hard reg.
Since they use reg_renumber, they are safe only once reg_renumber
has been allocated, which happens in local-alloc.c. */
#define REGNO_OK_FOR_INDEX_P(regno) \
((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
#define REGNO_OK_FOR_BASE_P(regno) \
((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
/* Maximum number of registers that can appear in a valid memory address. */
#define MAX_REGS_PER_ADDRESS 2
/* 1 if X is an rtx for a constant that is a valid address. */
#define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
/* Nonzero if the constant value X is a legitimate general operand.
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
#define LEGITIMATE_CONSTANT_P(X) 1
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
and check its validity for a certain class.
We have two alternate definitions for each of them.
The usual definition accepts all pseudo regs; the other rejects
them unless they have been allocated suitable hard regs.
The symbol REG_OK_STRICT causes the latter definition to be used.
Most source files want to accept pseudo regs in the hope that
they will get allocated to the class that the insn wants them to be in.
Source files for reload pass need to be strict.
After reload, it makes no difference, since pseudo regs have
been eliminated by then. */
#ifndef REG_OK_STRICT
/* Nonzero if X is a hard reg that can be used as an index
or if it is a pseudo reg. */
#define REG_OK_FOR_INDEX_P(X) 1
/* Nonzero if X is a hard reg that can be used as a base reg
or if it is a pseudo reg. */
#define REG_OK_FOR_BASE_P(X) 1
#else
/* Nonzero if X is a hard reg that can be used as an index. */
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
/* Nonzero if X is a hard reg that can be used as a base reg. */
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
#endif
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
that is a valid memory address for an instruction.
The MODE argument is the machine mode for the MEM expression
that wants to use this address.
The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
except for CONSTANT_ADDRESS_P which is actually machine-independent. */
#ifdef NO_EXTERNAL_INDIRECT_ADDRESS
/* Zero if this contains a (CONST (PLUS (SYMBOL_REF) (...))) and the
symbol in the SYMBOL_REF is an external symbol. */
#define INDIRECTABLE_CONSTANT_P(X) \
(! (GET_CODE ((X)) == CONST \
&& GET_CODE (XEXP ((X), 0)) == PLUS \
&& GET_CODE (XEXP (XEXP ((X), 0), 0)) == SYMBOL_REF \
&& SYMBOL_REF_FLAG (XEXP (XEXP ((X), 0), 0))))
/* Re-definition of CONSTANT_ADDRESS_P, which is true only when there
are no SYMBOL_REFs for external symbols present. */
#define INDIRECTABLE_CONSTANT_ADDRESS_P(X) \
(GET_CODE (X) == LABEL_REF \
|| (GET_CODE (X) == SYMBOL_REF && !SYMBOL_REF_FLAG (X)) \
|| (GET_CODE (X) == CONST && INDIRECTABLE_CONSTANT_P(X)) \
|| GET_CODE (X) == CONST_INT)
/* Non-zero if X is an address which can be indirected. External symbols
could be in a sharable image library, so we disallow those. */
#define INDIRECTABLE_ADDRESS_P(X) \
(INDIRECTABLE_CONSTANT_ADDRESS_P (X) \
|| (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
|| (GET_CODE (X) == PLUS \
&& GET_CODE (XEXP (X, 0)) == REG \
&& REG_OK_FOR_BASE_P (XEXP (X, 0)) \
&& INDIRECTABLE_CONSTANT_ADDRESS_P (XEXP (X, 1))))
#else /* not NO_EXTERNAL_INDIRECT_ADDRESS */
#define INDIRECTABLE_CONSTANT_ADDRESS_P(X) CONSTANT_ADDRESS_P(X)
/* Non-zero if X is an address which can be indirected. */
#define INDIRECTABLE_ADDRESS_P(X) \
(CONSTANT_ADDRESS_P (X) \
|| (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
|| (GET_CODE (X) == PLUS \
&& GET_CODE (XEXP (X, 0)) == REG \
&& REG_OK_FOR_BASE_P (XEXP (X, 0)) \
&& CONSTANT_ADDRESS_P (XEXP (X, 1))))
#endif /* not NO_EXTERNAL_INDIRECT_ADDRESS */
/* Go to ADDR if X is a valid address not using indexing.
(This much is the easy part.) */
#define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
{ register rtx xfoob = (X); \
if (GET_CODE (xfoob) == REG) goto ADDR; \
if (CONSTANT_ADDRESS_P (xfoob)) goto ADDR; \
if (INDIRECTABLE_ADDRESS_P (xfoob)) goto ADDR; \
xfoob = XEXP (X, 0); \
if (GET_CODE (X) == MEM && INDIRECTABLE_ADDRESS_P (xfoob)) \
goto ADDR; \
if ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \
&& GET_CODE (xfoob) == REG && REG_OK_FOR_BASE_P (xfoob)) \
goto ADDR; }
/* 1 if PROD is either a reg times size of mode MODE
or just a reg, if MODE is just one byte.
This macro's expansion uses the temporary variables xfoo0 and xfoo1
that must be declared in the surrounding context. */
#define INDEX_TERM_P(PROD, MODE) \
(GET_MODE_SIZE (MODE) == 1 \
? (GET_CODE (PROD) == REG && REG_OK_FOR_BASE_P (PROD)) \
: (GET_CODE (PROD) == MULT \
&& \
(xfoo0 = XEXP (PROD, 0), xfoo1 = XEXP (PROD, 1), \
((GET_CODE (xfoo0) == CONST_INT \
&& INTVAL (xfoo0) == GET_MODE_SIZE (MODE) \
&& GET_CODE (xfoo1) == REG \
&& REG_OK_FOR_INDEX_P (xfoo1)) \
|| \
(GET_CODE (xfoo1) == CONST_INT \
&& INTVAL (xfoo1) == GET_MODE_SIZE (MODE) \
&& GET_CODE (xfoo0) == REG \
&& REG_OK_FOR_INDEX_P (xfoo0))))))
/* Go to ADDR if X is the sum of a register
and a valid index term for mode MODE. */
#define GO_IF_REG_PLUS_INDEX(X, MODE, ADDR) \
{ register rtx xfooa; \
if (GET_CODE (X) == PLUS) \
{ if (GET_CODE (XEXP (X, 0)) == REG \
&& REG_OK_FOR_BASE_P (XEXP (X, 0)) \
&& (xfooa = XEXP (X, 1), \
INDEX_TERM_P (xfooa, MODE))) \
goto ADDR; \
if (GET_CODE (XEXP (X, 1)) == REG \
&& REG_OK_FOR_BASE_P (XEXP (X, 1)) \
&& (xfooa = XEXP (X, 0), \
INDEX_TERM_P (xfooa, MODE))) \
goto ADDR; } }
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ register rtx xfoo, xfoo0, xfoo1; \
GO_IF_NONINDEXED_ADDRESS (X, ADDR); \
if (GET_CODE (X) == PLUS) \
{ /* Handle <address>[index] represented with index-sum outermost */\
xfoo = XEXP (X, 0); \
if (INDEX_TERM_P (xfoo, MODE)) \
{ GO_IF_NONINDEXED_ADDRESS (XEXP (X, 1), ADDR); } \
xfoo = XEXP (X, 1); \
if (INDEX_TERM_P (xfoo, MODE)) \
{ GO_IF_NONINDEXED_ADDRESS (XEXP (X, 0), ADDR); } \
/* Handle offset(reg)[index] with offset added outermost */ \
if (INDIRECTABLE_CONSTANT_ADDRESS_P (XEXP (X, 0))) \
{ if (GET_CODE (XEXP (X, 1)) == REG \
&& REG_OK_FOR_BASE_P (XEXP (X, 1))) \
goto ADDR; \
GO_IF_REG_PLUS_INDEX (XEXP (X, 1), MODE, ADDR); } \
if (INDIRECTABLE_CONSTANT_ADDRESS_P (XEXP (X, 1))) \
{ if (GET_CODE (XEXP (X, 0)) == REG \
&& REG_OK_FOR_BASE_P (XEXP (X, 0))) \
goto ADDR; \
GO_IF_REG_PLUS_INDEX (XEXP (X, 0), MODE, ADDR); } } }
/* Try machine-dependent ways of modifying an illegitimate address
to be legitimate. If we find one, return the new, valid address.
This macro is used in only one place: `memory_address' in explow.c.
OLDX is the address as it was before break_out_memory_refs was called.
In some cases it is useful to look at this to decide what needs to be done.
MODE and WIN are passed so that this macro can use
GO_IF_LEGITIMATE_ADDRESS.
It is always safe for this macro to do nothing. It exists to recognize
opportunities to optimize the output.
For the vax, nothing needs to be done. */
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
/* Go to LABEL if ADDR (a legitimate address expression)
has an effect that depends on the machine mode it is used for.
On the VAX, the predecrement and postincrement address depend thus
(the amount of decrement or increment being the length of the operand)
and all indexed address depend thus (because the index scale factor
is the length of the operand). */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
{ if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) \
goto LABEL; \
if (GET_CODE (ADDR) == PLUS) \
{ if (CONSTANT_ADDRESS_P (XEXP (ADDR, 0)) \
&& GET_CODE (XEXP (ADDR, 1)) == REG); \
else if (CONSTANT_ADDRESS_P (XEXP (ADDR, 1)) \
&& GET_CODE (XEXP (ADDR, 0)) == REG); \
else goto LABEL; }}
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction. */
#define CASE_VECTOR_MODE HImode
/* Define this if the case instruction expects the table
to contain offsets from the address of the table.
Do not define this if the table should contain absolute addresses. */
#define CASE_VECTOR_PC_RELATIVE
/* Define this if the case instruction drops through after the table
when the index is out of range. Don't define it if the case insn
jumps to the default label instead. */
#define CASE_DROPS_THROUGH
/* Specify the tree operation to be used to convert reals to integers. */
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
/* This is the kind of divide that is easiest to do in the general case. */
#define EASY_DIV_EXPR TRUNC_DIV_EXPR
/* Define this as 1 if `char' should by default be signed; else as 0. */
#define DEFAULT_SIGNED_CHAR 1
/* This flag, if defined, says the same insns that convert to a signed fixnum
also convert validly to an unsigned one. */
#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
/* Max number of bytes we can move from memory to memory
in one reasonably fast instruction. */
#define MOVE_MAX 8
/* Define this if zero-extension is slow (more than one real instruction). */
/* #define SLOW_ZERO_EXTEND */
/* Nonzero if access to memory by bytes is slow and undesirable. */
#define SLOW_BYTE_ACCESS 0
/* Define if shifts truncate the shift count
which implies one can omit a sign-extension or zero-extension
of a shift count. */
/* #define SHIFT_COUNT_TRUNCATED */
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
is done just by pretending it is already truncated. */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
/* Specify the machine mode that pointers have.
After generation of rtl, the compiler makes no further distinction
between pointers and any other objects of this machine mode. */
#define Pmode SImode
/* A function address in a call instruction
is a byte address (for indexing purposes)
so give the MEM rtx a byte's mode. */
#define FUNCTION_MODE QImode
/* This machine doesn't use IEEE floats. */
#define TARGET_FLOAT_FORMAT VAX_FLOAT_FORMAT
/* Compute the cost of computing a constant rtl expression RTX
whose rtx-code is CODE. The body of this macro is a portion
of a switch statement. If the code is computed here,
return it with a return statement. Otherwise, break from the switch. */
#define CONST_COSTS(RTX,CODE) \
case CONST_INT: \
/* Constant zero is super cheap due to clr instruction. */ \
if ((RTX) == const0_rtx) return 0; \
/* Constants of +/- 1 should also be super cheap since \
may be used in decl/incl/aob/sob insns. */ \
if ((RTX) == const1_rtx || (RTX) == constm1_rtx) return 0; \
if ((unsigned) INTVAL (RTX) < 077) return 1; \
case CONST: \
case LABEL_REF: \
case SYMBOL_REF: \
return 3; \
case CONST_DOUBLE: \
return 5;
/* On most VAX models, shift are almost as expensive as multiplies, so
we'd rather use multiply unless it can be done in an extremely small
sequence. */
#define RTX_COSTS(RTX,CODE) \
case LSHIFT: \
case ASHIFT: \
case ASHIFTRT: \
case LSHIFTRT: \
case ROTATE: \
case ROTATERT: \
return COSTS_N_INSNS (4);
/* Specify the cost of a branch insn; roughly the number of extra insns that
should be added to avoid a branch.
Branches are extremely cheap on the VAX while the shift insns often
used to replace branches can be expensive. */
#define BRANCH_COST 0
/*
* We can use the BSD C library routines for the libgcc calls that are
* still generated, since that's what they boil down to anyways.
*/
#define UDIVSI3_LIBCALL "*udiv"
#define UMODSI3_LIBCALL "*urem"
/* Check a `double' value for validity for a particular machine mode. */
/* note that it is very hard to accidently create a number that fits in a
double but not in a float, since their ranges are almost the same */
#define CHECK_FLOAT_VALUE(mode, d) \
if ((mode) == SFmode) \
{ \
if ((d) > 1.7014117331926444e+38) \
{ error ("magnitude of constant too large for `float'"); \
(d) = 1.7014117331926444e+38; } \
else if ((d) < -1.7014117331926444e+38) \
{ error ("magnitude of constant too large for `float'"); \
(d) = -1.7014117331926444e+38; } \
else if (((d) > 0) && ((d) < 2.9387358770557188e-39)) \
{ warning ("`float' constant truncated to zero"); \
(d) = 0.0; } \
else if (((d) < 0) && ((d) > -2.9387358770557188e-39)) \
{ warning ("`float' constant truncated to zero"); \
(d) = 0.0; } \
}
/* For future reference:
D Float: 9 bit, sign magnitude, excess 128 binary exponent
normalized 56 bit fraction, redundant bit not represented
approximately 16 decimal digits of precision
The values to use if we trust decimal to binary conversions:
#define MAX_D_FLOAT 1.7014118346046923e+38
#define MIN_D_FLOAT .29387358770557188e-38
G float: 12 bit, sign magnitude, excess 1024 binary exponent
normalized 53 bit fraction, redundant bit not represented
approximately 15 decimal digits precision
The values to use if we trust decimal to binary conversions:
#define MAX_G_FLOAT .898846567431157e+308
#define MIN_G_FLOAT .556268464626800e-308
*/
/* Tell final.c how to eliminate redundant test instructions. */
/* Here we define machine-dependent flags and fields in cc_status
(see `conditions.h'). No extra ones are needed for the vax. */
/* Store in cc_status the expressions
that the condition codes will describe
after execution of an instruction whose pattern is EXP.
Do not alter them if the instruction would not alter the cc's. */
#define NOTICE_UPDATE_CC(EXP, INSN) \
{ if (GET_CODE (EXP) == SET) \
{ if (GET_CODE (SET_SRC (EXP)) == CALL) \
CC_STATUS_INIT; \
else if (GET_CODE (SET_DEST (EXP)) != PC) \
{ cc_status.flags = 0; \
cc_status.value1 = SET_DEST (EXP); \
cc_status.value2 = SET_SRC (EXP); } } \
else if (GET_CODE (EXP) == PARALLEL \
&& GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
{ \
if (GET_CODE (SET_SRC (XVECEXP (EXP, 0, 0))) == CALL) \
CC_STATUS_INIT; \
else if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) != PC) \
{ cc_status.flags = 0; \
cc_status.value1 = SET_DEST (XVECEXP (EXP, 0, 0)); \
cc_status.value2 = SET_SRC (XVECEXP (EXP, 0, 0)); } } \
/* PARALLELs whose first element sets the PC are aob, sob insns. \
They do change the cc's. So drop through and forget the cc's. */ \
else CC_STATUS_INIT; \
if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
&& cc_status.value2 \
&& reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
cc_status.value2 = 0; \
if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM \
&& cc_status.value2 \
&& GET_CODE (cc_status.value2) == MEM) \
cc_status.value2 = 0; }
/* Actual condition, one line up, should be that value2's address
depends on value1, but that is too much of a pain. */
#define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
{ if (cc_status.flags & CC_NO_OVERFLOW) \
return NO_OV; \
return NORMAL; }
/* Control the assembler format that we output. */
/* Output at beginning of assembler file. */
#define ASM_FILE_START(FILE) fprintf (FILE, "#NO_APP\n");
/* Output to assembler file text saying following lines
may contain character constants, extra white space, comments, etc. */
#define ASM_APP_ON "#APP\n"
/* Output to assembler file text saying following lines
no longer contain unusual constructs. */
#define ASM_APP_OFF "#NO_APP\n"
/* Output before read-only data. */
#define TEXT_SECTION_ASM_OP ".text"
/* Output before writable data. */
#define DATA_SECTION_ASM_OP ".data"
/* How to refer to registers in assembler output.
This sequence is indexed by compiler's hard-register-number (see above). */
#define REGISTER_NAMES \
{"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", \
"r9", "r10", "r11", "ap", "fp", "sp", "pc"}
/* This is BSD, so it wants DBX format. */
#define DBX_DEBUGGING_INFO
/* How to renumber registers for dbx and gdb.
Vax needs no change in the numeration. */
#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
/* Do not break .stabs pseudos into continuations. */
#define DBX_CONTIN_LENGTH 0
/* This is the char to use for continuation (in case we need to turn
continuation back on). */
#define DBX_CONTIN_CHAR '?'
/* Don't use the `xsfoo;' construct in DBX output; this system
doesn't support it. */
#define DBX_NO_XREFS
/* Output the .stabs for a C `static' variable in the data section. */
#define DBX_STATIC_STAB_DATA_SECTION
/* Vax specific: which type character is used for type double? */
#define ASM_DOUBLE_CHAR (TARGET_G_FLOAT ? 'g' : 'd')
/* This is how to output the definition of a user-level label named NAME,
such as the label on a static function or variable NAME. */
#define ASM_OUTPUT_LABEL(FILE,NAME) \
do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
/* This is how to output a command to make the user-level label named NAME
defined for reference from other files. */
#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
/* This is how to output a reference to a user-level label named NAME. */
#define ASM_OUTPUT_LABELREF(FILE,NAME) \
fprintf (FILE, "_%s", NAME)
/* This is how to output an internal numbered label where
PREFIX is the class of label and NUM is the number within the class. */
#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
fprintf (FILE, "%s%d:\n", PREFIX, NUM)
/* This is how to store into the string LABEL
the symbol_ref name of an internal numbered label where
PREFIX is the class of label and NUM is the number within the class.
This is suitable for output with `assemble_name'. */
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
sprintf (LABEL, "*%s%d", PREFIX, NUM)
/* This is how to output an assembler line defining a `double' constant.
It is .dfloat or .gfloat, depending. */
#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
fprintf (FILE, "\t.%cfloat 0%c%.20e\n", ASM_DOUBLE_CHAR, \
ASM_DOUBLE_CHAR, (VALUE))
/* This is how to output an assembler line defining a `float' constant. */
#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
fprintf (FILE, "\t.float 0f%.20e\n", (VALUE))
/* This is how to output an assembler line defining an `int' constant. */
#define ASM_OUTPUT_INT(FILE,VALUE) \
( fprintf (FILE, "\t.long "), \
output_addr_const (FILE, (VALUE)), \
fprintf (FILE, "\n"))
/* Likewise for `char' and `short' constants. */
#define ASM_OUTPUT_SHORT(FILE,VALUE) \
( fprintf (FILE, "\t.word "), \
output_addr_const (FILE, (VALUE)), \
fprintf (FILE, "\n"))
#define ASM_OUTPUT_CHAR(FILE,VALUE) \
( fprintf (FILE, "\t.byte "), \
output_addr_const (FILE, (VALUE)), \
fprintf (FILE, "\n"))
/* This is how to output an assembler line for a numeric constant byte. */
#define ASM_OUTPUT_BYTE(FILE,VALUE) \
fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
/* This is how to output an insn to push a register on the stack.
It need not be very fast code. */
#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
fprintf (FILE, "\tpushl %s\n", reg_names[REGNO])
/* This is how to output an insn to pop a register from the stack.
It need not be very fast code. */
#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
fprintf (FILE, "\tmovl (sp)+,%s\n", reg_names[REGNO])
/* This is how to output an element of a case-vector that is absolute.
(The Vax does not use such vectors,
but we must define this macro anyway.) */
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
fprintf (FILE, "\t.long L%d\n", VALUE)
/* This is how to output an element of a case-vector that is relative. */
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
/* This is how to output an assembler line
that says to advance the location counter
to a multiple of 2**LOG bytes. */
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
fprintf (FILE, "\t.align %d\n", (LOG))
/* This is how to output an assembler line
that says to advance the location counter by SIZE bytes. */
#define ASM_OUTPUT_SKIP(FILE,SIZE) \
fprintf (FILE, "\t.space %u\n", (SIZE))
/* This says how to output an assembler line
to define a global common symbol. */
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
( fputs (".comm ", (FILE)), \
assemble_name ((FILE), (NAME)), \
fprintf ((FILE), ",%u\n", (ROUNDED)))
/* This says how to output an assembler line
to define a local common symbol. */
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
( fputs (".lcomm ", (FILE)), \
assemble_name ((FILE), (NAME)), \
fprintf ((FILE), ",%u\n", (ROUNDED)))
/* Store in OUTPUT a string (made with alloca) containing
an assembler-name for a local static variable named NAME.
LABELNO is an integer which is different for each call. */
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
/* Define the parentheses used to group arithmetic operations
in assembler code. */
#define ASM_OPEN_PAREN "("
#define ASM_CLOSE_PAREN ")"
/* Define results of standard character escape sequences. */
#define TARGET_BELL 007
#define TARGET_BS 010
#define TARGET_TAB 011
#define TARGET_NEWLINE 012
#define TARGET_VT 013
#define TARGET_FF 014
#define TARGET_CR 015
/* Print an instruction operand X on file FILE.
CODE is the code from the %-spec that requested printing this operand;
if `%z3' was used to print operand 3, then CODE is 'z'.
On the Vax, the codes used are:
`#', indicating that either `d' or `g' should be printed,
depending on whether we're using dfloat or gfloat.
`C', indicating the reverse of the condition name specified by the
operand.
`P', indicating one plus a constant operand
`N', indicating the one's complement of a constant operand
`H', indicating the low-order 16 bits of the one's complement of a constant
`B', similarly for the low-order 8 bits. */
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
((CODE) == '#')
#define PRINT_OPERAND(FILE, X, CODE) \
{ extern char *rev_cond_name (); \
if (CODE == '#') fputc (ASM_DOUBLE_CHAR, FILE); \
else if (CODE == 'C') \
fputs (rev_cond_name (X), FILE); \
else if (CODE == 'P' && GET_CODE (X) == CONST_INT) \
fprintf (FILE, "$%d", INTVAL (X) + 1); \
else if (CODE == 'N' && GET_CODE (X) == CONST_INT) \
fprintf (FILE, "$%d", ~ INTVAL (X)); \
/* rotl instruction cannot deal with negative arguments. */ \
else if (CODE == 'R' && GET_CODE (X) == CONST_INT) \
fprintf (FILE, "$%d", 32 - INTVAL (X)); \
else if (CODE == 'H' && GET_CODE (X) == CONST_INT) \
fprintf (FILE, "$%d", 0xffff & ~ INTVAL (X)); \
else if (CODE == 'B' && GET_CODE (X) == CONST_INT) \
fprintf (FILE, "$%d", 0xff & ~ INTVAL (X)); \
else if (GET_CODE (X) == REG) \
fprintf (FILE, "%s", reg_names[REGNO (X)]); \
else if (GET_CODE (X) == MEM) \
output_address (XEXP (X, 0)); \
else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != DImode) \
{ union { double d; int i[2]; } u; \
u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \
fprintf (FILE, "$0%c%.20e", ASM_DOUBLE_CHAR, u.d); } \
else { putc ('$', FILE); output_addr_const (FILE, X); }}
/* Print a memory operand whose address is X, on file FILE.
This uses a function in output-vax.c. */
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
print_operand_address (FILE, ADDR)
;;- Machine description for GNU compiler, Vax Version
;; Copyright (C) 1987, 1988, 1991 Free Software Foundation, Inc.
;; This file is part of GNU CC.
;; GNU CC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.
;; GNU CC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU CC; see the file COPYING. If not, write to
;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
;;- Instruction patterns. When multiple patterns apply,
;;- the first one in the file is chosen.
;;-
;;- See file "rtl.def" for documentation on define_insn, match_*, et. al.
;;-
;;- cpp macro #define NOTICE_UPDATE_CC in file tm.h handles condition code
;;- updates for most instructions.
;; We don't want to allow a constant operand for test insns because
;; (set (cc0) (const_int foo)) has no mode information. Such insns will
;; be folded while optimizing anyway.
(define_insn "tstsi"
[(set (cc0)
(match_operand:SI 0 "nonimmediate_operand" "g"))]
""
"tstl %0")
(define_insn "tsthi"
[(set (cc0)
(match_operand:HI 0 "nonimmediate_operand" "g"))]
""
"tstw %0")
(define_insn "tstqi"
[(set (cc0)
(match_operand:QI 0 "nonimmediate_operand" "g"))]
""
"tstb %0")
(define_insn "tstdf"
[(set (cc0)
(match_operand:DF 0 "general_operand" "gF"))]
""
"tst%# %0")
(define_insn "tstsf"
[(set (cc0)
(match_operand:SF 0 "general_operand" "gF"))]
""
"tstf %0")
(define_insn "cmpsi"
[(set (cc0)
(compare (match_operand:SI 0 "nonimmediate_operand" "g")
(match_operand:SI 1 "general_operand" "g")))]
""
"cmpl %0,%1")
(define_insn "cmphi"
[(set (cc0)
(compare (match_operand:HI 0 "nonimmediate_operand" "g")
(match_operand:HI 1 "general_operand" "g")))]
""
"cmpw %0,%1")
(define_insn "cmpqi"
[(set (cc0)
(compare (match_operand:QI 0 "nonimmediate_operand" "g")
(match_operand:QI 1 "general_operand" "g")))]
""
"cmpb %0,%1")
(define_insn "cmpdf"
[(set (cc0)
(compare (match_operand:DF 0 "general_operand" "gF")
(match_operand:DF 1 "general_operand" "gF")))]
""
"cmp%# %0,%1")
(define_insn "cmpsf"
[(set (cc0)
(compare (match_operand:SF 0 "general_operand" "gF")
(match_operand:SF 1 "general_operand" "gF")))]
""
"cmpf %0,%1")
(define_insn ""
[(set (cc0)
(and:SI (match_operand:SI 0 "general_operand" "g")
(match_operand:SI 1 "general_operand" "g")))]
""
"bitl %0,%1")
(define_insn ""
[(set (cc0)
(and:HI (match_operand:HI 0 "general_operand" "g")
(match_operand:HI 1 "general_operand" "g")))]
""
"bitw %0,%1")
(define_insn ""
[(set (cc0)
(and:QI (match_operand:QI 0 "general_operand" "g")
(match_operand:QI 1 "general_operand" "g")))]
""
"bitb %0,%1")
;; The vax has no sltu or sgeu patterns, but does have two-operand
;; add/subtract with carry. This is still better than the alternative.
;; Since the cc0-using insn cannot be separated from the cc0-setting insn,
;; and the two are created independently, we can't just use a define_expand
;; to try to optimize this. (The "movl" and "clrl" insns alter the cc0
;; flags, but leave the carry flag alone, but that can't easily be expressed.)
;;
;; Several two-operator combinations could be added to make slightly more
;; optimal code, but they'd have to cover all combinations of plus and minus
;; using match_dup. If you want to do this, I'd suggest changing the "sgeu"
;; pattern to something like (minus (const_int 1) (ltu ...)), so fewer
;; patterns need to be recognized.
;; -- Ken Raeburn (Raeburn@Watch.COM) 24 August 1991.
(define_insn "sltu"
[(set (match_operand:SI 0 "general_operand" "=ro")
(ltu (cc0) (const_int 0)))]
""
"clrl %0\;adwc $0,%0")
(define_insn "sgeu"
[(set (match_operand:SI 0 "general_operand" "=ro")
(geu (cc0) (const_int 0)))]
""
"movl $1,%0\;sbwc $0,%0")
(define_insn "movdf"
[(set (match_operand:DF 0 "general_operand" "=g,g")
(match_operand:DF 1 "general_operand" "G,gF"))]
""
"@
clr%# %0
mov%# %1,%0")
(define_insn "movsf"
[(set (match_operand:SF 0 "general_operand" "=g,g")
(match_operand:SF 1 "general_operand" "G,gF"))]
""
"@
clrf %0
movf %1,%0")
;; Some vaxes don't support this instruction.
;;(define_insn "movti"
;; [(set (match_operand:TI 0 "general_operand" "=g")
;; (match_operand:TI 1 "general_operand" "g"))]
;; ""
;; "movh %1,%0")
(define_insn "movdi"
[(set (match_operand:DI 0 "general_operand" "=g,g")
(match_operand:DI 1 "general_operand" "I,g"))]
""
"@
clrq %0
movq %1,%0")
(define_insn "movsi"
[(set (match_operand:SI 0 "general_operand" "=g")
(match_operand:SI 1 "general_operand" "g"))]
""
"*
{
rtx link;
if (operands[1] == const1_rtx
&& (link = find_reg_note (insn, REG_WAS_0, 0))
/* Make sure the insn that stored the 0 is still present. */
&& ! INSN_DELETED_P (XEXP (link, 0))
&& GET_CODE (XEXP (link, 0)) != NOTE
/* Make sure cross jumping didn't happen here. */
&& no_labels_between_p (XEXP (link, 0), insn))
/* Fastest way to change a 0 to a 1. */
return \"incl %0\";
if (GET_CODE (operands[1]) == SYMBOL_REF || GET_CODE (operands[1]) == CONST)
{
if (push_operand (operands[0], SImode))
return \"pushab %a1\";
return \"movab %a1,%0\";
}
/* this is slower than a movl, except when pushing an operand */
if (operands[1] == const0_rtx)
return \"clrl %0\";
if (GET_CODE (operands[1]) == CONST_INT
&& (unsigned) INTVAL (operands[1]) >= 64)
{
int i = INTVAL (operands[1]);
if ((unsigned)(~i) < 64)
{
operands[1] = gen_rtx (CONST_INT, VOIDmode, ~i);
return \"mcoml %1,%0\";
}
if ((unsigned)i < 127)
{
operands[1] = gen_rtx (CONST_INT, VOIDmode, 63);
operands[2] = gen_rtx (CONST_INT, VOIDmode, i-63);
return \"addl3 %2,%1,%0\";
}
/* trading speed for space */
if ((unsigned)i < 0x100)
return \"movzbl %1,%0\";
if (i >= -0x80 && i < 0)
return \"cvtbl %1,%0\";
if ((unsigned)i < 0x10000)
return \"movzwl %1,%0\";
if (i >= -0x8000 && i < 0)
return \"cvtwl %1,%0\";
}
if (push_operand (operands[0], SImode))
return \"pushl %1\";
return \"movl %1,%0\";
}")
(define_insn "movhi"
[(set (match_operand:HI 0 "general_operand" "=g")
(match_operand:HI 1 "general_operand" "g"))]
""
"*
{
rtx link;
if (operands[1] == const1_rtx
&& (link = find_reg_note (insn, REG_WAS_0, 0))
/* Make sure the insn that stored the 0 is still present. */
&& ! INSN_DELETED_P (XEXP (link, 0))
&& GET_CODE (XEXP (link, 0)) != NOTE
/* Make sure cross jumping didn't happen here. */
&& no_labels_between_p (XEXP (link, 0), insn))
/* Fastest way to change a 0 to a 1. */
return \"incw %0\";
if (operands[1] == const0_rtx)
return \"clrw %0\";
if (GET_CODE (operands[1]) == CONST_INT
&& (unsigned) INTVAL (operands[1]) >= 64)
{
int i = INTVAL (operands[1]);
if ((unsigned)((~i) & 0xffff) < 64)
{
operands[1] = gen_rtx (CONST_INT, VOIDmode, (~i) & 0xffff);
return \"mcomw %1,%0\";
}
if ((unsigned)(i & 0xffff) < 127)
{
operands[1] = gen_rtx (CONST_INT, VOIDmode, 63);
operands[2] = gen_rtx (CONST_INT, VOIDmode, (i-63) & 0xffff);
return \"addw3 %2,%1,%0\";
}
/* this is a lot slower, and only saves 1 measly byte! */
/* if ((unsigned)i < 0x100)
return \"movzbw %1,%0\"; */
/* if (i >= -0x80 && i < 0)
return \"cvtbw %1,%0\"; */
}
return \"movw %1,%0\";
}")
(define_insn "movqi"
[(set (match_operand:QI 0 "general_operand" "=g")
(match_operand:QI 1 "general_operand" "g"))]
""
"*
{
if (operands[1] == const0_rtx)
return \"clrb %0\";
if (GET_CODE (operands[1]) == CONST_INT
&& (unsigned) INTVAL (operands[1]) >= 64)
{
int i = INTVAL (operands[1]);
if ((unsigned)((~i) & 0xff) < 64)
{
operands[1] = gen_rtx (CONST_INT, VOIDmode, (~i) & 0xff);
return \"mcomb %1,%0\";
}
}
return \"movb %1,%0\";
}")
;; The definition of this insn does not really explain what it does,
;; but it should suffice
;; that anything generated as this insn will be recognized as one
;; and that it won't successfully combine with anything.
(define_insn "movstrhi"
[(set (match_operand:BLK 0 "general_operand" "=g")
(match_operand:BLK 1 "general_operand" "g"))
(use (match_operand:HI 2 "general_operand" "g"))
(clobber (reg:SI 0))
(clobber (reg:SI 1))
(clobber (reg:SI 2))
(clobber (reg:SI 3))
(clobber (reg:SI 4))
(clobber (reg:SI 5))]
""
"movc3 %2,%1,%0")
;; Extension and truncation insns.
(define_insn "truncsiqi2"
[(set (match_operand:QI 0 "general_operand" "=g")
(truncate:QI (match_operand:SI 1 "nonimmediate_operand" "g")))]
""
"cvtlb %1,%0")
(define_insn "truncsihi2"
[(set (match_operand:HI 0 "general_operand" "=g")
(truncate:HI (match_operand:SI 1 "nonimmediate_operand" "g")))]
""
"cvtlw %1,%0")
(define_insn "trunchiqi2"
[(set (match_operand:QI 0 "general_operand" "=g")
(truncate:QI (match_operand:HI 1 "nonimmediate_operand" "g")))]
""
"cvtwb %1,%0")
(define_insn "extendhisi2"
[(set (match_operand:SI 0 "general_operand" "=g")
(sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "g")))]
""
"cvtwl %1,%0")
(define_insn "extendqihi2"
[(set (match_operand:HI 0 "general_operand" "=g")
(sign_extend:HI (match_operand:QI 1 "nonimmediate_operand" "g")))]
""
"cvtbw %1,%0")
(define_insn "extendqisi2"
[(set (match_operand:SI 0 "general_operand" "=g")
(sign_extend:SI (match_operand:QI 1 "nonimmediate_operand" "g")))]
""
"cvtbl %1,%0")
(define_insn "extendsfdf2"
[(set (match_operand:DF 0 "general_operand" "=g")
(float_extend:DF (match_operand:SF 1 "general_operand" "gF")))]
""
"cvtf%# %1,%0")
(define_insn "truncdfsf2"
[(set (match_operand:SF 0 "general_operand" "=g")
(float_truncate:SF (match_operand:DF 1 "general_operand" "gF")))]
""
"cvt%#f %1,%0")
(define_insn "zero_extendhisi2"
[(set (match_operand:SI 0 "general_operand" "=g")
(zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "g")))]
""
"movzwl %1,%0")
(define_insn "zero_extendqihi2"
[(set (match_operand:HI 0 "general_operand" "=g")
(zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "g")))]
""
"movzbw %1,%0")
(define_insn "zero_extendqisi2"
[(set (match_operand:SI 0 "general_operand" "=g")
(zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "g")))]
""
"movzbl %1,%0")
;; Fix-to-float conversion insns.
(define_insn "floatsisf2"
[(set (match_operand:SF 0 "general_operand" "=g")
(float:SF (match_operand:SI 1 "nonimmediate_operand" "g")))]
""
"cvtlf %1,%0")
(define_insn "floatsidf2"
[(set (match_operand:DF 0 "general_operand" "=g")
(float:DF (match_operand:SI 1 "nonimmediate_operand" "g")))]
""
"cvtl%# %1,%0")
(define_insn "floathisf2"
[(set (match_operand:SF 0 "general_operand" "=g")
(float:SF (match_operand:HI 1 "nonimmediate_operand" "g")))]
""
"cvtwf %1,%0")
(define_insn "floathidf2"
[(set (match_operand:DF 0 "general_operand" "=g")
(float:DF (match_operand:HI 1 "nonimmediate_operand" "g")))]
""
"cvtw%# %1,%0")
(define_insn "floatqisf2"
[(set (match_operand:SF 0 "general_operand" "=g")
(float:SF (match_operand:QI 1 "nonimmediate_operand" "g")))]
""
"cvtbf %1,%0")
(define_insn "floatqidf2"
[(set (match_operand:DF 0 "general_operand" "=g")
(float:DF (match_operand:QI 1 "nonimmediate_operand" "g")))]
""
"cvtb%# %1,%0")
;; Float-to-fix conversion insns.
(define_insn "fix_truncsfqi2"
[(set (match_operand:QI 0 "general_operand" "=g")
(fix:QI (fix:SF (match_operand:SF 1 "general_operand" "gF"))))]
""
"cvtfb %1,%0")
(define_insn "fix_truncsfhi2"
[(set (match_operand:HI 0 "general_operand" "=g")
(fix:HI (fix:SF (match_operand:SF 1 "general_operand" "gF"))))]
""
"cvtfw %1,%0")
(define_insn "fix_truncsfsi2"
[(set (match_operand:SI 0 "general_operand" "=g")
(fix:SI (fix:SF (match_operand:SF 1 "general_operand" "gF"))))]
""
"cvtfl %1,%0")
(define_insn "fix_truncdfqi2"
[(set (match_operand:QI 0 "general_operand" "=g")
(fix:QI (fix:DF (match_operand:DF 1 "general_operand" "gF"))))]
""
"cvt%#b %1,%0")
(define_insn "fix_truncdfhi2"
[(set (match_operand:HI 0 "general_operand" "=g")
(fix:HI (fix:DF (match_operand:DF 1 "general_operand" "gF"))))]
""
"cvt%#w %1,%0")
(define_insn "fix_truncdfsi2"
[(set (match_operand:SI 0 "general_operand" "=g")
(fix:SI (fix:DF (match_operand:DF 1 "general_operand" "gF"))))]
""
"cvt%#l %1,%0")
;;- All kinds of add instructions.
(define_insn "adddf3"
[(set (match_operand:DF 0 "general_operand" "=g,g,g")
(plus:DF (match_operand:DF 1 "general_operand" "0,gF,gF")
(match_operand:DF 2 "general_operand" "gF,0,gF")))]
""
"@
add%#2 %2,%0
add%#2 %1,%0
add%#3 %1,%2,%0")
(define_insn "addsf3"
[(set (match_operand:SF 0 "general_operand" "=g,g,g")
(plus:SF (match_operand:SF 1 "general_operand" "0,gF,gF")
(match_operand:SF 2 "general_operand" "gF,0,gF")))]
""
"@
addf2 %2,%0
addf2 %1,%0
addf3 %1,%2,%0")
(define_insn "addsi3"
[(set (match_operand:SI 0 "general_operand" "=g")
(plus:SI (match_operand:SI 1 "general_operand" "g")
(match_operand:SI 2 "general_operand" "g")))]
""
"*
{
if (rtx_equal_p (operands[0], operands[1]))
{
if (operands[2] == const1_rtx)
return \"incl %0\";
if (operands[2] == constm1_rtx)
return \"decl %0\";
if (GET_CODE (operands[2]) == CONST_INT
&& (unsigned) (- INTVAL (operands[2])) < 64)
return \"subl2 $%n2,%0\";
if (GET_CODE (operands[2]) == CONST_INT
&& (unsigned) INTVAL (operands[2]) >= 64
&& GET_CODE (operands[1]) == REG)
return \"movab %c2(%1),%0\";
return \"addl2 %2,%0\";
}
if (rtx_equal_p (operands[0], operands[2]))
return \"addl2 %1,%0\";
if (GET_CODE (operands[2]) == CONST_INT
&& (unsigned) (- INTVAL (operands[2])) < 64)
return \"subl3 $%n2,%1,%0\";
if (GET_CODE (operands[2]) == CONST_INT
&& (unsigned) INTVAL (operands[2]) >= 64
&& GET_CODE (operands[1]) == REG)
{
if (push_operand (operands[0], SImode))
return \"pushab %c2(%1)\";
return \"movab %c2(%1),%0\";
}
return \"addl3 %1,%2,%0\";
}")
(define_insn "addhi3"
[(set (match_operand:HI 0 "general_operand" "=g")
(plus:HI (match_operand:HI 1 "general_operand" "g")
(match_operand:HI 2 "general_operand" "g")))]
""
"*
{
if (rtx_equal_p (operands[0], operands[1]))
{
if (operands[2] == const1_rtx)
return \"incw %0\";
if (operands[2] == constm1_rtx)
return \"decw %0\";
if (GET_CODE (operands[2]) == CONST_INT
&& (unsigned) (- INTVAL (operands[2])) < 64)
return \"subw2 $%n2,%0\";
return \"addw2 %2,%0\";
}
if (rtx_equal_p (operands[0], operands[2]))
return \"addw2 %1,%0\";
if (GET_CODE (operands[2]) == CONST_INT
&& (unsigned) (- INTVAL (operands[2])) < 64)
return \"subw3 $%n2,%1,%0\";
return \"addw3 %1,%2,%0\";
}")
(define_insn "addqi3"
[(set (match_operand:QI 0 "general_operand" "=g")
(plus:QI (match_operand:QI 1 "general_operand" "g")
(match_operand:QI 2 "general_operand" "g")))]
""
"*
{
if (rtx_equal_p (operands[0], operands[1]))
{
if (operands[2] == const1_rtx)
return \"incb %0\";
if (operands[2] == constm1_rtx)
return \"decb %0\";
if (GET_CODE (operands[2]) == CONST_INT
&& (unsigned) (- INTVAL (operands[2])) < 64)
return \"subb2 $%n2,%0\";
return \"addb2 %2,%0\";
}
if (rtx_equal_p (operands[0], operands[2]))
return \"addb2 %1,%0\";
if (GET_CODE (operands[2]) == CONST_INT
&& (unsigned) (- INTVAL (operands[2])) < 64)
return \"subb3 $%n2,%1,%0\";
return \"addb3 %1,%2,%0\";
}")
;; The add-with-carry (adwc) instruction only accepts two operands.
(define_insn "adddi3"
[(set (match_operand:DI 0 "general_operand" "=ro>,ro>")
(plus:DI (match_operand:DI 1 "general_operand" "%0,ro>")
(match_operand:DI 2 "general_operand" "Fro,F")))]
""
"*
{
rtx low[3];
char *pattern;
int carry = 1;
split_quadword_operands (operands, low, 3);
/* Add low parts. */
if (rtx_equal_p (operands[0], operands[1]))
{
if (low[2] == const0_rtx)
/* Should examine operand, punt if not POST_INC. */
pattern = \"tstl %0\", carry = 0;
else if (low[2] == const1_rtx)
pattern = \"incl %0\";
else
pattern = \"addl2 %2,%0\";
}
else
{
if (low[2] == const0_rtx)
pattern = \"movl %1,%0\", carry = 0;
else
pattern = \"addl3 %2,%1,%0\";
}
if (pattern)
output_asm_insn (pattern, low);
if (!carry)
/* If CARRY is 0, we don't have any carry value to worry about. */
return OUT_FCN (CODE_FOR_addsi3) (operands, insn);
/* %0 = C + %1 + %2 */
if (!rtx_equal_p (operands[0], operands[1]))
output_asm_insn ((operands[1] == const0_rtx
? \"clrl %0\"
: \"movl %1,%0\"), operands);
return \"adwc %2,%0\";
}")
;;- All kinds of subtract instructions.
(define_insn "subdf3"
[(set (match_operand:DF 0 "general_operand" "=g,g")
(minus:DF (match_operand:DF 1 "general_operand" "0,gF")
(match_operand:DF 2 "general_operand" "gF,gF")))]
""
"@
sub%#2 %2,%0
sub%#3 %2,%1,%0")
(define_insn "subsf3"
[(set (match_operand:SF 0 "general_operand" "=g,g")
(minus:SF (match_operand:SF 1 "general_operand" "0,gF")
(match_operand:SF 2 "general_operand" "gF,gF")))]
""
"@
subf2 %2,%0
subf3 %2,%1,%0")
(define_insn "subsi3"
[(set (match_operand:SI 0 "general_operand" "=g,g")
(minus:SI (match_operand:SI 1 "general_operand" "0,g")
(match_operand:SI 2 "general_operand" "g,g")))]
""
"@
subl2 %2,%0
subl3 %2,%1,%0")
(define_insn "subhi3"
[(set (match_operand:HI 0 "general_operand" "=g,g")
(minus:HI (match_operand:HI 1 "general_operand" "0,g")
(match_operand:HI 2 "general_operand" "g,g")))]
""
"@
subw2 %2,%0
subw3 %2,%1,%0")
(define_insn "subqi3"
[(set (match_operand:QI 0 "general_operand" "=g,g")
(minus:QI (match_operand:QI 1 "general_operand" "0,g")
(match_operand:QI 2 "general_operand" "g,g")))]
""
"@
subb2 %2,%0
subb3 %2,%1,%0")
;; The subtract-with-carry (sbwc) instruction only takes two operands.
(define_insn "subdi3"
[(set (match_operand:DI 0 "general_operand" "=or>,or>")
(minus:DI (match_operand:DI 1 "general_operand" "0,or>")
(match_operand:DI 2 "general_operand" "For,F")))]
""
"*
{
rtx low[3];
char *pattern;
int carry = 1;
split_quadword_operands (operands, low, 3);
/* Subtract low parts. */
if (rtx_equal_p (operands[0], operands[1]))
{
if (low[2] == const0_rtx)
pattern = 0, carry = 0;
else if (low[2] == constm1_rtx)
pattern = \"decl %0\";
else
pattern = \"subl2 %2,%0\";
}
else
{
if (low[2] == constm1_rtx)
pattern = \"decl %0\";
else if (low[2] == const0_rtx)
pattern = OUT_FCN (CODE_FOR_movsi) (low, insn), carry = 0;
else
pattern = \"subl3 %2,%1,%0\";
}
if (pattern)
output_asm_insn (pattern, low);
if (carry)
{
if (!rtx_equal_p (operands[0], operands[1]))
return \"movl %1,%0\;sbwc %2,%0\";
return \"sbwc %2,%0\";
/* %0 = %2 - %1 - C */
}
return OUT_FCN (CODE_FOR_subsi3) (operands, insn);
}")
;;- Multiply instructions.
(define_insn "muldf3"
[(set (match_operand:DF 0 "general_operand" "=g,g,g")
(mult:DF (match_operand:DF 1 "general_operand" "0,gF,gF")
(match_operand:DF 2 "general_operand" "gF,0,gF")))]
""
"@
mul%#2 %2,%0
mul%#2 %1,%0
mul%#3 %1,%2,%0")
(define_insn "mulsf3"
[(set (match_operand:SF 0 "general_operand" "=g,g,g")
(mult:SF (match_operand:SF 1 "general_operand" "0,gF,gF")
(match_operand:SF 2 "general_operand" "gF,0,gF")))]
""
"@
mulf2 %2,%0
mulf2 %1,%0
mulf3 %1,%2,%0")
(define_insn "mulsi3"
[(set (match_operand:SI 0 "general_operand" "=g,g,g")
(mult:SI (match_operand:SI 1 "general_operand" "0,g,g")
(match_operand:SI 2 "general_operand" "g,0,g")))]
""
"@
mull2 %2,%0
mull2 %1,%0
mull3 %1,%2,%0")
(define_insn "mulhi3"
[(set (match_operand:HI 0 "general_operand" "=g,g,")
(mult:HI (match_operand:HI 1 "general_operand" "0,g,g")
(match_operand:HI 2 "general_operand" "g,0,g")))]
""
"@
mulw2 %2,%0
mulw2 %1,%0
mulw3 %1,%2,%0")
(define_insn "mulqi3"
[(set (match_operand:QI 0 "general_operand" "=g,g,g")
(mult:QI (match_operand:QI 1 "general_operand" "0,g,g")
(match_operand:QI 2 "general_operand" "g,0,g")))]
""
"@
mulb2 %2,%0
mulb2 %1,%0
mulb3 %1,%2,%0")
(define_insn "mulsidi3"
[(set (match_operand:DI 0 "general_operand" "=g")
(mult:DI (sign_extend:DI
(match_operand:SI 1 "nonimmediate_operand" "g"))
(sign_extend:DI
(match_operand:SI 2 "nonimmediate_operand" "g"))))]
""
"emul %1,%2,$0,%0")
(define_insn ""
[(set (match_operand:DI 0 "general_operand" "=g")
(plus:DI
(mult:DI (sign_extend:DI
(match_operand:SI 1 "nonimmediate_operand" "g"))
(sign_extend:DI
(match_operand:SI 2 "nonimmediate_operand" "g")))
(sign_extend:DI (match_operand:SI 3 "nonimmediate_operand" "g"))))]
""
"emul %1,%2,%3,%0")
;; 'F' constraint means type CONST_DOUBLE
(define_insn ""
[(set (match_operand:DI 0 "general_operand" "=g")
(plus:DI
(mult:DI (sign_extend:DI
(match_operand:SI 1 "nonimmediate_operand" "g"))
(sign_extend:DI
(match_operand:SI 2 "nonimmediate_operand" "g")))
(match_operand:DI 3 "immediate_operand" "F")))]
"GET_CODE (operands[3]) == CONST_DOUBLE
&& CONST_DOUBLE_HIGH (operands[3]) == (CONST_DOUBLE_LOW (operands[3]) >> 31)"
"*
{
if (CONST_DOUBLE_HIGH (operands[3]))
operands[3] = gen_rtx (CONST_INT, VOIDmode, CONST_DOUBLE_LOW (operands[3]));
return \"emul %1,%2,%3,%0\";
}")
;;- Divide instructions.
(define_insn "divdf3"
[(set (match_operand:DF 0 "general_operand" "=g,g")
(div:DF (match_operand:DF 1 "general_operand" "0,gF")
(match_operand:DF 2 "general_operand" "gF,gF")))]
""
"@
div%#2 %2,%0
div%#3 %2,%1,%0")
(define_insn "divsf3"
[(set (match_operand:SF 0 "general_operand" "=g,g")
(div:SF (match_operand:SF 1 "general_operand" "0,gF")
(match_operand:SF 2 "general_operand" "gF,gF")))]
""
"@
divf2 %2,%0
divf3 %2,%1,%0")
(define_insn "divsi3"
[(set (match_operand:SI 0 "general_operand" "=g,g")
(div:SI (match_operand:SI 1 "general_operand" "0,g")
(match_operand:SI 2 "general_operand" "g,g")))]
""
"@
divl2 %2,%0
divl3 %2,%1,%0")
(define_insn "divhi3"
[(set (match_operand:HI 0 "general_operand" "=g,g")
(div:HI (match_operand:HI 1 "general_operand" "0,g")
(match_operand:HI 2 "general_operand" "g,g")))]
""
"@
divw2 %2,%0
divw3 %2,%1,%0")
(define_insn "divqi3"
[(set (match_operand:QI 0 "general_operand" "=g,g")
(div:QI (match_operand:QI 1 "general_operand" "0,g")
(match_operand:QI 2 "general_operand" "g,g")))]
""
"@
divb2 %2,%0
divb3 %2,%1,%0")
;This is left out because it is very slow;
;we are better off programming around the "lack" of this insn.
;(define_insn "divmoddisi4"
; [(set (match_operand:SI 0 "general_operand" "=g")
; (div:SI (match_operand:DI 1 "general_operand" "g")
; (match_operand:SI 2 "general_operand" "g")))
; (set (match_operand:SI 3 "general_operand" "=g")
; (mod:SI (match_operand:DI 1 "general_operand" "g")
; (match_operand:SI 2 "general_operand" "g")))]
; ""
; "ediv %2,%1,%0,%3")
;; Bit-and on the vax is done with a clear-bits insn.
(define_expand "andsi3"
[(set (match_operand:SI 0 "general_operand" "=g")
(and:SI (not:SI (match_operand:SI 1 "general_operand" "g"))
(match_operand:SI 2 "general_operand" "g")))]
""
"
{
if (GET_CODE (operands[1]) == CONST_INT)
operands[1] = gen_rtx (CONST_INT, VOIDmode, ~INTVAL (operands[1]));
else
operands[1] = expand_unop (SImode, one_cmpl_optab, operands[1], 0, 1);
}")
(define_expand "andhi3"
[(set (match_operand:HI 0 "general_operand" "=g")
(and:HI (not:HI (match_operand:HI 1 "general_operand" "g"))
(match_operand:HI 2 "general_operand" "g")))]
""
"
{
rtx op = operands[1];
if (GET_CODE (op) == CONST_INT)
operands[1] = gen_rtx (CONST_INT, VOIDmode,
((1 << 16) - 1) & ~INTVAL (op));
else
operands[1] = expand_unop (HImode, one_cmpl_optab, op, 0, 1);
}")
(define_expand "andqi3"
[(set (match_operand:QI 0 "general_operand" "=g")
(and:QI (not:QI (match_operand:QI 1 "general_operand" "g"))
(match_operand:QI 2 "general_operand" "g")))]
""
"
{
rtx op = operands[1];
if (GET_CODE (op) == CONST_INT)
operands[1] = gen_rtx (CONST_INT, VOIDmode,
((1 << 8) - 1) & ~INTVAL (op));
else
operands[1] = expand_unop (QImode, one_cmpl_optab, op, 0, 1);
}")
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=g,g")
(and:SI (not:SI (match_operand:SI 1 "general_operand" "g,g"))
(match_operand:SI 2 "general_operand" "0,g")))]
""
"@
bicl2 %1,%0
bicl3 %1,%2,%0")
(define_insn ""
[(set (match_operand:HI 0 "general_operand" "=g,g")
(and:HI (not:HI (match_operand:HI 1 "general_operand" "g,g"))
(match_operand:HI 2 "general_operand" "0,g")))]
""
"@
bicw2 %1,%0
bicw3 %1,%2,%0")
(define_insn ""
[(set (match_operand:QI 0 "general_operand" "=g,g")
(and:QI (not:QI (match_operand:QI 1 "general_operand" "g,g"))
(match_operand:QI 2 "general_operand" "0,g")))]
""
"@
bicb2 %1,%0
bicb3 %1,%2,%0")
;; The following used to be needed because constant propagation can
;; create them starting from the bic insn patterns above. This is no
;; longer a problem. However, having these patterns allows optimization
;; opportunities in combine.c.
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=g,g")
(and:SI (match_operand:SI 1 "general_operand" "0,g")
(match_operand:SI 2 "const_int_operand" "n,n")))]
""
"@
bicl2 %N2,%0
bicl3 %N2,%1,%0")
(define_insn ""
[(set (match_operand:HI 0 "general_operand" "=g,g")
(and:HI (match_operand:HI 1 "general_operand" "0,g")
(match_operand:HI 2 "const_int_operand" "n,n")))]
""
"@
bicw2 %H2,%0
bicw3 %H2,%1,%0")
(define_insn ""
[(set (match_operand:QI 0 "general_operand" "=g,g")
(and:QI (match_operand:QI 1 "general_operand" "0,g")
(match_operand:QI 2 "const_int_operand" "n,n")))]
""
"@
bicb2 %B2,%0
bicb3 %B2,%1,%0")
;;- Bit set instructions.
(define_insn "iorsi3"
[(set (match_operand:SI 0 "general_operand" "=g,g,g")
(ior:SI (match_operand:SI 1 "general_operand" "0,g,g")
(match_operand:SI 2 "general_operand" "g,0,g")))]
""
"@
bisl2 %2,%0
bisl2 %1,%0
bisl3 %2,%1,%0")
(define_insn "iorhi3"
[(set (match_operand:HI 0 "general_operand" "=g,g,g")
(ior:HI (match_operand:HI 1 "general_operand" "0,g,g")
(match_operand:HI 2 "general_operand" "g,0,g")))]
""
"@
bisw2 %2,%0
bisw2 %1,%0
bisw3 %2,%1,%0")
(define_insn "iorqi3"
[(set (match_operand:QI 0 "general_operand" "=g,g,g")
(ior:QI (match_operand:QI 1 "general_operand" "0,g,g")
(match_operand:QI 2 "general_operand" "g,0,g")))]
""
"@
bisb2 %2,%0
bisb2 %1,%0
bisb3 %2,%1,%0")
;;- xor instructions.
(define_insn "xorsi3"
[(set (match_operand:SI 0 "general_operand" "=g,g,g")
(xor:SI (match_operand:SI 1 "general_operand" "0,g,g")
(match_operand:SI 2 "general_operand" "g,0,g")))]
""
"@
xorl2 %2,%0
xorl2 %1,%0
xorl3 %2,%1,%0")
(define_insn "xorhi3"
[(set (match_operand:HI 0 "general_operand" "=g,g,g")
(xor:HI (match_operand:HI 1 "general_operand" "0,g,g")
(match_operand:HI 2 "general_operand" "g,0,g")))]
""
"@
xorw2 %2,%0
xorw2 %1,%0
xorw3 %2,%1,%0")
(define_insn "xorqi3"
[(set (match_operand:QI 0 "general_operand" "=g,g,g")
(xor:QI (match_operand:QI 1 "general_operand" "0,g,g")
(match_operand:QI 2 "general_operand" "g,0,g")))]
""
"@
xorb2 %2,%0
xorb2 %1,%0
xorb3 %2,%1,%0")
(define_insn "negdf2"
[(set (match_operand:DF 0 "general_operand" "=g")
(neg:DF (match_operand:DF 1 "general_operand" "gF")))]
""
"mneg%# %1,%0")
(define_insn "negsf2"
[(set (match_operand:SF 0 "general_operand" "=g")
(neg:SF (match_operand:SF 1 "general_operand" "gF")))]
""
"mnegf %1,%0")
(define_insn "negsi2"
[(set (match_operand:SI 0 "general_operand" "=g")
(neg:SI (match_operand:SI 1 "general_operand" "g")))]
""
"mnegl %1,%0")
(define_insn "neghi2"
[(set (match_operand:HI 0 "general_operand" "=g")
(neg:HI (match_operand:HI 1 "general_operand" "g")))]
""
"mnegw %1,%0")
(define_insn "negqi2"
[(set (match_operand:QI 0 "general_operand" "=g")
(neg:QI (match_operand:QI 1 "general_operand" "g")))]
""
"mnegb %1,%0")
(define_insn "one_cmplsi2"
[(set (match_operand:SI 0 "general_operand" "=g")
(not:SI (match_operand:SI 1 "general_operand" "g")))]
""
"mcoml %1,%0")
(define_insn "one_cmplhi2"
[(set (match_operand:HI 0 "general_operand" "=g")
(not:HI (match_operand:HI 1 "general_operand" "g")))]
""
"mcomw %1,%0")
(define_insn "one_cmplqi2"
[(set (match_operand:QI 0 "general_operand" "=g")
(not:QI (match_operand:QI 1 "general_operand" "g")))]
""
"mcomb %1,%0")
;; Arithmetic right shift on the vax works by negating the shift count,
;; then emitting a right shift with the shift count negated. This means
;; that all actual shift counts in the RTL will be positive. This
;; prevents converting shifts to ZERO_EXTRACTs with negative positions,
;; which isn't valid.
(define_expand "ashrsi3"
[(set (match_operand:SI 0 "general_operand" "=g")
(ashiftrt:SI (match_operand:SI 1 "general_operand" "g")
(match_operand:QI 2 "general_operand" "g")))]
""
"
{
if (GET_CODE (operands[2]) != CONST_INT)
operands[2] = gen_rtx (NEG, QImode, negate_rtx (QImode, operands[2]));
}")
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=g")
(ashiftrt:SI (match_operand:SI 1 "general_operand" "g")
(match_operand:QI 2 "const_int_operand" "n")))]
""
"ashl $%n2,%1,%0")
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=g")
(ashiftrt:SI (match_operand:SI 1 "general_operand" "g")
(neg:QI (match_operand:QI 2 "general_operand" "g"))))]
""
"ashl %2,%1,%0")
(define_insn "ashlsi3"
[(set (match_operand:SI 0 "general_operand" "=g")
(ashift:SI (match_operand:SI 1 "general_operand" "g")
(match_operand:QI 2 "general_operand" "g")))]
""
"*
{
if (operands[2] == const1_rtx && rtx_equal_p (operands[0], operands[1]))
return \"addl2 %0,%0\";
if (GET_CODE (operands[1]) == REG
&& GET_CODE (operands[2]) == CONST_INT)
{
int i = INTVAL (operands[2]);
if (i == 1)
return \"addl3 %1,%1,%0\";
if (i == 2)
return \"moval 0[%1],%0\";
if (i == 3)
return \"movad 0[%1],%0\";
}
return \"ashl %2,%1,%0\";
}")
;; Arithmetic right shift on the vax works by negating the shift count.
(define_expand "ashrdi3"
[(set (match_operand:DI 0 "general_operand" "=g")
(ashiftrt:DI (match_operand:DI 1 "general_operand" "g")
(match_operand:QI 2 "general_operand" "g")))]
""
"
{
operands[2] = gen_rtx (NEG, QImode, negate_rtx (QImode, operands[2]));
}")
(define_insn "ashldi3"
[(set (match_operand:DI 0 "general_operand" "=g")
(ashift:DI (match_operand:DI 1 "general_operand" "g")
(match_operand:QI 2 "general_operand" "g")))]
""
"ashq %2,%1,%0")
(define_insn ""
[(set (match_operand:DI 0 "general_operand" "=g")
(ashiftrt:DI (match_operand:DI 1 "general_operand" "g")
(neg:QI (match_operand:QI 2 "general_operand" "g"))))]
""
"ashq %2,%1,%0")
;; Rotate right on the vax works by negating the shift count.
(define_expand "rotrsi3"
[(set (match_operand:SI 0 "general_operand" "=g")
(rotatert:SI (match_operand:SI 1 "general_operand" "g")
(match_operand:QI 2 "general_operand" "g")))]
""
"
{
if (GET_CODE (operands[2]) != CONST_INT)
operands[2] = gen_rtx (NEG, QImode, negate_rtx (QImode, operands[2]));
}")
(define_insn "rotlsi3"
[(set (match_operand:SI 0 "general_operand" "=g")
(rotate:SI (match_operand:SI 1 "general_operand" "g")
(match_operand:QI 2 "general_operand" "g")))]
""
"rotl %2,%1,%0")
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=g")
(rotatert:SI (match_operand:SI 1 "general_operand" "g")
(match_operand:QI 2 "const_int_operand" "n")))]
""
"rotl $%R2,%1,%0")
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=g")
(rotatert:SI (match_operand:SI 1 "general_operand" "g")
(neg:QI (match_operand:QI 2 "general_operand" "g"))))]
""
"rotl %2,%1,%0")
;This insn is probably slower than a multiply and an add.
;(define_insn ""
; [(set (match_operand:SI 0 "general_operand" "=g")
; (mult:SI (plus:SI (match_operand:SI 1 "general_operand" "g")
; (match_operand:SI 2 "general_operand" "g"))
; (match_operand:SI 3 "general_operand" "g")))]
; ""
; "index %1,$0x80000000,$0x7fffffff,%3,%2,%0")
;; Special cases of bit-field insns which we should
;; recognize in preference to the general case.
;; These handle aligned 8-bit and 16-bit fields,
;; which can usually be done with move instructions.
(define_insn ""
[(set (zero_extract:SI (match_operand:SI 0 "general_operand" "+ro")
(match_operand:QI 1 "const_int_operand" "n")
(match_operand:SI 2 "const_int_operand" "n"))
(match_operand:SI 3 "general_operand" "g"))]
"(INTVAL (operands[1]) == 8 || INTVAL (operands[1]) == 16)
&& INTVAL (operands[2]) % INTVAL (operands[1]) == 0
&& (GET_CODE (operands[0]) == REG
|| ! mode_dependent_address_p (XEXP (operands[0], 0)))"
"*
{
if (REG_P (operands[0]))
{
if (INTVAL (operands[2]) != 0)
return \"insv %3,%2,%1,%0\";
}
else
operands[0]
= adj_offsettable_operand (operands[0], INTVAL (operands[2]) / 8);
if (INTVAL (operands[1]) == 8)
return \"movb %3,%0\";
return \"movw %3,%0\";
}")
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=&g")
(zero_extract:SI (match_operand:SI 1 "general_operand" "ro")
(match_operand:QI 2 "const_int_operand" "n")
(match_operand:SI 3 "const_int_operand" "n")))]
"(INTVAL (operands[2]) == 8 || INTVAL (operands[2]) == 16)
&& INTVAL (operands[3]) % INTVAL (operands[2]) == 0
&& (GET_CODE (operands[1]) == REG
|| ! mode_dependent_address_p (XEXP (operands[1], 0)))"
"*
{
if (REG_P (operands[1]))
{
if (INTVAL (operands[3]) != 0)
return \"extzv %3,%2,%1,%0\";
}
else
operands[1]
= adj_offsettable_operand (operands[1], INTVAL (operands[3]) / 8);
if (INTVAL (operands[2]) == 8)
return \"movzbl %1,%0\";
return \"movzwl %1,%0\";
}")
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=g")
(sign_extract:SI (match_operand:SI 1 "general_operand" "ro")
(match_operand:QI 2 "const_int_operand" "n")
(match_operand:SI 3 "const_int_operand" "n")))]
"(INTVAL (operands[2]) == 8 || INTVAL (operands[2]) == 16)
&& INTVAL (operands[3]) % INTVAL (operands[2]) == 0
&& (GET_CODE (operands[1]) == REG
|| ! mode_dependent_address_p (XEXP (operands[1], 0)))"
"*
{
if (REG_P (operands[1]))
{
if (INTVAL (operands[3]) != 0)
return \"extv %3,%2,%1,%0\";
}
else
operands[1]
= adj_offsettable_operand (operands[1], INTVAL (operands[3]) / 8);
if (INTVAL (operands[2]) == 8)
return \"cvtbl %1,%0\";
return \"cvtwl %1,%0\";
}")
;; Register-only SImode cases of bit-field insns.
(define_insn ""
[(set (cc0)
(compare
(sign_extract:SI (match_operand:SI 0 "nonmemory_operand" "r")
(match_operand:QI 1 "general_operand" "g")
(match_operand:SI 2 "general_operand" "g"))
(match_operand:SI 3 "general_operand" "g")))]
""
"cmpv %2,%1,%0,%3")
(define_insn ""
[(set (cc0)
(compare
(zero_extract:SI (match_operand:SI 0 "nonmemory_operand" "r")
(match_operand:QI 1 "general_operand" "g")
(match_operand:SI 2 "general_operand" "g"))
(match_operand:SI 3 "general_operand" "g")))]
""
"cmpzv %2,%1,%0,%3")
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=g")
(sign_extract:SI (match_operand:SI 1 "nonmemory_operand" "r")
(match_operand:QI 2 "general_operand" "g")
(match_operand:SI 3 "general_operand" "g")))]
""
"extv %3,%2,%1,%0")
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=g")
(zero_extract:SI (match_operand:SI 1 "nonmemory_operand" "r")
(match_operand:QI 2 "general_operand" "g")
(match_operand:SI 3 "general_operand" "g")))]
""
"extzv %3,%2,%1,%0")
;; Non-register cases.
;; nonimmediate_operand is used to make sure that mode-ambiguous cases
;; don't match these (and therefore match the cases above instead).
(define_insn ""
[(set (cc0)
(compare
(sign_extract:SI (match_operand:QI 0 "nonimmediate_operand" "rm")
(match_operand:QI 1 "general_operand" "g")
(match_operand:SI 2 "general_operand" "g"))
(match_operand:SI 3 "general_operand" "g")))]
""
"cmpv %2,%1,%0,%3")
(define_insn ""
[(set (cc0)
(compare
(zero_extract:SI (match_operand:QI 0 "nonimmediate_operand" "rm")
(match_operand:QI 1 "general_operand" "g")
(match_operand:SI 2 "general_operand" "g"))
(match_operand:SI 3 "general_operand" "g")))]
""
"cmpzv %2,%1,%0,%3")
(define_insn "extv"
[(set (match_operand:SI 0 "general_operand" "=g")
(sign_extract:SI (match_operand:QI 1 "nonimmediate_operand" "rm")
(match_operand:QI 2 "general_operand" "g")
(match_operand:SI 3 "general_operand" "g")))]
""
"extv %3,%2,%1,%0")
(define_insn "extzv"
[(set (match_operand:SI 0 "general_operand" "=g")
(zero_extract:SI (match_operand:QI 1 "nonimmediate_operand" "rm")
(match_operand:QI 2 "general_operand" "g")
(match_operand:SI 3 "general_operand" "g")))]
""
"extzv %3,%2,%1,%0")
(define_insn "insv"
[(set (zero_extract:SI (match_operand:QI 0 "general_operand" "+g")
(match_operand:QI 1 "general_operand" "g")
(match_operand:SI 2 "general_operand" "g"))
(match_operand:SI 3 "general_operand" "g"))]
""
"insv %3,%2,%1,%0")
(define_insn ""
[(set (zero_extract:SI (match_operand:SI 0 "register_operand" "+r")
(match_operand:QI 1 "general_operand" "g")
(match_operand:SI 2 "general_operand" "g"))
(match_operand:SI 3 "general_operand" "g"))]
""
"insv %3,%2,%1,%0")
(define_insn "jump"
[(set (pc)
(label_ref (match_operand 0 "" "")))]
""
"jbr %l0")
(define_insn "beq"
[(set (pc)
(if_then_else (eq (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"jeql %l0")
(define_insn "bne"
[(set (pc)
(if_then_else (ne (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"jneq %l0")
(define_insn "bgt"
[(set (pc)
(if_then_else (gt (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"jgtr %l0")
(define_insn "bgtu"
[(set (pc)
(if_then_else (gtu (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"jgtru %l0")
(define_insn "blt"
[(set (pc)
(if_then_else (lt (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"jlss %l0")
(define_insn "bltu"
[(set (pc)
(if_then_else (ltu (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"jlssu %l0")
(define_insn "bge"
[(set (pc)
(if_then_else (ge (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"jgeq %l0")
(define_insn "bgeu"
[(set (pc)
(if_then_else (geu (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"jgequ %l0")
(define_insn "ble"
[(set (pc)
(if_then_else (le (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"jleq %l0")
(define_insn "bleu"
[(set (pc)
(if_then_else (leu (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"jlequ %l0")
;; Recognize reversed jumps.
(define_insn ""
[(set (pc)
(if_then_else (match_operator 0 "comparison_operator"
[(cc0)
(const_int 0)])
(pc)
(label_ref (match_operand 1 "" ""))))]
""
"j%C0 %l1") ; %C0 negates condition
;; Recognize jbs, jlbs, jbc and jlbc instructions.
(define_insn ""
[(set (pc)
(if_then_else
(ne (zero_extract:SI (match_operand:QI 0 "nonimmediate_operand" "g,g")
(const_int 1)
(match_operand:SI 1 "general_operand" "I,g"))
(const_int 0))
(label_ref (match_operand 2 "" ""))
(pc)))]
""
"@
jlbs %0,%l2
jbs %1,%0,%l2")
(define_insn ""
[(set (pc)
(if_then_else
(eq (zero_extract:SI (match_operand:QI 0 "nonimmediate_operand" "g,g")
(const_int 1)
(match_operand:SI 1 "general_operand" "I,g"))
(const_int 0))
(label_ref (match_operand 2 "" ""))
(pc)))]
""
"@
jlbc %0,%l2
jbc %1,%0,%l2")
(define_insn ""
[(set (pc)
(if_then_else
(ne (zero_extract:SI (match_operand:SI 0 "register_operand" "r,r")
(const_int 1)
(match_operand:SI 1 "general_operand" "I,g"))
(const_int 0))
(label_ref (match_operand 2 "" ""))
(pc)))]
""
"@
jlbs %0,%l2
jbs %1,%0,%l2")
(define_insn ""
[(set (pc)
(if_then_else
(eq (zero_extract:SI (match_operand:SI 0 "register_operand" "r,r")
(const_int 1)
(match_operand:SI 1 "general_operand" "I,g"))
(const_int 0))
(label_ref (match_operand 2 "" ""))
(pc)))]
""
"@
jlbc %0,%l2
jbc %1,%0,%l2")
;; Subtract-and-jump and Add-and-jump insns.
;; These are not used when output is for the Unix assembler
;; because it does not know how to modify them to reach far.
;; Normal sob insns.
(define_insn ""
[(set (pc)
(if_then_else
(gt (match_operand:SI 0 "general_operand" "+g")
(const_int 1))
(label_ref (match_operand 1 "" ""))
(pc)))
(set (match_dup 0)
(plus:SI (match_dup 0)
(const_int -1)))]
"!TARGET_UNIX_ASM"
"jsobgtr %0,%l1")
(define_insn ""
[(set (pc)
(if_then_else
(ge (match_operand:SI 0 "general_operand" "+g")
(const_int 1))
(label_ref (match_operand 1 "" ""))
(pc)))
(set (match_dup 0)
(plus:SI (match_dup 0)
(const_int -1)))]
"!TARGET_UNIX_ASM"
"jsobgeq %0,%l1")
;; Normal aob insns. Define a version for when operands[1] is a constant.
(define_insn ""
[(set (pc)
(if_then_else
(lt (plus:SI (match_operand:SI 0 "general_operand" "+g")
(const_int 1))
(match_operand:SI 1 "general_operand" "g"))
(label_ref (match_operand 2 "" ""))
(pc)))
(set (match_dup 0)
(plus:SI (match_dup 0)
(const_int 1)))]
"!TARGET_UNIX_ASM"
"jaoblss %1,%0,%l2")
(define_insn ""
[(set (pc)
(if_then_else
(lt (match_operand:SI 0 "general_operand" "+g")
(match_operand:SI 1 "general_operand" "g"))
(label_ref (match_operand 2 "" ""))
(pc)))
(set (match_dup 0)
(plus:SI (match_dup 0)
(const_int 1)))]
"!TARGET_UNIX_ASM && GET_CODE (operands[1]) == CONST_INT"
"jaoblss %P1,%0,%l2")
(define_insn ""
[(set (pc)
(if_then_else
(le (plus:SI (match_operand:SI 0 "general_operand" "+g")
(const_int 1))
(match_operand:SI 1 "general_operand" "g"))
(label_ref (match_operand 2 "" ""))
(pc)))
(set (match_dup 0)
(plus:SI (match_dup 0)
(const_int 1)))]
"!TARGET_UNIX_ASM"
"jaobleq %1,%0,%l2")
(define_insn ""
[(set (pc)
(if_then_else
(le (match_operand:SI 0 "general_operand" "+g")
(match_operand:SI 1 "general_operand" "g"))
(label_ref (match_operand 2 "" ""))
(pc)))
(set (match_dup 0)
(plus:SI (match_dup 0)
(const_int 1)))]
"!TARGET_UNIX_ASM && GET_CODE (operands[1]) == CONST_INT"
"jaobleq %P1,%0,%l2")
;; Something like a sob insn, but compares against -1.
;; This finds `while (foo--)' which was changed to `while (--foo != -1)'.
(define_insn ""
[(set (pc)
(if_then_else
(ne (match_operand:SI 0 "general_operand" "g")
(const_int 0))
(label_ref (match_operand 1 "" ""))
(pc)))
(set (match_dup 0)
(plus:SI (match_dup 0)
(const_int -1)))]
""
"decl %0\;jgequ %l1")
;; Note that operand 1 is total size of args, in bytes,
;; and what the call insn wants is the number of words.
(define_insn "call_pop"
[(call (match_operand:QI 0 "memory_operand" "m")
(match_operand:QI 1 "general_operand" "g"))
(set (reg:SI 14) (plus:SI (reg:SI 14)
(match_operand:SI 3 "immediate_operand" "i")))]
""
"*
if (GET_CODE (operands[1]) != CONST_INT || INTVAL (operands[1]) > 255 * 4)
/* Vax `calls' really uses only one byte of #args, so pop explicitly. */
return \"calls $0,%0\;addl2 %1,sp\";
operands[1] = gen_rtx (CONST_INT, VOIDmode, (INTVAL (operands[1]) + 3)/ 4);
return \"calls %1,%0\";
")
(define_insn "call_value_pop"
[(set (match_operand 0 "" "=g")
(call (match_operand:QI 1 "memory_operand" "m")
(match_operand:QI 2 "general_operand" "g")))
(set (reg:SI 14) (plus:SI (reg:SI 14)
(match_operand:SI 4 "immediate_operand" "i")))]
""
"*
if (GET_CODE (operands[2]) != CONST_INT || INTVAL (operands[2]) > 255 * 4)
/* Vax `calls' really uses only one byte of #args, so pop explicitly. */
return \"calls $0,%1\;addl2 %2,sp\";
operands[2] = gen_rtx (CONST_INT, VOIDmode, (INTVAL (operands[2]) + 3)/ 4);
return \"calls %2,%1\";
")
;; Define another set of these for the case of functions with no
;; operands. In that case, combine may simplify the adjustment of sp.
(define_insn ""
[(call (match_operand:QI 0 "memory_operand" "m")
(match_operand:QI 1 "general_operand" "g"))
(set (reg:SI 14) (reg:SI 14))]
""
"*
if (GET_CODE (operands[1]) != CONST_INT || INTVAL (operands[1]) > 255 * 4)
/* Vax `calls' really uses only one byte of #args, so pop explicitly. */
return \"calls $0,%0\;addl2 %1,sp\";
operands[1] = gen_rtx (CONST_INT, VOIDmode, (INTVAL (operands[1]) + 3)/ 4);
return \"calls %1,%0\";
")
(define_insn ""
[(set (match_operand 0 "" "=g")
(call (match_operand:QI 1 "memory_operand" "m")
(match_operand:QI 2 "general_operand" "g")))
(set (reg:SI 14) (reg:SI 14))]
""
"*
if (GET_CODE (operands[2]) != CONST_INT || INTVAL (operands[2]) > 255 * 4)
/* Vax `calls' really uses only one byte of #args, so pop explicitly. */
return \"calls $0,%1\;addl2 %2,sp\";
operands[2] = gen_rtx (CONST_INT, VOIDmode, (INTVAL (operands[2]) + 3)/ 4);
return \"calls %2,%1\";
")
(define_insn "return"
[(return)]
""
"ret")
(define_insn "nop"
[(const_int 0)]
""
"nop")
(define_insn "indirect_jump"
[(set (pc) (match_operand:SI 0 "general_operand" "r"))]
"(GET_CODE (operands[0]) != MEM || offsettable_memref_p (operands[0]))"
"jmp (%0)")
(define_insn "casesi"
[(set (pc)
(if_then_else (leu (minus:SI (match_operand:SI 0 "general_operand" "g")
(match_operand:SI 1 "general_operand" "g"))
(match_operand:SI 2 "general_operand" "g"))
(plus:SI (sign_extend:SI
(mem:HI
(plus:SI (pc)
(mult:SI (minus:SI (match_dup 0)
(match_dup 1))
(const_int 2)))))
(label_ref:SI (match_operand 3 "" "")))
(pc)))]
""
"casel %0,%1,%2")
;; This used to arise from the preceding by simplification
;; if operand 1 is zero. Perhaps it is no longer necessary.
(define_insn ""
[(set (pc)
(if_then_else (leu (match_operand:SI 0 "general_operand" "g")
(match_operand:SI 1 "general_operand" "g"))
(plus:SI (sign_extend:SI
(mem:HI
(plus:SI (pc)
(mult:SI (minus:SI (match_dup 0)
(const_int 0))
(const_int 2)))))
(label_ref:SI (match_operand 3 "" "")))
(pc)))]
""
"casel %0,$0,%1")
;;- load or push effective address
;; These come after the move and add/sub patterns
;; because we don't want pushl $1 turned into pushad 1.
;; or addl3 r1,r2,r3 turned into movab 0(r1)[r2],r3.
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=<,g")
(match_operand:QI 1 "address_operand" "p,p"))]
""
"@
pushab %a1
movab %a1,%0")
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=<,g")
(match_operand:HI 1 "address_operand" "p,p"))]
""
"@
pushaw %a1
movaw %a1,%0")
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=<,g")
(match_operand:SI 1 "address_operand" "p,p"))]
""
"@
pushal %a1
moval %a1,%0")
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=<,g")
(match_operand:DI 1 "address_operand" "p,p"))]
""
"@
pushaq %a1
movaq %a1,%0")
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=<,g")
(match_operand:SF 1 "address_operand" "p,p"))]
""
"@
pushaf %a1
movaf %a1,%0")
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=<,g")
(match_operand:DF 1 "address_operand" "p,p"))]
""
"@
pushad %a1
movad %a1,%0")
;; These used to be peepholes, but it is more straightforward to do them
;; as single insns. However, we must force the output to be a register
;; if it is not an offsettable address so that we know that we can assign
;; to it twice.
;; If we had a good way of evaluating the relative costs, these could be
;; machine-independent.
;; Optimize extzv ...,z; andl2 ...,z
;; or ashl ...,z; andl2 ...,z
;; with other operands constant. This is what the combiner converts the
;; above sequences to before attempting to recognize the new insn.
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=ro")
(and:SI (ashiftrt:SI (match_operand:SI 1 "general_operand" "g")
(match_operand:QI 2 "const_int_operand" "n"))
(match_operand:SI 3 "const_int_operand" "n")))]
"(INTVAL (operands[3]) & ~((1 << (32 - INTVAL (operands[2]))) - 1)) == 0"
"*
{
unsigned long mask1 = INTVAL (operands[3]);
unsigned long mask2 = (1 << (32 - INTVAL (operands[2]))) - 1;
if ((mask1 & mask2) != mask1)
operands[3] = gen_rtx (CONST_INT, VOIDmode, mask1 & mask2);
return \"rotl %R2,%1,%0\;bicl2 %N3,%0\";
}")
;; left-shift and mask
;; The only case where `ashl' is better is if the mask only turns off
;; bits that the ashl would anyways, in which case it should have been
;; optimized away.
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=ro")
(and:SI (ashift:SI (match_operand:SI 1 "general_operand" "g")
(match_operand:QI 2 "const_int_operand" "n"))
(match_operand:SI 3 "const_int_operand" "n")))]
""
"*
{
operands[3] = gen_rtx (CONST_INT, VOIDmode,
INTVAL (operands[3]) & ~((1 << INTVAL (operands[2])) - 1));
return \"rotl %2,%1,%0\;bicl2 %N3,%0\";
}")
;;- Local variables:
;;- mode:emacs-lisp
;;- comment-start: ";;- "
;;- eval: (set-syntax-table (copy-sequence (syntax-table)))
;;- eval: (modify-syntax-entry ?[ "(]")
;;- eval: (modify-syntax-entry ?] ")[")
;;- eval: (modify-syntax-entry ?{ "(}")
;;- eval: (modify-syntax-entry ?} "){")
;;- End:
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment