Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
R
riscv-gcc-1
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
lvzhengyang
riscv-gcc-1
Commits
a5d58aeb
Commit
a5d58aeb
authored
Apr 03, 2005
by
Francois-Xavier Coudert
Committed by
François-Xavier Coudert
Apr 03, 2005
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
* intrinsic.texi: Document COS, EXP, LOG, LOG10, SIN, SQRT, TAN.
From-SVN: r97496
parent
f7cdcbf1
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
368 additions
and
40 deletions
+368
-40
gcc/fortran/ChangeLog
+4
-0
gcc/fortran/intrinsic.texi
+364
-40
No files found.
gcc/fortran/ChangeLog
View file @
a5d58aeb
2005-04-03 Francois-Xavier Coudert <coudert@clipper.ens.fr>
2005-04-03 Francois-Xavier Coudert <coudert@clipper.ens.fr>
* intrinsic.texi: Document COS, EXP, LOG, LOG10, SIN, SQRT, TAN.
2005-04-03 Francois-Xavier Coudert <coudert@clipper.ens.fr>
* intrinsic.texi: Document BESJ0, BESJ1, BESJN, BESY0, BESY1,
* intrinsic.texi: Document BESJ0, BESJ1, BESJN, BESY0, BESY1,
BESYN, ATAN, COSH, ERF, ERC, SINH, TANH.
BESYN, ATAN, COSH, ERF, ERC, SINH, TANH.
...
...
gcc/fortran/intrinsic.texi
View file @
a5d58aeb
...
@@ -50,13 +50,20 @@ and editing. All contributions and corrections are strongly encouraged.
...
@@ -50,13 +50,20 @@ and editing. All contributions and corrections are strongly encouraged.
*
@code
{
BESJ0
}
:
BESJ0
,
Bessel
function
of
the
first
kind
of
order
0
*
@code
{
BESJ0
}
:
BESJ0
,
Bessel
function
of
the
first
kind
of
order
0
*
@code
{
BESJ1
}
:
BESJ1
,
Bessel
function
of
the
first
kind
of
order
1
*
@code
{
BESJ1
}
:
BESJ1
,
Bessel
function
of
the
first
kind
of
order
1
*
@code
{
BESJN
}
:
BESJN
,
Bessel
function
of
the
first
kind
*
@code
{
BESJN
}
:
BESJN
,
Bessel
function
of
the
first
kind
*
@code
{
BESY0
}
:
BESY0
,
Bessel
function
of
the
first
kind
of
order
0
*
@code
{
BESY0
}
:
BESY0
,
Bessel
function
of
the
second
kind
of
order
0
*
@code
{
BESY1
}
:
BESY1
,
Bessel
function
of
the
first
kind
of
order
1
*
@code
{
BESY1
}
:
BESY1
,
Bessel
function
of
the
second
kind
of
order
1
*
@code
{
BESYN
}
:
BESYN
,
Bessel
function
of
the
first
kind
*
@code
{
BESYN
}
:
BESYN
,
Bessel
function
of
the
second
kind
*
@code
{
COS
}
:
COS
,
Cosine
function
*
@code
{
COSH
}
:
COSH
,
Hyperbolic
cosine
function
*
@code
{
COSH
}
:
COSH
,
Hyperbolic
cosine
function
*
@code
{
ERF
}
:
ERF
,
Error
function
*
@code
{
ERF
}
:
ERF
,
Error
function
*
@code
{
ERFC
}
:
ERFC
,
Complementary
error
function
*
@code
{
ERFC
}
:
ERFC
,
Complementary
error
function
*
@code
{
EXP
}
:
EXP
,
Cosine
function
*
@code
{
LOG
}
:
LOG
,
Logarithm
function
*
@code
{
LOG10
}
:
LOG10
,
Base
10
logarithm
function
*
@code
{
SQRT
}
:
SQRT
,
Square
-
root
function
*
@code
{
SIN
}
:
SIN
,
Sine
function
*
@code
{
SINH
}
:
SINH
,
Hyperbolic
sine
function
*
@code
{
SINH
}
:
SINH
,
Hyperbolic
sine
function
*
@code
{
TAN
}
:
TAN
,
Tangent
function
*
@code
{
TANH
}
:
TANH
,
Hyperbolic
tangent
function
*
@code
{
TANH
}
:
TANH
,
Hyperbolic
tangent
function
@end
menu
@end
menu
...
@@ -1052,6 +1059,54 @@ end program test_besyn
...
@@ -1052,6 +1059,54 @@ end program test_besyn
@end
table
@end
table
@node
COS
@section
@code
{
COS
}
---
Cosine
function
@findex
@code
{
COS
}
intrinsic
@findex
@code
{
DCOS
}
intrinsic
@findex
@code
{
ZCOS
}
intrinsic
@findex
@code
{
CDCOS
}
intrinsic
@cindex
cosine
@table
@asis
@item
@emph
{
Description
}
:
@code
{
COS
(
X
)}
computes
the
cosine
of
@var
{
X
}.
@item
@emph
{
Option
}
:
f95
,
gnu
@item
@emph
{
Type
}
:
elemental
function
@item
@emph
{
Syntax
}
:
@code
{
X
=
COS
(
X
)}
@item
@emph
{
Arguments
}
:
@multitable
@columnfractions
.
15
.
80
@item
@var
{
X
}
@tab
The
type
shall
be
an
@code
{
REAL
(
*
)}
or
@code
{
COMPLEX
(
*
)}.
@end
multitable
@item
@emph
{
Return
value
}
:
The
return
value
has
same
type
and
kind
than
@var
{
X
}.
@item
@emph
{
Example
}
:
@smallexample
program
test_cos
real
::
x
=
0
.
0
x
=
cos
(
x
)
end
program
test_cos
@end
smallexample
@item
@emph
{
Specific
names
}
:
@multitable
@columnfractions
.
24
.
24
.
24
.
24
@item
Name
@tab
Argument
@tab
Return
type
@tab
Option
@item
@code
{
DCOS
(
X
)}
@tab
@code
{
REAL
(
8
)
X
}
@tab
@code
{
REAL
(
8
)}
@tab
f95
,
gnu
@item
@code
{
CCOS
(
X
)}
@tab
@code
{
COMPLEX
(
4
)
X
}
@tab
@code
{
COMPLEX
(
4
)}
@tab
f95
,
gnu
@item
@code
{
ZCOS
(
X
)}
@tab
@code
{
COMPLEX
(
8
)
X
}
@tab
@code
{
COMPLEX
(
8
)}
@tab
f95
,
gnu
@item
@code
{
CDCOS
(
X
)}
@tab
@code
{
COMPLEX
(
8
)
X
}
@tab
@code
{
COMPLEX
(
8
)}
@tab
f95
,
gnu
@end
multitable
@end
table
@node
COSH
@node
COSH
@section
@code
{
COSH
}
---
Hyperbolic
cosine
function
@section
@code
{
COSH
}
---
Hyperbolic
cosine
function
...
@@ -1107,7 +1162,7 @@ end program test_cosh
...
@@ -1107,7 +1162,7 @@ end program test_cosh
@code
{
ERF
(
X
)}
computes
the
error
function
of
@var
{
X
}.
@code
{
ERF
(
X
)}
computes
the
error
function
of
@var
{
X
}.
@item
@emph
{
Option
}
:
@item
@emph
{
Option
}
:
f95
,
gnu
gnu
@item
@emph
{
Type
}
:
@item
@emph
{
Type
}
:
elemental
function
elemental
function
...
@@ -1135,7 +1190,7 @@ end program test_erf
...
@@ -1135,7 +1190,7 @@ end program test_erf
@item
@emph
{
Specific
names
}
:
@item
@emph
{
Specific
names
}
:
@multitable
@columnfractions
.
24
.
24
.
24
.
24
@multitable
@columnfractions
.
24
.
24
.
24
.
24
@item
Name
@tab
Argument
@tab
Return
type
@tab
Option
@item
Name
@tab
Argument
@tab
Return
type
@tab
Option
@item
@code
{
DERF
(
X
)}
@tab
@code
{
REAL
(
8
)
X
}
@tab
@code
{
REAL
(
8
)}
@tab
f95
,
gnu
@item
@code
{
DERF
(
X
)}
@tab
@code
{
REAL
(
8
)
X
}
@tab
@code
{
REAL
(
8
)}
@tab
gnu
@end
multitable
@end
multitable
@end
table
@end
table
...
@@ -1151,7 +1206,7 @@ end program test_erf
...
@@ -1151,7 +1206,7 @@ end program test_erf
@code
{
ERFC
(
X
)}
computes
the
complementary
error
function
of
@var
{
X
}.
@code
{
ERFC
(
X
)}
computes
the
complementary
error
function
of
@var
{
X
}.
@item
@emph
{
Option
}
:
@item
@emph
{
Option
}
:
f95
,
gnu
gnu
@item
@emph
{
Type
}
:
@item
@emph
{
Type
}
:
elemental
function
elemental
function
...
@@ -1179,12 +1234,216 @@ end program test_erfc
...
@@ -1179,12 +1234,216 @@ end program test_erfc
@item
@emph
{
Specific
names
}
:
@item
@emph
{
Specific
names
}
:
@multitable
@columnfractions
.
24
.
24
.
24
.
24
@multitable
@columnfractions
.
24
.
24
.
24
.
24
@item
Name
@tab
Argument
@tab
Return
type
@tab
Option
@item
Name
@tab
Argument
@tab
Return
type
@tab
Option
@item
@code
{
DERFC
(
X
)}
@tab
@code
{
REAL
(
8
)
X
}
@tab
@code
{
REAL
(
8
)}
@tab
f95
,
gnu
@item
@code
{
DERFC
(
X
)}
@tab
@code
{
REAL
(
8
)
X
}
@tab
@code
{
REAL
(
8
)}
@tab
gnu
@end
multitable
@end
table
@node
EXP
@section
@code
{
EXP
}
---
Exponential
function
@findex
@code
{
EXP
}
intrinsic
@findex
@code
{
DEXP
}
intrinsic
@findex
@code
{
ZEXP
}
intrinsic
@findex
@code
{
CDEXP
}
intrinsic
@cindex
exponential
@table
@asis
@item
@emph
{
Description
}
:
@code
{
EXP
(
X
)}
computes
the
base
@math
{
e
}
exponential
of
@var
{
X
}.
@item
@emph
{
Option
}
:
f95
,
gnu
@item
@emph
{
Type
}
:
elemental
function
@item
@emph
{
Syntax
}
:
@code
{
X
=
EXP
(
X
)}
@item
@emph
{
Arguments
}
:
@multitable
@columnfractions
.
15
.
80
@item
@var
{
X
}
@tab
The
type
shall
be
an
@code
{
REAL
(
*
)}
or
@code
{
COMPLEX
(
*
)}.
@end
multitable
@item
@emph
{
Return
value
}
:
The
return
value
has
same
type
and
kind
than
@var
{
X
}.
@item
@emph
{
Example
}
:
@smallexample
program
test_exp
real
::
x
=
1
.
0
x
=
exp
(
x
)
end
program
test_exp
@end
smallexample
@item
@emph
{
Specific
names
}
:
@multitable
@columnfractions
.
24
.
24
.
24
.
24
@item
Name
@tab
Argument
@tab
Return
type
@tab
Option
@item
@code
{
DEXP
(
X
)}
@tab
@code
{
REAL
(
8
)
X
}
@tab
@code
{
REAL
(
8
)}
@tab
f95
,
gnu
@item
@code
{
CEXP
(
X
)}
@tab
@code
{
COMPLEX
(
4
)
X
}
@tab
@code
{
COMPLEX
(
4
)}
@tab
f95
,
gnu
@item
@code
{
ZEXP
(
X
)}
@tab
@code
{
COMPLEX
(
8
)
X
}
@tab
@code
{
COMPLEX
(
8
)}
@tab
f95
,
gnu
@item
@code
{
CDEXP
(
X
)}
@tab
@code
{
COMPLEX
(
8
)
X
}
@tab
@code
{
COMPLEX
(
8
)}
@tab
f95
,
gnu
@end
multitable
@end
table
@node
LOG
@section
@code
{
LOG
}
---
Logarithm
function
@findex
@code
{
LOG
}
intrinsic
@findex
@code
{
ALOG
}
intrinsic
@findex
@code
{
DLOG
}
intrinsic
@findex
@code
{
CLOG
}
intrinsic
@findex
@code
{
ZLOG
}
intrinsic
@findex
@code
{
CDLOG
}
intrinsic
@cindex
logarithm
@table
@asis
@item
@emph
{
Description
}
:
@code
{
LOG
(
X
)}
computes
the
logarithm
of
@var
{
X
}.
@item
@emph
{
Option
}
:
f95
,
gnu
@item
@emph
{
Type
}
:
elemental
function
@item
@emph
{
Syntax
}
:
@code
{
X
=
LOG
(
X
)}
@item
@emph
{
Arguments
}
:
@multitable
@columnfractions
.
15
.
80
@item
@var
{
X
}
@tab
The
type
shall
be
an
@code
{
REAL
(
*
)}
or
@code
{
COMPLEX
(
*
)}.
@end
multitable
@item
@emph
{
Return
value
}
:
The
return
value
is
of
type
@code
{
REAL
(
*
)}
or
@code
{
COMPLEX
(
*
)}.
The
kind
type
parameter
is
the
same
as
@var
{
X
}.
@item
@emph
{
Example
}
:
@smallexample
program
test_log
real
(
8
)
::
x
=
1
.
0
_8
complex
::
z
=
(
1
.
0
,
2
.
0
)
x
=
log
(
x
)
z
=
log
(
z
)
end
program
test_log
@end
smallexample
@item
@emph
{
Specific
names
}
:
@multitable
@columnfractions
.
24
.
24
.
24
.
24
@item
Name
@tab
Argument
@tab
Return
type
@tab
Option
@item
@code
{
ALOG
(
X
)}
@tab
@code
{
REAL
(
4
)
X
}
@tab
@code
{
REAL
(
4
)}
@tab
f95
,
gnu
@item
@code
{
DLOG
(
X
)}
@tab
@code
{
REAL
(
8
)
X
}
@tab
@code
{
REAL
(
8
)}
@tab
f95
,
gnu
@item
@code
{
CLOG
(
X
)}
@tab
@code
{
COMPLEX
(
4
)
X
}
@tab
@code
{
COMPLEX
(
4
)}
@tab
f95
,
gnu
@item
@code
{
ZLOG
(
X
)}
@tab
@code
{
COMPLEX
(
8
)
X
}
@tab
@code
{
COMPLEX
(
8
)}
@tab
f95
,
gnu
@item
@code
{
CDLOG
(
X
)}
@tab
@code
{
COMPLEX
(
8
)
X
}
@tab
@code
{
COMPLEX
(
8
)}
@tab
f95
,
gnu
@end
multitable
@end
table
@node
LOG10
@section
@code
{
LOG10
}
---
Base
10
logarithm
function
@findex
@code
{
LOG10
}
intrinsic
@findex
@code
{
ALOG10
}
intrinsic
@findex
@code
{
DLOG10
}
intrinsic
@cindex
logarithm
@table
@asis
@item
@emph
{
Description
}
:
@code
{
LOG10
(
X
)}
computes
the
base
10
logarithm
of
@var
{
X
}.
@item
@emph
{
Option
}
:
f95
,
gnu
@item
@emph
{
Type
}
:
elemental
function
@item
@emph
{
Syntax
}
:
@code
{
X
=
LOG10
(
X
)}
@item
@emph
{
Arguments
}
:
@multitable
@columnfractions
.
15
.
80
@item
@var
{
X
}
@tab
The
type
shall
be
an
@code
{
REAL
(
*
)}
or
@code
{
COMPLEX
(
*
)}.
@end
multitable
@item
@emph
{
Return
value
}
:
The
return
value
is
of
type
@code
{
REAL
(
*
)}
or
@code
{
COMPLEX
(
*
)}.
The
kind
type
parameter
is
the
same
as
@var
{
X
}.
@item
@emph
{
Example
}
:
@smallexample
program
test_log10
real
(
8
)
::
x
=
10
.
0
_8
x
=
log10
(
x
)
end
program
test_log10
@end
smallexample
@item
@emph
{
Specific
names
}
:
@multitable
@columnfractions
.
24
.
24
.
24
.
24
@item
Name
@tab
Argument
@tab
Return
type
@tab
Option
@item
@code
{
ALOG10
(
X
)}
@tab
@code
{
REAL
(
4
)
X
}
@tab
@code
{
REAL
(
4
)}
@tab
f95
,
gnu
@item
@code
{
DLOG10
(
X
)}
@tab
@code
{
REAL
(
8
)
X
}
@tab
@code
{
REAL
(
8
)}
@tab
f95
,
gnu
@end
multitable
@end
multitable
@end
table
@end
table
@node
SIN
@section
@code
{
SIN
}
---
Sine
function
@findex
@code
{
SIN
}
intrinsic
@findex
@code
{
DSIN
}
intrinsic
@findex
@code
{
ZSIN
}
intrinsic
@findex
@code
{
CDSIN
}
intrinsic
@cindex
sine
@table
@asis
@item
@emph
{
Description
}
:
@code
{
SIN
(
X
)}
computes
the
sine
of
@var
{
X
}.
@item
@emph
{
Option
}
:
f95
,
gnu
@item
@emph
{
Type
}
:
elemental
function
@item
@emph
{
Syntax
}
:
@code
{
X
=
SIN
(
X
)}
@item
@emph
{
Arguments
}
:
@multitable
@columnfractions
.
15
.
80
@item
@var
{
X
}
@tab
The
type
shall
be
an
@code
{
REAL
(
*
)}
or
@code
{
COMPLEX
(
*
)}.
@end
multitable
@item
@emph
{
Return
value
}
:
The
return
value
has
same
type
and
king
than
@var
{
X
}.
@item
@emph
{
Example
}
:
@smallexample
program
test_sin
real
::
x
=
0
.
0
x
=
sin
(
x
)
end
program
test_sin
@end
smallexample
@item
@emph
{
Specific
names
}
:
@multitable
@columnfractions
.
24
.
24
.
24
.
24
@item
Name
@tab
Argument
@tab
Return
type
@tab
Option
@item
@code
{
DSIN
(
X
)}
@tab
@code
{
REAL
(
8
)
X
}
@tab
@code
{
REAL
(
8
)}
@tab
f95
,
gnu
@item
@code
{
CSIN
(
X
)}
@tab
@code
{
COMPLEX
(
4
)
X
}
@tab
@code
{
COMPLEX
(
4
)}
@tab
f95
,
gnu
@item
@code
{
ZSIN
(
X
)}
@tab
@code
{
COMPLEX
(
8
)
X
}
@tab
@code
{
COMPLEX
(
8
)}
@tab
f95
,
gnu
@item
@code
{
CDSIN
(
X
)}
@tab
@code
{
COMPLEX
(
8
)
X
}
@tab
@code
{
COMPLEX
(
8
)}
@tab
f95
,
gnu
@end
multitable
@end
table
@node
SINH
@node
SINH
@section
@code
{
SINH
}
---
Hyperbolic
sine
function
@section
@code
{
SINH
}
---
Hyperbolic
sine
function
@findex
@code
{
SINH
}
intrinsic
@findex
@code
{
SINH
}
intrinsic
...
@@ -1229,6 +1488,104 @@ end program test_sinh
...
@@ -1229,6 +1488,104 @@ end program test_sinh
@node
SQRT
@section
@code
{
SQRT
}
---
Square
-
root
function
@findex
@code
{
SQRT
}
intrinsic
@findex
@code
{
DSQRT
}
intrinsic
@findex
@code
{
CSQRT
}
intrinsic
@findex
@code
{
ZSQRT
}
intrinsic
@findex
@code
{
CDSQRT
}
intrinsic
@cindex
square
-
root
@table
@asis
@item
@emph
{
Description
}
:
@code
{
SQRT
(
X
)}
computes
the
square
root
of
@var
{
X
}.
@item
@emph
{
Option
}
:
f95
,
gnu
@item
@emph
{
Type
}
:
elemental
function
@item
@emph
{
Syntax
}
:
@code
{
X
=
SQRT
(
X
)}
@item
@emph
{
Arguments
}
:
@multitable
@columnfractions
.
15
.
80
@item
@var
{
X
}
@tab
The
type
shall
be
an
@code
{
REAL
(
*
)}
or
@code
{
COMPLEX
(
*
)}.
@end
multitable
@item
@emph
{
Return
value
}
:
The
return
value
is
of
type
@code
{
REAL
(
*
)}
or
@code
{
COMPLEX
(
*
)}.
The
kind
type
parameter
is
the
same
as
@var
{
X
}.
@item
@emph
{
Example
}
:
@smallexample
program
test_sqrt
real
(
8
)
::
x
=
2
.
0
_8
complex
::
z
=
(
1
.
0
,
2
.
0
)
x
=
sqrt
(
x
)
z
=
sqrt
(
z
)
end
program
test_sqrt
@end
smallexample
@item
@emph
{
Specific
names
}
:
@multitable
@columnfractions
.
24
.
24
.
24
.
24
@item
Name
@tab
Argument
@tab
Return
type
@tab
Option
@item
@code
{
DSQRT
(
X
)}
@tab
@code
{
REAL
(
8
)
X
}
@tab
@code
{
REAL
(
8
)}
@tab
f95
,
gnu
@item
@code
{
CSQRT
(
X
)}
@tab
@code
{
COMPLEX
(
4
)
X
}
@tab
@code
{
COMPLEX
(
4
)}
@tab
f95
,
gnu
@item
@code
{
ZSQRT
(
X
)}
@tab
@code
{
COMPLEX
(
8
)
X
}
@tab
@code
{
COMPLEX
(
8
)}
@tab
f95
,
gnu
@item
@code
{
CDSQRT
(
X
)}
@tab
@code
{
COMPLEX
(
8
)
X
}
@tab
@code
{
COMPLEX
(
8
)}
@tab
f95
,
gnu
@end
multitable
@end
table
@node
TAN
@section
@code
{
TAN
}
---
Tangent
function
@findex
@code
{
TAN
}
intrinsic
@findex
@code
{
DTAN
}
intrinsic
@cindex
tangent
@table
@asis
@item
@emph
{
Description
}
:
@code
{
TAN
(
X
)}
computes
the
tangent
of
@var
{
X
}.
@item
@emph
{
Option
}
:
f95
,
gnu
@item
@emph
{
Type
}
:
elemental
function
@item
@emph
{
Syntax
}
:
@code
{
X
=
TAN
(
X
)}
@item
@emph
{
Arguments
}
:
@multitable
@columnfractions
.
15
.
80
@item
@var
{
X
}
@tab
The
type
shall
be
an
@code
{
REAL
(
*
)}.
@end
multitable
@item
@emph
{
Return
value
}
:
The
return
value
is
of
type
@code
{
REAL
(
*
)}.
The
kind
type
parameter
is
the
same
as
@var
{
X
}.
@item
@emph
{
Example
}
:
@smallexample
program
test_tan
real
(
8
)
::
x
=
0
.
165
_8
x
=
tan
(
x
)
end
program
test_tan
@end
smallexample
@item
@emph
{
Specific
names
}
:
@multitable
@columnfractions
.
24
.
24
.
24
.
24
@item
Name
@tab
Argument
@tab
Return
type
@tab
Option
@item
@code
{
DTAN
(
X
)}
@tab
@code
{
REAL
(
8
)
X
}
@tab
@code
{
REAL
(
8
)}
@tab
f95
,
gnu
@end
multitable
@end
table
@node
TANH
@node
TANH
@section
@code
{
TANH
}
---
Hyperbolic
tangent
function
@section
@code
{
TANH
}
---
Hyperbolic
tangent
function
@findex
@code
{
TANH
}
intrinsic
@findex
@code
{
TANH
}
intrinsic
...
@@ -1294,11 +1651,6 @@ end program test_tanh
...
@@ -1294,11 +1651,6 @@ end program test_tanh
@comment
gen
conjg
@comment
gen
conjg
@comment
dconjg
@comment
dconjg
@comment
@comment
@comment
gen
cos
@comment
dcos
@comment
ccos
@comment
zcos
,
cdcos
@comment
@comment
gen
count
@comment
gen
count
@comment
@comment
@comment
sub
cpu_time
@comment
sub
cpu_time
...
@@ -1335,11 +1687,6 @@ end program test_tanh
...
@@ -1335,11 +1687,6 @@ end program test_tanh
@comment
@comment
@comment
sub
exit
@comment
sub
exit
@comment
@comment
@comment
gen
exp
@comment
dexp
@comment
cexp
@comment
zexp
,
cdexp
@comment
@comment
gen
exponent
@comment
gen
exponent
@comment
@comment
@comment
gen
floor
@comment
gen
floor
...
@@ -1420,16 +1767,6 @@ end program test_tanh
...
@@ -1420,16 +1767,6 @@ end program test_tanh
@comment
@comment
@comment
gen
llt
@comment
gen
llt
@comment
@comment
@comment
gen
log
@comment
alog
@comment
dlog
@comment
clog
@comment
zlog
,
cdlog
@comment
@comment
gen
log10
@comment
alog10
@comment
dlog10
@comment
@comment
gen
logical
@comment
gen
logical
@comment
@comment
@comment
gen
matmul
@comment
gen
matmul
...
@@ -1527,22 +1864,12 @@ end program test_tanh
...
@@ -1527,22 +1864,12 @@ end program test_tanh
@comment
isign
@comment
isign
@comment
dsign
@comment
dsign
@comment
@comment
@comment
gen
sin
@comment
dsin
@comment
csin
@comment
zsin
,
cdsin
@comment
@comment
gen
size
@comment
gen
size
@comment
@comment
@comment
gen
spacing
@comment
gen
spacing
@comment
@comment
@comment
gen
spread
@comment
gen
spread
@comment
@comment
@comment
gen
sqrt
@comment
dsqrt
@comment
csqrt
@comment
zsqrt
,
cdsqrt
@comment
@comment
sub
srand
@comment
sub
srand
@comment
@comment
@comment
gen
stat
@comment
gen
stat
...
@@ -1555,9 +1882,6 @@ end program test_tanh
...
@@ -1555,9 +1882,6 @@ end program test_tanh
@comment
@comment
@comment
sub
system_clock
@comment
sub
system_clock
@comment
@comment
@comment
gen
tan
@comment
dtan
@comment
@comment
gen
tiny
@comment
gen
tiny
@comment
@comment
@comment
gen
transfer
@comment
gen
transfer
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment