Commit a1c8363d by Jeff Law

Initial revision

From-SVN: r14289
parent 5a060962
long udivmodsi4 ();
long
__divsi3 (long a, long b)
{
int neg = 0;
long res;
if (a < 0)
{
a = -a;
neg = !neg;
}
if (b < 0)
{
b = -b;
neg = !neg;
}
res = udivmodsi4 (a, b, 0);
if (neg)
res = -res;
return res;
}
long
__modsi3 (long a, long b)
{
int neg = 0;
long res;
if (a < 0)
{
a = -a;
neg = 1;
}
if (b < 0)
b = -b;
res = udivmodsi4 (a, b, 1);
if (neg)
res = -res;
return res;
}
/* libgcc1 routines for Matsushita mn10200.
Copyright (C) 1997 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file with other programs, and to distribute
those programs without any restriction coming from the use of this
file. (The General Public License restrictions do apply in other
respects; for example, they cover modification of the file, and
distribution when not linked into another program.)
This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* As a special exception, if you link this library with files
compiled with GCC to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public License.
This exception does not however invalidate any other reasons why
the executable file might be covered by the GNU General Public License. */
#ifdef L_divhi3
/* Derive signed division/modulo from unsigned "divu" instruction. */
.text
.globl ___divhi3
.type ___divhi3,@function
___divhi3:
/* We're going to need some scratch registers, so save d2/d3
into the stack. */
add -8,a3
movx d2,(0,a3)
movx d3,(4,a3)
/* Loading zeros into registers now allows us to use them
in the compare instructions, which saves a total of
two bytes (egad). */
sub d3,d3
sub d2,d2
sub a0,a0
/* If first operand is negative, then make it positive.
It will be contained in d2 just before .L1.
a0 tells us if the first operand was negated. */
cmp d2,d0
bge .L0
sub d0,d2
mov 1,a0
bra .L1
.L0:
mov d0,d2
.L1:
/* If the second operand is negative, then make it positive.
It will be contained in d3 just before .L3.
d0 tells us if the second operand was negated. */
cmp d3,d1
bge .L2
sub d1,d3
mov 1,d0
bra .L3
.L2:
sub d0,d0
mov d1,d3
.L3:
/* Loading d1 with zero here allows us to save one byte
in the comparison below. */
sub d1,d1
/* Make sure to clear the mdr register, then do the unsigned
division. Result will be in d2/mdr. */
mov d1,mdr
divu d3,d2
/* Negate the remainder based on the first argument negation
flag only. */
cmp d1,a0
beq .L4
mov mdr,d3
sub d3,d1
bra .L5
.L4:
mov mdr,d1
.L5:
/* Negate the result if either, but not both of the inputs
were negated. */
mov a0,d3
xor d3,d0
beq .L6
sub d0,d0
sub d2,d0
bra .L7
.L6:
mov d2,d0
.L7:
/* Restore our scratch registers, deallocate our stack and return. */
movx (0,a3),d2
movx (4,a3),d3
add 8,a3
rts
.size ___divhi3,.-___divhi3
#endif
#ifdef L_modhi3
.text
.globl ___modhi3
.type ___modhi3,@function
___modhi3:
jsr ___divhi3
mov d1,d0
rts
.size ___modhi3,.-___modhi3
#endif
#ifdef L_addsi3
.text
.globl ___addsi3
.type ___addsi3,@function
___addsi3:
add -4,a3
movx d2,(0,a3)
mov (8,a3),d2
add d2,d0
mov (10,a3),d2
addc d2,d1
movx (0,a3),d2
add 4,a3
rts
.size ___addsi3,.-___addsi3
#endif
#ifdef L_subsi3
.text
.globl ___subsi3
.type ___subsi3,@function
___subsi3:
add -4,a3
movx d2,(0,a3)
mov (8,a3),d2
sub d2,d0
mov (10,a3),d2
subc d2,d1
movx (0,a3),d2
add 4,a3
rts
.size ___subsi3,.-___subsi3
#endif
#ifdef L_mulsi3
.text
.globl ___mulsi3
.type ___mulsi3,@function
___mulsi3:
add -4,a3
mov a1,(0,a3)
mov d0,a0
/* Multiply arg0 msb with arg1 lsb.
arg0 msb is in register d1,
arg1 lsb is in memory. */
mov (8,a3),d0
mulu d0,d1
mov d1,a1
/* Multiply arg0 lsb with arg1 msb.
arg0 msb is in register a0,
arg1 lsb is in memory. */
mov a0,d0
mov (10,a3),d1
mulu d0,d1
/* Add the cross products. */
add d1,a1
/* Now multiply arg0 lsb with arg1 lsb. */
mov (8,a3),d1
mulu d1,d0
/* Add in the upper 16 bits to the cross product sum. */
mov mdr,d1
add a1,d1
mov (0,a3),a1
add 4,a3
rts
.size ___mulsi3,.-___mulsi3
#endif
#ifdef L_ashlsi3
.text
.globl ___ashlsi3
.type ___ashlsi3,@function
___ashlsi3:
mov (4,a3),a0
cmp 0,a0
beq .L0
.L1:
add d0,d0
addc d1,d1
add -1,a0
bne .L1
.L0:
rts
.size ___ashlsi3,.-___ashlsi3
#endif
#ifdef L_lshrsi3
.text
.globl ___lshrsi3
.type ___lshrsi3,@function
___lshrsi3:
mov (4,a3),a0
cmp 0,a0
beq .L0
.L1:
lsr d1
ror d0
add -1,a0
bne .L1
.L0:
rts
.size ___lshrsi3,.-___lshrsi3
#endif
#ifdef L_ashrsi3
.text
.globl ___ashrsi3
.type ___ashrsi3,@function
___ashrsi3:
mov (4,a3),a0
cmp 0,a0
beq .L0
.L1:
asr d1
ror d0
add -1,a0
bne .L1
.L0:
rts
.size ___ashrsi3,.-___ashrsi3
#endif
/* All functions beyond this point pass their arguments in registers! */
#ifdef L_negsi2_d0
.text
.globl ___negsi2_d0
.type ___negsi2_d0,@function
___negsi2_d0:
add -8,a3
movx d3,(0,a3)
movx d2,(4,a3)
mov d0,d2
mov d1,d3
sub d0,d0
sub d1,d1
sub d2,d0
subc d3,d1
movx (0,a3),d3
movx (4,a3),d2
add 8,a3
rts
.size ___negsi2_d0,.-___negsi2_d0
#endif
#ifdef L_negsi2_d2
.text
.globl ___negsi2_d2
.type ___negsi2_d2,@function
___negsi2_d2:
add -8,a3
movx d1,(0,a3)
movx d0,(4,a3)
mov d2,d0
mov d3,d1
sub d2,d2
sub d3,d3
sub d0,d2
subc d1,d3
movx (0,a3),d1
movx (4,a3),d0
add 8,a3
rts
.size ___negsi2_d2,.-___negsi2_d2
#endif
#ifdef L_zero_extendpsisi2_d0
.text
.globl ___zero_extendpsisi2_d0
.type ___zero_extendpsisi2_d0,@function
___zero_extendpsisi2_d0:
add -4,a3
movx d0,(0,a3)
movbu (2,a3),d1
add 4,a3
rts
.size ___zero_extendpsisi2_d0,.-___zero_extendpsisi2_d0
#endif
#ifdef L_zero_extendpsisi2_d2
.text
.globl ___zero_extendpsisi2_d2
.type ___zero_extendpsisi2_d2,@function
___zero_extendpsisi2_d2:
add -4,a3
movx d2,(0,a3)
movbu (2,a3),d3
add 4,a3
rts
.size ___zero_extendpsisi2_d2,.-___zero_extendpsisi2_d2
#endif
#ifdef L_sign_extendpsisi2_d0
.text
.globl ___sign_extendpsisi2_d0
.type ___sign_extendpsisi2_d0,@function
___sign_extendpsisi2_d0:
add -4,a3
movx d0,(0,a3)
movb (2,a3),d1
add 4,a3
rts
.size ___sign_extendpsisi2_d0,.-___sign_extendpsisi2_d0
#endif
#ifdef L_sign_extendpsisi2_d2
.text
.globl ___sign_extendpsisi2_d2
.type ___sign_extendpsisi2_d2,@function
___sign_extendpsisi2_d2:
add -4,a3
movx d2,(0,a3)
movb (2,a3),d3
add 4,a3
rts
.size ___sign_extendpsisi2_d2,.-___sign_extendpsisi2_d2
#endif
#ifdef L_truncsipsi2_d0_d0
.text
.globl ___truncsipsi2_d0_d0
.type ___truncsipsi2_d0_d0,@function
___truncsipsi2_d0_d0:
add -4,a3
mov d0,(a3)
mov d1,(2,a3)
movx (0,a3),d0
add 4,a3
rts
.size ___truncsipsi2_d0_d0,.-___truncsipsi2_d0_d0
#endif
#ifdef L_truncsipsi2_d0_d1
.text
.globl ___truncsipsi2_d0_d1
.type ___truncsipsi2_d0_d1,@function
___truncsipsi2_d0_d1:
add -4,a3
mov d0,(a3)
mov d1,(2,a3)
movx (0,a3),d1
add 4,a3
rts
.size ___truncsipsi2_d0_d1,.-___truncsipsi2_d0_d1
#endif
#ifdef L_truncsipsi2_d0_d2
.text
.globl ___truncsipsi2_d0_d2
.type ___truncsipsi2_d0_d2,@function
___truncsipsi2_d0_d2:
add -4,a3
mov d0,(a3)
mov d1,(2,a3)
movx (0,a3),d2
add 4,a3
rts
.size ___truncsipsi2_d0_d2,.-___truncsipsi2_d0_d2
#endif
#ifdef L_truncsipsi2_d0_d3
.text
.globl ___truncsipsi2_d0_d3
.type ___truncsipsi2_d0_d3,@function
___truncsipsi2_d0_d3:
add -4,a3
mov d0,(a3)
mov d1,(2,a3)
movx (0,a3),d3
add 4,a3
rts
.size ___truncsipsi2_d0_d3,.-___truncsipsi2_d0_d3
#endif
#ifdef L_truncsipsi2_d2_d0
.text
.globl ___truncsipsi2_d2_d0
.type ___truncsipsi2_d2_d0,@function
___truncsipsi2_d2_d0:
add -4,a3
mov d2,(a3)
mov d3,(2,a3)
movx (0,a3),d0
add 4,a3
rts
.size ___truncsipsi2_d2_d0,.-___truncsipsi2_d2_d0
#endif
#ifdef L_truncsipsi2_d2_d1
.text
.globl ___truncsipsi2_d2_d1
.type ___truncsipsi2_d2_d1,@function
___truncsipsi2_d2_d1:
add -4,a3
mov d2,(a3)
mov d3,(2,a3)
movx (0,a3),d1
add 4,a3
rts
.size ___truncsipsi2_d2_d1,.-___truncsipsi2_d2_d1
#endif
#ifdef L_truncsipsi2_d2_d2
.text
.globl ___truncsipsi2_d2_d2
.type ___truncsipsi2_d2_d2,@function
___truncsipsi2_d2_d2:
add -4,a3
mov d2,(a3)
mov d3,(2,a3)
movx (0,a3),d2
add 4,a3
rts
.size ___truncsipsi2_d2_d2,.-___truncsipsi2_d2_d2
#endif
#ifdef L_truncsipsi2_d2_d3
.text
.globl ___truncsipsi2_d2_d3
.type ___truncsipsi2_d2_d3,@function
___truncsipsi2_d2_d3:
add -4,a3
mov d2,(a3)
mov d3,(2,a3)
movx (0,a3),d3
add 4,a3
rts
.size ___truncsipsi2_d2_d3,.-___truncsipsi2_d2_d3
#endif
#ifdef L_cmpsi2
.text
.globl ___cmpsi2
.type ___cmpsi2,@function
___cmpsi2:
add -4,a3
mov a1,(0,a3)
mov (10,a3),a1
mov (8,a3),a0
cmp a1,d1
blt .L9
bgt .L6
cmp a0,d0
bcc .L5
.L9:
sub d0,d0
jmp .L8
.L5:
cmp a0,d0
bhi .L6
mov 1,d0
jmp .L8
.L6:
mov 2,d0
.L8:
mov (0,a3),a1
add 4,a3
rts
.size ___cmpsi2,.-___cmpsi2
#endif
#ifdef L_ucmpsi2
.text
.globl ___ucmpsi2
.type ___ucmpsi2,@function
___ucmpsi2:
add -4,a3
mov a1,(0,a3)
mov (10,a3),a1
mov (8,a3),a0
cmp a1,d1
bcs .L9
bhi .L6
cmp a0,d0
bcc .L5
.L9:
sub d0,d0
jmp .L8
.L5:
cmp a0,d0
bhi .L6
mov 1,d0
jmp .L8
.L6:
mov 2,d0
.L8:
mov (0,a3),a1
add 4,a3
rts
.size ___ucmpsi2,.-___ucmpsi2
#endif
#ifdef L_prologue
.text
.globl ___prologue
.type ___prologue,@function
___prologue:
mov (0,a3),a0
add -16,a3
movx d2,(4,a3)
movx d3,(8,a3)
mov a1,(12,a3)
mov a2,(16,a3)
mov a0,(0,a3)
rts
.size ___prologue,.-___prologue
#endif
#ifdef L_epilogue_a0
.text
.globl ___epilogue_a0
.type ___epilogue_a0,@function
___epilogue_a0:
mov (0,a3),a0
movx (4,a3),d2
movx (8,a3),d3
mov (12,a3),a1
mov (16,a3),a2
add 16,a3
mov a0,(0,a3)
rts
.size ___epilogue_a0,.-___epilogue_a0
#endif
#ifdef L_epilogue_d0
.text
.globl ___epilogue_d0
.type ___epilogue_d0,@function
___epilogue_d0:
movx (0,a3),d0
movx (4,a3),d2
movx (8,a3),d3
mov (12,a3),a1
mov (16,a3),a2
add 16,a3
movx d0,(0,a3)
rts
.size ___epilogue_d0,.-___epilogue_d0
#endif
#ifdef L_epilogue_noreturn
.text
.globl ___epilogue_noreturn
.type ___epilogue_noreturn,@function
___epilogue_noreturn:
movx (0,a3),d2
movx (4,a3),d3
mov (8,a3),a1
mov (12,a3),a2
add 16,a3
rts
.size ___epilogue_noreturn,.-___epilogue_noreturn
#endif
/* Subroutines for insn-output.c for Matsushita MN10200 series
Copyright (C) 1997 Free Software Foundation, Inc.
Contributed by Jeff Law (law@cygnus.com).
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include <stdio.h>
#include "config.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "recog.h"
#include "expr.h"
#include "tree.h"
#include "obstack.h"
/* Global registers known to hold the value zero.
Normally we'd depend on CSE and combine to put zero into a
register and re-use it.
However, on the mn10x00 processors we implicitly use the constant
zero in tst instructions, so we might be able to do better by
loading the value into a register in the prologue, then re-useing
that register throughout the function.
We could perform similar optimizations for other constants, but with
gcse due soon, it doesn't seem worth the effort.
These variables hold a rtx for a register known to hold the value
zero throughout the entire function, or NULL if no register of
the appropriate class has such a value throughout the life of the
function. */
rtx zero_dreg;
rtx zero_areg;
/* Note whether or not we need an out of line epilogue. */
static int out_of_line_epilogue;
/* Indicate this file was compiled by gcc and what optimization
level was used. */
void
asm_file_start (file)
FILE *file;
{
fprintf (file, "#\tGCC For the Matsushita MN10200\n");
if (optimize)
fprintf (file, "# -O%d\n", optimize);
else
fprintf (file, "\n\n");
output_file_directive (file, main_input_filename);
}
/* Print operand X using operand code CODE to assembly language output file
FILE. */
void
print_operand (file, x, code)
FILE *file;
rtx x;
int code;
{
switch (code)
{
case 'b':
case 'B':
/* These are normal and reversed branches. */
switch (code == 'b' ? GET_CODE (x) : reverse_condition (GET_CODE (x)))
{
case NE:
fprintf (file, "ne");
break;
case EQ:
fprintf (file, "eq");
break;
case GE:
fprintf (file, "ge");
break;
case GT:
fprintf (file, "gt");
break;
case LE:
fprintf (file, "le");
break;
case LT:
fprintf (file, "lt");
break;
case GEU:
fprintf (file, "cc");
break;
case GTU:
fprintf (file, "hi");
break;
case LEU:
fprintf (file, "ls");
break;
case LTU:
fprintf (file, "cs");
break;
default:
abort ();
}
break;
case 'C':
/* This is used for the operand to a call instruction;
if it's a REG, enclose it in parens, else output
the operand normally. */
if (GET_CODE (x) == REG)
{
fputc ('(', file);
print_operand (file, x, 0);
fputc (')', file);
}
else
print_operand (file, x, 0);
break;
/* These are the least significant word in a 32bit value.
'o' allows us to sign extend a constant if doing so
makes for more compact code. */
case 'L':
case 'o':
switch (GET_CODE (x))
{
case MEM:
fputc ('(', file);
output_address (XEXP (x, 0));
fputc (')', file);
break;
case REG:
fprintf (file, "%s", reg_names[REGNO (x)]);
break;
case SUBREG:
fprintf (file, "%s",
reg_names[REGNO (SUBREG_REG (x)) + SUBREG_WORD (x)]);
break;
case CONST_DOUBLE:
if (code == 'L')
{
long val;
REAL_VALUE_TYPE rv;
REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
REAL_VALUE_TO_TARGET_SINGLE (rv, val);
print_operand_address (file, GEN_INT (val & 0xffff));
}
else
{
long val;
REAL_VALUE_TYPE rv;
REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
REAL_VALUE_TO_TARGET_SINGLE (rv, val);
val &= 0xffff;
val = (((val) & 0xffff) ^ (~0x7fff)) + 0x8000;
print_operand_address (file, GEN_INT (val));
}
break;
case CONST_INT:
if (code == 'L')
print_operand_address (file, GEN_INT ((INTVAL (x) & 0xffff)));
else
{
unsigned int val = INTVAL (x) & 0xffff;
val = (((val) & 0xffff) ^ (~0x7fff)) + 0x8000;
print_operand_address (file, GEN_INT (val));
}
break;
default:
abort ();
}
break;
/* Similarly, but for the most significant word. */
case 'H':
case 'h':
switch (GET_CODE (x))
{
case MEM:
fputc ('(', file);
x = adj_offsettable_operand (x, 2);
output_address (XEXP (x, 0));
fputc (')', file);
break;
case REG:
fprintf (file, "%s", reg_names[REGNO (x) + 1]);
break;
case SUBREG:
fprintf (file, "%s",
reg_names[REGNO (SUBREG_REG (x)) + SUBREG_WORD (x)] + 1);
break;
case CONST_DOUBLE:
if (code == 'H')
{
long val;
REAL_VALUE_TYPE rv;
REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
REAL_VALUE_TO_TARGET_SINGLE (rv, val);
print_operand_address (file, GEN_INT ((val >> 16) & 0xffff));
}
else
{
long val;
REAL_VALUE_TYPE rv;
REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
REAL_VALUE_TO_TARGET_SINGLE (rv, val);
val = (val >> 16) & 0xffff;
val = (((val) & 0xffff) ^ (~0x7fff)) + 0x8000;
print_operand_address (file, GEN_INT (val));
}
break;
case CONST_INT:
if (code == 'H')
print_operand_address (file,
GEN_INT ((INTVAL (x) >> 16) & 0xffff));
else
{
unsigned int val = (INTVAL (x) >> 16) & 0xffff;
val = (((val) & 0xffff) ^ (~0x7fff)) + 0x8000;
print_operand_address (file, GEN_INT (val));
}
break;
default:
abort ();
}
break;
/* Output ~CONST_INT. */
case 'N':
if (GET_CODE (x) != CONST_INT)
abort ();
fprintf (file, "%d", ~INTVAL (x));
break;
/* An address which can not be register indirect, if it is
register indirect, then turn it into reg + disp. */
case 'A':
if (GET_CODE (x) != MEM)
abort ();
if (GET_CODE (XEXP (x, 0)) == REG)
x = gen_rtx (PLUS, PSImode, XEXP (x, 0), GEN_INT (0));
else
x = XEXP (x, 0);
fputc ('(', file);
output_address (x);
fputc (')', file);
break;
case 'Z':
print_operand (file, XEXP (x, 1), 0);
break;
/* More cases where we can sign-extend a CONST_INT if it
results in more compact code. */
case 's':
case 'S':
if (GET_CODE (x) == CONST_INT)
{
int val = INTVAL (x);
if (code == 's')
x = GEN_INT (((val & 0xffff) ^ (~0x7fff)) + 0x8000);
else
x = GEN_INT (((val & 0xff) ^ (~0x7f)) + 0x80);
}
/* FALL THROUGH */
default:
switch (GET_CODE (x))
{
case MEM:
fputc ('(', file);
output_address (XEXP (x, 0));
fputc (')', file);
break;
case REG:
fprintf (file, "%s", reg_names[REGNO (x)]);
break;
case SUBREG:
fprintf (file, "%s",
reg_names[REGNO (SUBREG_REG (x)) + SUBREG_WORD (x)]);
break;
case CONST_INT:
case CONST_DOUBLE:
case SYMBOL_REF:
case CONST:
case LABEL_REF:
case CODE_LABEL:
print_operand_address (file, x);
break;
default:
abort ();
}
break;
}
}
/* Output assembly language output for the address ADDR to FILE. */
void
print_operand_address (file, addr)
FILE *file;
rtx addr;
{
switch (GET_CODE (addr))
{
case REG:
print_operand (file, addr, 0);
break;
case PLUS:
{
rtx base, index;
/* The base and index could be in any order, so we have
to figure out which is the base and which is the index.
Uses the same code as GO_IF_LEGITIMATE_ADDRESS. */
if (REG_P (XEXP (addr, 0))
&& REG_OK_FOR_BASE_P (XEXP (addr, 0)))
base = XEXP (addr, 0), index = XEXP (addr, 1);
else if (REG_P (XEXP (addr, 1))
&& REG_OK_FOR_BASE_P (XEXP (addr, 1)))
base = XEXP (addr, 1), index = XEXP (addr, 0);
else
abort ();
print_operand (file, index, 0);
fputc (',', file);
print_operand (file, base, 0);;
break;
}
case SYMBOL_REF:
output_addr_const (file, addr);
break;
default:
output_addr_const (file, addr);
break;
}
}
/* Count the number of tst insns which compare an address register
with zero. */
static void
count_tst_insns (areg_countp)
int *areg_countp;
{
rtx insn;
/* Assume no tst insns exist. */
*areg_countp = 0;
/* If not optimizing, then quit now. */
if (!optimize)
return;
/* Walk through all the insns. */
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
rtx pat;
/* Ignore anything that is not a normal INSN. */
if (GET_CODE (insn) != INSN)
continue;
/* Ignore anything that isn't a SET. */
pat = PATTERN (insn);
if (GET_CODE (pat) != SET)
continue;
/* Check for a tst insn. */
if (SET_DEST (pat) == cc0_rtx
&& GET_CODE (SET_SRC (pat)) == REG
&& REGNO_REG_CLASS (REGNO (SET_SRC (pat))) == ADDRESS_REGS)
(*areg_countp)++;
}
}
/* Return the total size (in bytes) of the current function's frame.
This is the size of the register save area + the size of locals,
spills, etc. */
int
total_frame_size ()
{
unsigned int size = get_frame_size ();
unsigned int outgoing_args_size = current_function_outgoing_args_size;
int i;
/* First figure out if we're going to use an out of line
prologue, if so we have to make space for all the
registers, even if we don't use them. */
if (optimize && !current_function_needs_context && !frame_pointer_needed)
{
int inline_count, outline_count;
/* Compute how many bytes an inline prologue would take.
Each address register store takes two bytes, each data register
store takes three bytes. */
inline_count = 0;
if (regs_ever_live[5])
inline_count += 2;
if (regs_ever_live[6])
inline_count += 2;
if (regs_ever_live[2])
inline_count += 3;
if (regs_ever_live[3])
inline_count += 3;
/* If this function has any stack, then the stack adjustment
will take two (or more) bytes. */
if (size || outgoing_args_size
|| regs_ever_live[5] || regs_ever_live[6]
|| regs_ever_live[2] || regs_ever_live[3])
inline_count += 2;
/* Multiply the current count by two and add one to account for the
epilogue insns. */
inline_count = inline_count * 2 + 1;
/* Now compute how many bytes an out of line sequence would take. */
/* A relaxed jsr will be three bytes. */
outline_count = 3;
/* If there are outgoing arguments, then we will need a stack
pointer adjustment after the call to the prologue, two
more bytes. */
outline_count += (outgoing_args_size == 0 ? 0 : 2);
/* If there is some local frame to allocate, it will need to be
done before the call to the prologue, two more bytes. */
if (get_frame_size () != 0)
outline_count += 2;
/* Now account for the epilogue, multiply the base count by two,
then deal with optimizing away the rts instruction. */
outline_count = outline_count * 2 + 1;
if (get_frame_size () == 0 && outgoing_args_size == 0)
outline_count -= 1;
/* If an out of line prologue is smaller, use it. */
if (inline_count > outline_count)
return size + outgoing_args_size + 16;
}
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
if (regs_ever_live[i] && !call_used_regs[i] && ! fixed_regs[i]
|| (i == FRAME_POINTER_REGNUM && frame_pointer_needed))
size += 4;
}
return (size + outgoing_args_size);
}
/* Expand the prologue into RTL. */
void
expand_prologue ()
{
unsigned int size = total_frame_size ();
unsigned int outgoing_args_size = current_function_outgoing_args_size;
int offset, i;
zero_areg = NULL_RTX;
zero_dreg = NULL_RTX;
/* If optimizing, see if we should do an out of line prologue/epilogue
sequence.
We don't support out of line prologues if the current function
needs a context or frame pointer. */
if (optimize && !current_function_needs_context && !frame_pointer_needed)
{
int inline_count, outline_count, areg_count;
/* We need to end the current sequence so that count_tst_insns can
look at all the insns in this function. Normally this would be
unsafe, but it's OK in the prologue/epilogue expanders. */
end_sequence ();
/* Get a count of the number of tst insns which use address
registers (it's not profitable to try and improve tst insns
which use data registers). */
count_tst_insns (&areg_count);
/* Now start a new sequence. */
start_sequence ();
/* Compute how many bytes an inline prologue would take.
Each address register store takes two bytes, each data register
store takes three bytes. */
inline_count = 0;
if (regs_ever_live[5])
inline_count += 2;
if (regs_ever_live[6])
inline_count += 2;
if (regs_ever_live[2])
inline_count += 3;
if (regs_ever_live[3])
inline_count += 3;
/* If this function has any stack, then the stack adjustment
will take two (or more) bytes. */
if (size || outgoing_args_size
|| regs_ever_live[5] || regs_ever_live[6]
|| regs_ever_live[2] || regs_ever_live[3])
inline_count += 2;
/* Multiply the current count by two and add one to account for the
epilogue insns. */
inline_count = inline_count * 2 + 1;
/* Now compute how many bytes an out of line sequence would take. */
/* A relaxed jsr will be three bytes. */
outline_count = 3;
/* If there are outgoing arguments, then we will need a stack
pointer adjustment after the call to the prologue, two
more bytes. */
outline_count += (outgoing_args_size == 0 ? 0 : 2);
/* If there is some local frame to allocate, it will need to be
done before the call to the prologue, two more bytes. */
if (get_frame_size () != 0)
outline_count += 2;
/* Now account for the epilogue, multiply the base count by two,
then deal with optimizing away the rts instruction. */
outline_count = outline_count * 2 + 1;
if (get_frame_size () == 0 && outgoing_args_size == 0)
outline_count -= 1;
/* If an out of line prologue is smaller, use it. */
if (inline_count > outline_count)
{
if (get_frame_size () != 0)
emit_insn (gen_addpsi3 (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (-size + outgoing_args_size + 16)));
emit_insn (gen_outline_prologue_call ());
if (outgoing_args_size)
emit_insn (gen_addpsi3 (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (-outgoing_args_size)));
out_of_line_epilogue = 1;
/* Determine if it is profitable to put the value zero into a register
for the entire function. If so, set ZERO_DREG and ZERO_AREG. */
/* First see if we could load the value into a data register
since that's the most efficient way. */
if (areg_count > 1
&& (!regs_ever_live[2] || !regs_ever_live[3]))
{
if (!regs_ever_live[2])
{
regs_ever_live[2] = 1;
zero_dreg = gen_rtx (REG, HImode, 2);
}
if (!regs_ever_live[3])
{
regs_ever_live[3] = 1;
zero_dreg = gen_rtx (REG, HImode, 3);
}
}
/* Now see if we could load the value into a address register. */
if (zero_dreg == NULL_RTX
&& areg_count > 2
&& (!regs_ever_live[5] || !regs_ever_live[6]))
{
if (!regs_ever_live[5])
{
regs_ever_live[5] = 1;
zero_dreg = gen_rtx (REG, HImode, 5);
}
if (!regs_ever_live[6])
{
regs_ever_live[6] = 1;
zero_dreg = gen_rtx (REG, HImode, 6);
}
}
if (zero_dreg)
emit_move_insn (zero_dreg, const0_rtx);
if (zero_areg)
emit_move_insn (zero_areg, const0_rtx);
return;
}
}
out_of_line_epilogue = 0;
/* Temporarily stuff the static chain onto the stack so we can
use a0 as a scratch register during the prologue. */
if (current_function_needs_context)
{
emit_insn (gen_addpsi3 (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (-4)));
emit_move_insn (gen_rtx (MEM, PSImode, stack_pointer_rtx),
gen_rtx (REG, PSImode, STATIC_CHAIN_REGNUM));
}
if (frame_pointer_needed)
{
/* Store a2 into a0 temporarily. */
emit_move_insn (gen_rtx (REG, PSImode, 4), frame_pointer_rtx);
/* Set up the frame pointer. */
emit_move_insn (frame_pointer_rtx, stack_pointer_rtx);
}
/* Make any necessary space for the saved registers and local frame. */
if (size)
emit_insn (gen_addpsi3 (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (-size)));
/* Save the callee saved registers. They're saved into the top
of the frame, using the stack pointer. */
for (i = 0, offset = outgoing_args_size;
i < FIRST_PSEUDO_REGISTER; i++)
{
if (regs_ever_live[i] && !call_used_regs[i] && ! fixed_regs[i]
|| (i == FRAME_POINTER_REGNUM && frame_pointer_needed))
{
int regno;
/* If we're saving the frame pointer, then it will be found in
register 4 (a0). */
regno = (i == FRAME_POINTER_REGNUM && frame_pointer_needed) ? 4 : i;
emit_move_insn (gen_rtx (MEM, PSImode,
gen_rtx (PLUS, Pmode,
stack_pointer_rtx,
GEN_INT (offset))),
gen_rtx (REG, PSImode, regno));
offset += 4;
}
}
/* Now put the static chain back where the rest of the function
expects to find it. */
if (current_function_needs_context)
{
emit_move_insn (gen_rtx (REG, PSImode, STATIC_CHAIN_REGNUM),
gen_rtx (MEM, PSImode,
gen_rtx (PLUS, PSImode, stack_pointer_rtx,
GEN_INT (size))));
}
}
/* Expand the epilogue into RTL. */
void
expand_epilogue ()
{
unsigned int size;
unsigned int outgoing_args_size = current_function_outgoing_args_size;
int offset, i, temp_regno;
rtx basereg;
size = total_frame_size ();
if (DECL_RESULT (current_function_decl)
&& DECL_RTL (DECL_RESULT (current_function_decl))
&& REG_P (DECL_RTL (DECL_RESULT (current_function_decl))))
temp_regno = (REGNO (DECL_RTL (DECL_RESULT (current_function_decl))) == 4
? 0 : 4);
else
temp_regno = 4;
/* Emit an out of line epilogue sequence if it's profitable to do so. */
if (out_of_line_epilogue)
{
/* If there were no outgoing arguments and no local frame, then
we will be able to omit the rts at the end of this function,
so just jump to the epilogue_noreturn routine. */
if (get_frame_size () == 0 && outgoing_args_size == 0)
{
emit_jump_insn (gen_outline_epilogue_jump ());
return;
}
if (outgoing_args_size)
emit_insn (gen_addpsi3 (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (outgoing_args_size)));
if (temp_regno == 0)
emit_insn (gen_outline_epilogue_call_d0 ());
else if (temp_regno == 4)
emit_insn (gen_outline_epilogue_call_a0 ());
if (get_frame_size () != 0)
emit_insn (gen_addpsi3 (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (size - outgoing_args_size - 16)));
emit_jump_insn (gen_return_internal ());
return;
}
/* Registers are restored from the frame pointer if we have one,
else they're restored from the stack pointer. Figure out
the appropriate offset to the register save area for both cases. */
if (frame_pointer_needed)
{
basereg = frame_pointer_rtx;
offset = -(size - outgoing_args_size);
}
else
{
basereg = stack_pointer_rtx;
offset = outgoing_args_size;
}
/* Restore each register. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
if (regs_ever_live[i] && !call_used_regs[i] && ! fixed_regs[i]
|| (i == FRAME_POINTER_REGNUM && frame_pointer_needed))
{
int regno;
/* Restore the frame pointer (if it exists) into a temporary
register. */
regno = ((i == FRAME_POINTER_REGNUM && frame_pointer_needed)
? temp_regno : i);
emit_move_insn (gen_rtx (REG, PSImode, regno),
gen_rtx (MEM, PSImode,
gen_rtx (PLUS, Pmode,
basereg,
GEN_INT (offset))));
offset += 4;
}
}
if (frame_pointer_needed)
{
/* Deallocate this frame's stack. */
emit_move_insn (stack_pointer_rtx, frame_pointer_rtx);
/* Restore the old frame pointer. */
emit_move_insn (frame_pointer_rtx, gen_rtx (REG, PSImode, temp_regno));
}
else if (size)
{
/* Deallocate this function's stack. */
emit_insn (gen_addpsi3 (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (size)));
}
/* If we had to allocate a slot to save the context pointer,
then it must be deallocated here. */
if (current_function_needs_context)
emit_insn (gen_addpsi3 (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (4)));
/* Emit the return insn, if this function had no stack, then we
can use the standard return (which allows more optimizations),
else we have to use the special one which inhibits optimizations. */
if (size == 0 && !current_function_needs_context)
emit_jump_insn (gen_return ());
else
emit_jump_insn (gen_return_internal ());
}
/* Update the condition code from the insn. */
void
notice_update_cc (body, insn)
rtx body;
rtx insn;
{
switch (get_attr_cc (insn))
{
case CC_NONE:
/* Insn does not affect CC at all. */
break;
case CC_NONE_0HIT:
/* Insn does not change CC, but the 0'th operand has been changed. */
if (cc_status.value1 != 0
&& reg_overlap_mentioned_p (recog_operand[0], cc_status.value1))
cc_status.value1 = 0;
break;
case CC_SET_ZN:
/* Insn sets the Z,N flags of CC to recog_operand[0].
V,C is in an unusable state. */
CC_STATUS_INIT;
cc_status.flags |= CC_OVERFLOW_UNUSABLE | CC_NO_CARRY;
cc_status.value1 = recog_operand[0];
break;
case CC_SET_ZNV:
/* Insn sets the Z,N,V flags of CC to recog_operand[0].
C is in an unusable state. */
CC_STATUS_INIT;
cc_status.flags |= CC_NO_CARRY;
cc_status.value1 = recog_operand[0];
break;
case CC_COMPARE:
/* The insn is a compare instruction. */
CC_STATUS_INIT;
cc_status.value1 = SET_SRC (body);
break;
case CC_CLOBBER:
/* Insn doesn't leave CC in a usable state. */
CC_STATUS_INIT;
break;
default:
CC_STATUS_INIT;
break;
}
}
/* Return true if OP is a valid call operand. Valid call operands
are SYMBOL_REFs and REGs. */
int
call_address_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == REG);
}
/* Return true if OP is an indirect memory operand, the "bset" and "bclr"
insns use this predicate. */
int
indirect_memory_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return (GET_CODE (op) == MEM && GET_CODE (XEXP (op, 0)) == REG);
}
/* Return true if OP is a memory operand with a constant address.
A special PSImode move pattern uses this predicate. */
int
constant_memory_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return GET_CODE (op) == MEM && CONSTANT_ADDRESS_P (XEXP (op, 0));
}
/* What (if any) secondary registers are needed to move IN with mode
MODE into a register from in register class CLASS.
We might be able to simplify this. */
enum reg_class
secondary_reload_class (class, mode, in, input)
enum reg_class class;
enum machine_mode mode;
rtx in;
int input;
{
int regno;
/* Memory loads less than a full word wide can't have an
address or stack pointer destination. They must use
a data register as an intermediate register. */
if (input
&& GET_CODE (in) == MEM
&& (mode == QImode)
&& class == ADDRESS_REGS)
return DATA_REGS;
/* Address register stores which are not PSImode need a scrach register. */
if (! input
&& GET_CODE (in) == MEM
&& (mode != PSImode)
&& class == ADDRESS_REGS)
return DATA_REGS;
/* Otherwise assume no secondary reloads are needed. */
return NO_REGS;
}
/* Shifts.
We devote a fair bit of code to getting efficient shifts since we can only
shift one bit at a time, and each single bit shift may take multiple
instructions.
The basic shift methods:
* loop shifts -- emit a loop using one (or two on H8/S) bit shifts;
this is the default. SHIFT_LOOP
* inlined shifts -- emit straight line code for the shift; this is
used when a straight line shift is about the same size or smaller
than a loop. We allow the inline version to be slightly longer in
some cases as it saves a register. SHIFT_INLINE
* There other oddballs. Not worth explaining. SHIFT_SPECIAL
HImode shifts:
1-4 do them inline
5-7 If ashift, then multiply, else loop.
8-14 - If ashift, then multiply, if lshiftrt, then divide, else loop.
15 - rotate the bit we want into the carry, clear the destination,
(use mov 0,dst, not sub as sub will clobber the carry), then
move bit into place.
Don't Panic, it's not nearly as bad as the H8 shifting code!!! */
int
nshift_operator (x, mode)
rtx x;
enum machine_mode mode;
{
switch (GET_CODE (x))
{
case ASHIFTRT:
case LSHIFTRT:
case ASHIFT:
return 1;
default:
return 0;
}
}
/* Called from the .md file to emit code to do shifts.
Returns a boolean indicating success
(currently this is always TRUE). */
int
expand_a_shift (mode, code, operands)
enum machine_mode mode;
int code;
rtx operands[];
{
emit_move_insn (operands[0], operands[1]);
/* need a loop to get all the bits we want - we generate the
code at emit time, but need to allocate a scratch reg now */
emit_insn (gen_rtx
(PARALLEL, VOIDmode,
gen_rtvec (2,
gen_rtx (SET, VOIDmode, operands[0],
gen_rtx (code, mode,
operands[0], operands[2])),
gen_rtx (CLOBBER, VOIDmode,
gen_rtx (SCRATCH, HImode, 0)))));
return 1;
}
/* Shift algorithm determination.
There are various ways of doing a shift:
SHIFT_INLINE: If the amount is small enough, just generate as many one-bit
shifts as we need.
SHIFT_SPECIAL: Hand crafted assembler.
SHIFT_LOOP: If the above methods fail, just loop. */
enum shift_alg
{
SHIFT_INLINE,
SHIFT_SPECIAL,
SHIFT_LOOP,
SHIFT_MAX
};
/* Symbols of the various shifts which can be used as indices. */
enum shift_type
{
SHIFT_ASHIFT, SHIFT_LSHIFTRT, SHIFT_ASHIFTRT
};
/* Symbols of the various modes which can be used as indices. */
enum shift_mode
{
HIshift,
};
/* For single bit shift insns, record assembler and what bits of the
condition code are valid afterwards (represented as various CC_FOO
bits, 0 means CC isn't left in a usable state). */
struct shift_insn
{
char *assembler;
int cc_valid;
};
/* Assembler instruction shift table.
These tables are used to look up the basic shifts.
They are indexed by cpu, shift_type, and mode.
*/
static const struct shift_insn shift_one[3][3] =
{
{
/* SHIFT_ASHIFT */
{ "add\t%0,%0", CC_OVERFLOW_UNUSABLE | CC_NO_CARRY },
},
/* SHIFT_LSHIFTRT */
{
{ "lsr\t%0", CC_NO_CARRY },
},
/* SHIFT_ASHIFTRT */
{
{ "asr\t%0", CC_NO_CARRY },
},
};
/* Given CPU, MODE, SHIFT_TYPE, and shift count COUNT, determine the best
algorithm for doing the shift. The assembler code is stored in ASSEMBLER.
We don't achieve maximum efficiency in all cases, but the hooks are here
to do so.
For now we just use lots of switch statements. Since we don't even come
close to supporting all the cases, this is simplest. If this function ever
gets too big, perhaps resort to a more table based lookup. Of course,
at this point you may just wish to do it all in rtl. */
static enum shift_alg
get_shift_alg (shift_type, mode, count, assembler_p, cc_valid_p)
enum shift_type shift_type;
enum machine_mode mode;
int count;
const char **assembler_p;
int *cc_valid_p;
{
/* The default is to loop. */
enum shift_alg alg = SHIFT_LOOP;
enum shift_mode shift_mode;
/* We don't handle negative shifts or shifts greater than the word size,
they should have been handled already. */
if (count < 0 || count > GET_MODE_BITSIZE (mode))
abort ();
switch (mode)
{
case HImode:
shift_mode = HIshift;
break;
default:
abort ();
}
/* Assume either SHIFT_LOOP or SHIFT_INLINE.
It is up to the caller to know that looping clobbers cc. */
*assembler_p = shift_one[shift_type][shift_mode].assembler;
*cc_valid_p = shift_one[shift_type][shift_mode].cc_valid;
/* Now look for cases we want to optimize. */
switch (shift_mode)
{
case HIshift:
if (count <= 4)
return SHIFT_INLINE;
else if (count < 15 && shift_type != SHIFT_ASHIFTRT)
{
switch (count)
{
case 5:
if (shift_type == SHIFT_ASHIFT)
*assembler_p = "mov 32,%4\n\tmul %4,%0";
else if (shift_type == SHIFT_LSHIFTRT)
*assembler_p
= "sub %4,%4\n\tmov %4,mdr\n\tmov 32,%4\n\tdivu %4,%0";
*cc_valid_p = CC_NO_CARRY;
return SHIFT_SPECIAL;
case 6:
if (shift_type == SHIFT_ASHIFT)
*assembler_p = "mov 64,%4\n\tmul %4,%0";
else if (shift_type == SHIFT_LSHIFTRT)
*assembler_p
= "sub %4,%4\n\tmov %4,mdr\n\tmov 64,%4\n\tdivu %4,%0";
*cc_valid_p = CC_NO_CARRY;
return SHIFT_SPECIAL;
case 7:
if (shift_type == SHIFT_ASHIFT)
*assembler_p = "mov 128,%4\n\tmul %4,%0";
else if (shift_type == SHIFT_LSHIFTRT)
*assembler_p
= "sub %4,%4\n\tmov %4,mdr\n\tmov 128,%4\n\tdivu %4,%0";
*cc_valid_p = CC_NO_CARRY;
return SHIFT_SPECIAL;
case 8:
if (shift_type == SHIFT_ASHIFT)
*assembler_p = "mov 256,%4\n\tmul %4,%0";
else if (shift_type == SHIFT_LSHIFTRT)
*assembler_p
= "sub %4,%4\n\tmov %4,mdr\n\tmov 256,%4\n\tdivu %4,%0";
*cc_valid_p = CC_NO_CARRY;
return SHIFT_SPECIAL;
case 9:
if (shift_type == SHIFT_ASHIFT)
*assembler_p = "mov 512,%4\n\tmul %4,%0";
else if (shift_type == SHIFT_LSHIFTRT)
*assembler_p
= "sub %4,%4\n\tmov %4,mdr\n\tmov 512,%4\n\tdivu %4,%0";
*cc_valid_p = CC_NO_CARRY;
return SHIFT_SPECIAL;
case 10:
if (shift_type == SHIFT_ASHIFT)
*assembler_p = "mov 1024,%4\n\tmul %4,%0";
else if (shift_type == SHIFT_LSHIFTRT)
*assembler_p
= "sub %4,%4\n\tmov %4,mdr\n\tmov 1024,%4\n\tdivu %4,%0";
*cc_valid_p = CC_NO_CARRY;
return SHIFT_SPECIAL;
case 11:
if (shift_type == SHIFT_ASHIFT)
*assembler_p = "mov 2048,%4\n\tmul %4,%0";
else if (shift_type == SHIFT_LSHIFTRT)
*assembler_p
= "sub %4,%4\n\tmov %4,mdr\n\tmov 2048,%4\n\tdivu %4,%0";
*cc_valid_p = CC_NO_CARRY;
return SHIFT_SPECIAL;
case 12:
if (shift_type == SHIFT_ASHIFT)
*assembler_p = "mov 4096,%4\n\tmul %4,%0";
else if (shift_type == SHIFT_LSHIFTRT)
*assembler_p
= "sub %4,%4\n\tmov %4,mdr\n\tmov 4096,%4\n\tdivu %4,%0";
*cc_valid_p = CC_NO_CARRY;
return SHIFT_SPECIAL;
case 13:
if (shift_type == SHIFT_ASHIFT)
*assembler_p = "mov 8192,%4\n\tmul %4,%0";
else if (shift_type == SHIFT_LSHIFTRT)
*assembler_p
= "sub %4,%4\n\tmov %4,mdr\n\tmov 8192,%4\n\tdivu %4,%0";
*cc_valid_p = CC_NO_CARRY;
return SHIFT_SPECIAL;
case 14:
if (shift_type == SHIFT_ASHIFT)
*assembler_p = "mov 16384,%4\n\tmul %4,%0";
else if (shift_type == SHIFT_LSHIFTRT)
*assembler_p
= "sub %4,%4\n\tmov %4,mdr\n\tmov 16384,%4\n\tdivu %4,%0";
*cc_valid_p = CC_NO_CARRY;
return SHIFT_SPECIAL;
}
}
else if (count == 15)
{
if (shift_type == SHIFT_ASHIFTRT)
{
*assembler_p = "add\t%0,%0\n\tsubc\t%0,%0\n";
*cc_valid_p = CC_NO_CARRY;
return SHIFT_SPECIAL;
}
if (shift_type == SHIFT_LSHIFTRT)
{
*assembler_p = "add\t%0,%0\n\tmov 0,%0\n\trol %0\n";
*cc_valid_p = CC_NO_CARRY;
return SHIFT_SPECIAL;
}
if (shift_type == SHIFT_ASHIFT)
{
*assembler_p = "ror\t%0\n\tmov 0,%0\n\tror %0\n";
*cc_valid_p = CC_NO_CARRY;
return SHIFT_SPECIAL;
}
}
break;
default:
abort ();
}
return alg;
}
/* Emit the assembler code for doing shifts. */
char *
emit_a_shift (insn, operands)
rtx insn;
rtx *operands;
{
static int loopend_lab;
char *assembler;
int cc_valid;
rtx inside = PATTERN (insn);
rtx shift = operands[3];
enum machine_mode mode = GET_MODE (shift);
enum rtx_code code = GET_CODE (shift);
enum shift_type shift_type;
enum shift_mode shift_mode;
loopend_lab++;
switch (mode)
{
case HImode:
shift_mode = HIshift;
break;
default:
abort ();
}
switch (code)
{
case ASHIFTRT:
shift_type = SHIFT_ASHIFTRT;
break;
case LSHIFTRT:
shift_type = SHIFT_LSHIFTRT;
break;
case ASHIFT:
shift_type = SHIFT_ASHIFT;
break;
default:
abort ();
}
if (GET_CODE (operands[2]) != CONST_INT)
{
/* Indexing by reg, so have to loop and test at top */
output_asm_insn ("mov %2,%4", operands);
output_asm_insn ("cmp 0,%4", operands);
fprintf (asm_out_file, "\tble .Lle%d\n", loopend_lab);
/* Get the assembler code to do one shift. */
get_shift_alg (shift_type, mode, 1, &assembler, &cc_valid);
}
else
{
int n = INTVAL (operands[2]);
enum shift_alg alg;
/* If the count is negative, make it 0. */
if (n < 0)
n = 0;
/* If the count is too big, truncate it.
ANSI says shifts of GET_MODE_BITSIZE are undefined - we choose to
do the intuitive thing. */
else if (n > GET_MODE_BITSIZE (mode))
n = GET_MODE_BITSIZE (mode);
alg = get_shift_alg (shift_type, mode, n, &assembler, &cc_valid);
switch (alg)
{
case SHIFT_INLINE:
/* Emit one bit shifts. */
while (n > 0)
{
output_asm_insn (assembler, operands);
n -= 1;
}
/* Keep track of CC. */
if (cc_valid)
{
cc_status.value1 = operands[0];
cc_status.flags |= cc_valid;
}
return "";
case SHIFT_SPECIAL:
output_asm_insn (assembler, operands);
/* Keep track of CC. */
if (cc_valid)
{
cc_status.value1 = operands[0];
cc_status.flags |= cc_valid;
}
return "";
}
{
fprintf (asm_out_file, "\tmov %d,%s\n", n,
reg_names[REGNO (operands[4])]);
fprintf (asm_out_file, ".Llt%d:\n", loopend_lab);
output_asm_insn (assembler, operands);
output_asm_insn ("add -1,%4", operands);
fprintf (asm_out_file, "\tbne .Llt%d\n", loopend_lab);
return "";
}
}
fprintf (asm_out_file, ".Llt%d:\n", loopend_lab);
output_asm_insn (assembler, operands);
output_asm_insn ("add -1,%4", operands);
fprintf (asm_out_file, "\tbne .Llt%d\n", loopend_lab);
fprintf (asm_out_file, ".Lle%d:\n", loopend_lab);
return "";
}
/* Return an RTX to represent where a value with mode MODE will be returned
from a function. If the result is 0, the argument is pushed. */
rtx
function_arg (cum, mode, type, named)
CUMULATIVE_ARGS *cum;
enum machine_mode mode;
tree type;
int named;
{
rtx result = 0;
int size, align;
/* We only support using 2 data registers as argument registers. */
int nregs = 2;
/* Only pass named arguments in registers. */
if (!named)
return NULL_RTX;
/* Figure out the size of the object to be passed. We lie and claim
PSImode values are only two bytes since they fit in a single
register. */
if (mode == BLKmode)
size = int_size_in_bytes (type);
else if (mode == PSImode)
size = 2;
else
size = GET_MODE_SIZE (mode);
/* Figure out the alignment of the object to be passed. */
align = size;
cum->nbytes = (cum->nbytes + 1) & ~1;
/* Don't pass this arg via a register if all the argument registers
are used up. */
if (cum->nbytes + size > nregs * UNITS_PER_WORD)
return 0;
switch (cum->nbytes / UNITS_PER_WORD)
{
case 0:
result = gen_rtx (REG, mode, 0);
break;
case 1:
result = gen_rtx (REG, mode, 1);
break;
default:
result = 0;
}
return result;
}
/* Return the number of registers to use for an argument passed partially
in registers and partially in memory. */
int
function_arg_partial_nregs (cum, mode, type, named)
CUMULATIVE_ARGS *cum;
enum machine_mode mode;
tree type;
int named;
{
int size, align;
/* We only support using 2 data registers as argument registers. */
int nregs = 2;
return 0;
/* Only pass named arguments in registers. */
if (!named)
return 0;
/* Figure out the size of the object to be passed. */
if (mode == BLKmode)
size = int_size_in_bytes (type);
else if (mode == PSImode)
size = 2;
else
size = GET_MODE_SIZE (mode);
/* Figure out the alignment of the object to be passed. */
align = size;
cum->nbytes = (cum->nbytes + 1) & ~1;
/* Don't pass this arg via a register if all the argument registers
are used up. */
if (cum->nbytes > nregs * UNITS_PER_WORD)
return 0;
if (cum->nbytes + size <= nregs * UNITS_PER_WORD)
return 0;
/* Don't pass this arg via a register if it would be split between
registers and memory. */
if (type == NULL_TREE
&& cum->nbytes + size > nregs * UNITS_PER_WORD)
return 0;
return (nregs * UNITS_PER_WORD - cum->nbytes) / UNITS_PER_WORD;
}
char *
output_tst (operand, insn)
rtx operand, insn;
{
rtx temp;
int past_call = 0;
/* Only tst insns using address registers can be optimized. */
if (REGNO_REG_CLASS (REGNO (operand)) != ADDRESS_REGS)
return "cmp 0,%0";
/* If testing an address register against zero, we can do better if
we know there's a register already holding the value zero. First
see if a global register has been set to zero, else we do a search
for a register holding zero, if both of those fail, then we use a
compare against zero. */
if (zero_dreg || zero_areg)
{
rtx xoperands[2];
xoperands[0] = operand;
xoperands[1] = zero_dreg ? zero_dreg : zero_areg;
output_asm_insn ("cmp %1,%0", xoperands);
return "";
}
/* We can save a byte if we can find a register which has the value
zero in it. */
temp = PREV_INSN (insn);
while (temp)
{
rtx set;
/* We allow the search to go through call insns. We record
the fact that we've past a CALL_INSN and reject matches which
use call clobbered registers. */
if (GET_CODE (temp) == CODE_LABEL
|| GET_CODE (temp) == JUMP_INSN
|| GET_CODE (temp) == BARRIER)
break;
if (GET_CODE (temp) == CALL_INSN)
past_call = 1;
if (GET_CODE (temp) == NOTE)
{
temp = PREV_INSN (temp);
continue;
}
/* It must be an insn, see if it is a simple set. */
set = single_set (temp);
if (!set)
{
temp = PREV_INSN (temp);
continue;
}
/* Are we setting a register to zero?
If it's a call clobbered register, have we past a call? */
if (REG_P (SET_DEST (set))
&& SET_SRC (set) == CONST0_RTX (GET_MODE (SET_DEST (set)))
&& !reg_set_between_p (SET_DEST (set), temp, insn)
&& (!past_call
|| !call_used_regs[REGNO (SET_DEST (set))]))
{
rtx xoperands[2];
xoperands[0] = operand;
xoperands[1] = SET_DEST (set);
output_asm_insn ("cmp %1,%0", xoperands);
return "";
}
temp = PREV_INSN (temp);
}
return "cmp 0,%0";
}
/* Return nonzero if OP is a valid operand for a {zero,sign}_extendpsisi
instruction.
It accepts anything that is a general operand or the sum of the
stack pointer and a general operand. */
extendpsi_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return (general_operand (op, mode)
|| (GET_CODE (op) == PLUS
&& XEXP (op, 0) == stack_pointer_rtx
&& general_operand (XEXP (op, 1), VOIDmode)));
}
/* Definitions of target machine for GNU compiler.
Matsushita MN10200 series
Copyright (C) 1997 Free Software Foundation, Inc.
Contributed by Jeff Law (law@cygnus.com).
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "svr4.h"
/* Get rid of svr4.h stuff we don't want/need. */
#undef ASM_SPEC
#undef ASM_FINAL_SPEC
#undef LIB_SPEC
#undef ENDFILE_SPEC
#undef LINK_SPEC
#undef STARTFILE_SPEC
/* Names to predefine in the preprocessor for this target machine. */
#define CPP_PREDEFINES "-D__mn10200__ -D__MN10200__ -D__LONG_MAX__=2147483647L -D__LONG_LONG_MAX__=2147483647L -D__INT_MAX__=32767"
/* Run-time compilation parameters selecting different hardware subsets. */
/* We don't have any switched on the mn10200. Though there are some things
that might be worth a switch:
-mspace to optimize even more for space.
-mrelax to enable the relaxing linker. */
extern int target_flags;
/* Macros used in the machine description to test the flags. */
/* Macro to define tables used to set the flags.
This is a list in braces of pairs in braces,
each pair being { "NAME", VALUE }
where VALUE is the bits to set or minus the bits to clear.
An empty string NAME is used to identify the default VALUE. */
#define TARGET_SWITCHES \
{{ "", TARGET_DEFAULT}}
#ifndef TARGET_DEFAULT
#define TARGET_DEFAULT 0
#endif
/* Print subsidiary information on the compiler version in use. */
#define TARGET_VERSION fprintf (stderr, " (MN10200)");
/* Target machine storage layout */
/* Define this if most significant bit is lowest numbered
in instructions that operate on numbered bit-fields.
This is not true on the Matsushita MN10300. */
#define BITS_BIG_ENDIAN 0
/* Define this if most significant byte of a word is the lowest numbered. */
/* This is not true on the Matsushita MN10200. */
#define BYTES_BIG_ENDIAN 0
/* Define this if most significant word of a multiword number is lowest
numbered.
This is not true on the Matsushita MN10200. */
#define WORDS_BIG_ENDIAN 0
/* Number of bits in an addressable storage unit */
#define BITS_PER_UNIT 8
/* Width in bits of a "word", which is the contents of a machine register.
Note that this is not necessarily the width of data type `int';
if using 16-bit ints on a 68000, this would still be 32.
But on a machine with 16-bit registers, this would be 16.
This is a white lie. Registers are really 24bits, but most operations
only operate on 16 bits. GCC chokes badly if we set this to a value
that is not a power of two. */
#define BITS_PER_WORD 16
/* Width of a word, in units (bytes). */
#define UNITS_PER_WORD 2
/* Width in bits of a pointer.
See also the macro `Pmode' defined below.
This differs from Pmode because we need to allocate 32bits of space
to hold the 24bit pointers on this machine. */
#define POINTER_SIZE 32
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
#define PARM_BOUNDARY 16
/* The stack goes in 16 bit lumps. */
#define STACK_BOUNDARY 16
/* Allocation boundary (in *bits*) for the code of a function.
8 is the minimum boundary; it's unclear if bigger alignments
would improve performance. */
#define FUNCTION_BOUNDARY 8
/* No data type wants to be aligned rounder than this. */
#define BIGGEST_ALIGNMENT 16
/* Alignment of field after `int : 0' in a structure. */
#define EMPTY_FIELD_BOUNDARY 16
/* Seems to be how the Matsushita compiler does things, and there's
no real reason to be different. */
#define STRUCTURE_SIZE_BOUNDARY 16
#undef PCC_BITFIELD_TYPE_MATTERS
/* Define this if move instructions will actually fail to work
when given unaligned data. */
#define STRICT_ALIGNMENT 1
/* Define this as 1 if `char' should by default be signed; else as 0. */
#define DEFAULT_SIGNED_CHAR 0
/* Define results of standard character escape sequences. */
#define TARGET_BELL 007
#define TARGET_BS 010
#define TARGET_TAB 011
#define TARGET_NEWLINE 012
#define TARGET_VT 013
#define TARGET_FF 014
#define TARGET_CR 015
/* Standard register usage. */
/* Number of actual hardware registers.
The hardware registers are assigned numbers for the compiler
from 0 to just below FIRST_PSEUDO_REGISTER.
All registers that the compiler knows about must be given numbers,
even those that are not normally considered general registers.
XXX Long term we should probably expose the MDR register, we use
it for division, multiplication, and some extension operations. */
#define FIRST_PSEUDO_REGISTER 8
/* 1 for registers that have pervasive standard uses
and are not available for the register allocator. */
#define FIXED_REGISTERS \
{ 0, 0, 0, 0, 0, 0, 0, 1}
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
Aside from that, you can include as many other registers as you
like. */
#define CALL_USED_REGISTERS \
{ 1, 1, 0, 0, 1, 0, 0, 1}
#define REG_ALLOC_ORDER \
{ 0, 1, 4, 2, 3, 5, 6, 7}
/* Return number of consecutive hard regs needed starting at reg REGNO
to hold something of mode MODE.
This is ordinarily the length in words of a value of mode MODE
but can be less for certain modes in special long registers. */
#define HARD_REGNO_NREGS(REGNO, MODE) \
((MODE) == PSImode ? 1 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \
/ UNITS_PER_WORD))
/* Value is 1 if hard register REGNO can hold a value of machine-mode
MODE.
We allow any register to hold a PSImode value. We allow any register
to hold values <= 16 bits. For values > 16 bits we require aligned
register pairs. */
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
((MODE) == PSImode ? 1 : ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) <= 2)
/* Value is 1 if it is a good idea to tie two pseudo registers
when one has mode MODE1 and one has mode MODE2.
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
for any hard reg, then this must be 0 for correct output. */
#define MODES_TIEABLE_P(MODE1, MODE2) \
(MODE1 == MODE2 || (GET_MODE_SIZE (MODE1) <= 2 && GET_MODE_SIZE (MODE2) <= 2))
/* 4 data, and effectively 2 address registers is small as far as I'm
concerned. Especially since we use 2 data registers for argument
passing and return values.
We used to define CLASS_LIKELY_SPILLED_P as true for DATA_REGS too,
but we've made improvements to the port which greatly reduce register
pressure. As a result we no longer need to define CLASS_LIKELY_SPILLED_P
for DATA_REGS (and by not defining it we get significantly better code). */
#define SMALL_REGISTER_CLASSES 1
#define CLASS_LIKELY_SPILLED_P(CLASS) (CLASS == ADDRESS_REGS)
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
For any two classes, it is very desirable that there be another
class that represents their union. */
enum reg_class {
NO_REGS, DATA_REGS, ADDRESS_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
};
#define N_REG_CLASSES (int) LIM_REG_CLASSES
/* Give names of register classes as strings for dump file. */
#define REG_CLASS_NAMES \
{ "NO_REGS", "DATA_REGS", "ADDRESS_REGS", \
"GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
/* Define which registers fit in which classes.
This is an initializer for a vector of HARD_REG_SET
of length N_REG_CLASSES. */
#define REG_CLASS_CONTENTS \
{ 0, /* No regs */ \
0x0f, /* DATA_REGS */ \
0xf0, /* ADDRESS_REGS */ \
0xff, /* GENERAL_REGS */ \
0xff, /* ALL_REGS */ \
}
/* The same information, inverted:
Return the class number of the smallest class containing
reg number REGNO. This could be a conditional expression
or could index an array. */
#define REGNO_REG_CLASS(REGNO) \
((REGNO) < 4 ? DATA_REGS : ADDRESS_REGS)
/* The class value for index registers, and the one for base regs. */
#define INDEX_REG_CLASS DATA_REGS
#define BASE_REG_CLASS ADDRESS_REGS
/* Get reg_class from a letter such as appears in the machine description. */
#define REG_CLASS_FROM_LETTER(C) \
((C) == 'd' ? DATA_REGS : \
(C) == 'a' ? ADDRESS_REGS : NO_REGS)
/* Macros to check register numbers against specific register classes. */
/* These assume that REGNO is a hard or pseudo reg number.
They give nonzero only if REGNO is a hard reg of the suitable class
or a pseudo reg currently allocated to a suitable hard reg.
Since they use reg_renumber, they are safe only once reg_renumber
has been allocated, which happens in local-alloc.c. */
#define REGNO_OK_FOR_BASE_P(regno) \
(((regno) > 3 && regno < FIRST_PSEUDO_REGISTER) \
|| (reg_renumber[regno] > 3 && reg_renumber[regno] < FIRST_PSEUDO_REGISTER))
#define REGNO_OK_FOR_INDEX_P(regno) \
(((regno) >= 0 && regno < 4) \
|| (reg_renumber[regno] >= 0 && reg_renumber[regno] < 4))
/* Given an rtx X being reloaded into a reg required to be
in class CLASS, return the class of reg to actually use.
In general this is just CLASS; but on some machines
in some cases it is preferable to use a more restrictive class. */
#define PREFERRED_RELOAD_CLASS(X,CLASS) \
((GET_MODE (X) != PSImode) ? DATA_REGS : CLASS)
/* We want to use DATA_REGS for anything that is not PSImode. */
#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
((MODE != PSImode) ? DATA_REGS : CLASS)
/* We have/need secondary reloads on the mn10200. Mostly to deal
with problems using address registers. */
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
secondary_reload_class(CLASS,MODE,IN, 1)
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,IN) \
secondary_reload_class(CLASS,MODE,IN, 0)
/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS. */
#define CLASS_MAX_NREGS(CLASS, MODE) \
((MODE) == PSImode ? 1 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
/* The letters I, J, K, L, M, N, O, P in a register constraint string
can be used to stand for particular ranges of immediate operands.
This macro defines what the ranges are.
C is the letter, and VALUE is a constant value.
Return 1 if VALUE is in the range specified by C. */
#define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
#define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
#define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
#define CONST_OK_FOR_J(VALUE) ((VALUE) >= 1 && (VALUE) <= 3)
#define CONST_OK_FOR_K(VALUE) ((VALUE) >= 1 && (VALUE) <= 4)
#define CONST_OK_FOR_L(VALUE) ((VALUE) == 15)
#define CONST_OK_FOR_M(VALUE) ((VALUE) == 255)
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
(C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
(C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
(C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
(C) == 'M' ? CONST_OK_FOR_M (VALUE) : 0)
/* Similar, but for floating constants, and defining letters G and H.
Here VALUE is the CONST_DOUBLE rtx itself.
`G' is a floating-point zero. */
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
&& (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
: 0)
/* Stack layout; function entry, exit and calling. */
/* Define this if pushing a word on the stack
makes the stack pointer a smaller address. */
#define STACK_GROWS_DOWNWARD
/* Define this if the nominal address of the stack frame
is at the high-address end of the local variables;
that is, each additional local variable allocated
goes at a more negative offset in the frame. */
#define FRAME_GROWS_DOWNWARD
/* Offset within stack frame to start allocating local variables at.
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
first local allocated. Otherwise, it is the offset to the BEGINNING
of the first local allocated. */
#define STARTING_FRAME_OFFSET 0
/* Offset of first parameter from the argument pointer register value. */
/* Is equal to the size of the saved fp + pc, even if an fp isn't
saved since the value is used before we know. */
#define FIRST_PARM_OFFSET(FNDECL) (current_function_needs_context ? 8 : 4)
/* Specify the registers used for certain standard purposes.
The values of these macros are register numbers. */
/* Register to use for pushing function arguments. */
#define STACK_POINTER_REGNUM 7
/* Base register for access to local variables of the function. */
#define FRAME_POINTER_REGNUM 6
/* Base register for access to arguments of the function. */
#define ARG_POINTER_REGNUM 6
/* Register in which static-chain is passed to a function. */
#define STATIC_CHAIN_REGNUM 4
/* Value should be nonzero if functions must have frame pointers.
Zero means the frame pointer need not be set up (and parms
may be accessed via the stack pointer) in functions that seem suitable.
This is computed in `reload', in reload1.c.
We allow frame pointers to be eliminated when not having one will
not interfere with debugging. */
#define ACCUMULATE_OUTGOING_ARGS
#define FRAME_POINTER_REQUIRED 0
#define CAN_DEBUG_WITHOUT_FP
/* Store in the variable DEPTH the initial difference between the
frame pointer reg contents and the stack pointer reg contents,
as of the start of the function body. This depends on the layout
of the fixed parts of the stack frame and on how registers are saved. */
#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = total_frame_size()
/* Various type size information.
The mn10200 has a limited number of small registers. Sizes of basic
data types are adjusted accordingly. */
#define SHORT_TYPE_SIZE 16
#define INT_TYPE_SIZE 16
#define LONG_TYPE_SIZE 32
#define LONG_LONG_TYPE_SIZE 32
#define FLOAT_TYPE_SIZE 32
#define DOUBLE_TYPE_SIZE 32
#define LONG_DOUBLE_TYPE_SIZE DOUBLE_TYPE_SIZE
/* Any size less than 64bits will work; but a smarter definition
can make G++ code smaller and faster. Most operations on the
mn10200 occur on 16bit hunks, so the best size for a boolean
is 16bits. */
#define BOOL_TYPE_SIZE 16
/* The difference of two pointers must be at least 24bits since pointers
are 24bits; however, no basic data type is 24bits, so we have to round
up to a 32bits for the difference of pointers. */
#undef SIZE_TYPE
#undef PTRDIFF_TYPE
#define SIZE_TYPE "long unsigned int"
#define PTRDIFF_TYPE "long unsigned int"
/* Note sizeof (WCHAR_TYPE) must be equal to the value of WCHAR_TYPE_SIZE! */
#undef WCHAR_TYPE
#define WCHAR_TYPE "int"
#undef WCHAR_TYPE_SIZE
#define WCHAR_TYPE_SIZE BITS_PER_WORD
#define MAX_FIXED_MODE_SIZE 32
/* A guess for the MN10200. */
#define PROMOTE_PROTOTYPES 1
/* Value is the number of bytes of arguments automatically
popped when returning from a subroutine call.
FUNDECL is the declaration node of the function (as a tree),
FUNTYPE is the data type of the function (as a tree),
or for a library call it is an identifier node for the subroutine name.
SIZE is the number of bytes of arguments passed on the stack. */
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
/* 1 if N is a possible register number for function argument passing. */
#define FUNCTION_ARG_REGNO_P(N) ((N) <= 1)
/* Define a data type for recording info about an argument list
during the scan of that argument list. This data type should
hold all necessary information about the function itself
and about the args processed so far, enough to enable macros
such as FUNCTION_ARG to determine where the next arg should go. */
#define CUMULATIVE_ARGS struct cum_arg
struct cum_arg { int nbytes; };
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0.
On the MN10200, the offset starts at 0. */
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
((CUM).nbytes = 0)
/* Update the data in CUM to advance over an argument
of mode MODE and data type TYPE.
(TYPE is null for libcalls where that information may not be available.) */
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
((CUM).nbytes += ((MODE) != BLKmode \
? (MODE) == PSImode ? 2 : \
(GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD \
: (int_size_in_bytes (TYPE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD))
/* Define where to put the arguments to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis). */
extern struct rtx_def *function_arg();
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
function_arg (&CUM, MODE, TYPE, NAMED)
/* For "large" items, we pass them by invisible reference, and the
callee is responsible for copying the data item if it might be
modified. */
#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
((TYPE) && int_size_in_bytes (TYPE) > 8)
#define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
((TYPE) && int_size_in_bytes (TYPE) > 8)
/* Define how to find the value returned by a function.
VALTYPE is the data type of the value (as a tree).
If the precise function being called is known, FUNC is its FUNCTION_DECL;
otherwise, FUNC is 0. */
#define FUNCTION_VALUE(VALTYPE, FUNC) \
gen_rtx (REG, TYPE_MODE (VALTYPE), TYPE_MODE (VALTYPE) == PSImode ? 4 : 0)
/* Define how to find the value returned by a library function
assuming the value has mode MODE. */
#define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, (MODE) == PSImode ? 4 : 0)
/* 1 if N is a possible register number for a function value. */
#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0 || (N) == 4)
/* Return values > 8 bytes in length in memory. */
#define DEFAULT_PCC_STRUCT_RETURN 0
#define RETURN_IN_MEMORY(TYPE) \
(int_size_in_bytes (TYPE) > 8 || TYPE_MODE (TYPE) == BLKmode)
/* Register in which address to store a structure value
is passed to a function. On the MN10200 it's passed as
the first parameter. */
#define STRUCT_VALUE 0
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. The value is tested only in
functions that have frame pointers.
No definition is equivalent to always zero. */
#define EXIT_IGNORE_STACK 1
/* Output assembler code to FILE to increment profiler label # LABELNO
for profiling a function entry.
?!? Profiling is not currently supported. */
#define FUNCTION_PROFILER(FILE, LABELNO) ;
/* Yes, we actually support trampolines on this machine, even though
nobody is likely to ever use them. */
#define TRAMPOLINE_TEMPLATE(FILE) \
do { \
fprintf (FILE, "\t.byte 0xfd\n"); \
fprintf (FILE, "\t.byte 0x03\n"); \
fprintf (FILE, "\t.byte 0x00\n"); \
fprintf (FILE, "\tmov (a3),a0\n"); \
fprintf (FILE, "\tadd -4,a3\n"); \
fprintf (FILE, "\tmov a0,(0,a3)\n"); \
fprintf (FILE, "\tmov (21,a0),a0\n"); \
fprintf (FILE, "\tmov a0,(4,a3)\n"); \
fprintf (FILE, "\tmov (0,a3),a0\n"); \
fprintf (FILE, "\tmov (17,a0),a0\n"); \
fprintf (FILE, "\tadd 4,a3\n"); \
fprintf (FILE, "\trts\n"); \
fprintf (FILE, "\t.long 0\n"); \
fprintf (FILE, "\t.long 0\n"); \
} while (0)
/* Length in units of the trampoline for entering a nested function. */
#define TRAMPOLINE_SIZE 0x1c
/* Emit RTL insns to initialize the variable parts of a trampoline.
FNADDR is an RTX for the address of the function's pure code.
CXT is an RTX for the static chain value for the function. */
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
{ \
emit_move_insn (gen_rtx (MEM, PSImode, plus_constant ((TRAMP), 20)), \
(CXT)); \
emit_move_insn (gen_rtx (MEM, PSImode, plus_constant ((TRAMP), 24)), \
(FNADDR)); \
}
/* A C expression whose value is RTL representing the value of the return
address for the frame COUNT steps up from the current frame. */
#define RETURN_ADDR_RTX(COUNT, FRAME) \
((COUNT == 0) \
? gen_rtx (MEM, Pmode, frame_pointer_rtx) \
: (rtx) 0)
/* Addressing modes, and classification of registers for them. */
/* 1 if X is an rtx for a constant that is a valid address. */
#define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
/* Extra constraints. */
/* Q is used for sp + <something> in the {zero,sign}_extendpsisi2 patterns. */
#define EXTRA_CONSTRAINT(OP, C) \
((C) == 'S' ? GET_CODE (OP) == SYMBOL_REF : \
(C) == 'Q' ? GET_CODE (OP) == PLUS : 0)
/* Maximum number of registers that can appear in a valid memory address. */
#define MAX_REGS_PER_ADDRESS 2
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
and check its validity for a certain class.
We have two alternate definitions for each of them.
The usual definition accepts all pseudo regs; the other rejects
them unless they have been allocated suitable hard regs.
The symbol REG_OK_STRICT causes the latter definition to be used.
Most source files want to accept pseudo regs in the hope that
they will get allocated to the class that the insn wants them to be in.
Source files for reload pass need to be strict.
After reload, it makes no difference, since pseudo regs have
been eliminated by then. */
#ifndef REG_OK_STRICT
/* Nonzero if X is a hard reg that can be used as an index
or if it is a pseudo reg. */
#define REG_OK_FOR_INDEX_P(X) \
(GET_MODE (X) == PSImode \
&& ((REGNO (X) >= 0 && REGNO(X) <= 3) || REGNO (X) >= FIRST_PSEUDO_REGISTER))
/* Nonzero if X is a hard reg that can be used as a base reg
or if it is a pseudo reg. */
#define REG_OK_FOR_BASE_P(X) \
(GET_MODE (X) == PSImode \
&& ((REGNO (X) >= 4 && REGNO(X) <= 8) || REGNO (X) >= FIRST_PSEUDO_REGISTER))
#else
/* Nonzero if X is a hard reg that can be used as an index. */
#define REG_OK_FOR_INDEX_P(X) \
(GET_MODE (X) == PSImode) && REGNO_OK_FOR_INDEX_P (REGNO (X))
/* Nonzero if X is a hard reg that can be used as a base reg. */
#define REG_OK_FOR_BASE_P(X) \
(GET_MODE (X) == PSImode) && REGNO_OK_FOR_BASE_P (REGNO (X))
#endif
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
that is a valid memory address for an instruction.
The MODE argument is the machine mode for the MEM expression
that wants to use this address.
The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
except for CONSTANT_ADDRESS_P which is actually machine-independent. */
/* Accept either REG or SUBREG where a register is valid. */
#define RTX_OK_FOR_BASE_P(X) \
((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
|| (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
&& REG_OK_FOR_BASE_P (SUBREG_REG (X))))
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ \
if ((MODE != PSImode) && CONSTANT_ADDRESS_P (X)) \
goto ADDR; \
if (RTX_OK_FOR_BASE_P (X)) \
goto ADDR; \
if (GET_CODE (X) == PLUS) \
{ \
rtx base = 0, index = 0; \
if (REG_P (XEXP (X, 0)) \
&& REG_OK_FOR_BASE_P (XEXP (X, 0))) \
base = XEXP (X, 0), index = XEXP (X, 1); \
if (REG_P (XEXP (X, 1)) \
&& REG_OK_FOR_BASE_P (XEXP (X, 1))) \
base = XEXP (X, 1), index = XEXP (X, 0); \
if (base != 0 && index != 0) \
{ \
if (GET_CODE (index) == CONST_INT) \
goto ADDR; \
if (GET_CODE (index) == REG \
&& REG_OK_FOR_INDEX_P (index) \
&& GET_MODE_SIZE (MODE) <= word_mode) \
goto ADDR; \
} \
} \
}
/* Try machine-dependent ways of modifying an illegitimate address
to be legitimate. If we find one, return the new, valid address.
This macro is used in only one place: `memory_address' in explow.c.
OLDX is the address as it was before break_out_memory_refs was called.
In some cases it is useful to look at this to decide what needs to be done.
MODE and WIN are passed so that this macro can use
GO_IF_LEGITIMATE_ADDRESS.
It is always safe for this macro to do nothing. It exists to recognize
opportunities to optimize the output. */
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
/* Go to LABEL if ADDR (a legitimate address expression)
has an effect that depends on the machine mode it is used for. */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
/* Nonzero if the constant value X is a legitimate general operand.
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
#define LEGITIMATE_CONSTANT_P(X) 1
/* Tell final.c how to eliminate redundant test instructions. */
/* Here we define machine-dependent flags and fields in cc_status
(see `conditions.h'). No extra ones are needed for the vax. */
/* Store in cc_status the expressions
that the condition codes will describe
after execution of an instruction whose pattern is EXP.
Do not alter them if the instruction would not alter the cc's. */
#define CC_OVERFLOW_UNUSABLE 0x200
#define CC_NO_CARRY CC_NO_OVERFLOW
#define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
/* The mn10200 has a limited number of registers, so CSE of function
addresses generally makes code worse due to register pressure. */
#define NO_FUNCTION_CSE
/* Compute the cost of computing a constant rtl expression RTX
whose rtx-code is CODE. The body of this macro is a portion
of a switch statement. If the code is computed here,
return it with a return statement. Otherwise, break from the switch. */
#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
case CONST_INT: \
/* Zeros are extremely cheap. */ \
if (INTVAL (RTX) == 0) \
return 0; \
/* If it fits in 8 bits, then it's still relatively cheap. */ \
if (INT_8_BITS (INTVAL (RTX))) \
return 1; \
/* This is the "base" cost, includes constants where either the \
upper or lower 16bits are all zeros. */ \
if (INT_16_BITS (INTVAL (RTX)) \
|| (INTVAL (RTX) & 0xffff) == 0 \
|| (INTVAL (RTX) & 0xffff0000) == 0) \
return 2; \
return 4; \
/* These are more costly than a CONST_INT, but we can relax them, \
so they're less costly than a CONST_DOUBLE. */ \
case CONST: \
case LABEL_REF: \
case SYMBOL_REF: \
return 6; \
/* We don't optimize CONST_DOUBLEs well nor do we relax them well, \
so their cost is very high. */ \
case CONST_DOUBLE: \
return 8;
/* Make moves between different classes more expensive than moves
within the same class. */
#define REGISTER_MOVE_COST(CLASS1, CLASS2) (CLASS1 != CLASS2 ? 4 : 2)
/* Provide the costs of a rtl expression. This is in the body of a
switch on CODE.
?!? This probably needs more work. The definitions below were first
taken from the H8 port, then tweaked slightly to improve code density
on various sample codes. */
#define RTX_COSTS(RTX,CODE,OUTER_CODE) \
case MOD: \
case DIV: \
return 8; \
case MULT: \
return (GET_MODE (RTX) == SImode ? 20 : 8);
/* Nonzero if access to memory by bytes or half words is no faster
than accessing full words. */
#define SLOW_BYTE_ACCESS 1
/* According expr.c, a value of around 6 should minimize code size, and
for the MN10200 series, code size our primary concern. */
#define MOVE_RATIO 6
#define TEXT_SECTION_ASM_OP "\t.section .text"
#define DATA_SECTION_ASM_OP "\t.section .data"
#define BSS_SECTION_ASM_OP "\t.section .bss"
/* Output at beginning/end of assembler file. */
#undef ASM_FILE_START
#define ASM_FILE_START(FILE) asm_file_start(FILE)
#define ASM_COMMENT_START "#"
/* Output to assembler file text saying following lines
may contain character constants, extra white space, comments, etc. */
#define ASM_APP_ON "#APP\n"
/* Output to assembler file text saying following lines
no longer contain unusual constructs. */
#define ASM_APP_OFF "#NO_APP\n"
/* This is how to output an assembler line defining a `double' constant.
It is .dfloat or .gfloat, depending. */
#define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
do { char dstr[30]; \
REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
fprintf (FILE, "\t.double %s\n", dstr); \
} while (0)
/* This is how to output an assembler line defining a `float' constant. */
#define ASM_OUTPUT_FLOAT(FILE, VALUE) \
do { char dstr[30]; \
REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
fprintf (FILE, "\t.float %s\n", dstr); \
} while (0)
/* This is how to output an assembler line defining an `int' constant. */
#define ASM_OUTPUT_INT(FILE, VALUE) \
( fprintf (FILE, "\t.long "), \
output_addr_const (FILE, (VALUE)), \
fprintf (FILE, "\n"))
/* Likewise for `char' and `short' constants. */
#define ASM_OUTPUT_SHORT(FILE, VALUE) \
( fprintf (FILE, "\t.hword "), \
output_addr_const (FILE, (VALUE)), \
fprintf (FILE, "\n"))
#define ASM_OUTPUT_CHAR(FILE, VALUE) \
( fprintf (FILE, "\t.byte "), \
output_addr_const (FILE, (VALUE)), \
fprintf (FILE, "\n"))
/* This is how to output an assembler line for a numeric constant byte. */
#define ASM_OUTPUT_BYTE(FILE, VALUE) \
fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
/* Define the parentheses used to group arithmetic operations
in assembler code. */
#define ASM_OPEN_PAREN "("
#define ASM_CLOSE_PAREN ")"
/* This says how to output the assembler to define a global
uninitialized but not common symbol.
Try to use asm_output_bss to implement this macro. */
#define ASM_OUTPUT_BSS(FILE, DECL, NAME, SIZE, ROUNDED) \
asm_output_bss ((FILE), (DECL), (NAME), (SIZE), (ROUNDED))
/* This is how to output the definition of a user-level label named NAME,
such as the label on a static function or variable NAME. */
#define ASM_OUTPUT_LABEL(FILE, NAME) \
do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
/* This is how to output a command to make the user-level label named NAME
defined for reference from other files. */
#define ASM_GLOBALIZE_LABEL(FILE, NAME) \
do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
/* This is how to output a reference to a user-level label named NAME.
`assemble_name' uses this. */
#undef ASM_OUTPUT_LABELREF
#define ASM_OUTPUT_LABELREF(FILE, NAME) \
do { \
char* real_name; \
STRIP_NAME_ENCODING (real_name, (NAME)); \
fprintf (FILE, "_%s", real_name); \
} while (0)
/* Store in OUTPUT a string (made with alloca) containing
an assembler-name for a local static variable named NAME.
LABELNO is an integer which is different for each call. */
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
/* This is how we tell the assembler that two symbols have the same value. */
#define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
do { assemble_name(FILE, NAME1); \
fputs(" = ", FILE); \
assemble_name(FILE, NAME2); \
fputc('\n', FILE); } while (0)
/* How to refer to registers in assembler output.
This sequence is indexed by compiler's hard-register-number (see above). */
#define REGISTER_NAMES \
{ "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3"}
/* Print an instruction operand X on file FILE.
look in mn10200.c for details */
#define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE,X,CODE)
/* Print a memory operand whose address is X, on file FILE.
This uses a function in output-vax.c. */
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
#define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
#define ASM_OUTPUT_REG_POP(FILE,REGNO)
/* This is how to output an element of a case-vector that is absolute. */
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
asm_fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
/* This is how to output an element of a case-vector that is relative. */
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
if ((LOG) != 0) \
fprintf (FILE, "\t.align %d\n", (LOG))
/* We don't have to worry about dbx compatability for the mn10200. */
#define DEFAULT_GDB_EXTENSIONS 1
/* Use stabs debugging info by default. */
#undef PREFERRED_DEBUGGING_TYPE
#define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
#define DBX_REGISTER_NUMBER(REGNO) REGNO
/* GDB always assumes the current function's frame begins at the value
of the stack pointer upon entry to the current function. Accessing
local variables and parameters passed on the stack is done using the
base of the frame + an offset provided by GCC.
For functions which have frame pointers this method works fine;
the (frame pointer) == (stack pointer at function entry) and GCC provides
an offset relative to the frame pointer.
This loses for functions without a frame pointer; GCC provides an offset
which is relative to the stack pointer after adjusting for the function's
frame size. GDB would prefer the offset to be relative to the value of
the stack pointer at the function's entry. Yuk! */
#define DEBUGGER_AUTO_OFFSET(X) \
((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
+ (frame_pointer_needed ? 0 : -total_frame_size ()))
#define DEBUGGER_ARG_OFFSET(OFFSET, X) \
((GET_CODE (X) == PLUS ? OFFSET : 0) \
+ (frame_pointer_needed ? 0 : -total_frame_size ()))
/* Define to use software floating point emulator for REAL_ARITHMETIC and
decimal <-> binary conversion. */
#define REAL_ARITHMETIC
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction. */
#define CASE_VECTOR_MODE Pmode
/* Define this if the case instruction drops through after the table
when the index is out of range. Don't define it if the case insn
jumps to the default label instead. */
#define CASE_DROPS_THROUGH
/* Dispatch tables on the mn10200 are extremely expensive in terms of code
and readonly data size. So we crank up the case threshold value to
encourage a series of if/else comparisons to implement many small switch
statements. In theory, this value could be increased much more if we
were solely optimizing for space, but we keep it "reasonable" to avoid
serious code efficiency lossage. */
#define CASE_VALUES_THRESHOLD 8
/* Define if operations between registers always perform the operation
on the full register even if a narrower mode is specified. */
#define WORD_REGISTER_OPERATIONS
/* We could define this either way. Using ZERO_EXTEND for QImode makes slightly
fast and more compact code. */
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
/* Specify the tree operation to be used to convert reals to integers. */
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
/* This flag, if defined, says the same insns that convert to a signed fixnum
also convert validly to an unsigned one. */
#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
/* This is the kind of divide that is easiest to do in the general case. */
#define EASY_DIV_EXPR TRUNC_DIV_EXPR
/* Max number of bytes we can move from memory to memory
in one reasonably fast instruction. */
#define MOVE_MAX 2
/* Define if shifts truncate the shift count
which implies one can omit a sign-extension or zero-extension
of a shift count. */
#define SHIFT_COUNT_TRUNCATED 1
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
is done just by pretending it is already truncated. */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) (OUTPREC != 32)
/* Specify the machine mode that pointers have.
After generation of rtl, the compiler makes no further distinction
between pointers and any other objects of this machine mode. */
#define Pmode PSImode
/* A function address in a call instruction
is a byte address (for indexing purposes)
so give the MEM rtx a byte's mode. */
#define FUNCTION_MODE QImode
/* Perform target dependent optabs initialization. */
#define MODHI3_LIBCALL "__modhi3"
#define DIVHI3_LIBCALL "__divhi3"
#define INIT_TARGET_OPTABS \
do { \
sdiv_optab->handlers[(int) HImode].libfunc \
= gen_rtx (SYMBOL_REF, Pmode, DIVHI3_LIBCALL); \
smod_optab->handlers[(int) HImode].libfunc \
= gen_rtx (SYMBOL_REF, Pmode, MODHI3_LIBCALL); \
} while (0)
/* The assembler op to get a word. */
#define FILE_ASM_OP "\t.file\n"
extern void asm_file_start ();
extern void print_operand ();
extern void print_operand_address ();
extern void expand_prologue ();
extern void expand_epilogue ();
extern void notice_update_cc ();
extern int call_address_operand ();
extern enum reg_class secondary_reload_class ();
extern char *emit_a_shift ();
extern int current_function_needs_context;
extern char *output_tst ();
extern int extendpsi_operand ();
extern int rtx_equal_function_value_matters;
extern struct rtx_def *zero_dreg;
extern struct rtx_def *zero_areg;
;; GCC machine description for Matsushita MN10200
;; Copyright (C) 1997 Free Software Foundation, Inc.
;; Contributed by Jeff Law (law@cygnus.com).
;; This file is part of GNU CC.
;; GNU CC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.
;; GNU CC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU CC; see the file COPYING. If not, write to
;; the Free Software Foundation, 59 Temple Place - Suite 330,
;; Boston, MA 02111-1307, USA.
;; The original PO technology requires these to be ordered by speed,
;; so that assigner will pick the fastest.
;; See file "rtl.def" for documentation on define_insn, match_*, et. al.
;; Condition code settings.
;; none - insn does not affect cc
;; none_0hit - insn does not affect cc but it does modify operand 0
;; This attribute is used to keep track of when operand 0 changes.
;; See the description of NOTICE_UPDATE_CC for more info.
;; set_znv - sets z,n,v to useable values; c is unknown.
;; set_zn - sets z,n to usable values; v,c is unknown.
;; compare - compare instruction
;; clobber - value of cc is unknown
(define_attr "cc" "none,none_0hit,set_znv,set_zn,compare,clobber"
(const_string "clobber"))
;; ----------------------------------------------------------------------
;; MOVE INSTRUCTIONS
;; ----------------------------------------------------------------------
;;
;; Some general notes on move instructions.
;;
;; The hardware can't encode nop moves involving data registers, so
;; we catch them and emit a nop instead.
;;
;; Loads/stores to/from address registers must be 16bit aligned,
;; thus we avoid them for QImode.
;;
;; Stores from address registers always store 24bits, so avoid
;; stores from address registers in HImode, SImode, and SFmode.
;;
;; As a result of the various problems using address registers in
;; QImode, HImode, SImode, and SFmode, we discourage their use via
;; '*' in their constraints. They're still allowed, but they're never
;; the preferred class for for insns with those modes.
;; movqi
(define_expand "movqi"
[(set (match_operand:QI 0 "general_operand" "")
(match_operand:QI 1 "general_operand" ""))]
""
"
{
/* One of the ops has to be in a register */
if (!register_operand (operand0, QImode)
&& !register_operand (operand1, QImode))
operands[1] = copy_to_mode_reg (QImode, operand1);
}")
;; We avoid memory operations involving address registers because we
;; can't be sure they'll be suitably aligned.
;;
;; We also discourage holding QImode values in address registers.
(define_insn ""
[(set (match_operand:QI 0 "general_operand" "=d,d,*a,d,d,m,d,*a,*a")
(match_operand:QI 1 "general_operand" "0,I,I,di,m,d,*a,d,i*a"))]
"register_operand (operands[0], QImode)
|| register_operand (operands[1], QImode)"
"@
nop
sub %0,%0
sub %0,%0
mov %S1,%0
movbu %1,%0
movb %1,%0
mov %1,%0
mov %1,%0
mov %1,%0"
[(set_attr "cc" "none,clobber,clobber,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit")])
;; movhi
(define_expand "movhi"
[(set (match_operand:HI 0 "general_operand" "")
(match_operand:HI 1 "general_operand" ""))]
""
"
{
/* One of the ops has to be in a register */
if (!register_operand (operand1, HImode)
&& !register_operand (operand0, HImode))
operands[1] = copy_to_mode_reg (HImode, operand1);
}")
(define_insn ""
[(set (match_operand:HI 0 "general_operand" "=d,d,*a,d,d,m,d,*a,*a,*a")
(match_operand:HI 1 "general_operand" "0,I,I,di,m,d,*a,d,i*a,m"))]
"register_operand (operands[0], HImode)
|| register_operand (operands[1], HImode)"
"@
nop
sub %0,%0
sub %0,%0
mov %s1,%0
mov %1,%0
mov %1,%0
mov %1,%0
mov %1,%0
mov %1,%0
mov %A1,%0"
[(set_attr "cc" "none,clobber,clobber,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit")])
;; movpsi and helpers
(define_expand "movpsi"
[(set (match_operand:PSI 0 "general_operand" "")
(match_operand:PSI 1 "general_operand" ""))]
""
"
{
/* One of the ops has to be in a register */
if (!register_operand (operand1, PSImode)
&& !register_operand (operand0, PSImode))
operands[1] = copy_to_mode_reg (PSImode, operand1);
}")
;; Constant and indexed addresses are not valid addresses for PSImode,
;; therefore they won't be matched by the general movpsi pattern below.
;; ??? We had patterns to handle indexed addresses, but they kept making
;; us run out of regs, so they were eliminated.
(define_insn ""
[(set (match_operand:PSI 0 "register_operand" "=a")
(match_operand:PSI 1 "constant_memory_operand" ""))]
""
"mov %A1,%0"
[(set_attr "cc" "none_0hit")])
(define_insn ""
[(set (match_operand:PSI 0 "constant_memory_operand" "=X")
(match_operand:PSI 1 "register_operand" "a"))]
""
"mov %1,%A0"
[(set_attr "cc" "none_0hit")])
;; We want to prefer address registers here because 24bit moves to/from
;; memory are shorter and faster when done via address registers.
(define_insn ""
[(set (match_operand:PSI 0 "general_operand" "=d,a?d,?da,a,m,?d,m")
(match_operand:PSI 1 "general_operand" "0,I,?dai,m,a,m,?d"))]
"register_operand (operands[0], PSImode)
|| register_operand (operands[1], PSImode)"
"@
nop
sub %0,%0
mov %1,%0
mov %A1,%0
mov %1,%A0
movx %A1,%0
movx %1,%A0"
[(set_attr "cc" "none,clobber,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit")])
(define_expand "movsi"
[(set (match_operand:SI 0 "general_operand" "")
(match_operand:SI 1 "general_operand" ""))]
""
"
{
/* One of the ops has to be in a register */
if (!register_operand (operand1, SImode)
&& !register_operand (operand0, SImode))
operands[1] = copy_to_mode_reg (SImode, operand1);
}")
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=d,d,*a,dm,d,d,*a,*a,*a")
(match_operand:SI 1 "general_operand" "0,I,I,d,dim,*a,d,*a,i"))]
"register_operand (operands[0], SImode)
|| register_operand (operands[1], SImode)"
"*
{
switch (which_alternative)
{
case 0:
return \"nop\";
case 1:
case 2:
return \"sub %H0,%H0\;sub %L0,%L0\";
case 3:
case 5:
case 6:
case 7:
return \"mov %H1,%H0\;mov %L1,%L0\";
/* The next two cases try to optimize cases where one half
of the constant is all zeros, or when the two halves are
the same. */
case 4:
case 8:
if (REG_P (operands[0])
&& GET_CODE (operands[1]) == CONST_INT
&& (INTVAL (operands[1]) & 0xffff0000) == 0)
output_asm_insn (\"sub %H0,%H0\", operands);
else
output_asm_insn (\"mov %h1,%H0\", operands);
if (GET_CODE (operands[1]) == CONST_INT
&& ((INTVAL (operands[1]) & 0xffff)
== ((INTVAL (operands[1]) >> 16) & 0xffff)))
output_asm_insn (\"mov %H0,%L0\", operands);
else if (GET_CODE (operands[1]) == CONST_INT
&& (INTVAL (operands[1]) & 0xffff) == 0)
output_asm_insn (\"sub %L0,%L0\", operands);
else
output_asm_insn (\"mov %o1,%L0\", operands);
return \"\";
}
}"
[(set_attr "cc" "none,clobber,clobber,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit")])
(define_expand "movsf"
[(set (match_operand:SF 0 "general_operand" "")
(match_operand:SF 1 "general_operand" ""))]
""
"
{
/* One of the ops has to be in a register */
if (!register_operand (operand1, SFmode)
&& !register_operand (operand0, SFmode))
operands[1] = copy_to_mode_reg (SFmode, operand1);
}")
(define_insn ""
[(set (match_operand:SF 0 "general_operand" "=d,d,*a,dm,d,d,*a,*a,*a")
(match_operand:SF 1 "general_operand" "0,G,G,d,dim,*a,d,*a,i"))]
"register_operand (operands[0], SFmode)
|| register_operand (operands[1], SFmode)"
"*
{
switch (which_alternative)
{
case 0:
return \"nop\";
case 1:
case 2:
return \"sub %H0,%H0\;sub %L0,%L0\";
default:
{
long val;
REAL_VALUE_TYPE rv;
if (GET_CODE (operands[1]) == CONST_DOUBLE)
{
REAL_VALUE_FROM_CONST_DOUBLE (rv, operands[1]);
REAL_VALUE_TO_TARGET_SINGLE (rv, val);
}
if (GET_CODE (operands[1]) == CONST_INT)
val = INTVAL (operands[1]);
if ((GET_CODE (operands[1]) == CONST_INT
|| GET_CODE (operands[1]) == CONST_DOUBLE)
&& (val & 0xffff0000) == 0)
output_asm_insn (\"sub %H0,%H0\", operands);
else
output_asm_insn (\"mov %h1,%H0\", operands);
if (GET_CODE (operands[1]) == CONST_INT
&& ((INTVAL (operands[1]) & 0xffff)
== ((INTVAL (operands[1]) >> 16) & 0xffff)))
output_asm_insn (\"mov %H0,%L0\", operands);
else if ((GET_CODE (operands[1]) == CONST_INT
|| GET_CODE (operands[1]) == CONST_DOUBLE)
&& (val & 0x0000ffff) == 0)
output_asm_insn (\"sub %L0,%L0\", operands);
else
output_asm_insn (\"mov %o1,%L0\", operands);
return \"\";
}
}
}"
[(set_attr "cc" "none,clobber,clobber,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit,none_0hit")])
;; ----------------------------------------------------------------------
;; TEST INSTRUCTIONS
;; ----------------------------------------------------------------------
;; Go ahead and define tsthi and tstpsi so we can eliminate redundant tst insns
;; when we start trying to optimize this port.
(define_insn "tsthi"
[(set (cc0) (match_operand:HI 0 "general_operand" "da"))]
""
"* return output_tst (operands[0], insn);"
[(set_attr "cc" "set_znv")])
(define_insn "tstpsi"
[(set (cc0) (match_operand:PSI 0 "general_operand" "da"))]
""
"* return output_tst (operands[0], insn);"
[(set_attr "cc" "set_znv")])
(define_insn ""
[(set (cc0) (zero_extend:HI (match_operand:QI 0 "memory_operand" "d")))]
""
"* return output_tst (operands[0], insn);"
[(set_attr "cc" "set_znv")])
(define_insn ""
[(set (cc0) (zero_extend:PSI (match_operand:QI 0 "memory_operand" "d")))]
""
"* return output_tst (operands[0], insn);"
[(set_attr "cc" "set_znv")])
(define_insn "cmphi"
[(set (cc0)
(compare:HI (match_operand:HI 0 "general_operand" "da")
(match_operand:HI 1 "general_operand" "dai")))]
""
"cmp %1,%0"
[(set_attr "cc" "compare")])
(define_insn "cmppsi"
[(set (cc0)
(compare:PSI (match_operand:PSI 0 "general_operand" "da")
(match_operand:PSI 1 "general_operand" "dai")))]
""
"cmp %1,%0"
[(set_attr "cc" "compare")])
;; ----------------------------------------------------------------------
;; ADD INSTRUCTIONS
;; ----------------------------------------------------------------------
(define_insn "addhi3"
[(set (match_operand:HI 0 "general_operand" "=d")
(plus:HI (match_operand:HI 1 "general_operand" "%0")
(match_operand:HI 2 "general_operand" "dai")))]
""
"add %2,%0"
[(set_attr "cc" "set_zn")])
(define_insn "addpsi3"
[(set (match_operand:PSI 0 "general_operand" "=da")
(plus:PSI (match_operand:PSI 1 "general_operand" "%0")
(match_operand:PSI 2 "general_operand" "dai")))]
""
"add %2,%0"
[(set_attr "cc" "set_zn")])
;; We want to avoid using explicit registers; reload won't tell us
;; if it has to spill them and may generate incorrect code in such
;; cases.
;;
;; So we call out to a library routine to perform 32bit add or
;; subtract operations.
(define_expand "addsi3"
[(set (match_operand:SI 0 "general_operand" "")
(plus:SI (match_operand:SI 1 "general_operand" "")
(match_operand:SI 2 "general_operand" "")))]
""
"
{
/* If adding a CONST_INT, we are better off generating code ourselves.
During RTL generation we call out to library routines.
After RTL generation we can not call the library routines as
they need to push arguments via virtual_outgoing_args_rtx which
has already been instantiated. So, after RTL generation we just
FAIL and open code the operation. */
if (GET_CODE (operands[2]) == CONST_INT)
{
if (!rtx_equal_p (operands[0], operands[1]))
emit_move_insn (operands[0], operands[1]);
emit_insn (gen_addsi3_const (operands[0], operands[0], operands[2]));
DONE;
}
else if (rtx_equal_function_value_matters)
{
rtx ret, insns;
extern rtx emit_library_call_value ();
start_sequence ();
ret = emit_library_call_value (gen_rtx (SYMBOL_REF, Pmode, \"__addsi3\"),
NULL_RTX, 1, SImode, 2, operands[1],
SImode, operands[2], SImode);
insns = get_insns ();
end_sequence ();
emit_libcall_block (insns, operands[0], ret,
gen_rtx (ASHIFT, SImode, operands[1], operands[2]));
DONE;
}
else
FAIL;
}")
(define_insn "addsi3_const"
[(set (match_operand:SI 0 "general_operand" "=d")
(plus:SI (match_operand:SI 1 "general_operand" "0")
(match_operand:SI 2 "const_int_operand" "i")))
(clobber (match_scratch:SI 3 "=&d"))]
""
"*
{
unsigned long value = INTVAL (operands[2]);
/* If only the high bits are set in the constant, then we only
need a single add operation. It might be better to catch this
at RTL expansion time. */
if ((value & 0xffff) == 0)
return \"add %h2,%H0\";
value >>= 16;
value &= 0xffff;
if (value == 0)
return \"sub %3,%3\;add %o2,%L0\;addc %3,%H0\";
else
return \"mov %h2,%3\;add %o2,%L0\;addc %3,%H0\";
}"
[(set_attr "cc" "clobber")])
;; ----------------------------------------------------------------------
;; SUBTRACT INSTRUCTIONS
;; ----------------------------------------------------------------------
(define_insn "subhi3"
[(set (match_operand:HI 0 "general_operand" "=d")
(minus:HI (match_operand:HI 1 "general_operand" "0")
(match_operand:HI 2 "general_operand" "dai")))]
""
"sub %2,%0"
[(set_attr "cc" "set_zn")])
(define_insn "subpsi3"
[(set (match_operand:PSI 0 "general_operand" "=da")
(minus:PSI (match_operand:PSI 1 "general_operand" "0")
(match_operand:PSI 2 "general_operand" "dai")))]
""
"sub %2,%0"
[(set_attr "cc" "set_zn")])
(define_expand "subsi3"
[(set (match_operand:SI 0 "general_operand" "")
(minus:SI (match_operand:SI 1 "general_operand" "")
(match_operand:SI 2 "general_operand" "")))]
""
"
{
/* During RTL generation we call out to library routines.
After RTL generation we can not call the library routines as
they need to push arguments via virtual_outgoing_args_rtx which
has already been instantiated. So, after RTL generation we just
FAIL and open code the operation. */
if (rtx_equal_function_value_matters)
{
rtx ret, insns;
extern rtx emit_library_call_value ();
start_sequence ();
ret = emit_library_call_value (gen_rtx (SYMBOL_REF, Pmode, \"__subsi3\"),
NULL_RTX, 1, SImode, 2, operands[1],
SImode, operands[2], SImode);
insns = get_insns ();
end_sequence ();
emit_libcall_block (insns, operands[0], ret,
gen_rtx (ASHIFT, SImode, operands[1], operands[2]));
DONE;
}
else
FAIL;
}")
;; There isn't a negate instruction, so we fake it.
;;
;; We used to expand this into patterns, but a single pattern
;; actually generates better overall code.
;;
;; We could do HImode negations with a "not;add" sequence, but
;; generally it's generated slightly worse code.
(define_insn "neghi2"
[(set (match_operand:HI 0 "general_operand" "=&d")
(neg:HI (match_operand:HI 1 "general_operand" "d")))]
""
"sub %0,%0\;sub %1,%0"
[(set_attr "cc" "set_zn")])
(define_insn "negpsi2"
[(set (match_operand:PSI 0 "general_operand" "=&d")
(neg:PSI (match_operand:PSI 1 "general_operand" "d")))]
""
"sub %0,%0\;sub %1,%0"
[(set_attr "cc" "set_zn")])
;; Using a magic libcall that accepts its arguments in any
;; data register pair has proven to be the most efficient
;; and most compact way to represent negsi2.
(define_insn "negsi2"
[(set (match_operand:SI 0 "general_operand" "=d")
(neg:SI (match_operand:SI 1 "general_operand" "0")))]
""
"jsr ___negsi2_%0"
[(set_attr "cc" "clobber")])
;; ----------------------------------------------------------------------
;; MULTIPLY INSTRUCTIONS
;; ----------------------------------------------------------------------
;;
;; The mn10200 has HIxHI->SI widening multiply, but we get _severe_
;; code density regressions if we enable such a pattern.
(define_insn "mulhi3"
[(set (match_operand:HI 0 "general_operand" "=d")
(mult:HI (match_operand:HI 1 "general_operand" "%0")
(match_operand:HI 2 "general_operand" "d")))]
""
"mul %2,%0"
[(set_attr "cc" "set_zn")])
(define_insn "udivmodhi4"
[(set (match_operand:HI 0 "general_operand" "=d")
(udiv:HI (match_operand:HI 1 "general_operand" "0")
(match_operand:HI 2 "general_operand" "d")))
(set (match_operand:HI 3 "general_operand" "=&d")
(umod:HI (match_dup 1) (match_dup 2)))]
""
"*
{
if (zero_dreg)
output_asm_insn (\"mov %0,mdr\", &zero_dreg);
else
output_asm_insn (\"sub %3,%3\;mov %3,mdr\", operands);
if (find_reg_note (insn, REG_UNUSED, operands[3]))
return \"divu %2,%0\";
else
return \"divu %2,%0\;mov mdr,%3\";
}"
[(set_attr "cc" "set_zn")])
;; ----------------------------------------------------------------------
;; AND INSTRUCTIONS
;; ----------------------------------------------------------------------
(define_insn "andhi3"
[(set (match_operand:HI 0 "general_operand" "=d,d")
(and:HI (match_operand:HI 1 "general_operand" "%0,0")
(match_operand:HI 2 "general_operand" "M,di")))]
""
"*
{
if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) == 0xff)
return \"extxbu %0\";
if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) == 0x7fff)
return \"add %0,%0\;lsr %0\";
if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) == 0xfffe)
return \"lsr %0\;add %0,%0\";
return \"and %2,%0\";
}"
[(set_attr "cc" "none_0hit,set_znv")])
;; This expander + pattern exist only to allow trampolines to be aligned
;; in the stack.
(define_expand "andpsi3"
[(set (match_operand:PSI 0 "general_operand" "")
(and:PSI (match_operand:PSI 1 "general_operand" "")
(match_operand:PSI 2 "const_int_operand" "")))]
""
"
{
if (GET_CODE (operands[2]) != CONST_INT
|| (INTVAL (operands[2]) & 0xff0000) != 0xff0000)
FAIL;
}")
(define_insn ""
[(set (match_operand:PSI 0 "general_operand" "=d")
(and:PSI (match_operand:PSI 1 "general_operand" "%0")
(match_operand:PSI 2 "const_int_operand" "i")))]
"GET_CODE (operands[2]) == CONST_INT
&& (INTVAL (operands[2]) & 0xff0000) == 0xff0000"
"and %2,%0"
[(set_attr "cc" "clobber")])
;; ----------------------------------------------------------------------
;; OR INSTRUCTIONS
;; ----------------------------------------------------------------------
(define_insn "iorhi3"
[(set (match_operand:HI 0 "general_operand" "=d")
(ior:HI (match_operand:HI 1 "general_operand" "%0")
(match_operand:HI 2 "general_operand" "di")))]
""
"or %2,%0"
[(set_attr "cc" "set_znv")])
;; ----------------------------------------------------------------------
;; XOR INSTRUCTIONS
;; ----------------------------------------------------------------------
(define_insn "xorhi3"
[(set (match_operand:HI 0 "general_operand" "=d")
(xor:HI (match_operand:HI 1 "general_operand" "%0")
(match_operand:HI 2 "general_operand" "di")))]
""
"xor %2,%0"
[(set_attr "cc" "set_znv")])
;; ----------------------------------------------------------------------
;; NOT INSTRUCTIONS
;; ----------------------------------------------------------------------
(define_insn "one_cmplhi2"
[(set (match_operand:HI 0 "general_operand" "=d")
(not:HI (match_operand:HI 1 "general_operand" "0")))]
""
"not %0"
[(set_attr "cc" "set_znv")])
;; -----------------------------------------------------------------
;; BIT INSTRUCTIONS
;; -----------------------------------------------------------------
;; When clearing a set of bits in memory, we load the inverted bitmask into
;; a register, then use bclr.
(define_insn ""
[(set (match_operand:QI 0 "indirect_memory_operand" "")
(subreg:QI
(and:HI (subreg:HI (match_dup 0) 0)
(match_operand 1 "const_int_operand" "")) 0))
(clobber (match_scratch:HI 2 "=&d"))]
""
"mov %N1,%2\;bclr %2,%0"
[(set_attr "cc" "clobber")])
;; These clear a non-constant set of bits in memory.
(define_insn ""
[(set (match_operand:QI 0 "indirect_memory_operand" "")
(subreg:QI
(and:HI (subreg:HI (match_dup 0) 0)
(not:HI (match_operand:HI 1 "general_operand" "d"))) 0))]
""
"bclr %1,%0"
[(set_attr "cc" "clobber")])
(define_insn ""
[(set (match_operand:QI 0 "indirect_memory_operand" "")
(subreg:QI
(and:HI (not:HI (match_operand:HI 1 "general_operand" "d"))
(subreg:HI (match_dup 0) 0)) 0))]
""
"bclr %1,%0"
[(set_attr "cc" "clobber")])
;; These set bits in memory.
(define_insn ""
[(set (match_operand:QI 0 "indirect_memory_operand" "")
(subreg:QI
(ior:HI (subreg:HI (match_dup 0) 0)
(match_operand:HI 1 "general_operand" "d")) 0))]
""
"bset %1,%0"
[(set_attr "cc" "clobber")])
(define_insn ""
[(set (match_operand:QI 0 "indirect_memory_operand" "")
(subreg:QI
(ior:HI (match_operand:HI 1 "general_operand" "d")
(subreg:HI (match_dup 0) 0)) 0))]
""
"bset %1,%0"
[(set_attr "cc" "clobber")])
;; Not any shorter/faster than using cmp, but it might save a
;; register if the result of the AND isn't ever used.
(define_insn ""
[(set (cc0)
(zero_extract:HI (match_operand:HI 0 "general_operand" "d")
(match_operand 1 "const_int_operand" "")
(match_operand 2 "const_int_operand" "")))]
""
"*
{
int len = INTVAL (operands[1]);
int bit = INTVAL (operands[2]);
int mask = 0;
rtx xoperands[2];
while (len > 0)
{
mask |= (1 << bit);
bit++;
len--;
}
xoperands[0] = operands[0];
xoperands[1] = GEN_INT (mask);
output_asm_insn (\"btst %1,%0\", xoperands);
return \"\";
}"
[(set_attr "cc" "set_znv")])
(define_insn ""
[(set (cc0) (and:HI (match_operand:HI 0 "general_operand" "d")
(match_operand:HI 1 "const_int_operand" "i")))]
""
"btst %1,%0"
[(set_attr "cc" "set_znv")])
;; ----------------------------------------------------------------------
;; JUMP INSTRUCTIONS
;; ----------------------------------------------------------------------
;; Conditional jump instructions
(define_expand "ble"
[(set (pc)
(if_then_else (le (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"")
(define_expand "bleu"
[(set (pc)
(if_then_else (leu (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"")
(define_expand "bge"
[(set (pc)
(if_then_else (ge (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"")
(define_expand "bgeu"
[(set (pc)
(if_then_else (geu (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"")
(define_expand "blt"
[(set (pc)
(if_then_else (lt (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"")
(define_expand "bltu"
[(set (pc)
(if_then_else (ltu (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"")
(define_expand "bgt"
[(set (pc)
(if_then_else (gt (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"")
(define_expand "bgtu"
[(set (pc)
(if_then_else (gtu (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"")
(define_expand "beq"
[(set (pc)
(if_then_else (eq (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"")
(define_expand "bne"
[(set (pc)
(if_then_else (ne (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"")
(define_insn ""
[(set (pc)
(if_then_else (match_operator 1 "comparison_operator"
[(cc0) (const_int 0)])
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"*
{
if ((cc_status.flags & CC_OVERFLOW_UNUSABLE) != 0
&& (GET_CODE (operands[1]) == GT
|| GET_CODE (operands[1]) == GE
|| GET_CODE (operands[1]) == LE
|| GET_CODE (operands[1]) == LT))
return 0;
if (GET_MODE (SET_SRC (PATTERN (PREV_INSN (insn)))) == PSImode)
return \"b%b1x %0\";
else
return \"b%b1 %0\";
}"
[(set_attr "cc" "none")])
(define_insn ""
[(set (pc)
(if_then_else (match_operator 1 "comparison_operator"
[(cc0) (const_int 0)])
(pc)
(label_ref (match_operand 0 "" ""))))]
""
"*
{
if ((cc_status.flags & CC_OVERFLOW_UNUSABLE) != 0
&& (GET_CODE (operands[1]) == GT
|| GET_CODE (operands[1]) == GE
|| GET_CODE (operands[1]) == LE
|| GET_CODE (operands[1]) == LT))
return 0;
if (GET_MODE (SET_SRC (PATTERN (PREV_INSN (insn)))) == PSImode)
return \"b%B1x %0\";
else
return \"b%B1 %0\";
}"
[(set_attr "cc" "none")])
(define_insn "jump"
[(set (pc)
(label_ref (match_operand 0 "" "")))]
""
"jmp %l0"
[(set_attr "cc" "none")])
(define_insn "indirect_jump"
[(set (pc) (match_operand:PSI 0 "general_operand" "a"))]
""
"jmp (%0)"
[(set_attr "cc" "none")])
(define_insn "tablejump"
[(set (pc) (match_operand:PSI 0 "general_operand" "a"))
(use (label_ref (match_operand 1 "" "")))]
""
"jmp (%0)"
[(set_attr "cc" "none")])
;; Call subroutine with no return value.
(define_expand "call"
[(call (match_operand:QI 0 "general_operand" "")
(match_operand:HI 1 "general_operand" ""))]
""
"
{
if (! call_address_operand (XEXP (operands[0], 0)))
XEXP (operands[0], 0) = force_reg (PSImode, XEXP (operands[0], 0));
emit_call_insn (gen_call_internal (XEXP (operands[0], 0), operands[1]));
DONE;
}")
(define_insn "call_internal"
[(call (mem:QI (match_operand:PSI 0 "call_address_operand" "aS"))
(match_operand:HI 1 "general_operand" "g"))]
""
"jsr %C0"
[(set_attr "cc" "clobber")])
;; Call subroutine, returning value in operand 0
;; (which must be a hard register).
(define_expand "call_value"
[(set (match_operand 0 "" "")
(call (match_operand:QI 1 "general_operand" "")
(match_operand:HI 2 "general_operand" "")))]
""
"
{
if (! call_address_operand (XEXP (operands[1], 0)))
XEXP (operands[1], 0) = force_reg (PSImode, XEXP (operands[1], 0));
emit_call_insn (gen_call_value_internal (operands[0],
XEXP (operands[1], 0),
operands[2]));
DONE;
}")
(define_insn "call_value_internal"
[(set (match_operand 0 "" "=da")
(call (mem:QI (match_operand:PSI 1 "call_address_operand" "aS"))
(match_operand:HI 2 "general_operand" "g")))]
""
"jsr %C1"
[(set_attr "cc" "clobber")])
(define_expand "untyped_call"
[(parallel [(call (match_operand 0 "" "")
(const_int 0))
(match_operand 1 "" "")
(match_operand 2 "" "")])]
""
"
{
int i;
emit_call_insn (gen_call (operands[0], const0_rtx));
for (i = 0; i < XVECLEN (operands[2], 0); i++)
{
rtx set = XVECEXP (operands[2], 0, i);
emit_move_insn (SET_DEST (set), SET_SRC (set));
}
DONE;
}")
(define_insn "nop"
[(const_int 0)]
""
"nop"
[(set_attr "cc" "none")])
;; ----------------------------------------------------------------------
;; EXTEND INSTRUCTIONS
;; ----------------------------------------------------------------------
(define_insn "zero_extendqihi2"
[(set (match_operand:HI 0 "general_operand" "=d,d,d")
(zero_extend:HI
(match_operand:QI 1 "general_operand" "0,di,m")))]
""
"@
extxbu %0
mov %1,%0\;extxbu %0
movbu %1,%0"
[(set_attr "cc" "none_0hit")])
(define_insn "zero_extendqipsi2"
[(set (match_operand:PSI 0 "general_operand" "=d,d,d")
(zero_extend:PSI
(match_operand:QI 1 "general_operand" "0,di,m")))]
""
"@
extxbu %0
mov %1,%0\;extxbu %0
movbu %1,%0"
[(set_attr "cc" "none_0hit")])
(define_insn "zero_extendqisi2"
[(set (match_operand:SI 0 "general_operand" "=d,d,d")
(zero_extend:SI
(match_operand:QI 1 "general_operand" "0,di,m")))]
""
"@
extxbu %L0\;sub %H0,%H0
mov %1,%L0\;extxbu %L0\;sub %H0,%H0
movbu %1,%L0\;sub %H0,%H0"
[(set_attr "cc" "none_0hit")])
(define_insn "zero_extendhipsi2"
[(set (match_operand:PSI 0 "general_operand" "=d,d,d")
(zero_extend:PSI
(match_operand:HI 1 "general_operand" "0,di,m")))]
""
"@
extxu %0
mov %1,%0\;extxu %0
mov %1,%0\;extxu %0"
[(set_attr "cc" "none_0hit")])
(define_insn "zero_extendhisi2"
[(set (match_operand:SI 0 "general_operand" "=d,d")
(zero_extend:SI
(match_operand:HI 1 "general_operand" "0,dim")))]
""
"@
sub %H0,%H0
mov %1,%L0\;sub %H0,%H0"
[(set_attr "cc" "none_0hit")])
;; The last alternative is necessary because the second operand might
;; have been the frame pointer. The frame pointer would get replaced
;; by (plus (stack_pointer) (const_int)).
;;
;; Reload would think that it only needed a PSImode register in
;; push_reload and at the start of allocate_reload_regs. However,
;; at the end of allocate_reload_reg it would realize that the
;; reload register must also be valid for SImode, and if it was
;; not valid reload would abort.
(define_insn "zero_extendpsisi2"
[(set (match_operand:SI 0 "register_operand" "=d,?d,?*d,?*d")
(zero_extend:SI (match_operand:PSI 1 "extendpsi_operand"
"m,?0,?*dai,Q")))]
""
"@
mov %L1,%L0\;movbu %H1,%H0
jsr ___zero_extendpsisi2_%0
mov %1,%L0\;jsr ___zero_extendpsisi2_%0
mov a3,%L0\;add %Z1,%L0\;jsr ___zero_extendpsisi2_%0"
[(set_attr "cc" "clobber")])
;;- sign extension instructions
(define_insn "extendqihi2"
[(set (match_operand:HI 0 "general_operand" "=d,d,d")
(sign_extend:HI
(match_operand:QI 1 "general_operand" "0,di,m")))]
""
"*
{
if (which_alternative == 0)
return \"extxb %0\";
else if (which_alternative == 1)
return \"mov %1,%0\;extxb %0\";
else if (GET_CODE (XEXP (operands[1], 0)) == REG)
return \"movbu %1,%0\;extxb %0\";
else
return \"movb %1,%0\";
}"
[(set_attr "cc" "none_0hit")])
(define_insn "extendqipsi2"
[(set (match_operand:PSI 0 "general_operand" "=d,d,d")
(sign_extend:PSI
(match_operand:QI 1 "general_operand" "0,di,m")))]
""
"*
{
if (which_alternative == 0)
return \"extxb %0\";
else if (which_alternative == 1)
return \"mov %1,%0\;extxb %0\";
else if (GET_CODE (XEXP (operands[1], 0)) == REG)
return \"movbu %1,%0\;extxb %0\";
else
return \"movb %1,%0\";
}"
[(set_attr "cc" "none_0hit")])
(define_insn "extendqisi2"
[(set (match_operand:SI 0 "general_operand" "=d,d,d")
(sign_extend:SI
(match_operand:QI 1 "general_operand" "0,di,m")))]
""
"*
{
if (which_alternative == 0)
return \"extxb %L0\;mov %L0,%H0\;add %H0,%H0\;subc %H0,%H0\";
else if (which_alternative == 1)
return \"mov %1,%L0\;extxb %L0\;mov %L0,%H0\;add %H0,%H0\;subc %H0,%H0\";
else if (GET_CODE (XEXP (operands[1], 0)) == REG)
return \"movbu %1,%L0\;extxb %L0\;mov %L0,%H0\;add %H0,%H0\;subc %H0,%H0\";
else
return \"movb %1,%L0\;mov %L0,%H0\;add %H0,%H0\;subc %H0,%H0\";
}"
[(set_attr "cc" "none_0hit")])
(define_insn "extendhipsi2"
[(set (match_operand:PSI 0 "general_operand" "=d,d,d")
(sign_extend:PSI
(match_operand:HI 1 "general_operand" "0,di,m")))]
""
"@
extx %0
mov %1,%0\;extx %0
mov %1,%0"
[(set_attr "cc" "none_0hit")])
(define_insn "extendhisi2"
[(set (match_operand:SI 0 "general_operand" "=d,d,d")
(sign_extend:SI
(match_operand:HI 1 "general_operand" "0,di,m")))]
""
"@
mov %L0,%H0\;add %H0,%H0\;subc %H0,%H0
mov %1,%L0\;mov %L0,%H0\;add %H0,%H0\;subc %H0,%H0
mov %1,%L0\;mov %L0,%H0\;add %H0,%H0\;subc %H0,%H0"
[(set_attr "cc" "none_0hit")])
;; The last alternative is necessary because the second operand might
;; have been the frame pointer. The frame pointer would get replaced
;; by (plus (stack_pointer) (const_int)).
;;
;; Reload would think that it only needed a PSImode register in
;; push_reload and at the start of allocate_reload_regs. However,
;; at the end of allocate_reload_reg it would realize that the
;; reload register must also be valid for SImode, and if it was
;; not valid reload would abort.
(define_insn "extendpsisi2"
[(set (match_operand:SI 0 "general_operand" "=d,?d,?*d,?*d")
(sign_extend:SI (match_operand:PSI 1 "extendpsi_operand"
"m,?0,?*dai,Q")))]
""
"@
mov %L1,%L0\;movb %H1,%H0
jsr ___sign_extendpsisi2_%0
mov %1,%L0\;jsr ___sign_extendpsisi2_%0
mov a3,%L0\;add %Z1,%L0\;jsr ___sign_extendpsisi2_%0"
[(set_attr "cc" "clobber")])
(define_insn "truncsipsi2"
[(set (match_operand:PSI 0 "general_operand" "=a,?d,?*d,da")
(truncate:PSI (match_operand:SI 1 "general_operand" "m,?m,?*d,i")))]
""
"@
mov %1,%0
movx %A1,%0
jsr ___truncsipsi2_%1_%0
mov %1,%0"
[(set_attr "cc" "clobber")])
;; Combine should be simplifying this stuff, but isn't.
;;
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=d,d,d")
(sign_extend:SI
(zero_extend:HI (match_operand:QI 1 "general_operand" "0,di,m"))))]
""
"@
extxbu %L0\;sub %H0,%H0
mov %1,%L0\;extxbu %L0\;sub %H0,%H0
movbu %1,%L0\;sub %H0,%H0"
[(set_attr "cc" "none_0hit")])
(define_insn ""
[(set (match_operand:PSI 0 "general_operand" "=d,d,d")
(truncate:PSI
(sign_extend:SI (match_operand:QI 1 "general_operand" "0,di,m"))))]
""
"*
{
if (which_alternative == 0)
return \"extxb %0\";
else if (which_alternative == 1)
return \"mov %1,%0\;extxb %0\";
else if (GET_CODE (XEXP (operands[1], 0)) == REG)
return \"movbu %1,%0\;extxb %0\";
else
return \"movb %1,%0\";
}"
[(set_attr "cc" "none_0hit")])
(define_insn ""
[(set (match_operand:PSI 0 "general_operand" "=d,d,d")
(truncate:PSI
(sign_extend:SI (match_operand:HI 1 "general_operand" "0,di,m"))))]
""
"@
extx %0
mov %1,%0\;extx %0
mov %1,%0"
[(set_attr "cc" "none_0hit")])
(define_insn ""
[(set (match_operand:PSI 0 "general_operand" "=d,d,d")
(truncate:PSI
(sign_extend:SI
(zero_extend:HI (match_operand:QI 1 "general_operand" "0,di,m")))))]
""
"@
extxbu %0
mov %1,%0\;extxbu %0
movbu %1,%0"
[(set_attr "cc" "none_0hit")])
(define_insn ""
[(set (match_operand:PSI 0 "general_operand" "=d,d,d")
(truncate:PSI
(zero_extend:SI (match_operand:HI 1 "general_operand" "0,di,m"))))]
""
"@
extxu %0
mov %1,%0\;extxu %0
mov %1,%0\;extxu %0"
[(set_attr "cc" "none_0hit")])
(define_insn ""
[(set (match_operand:PSI 0 "general_operand" "=d,d,d")
(truncate:PSI
(zero_extend:SI (match_operand:QI 1 "general_operand" "0,di,m"))))]
""
"@
extxbu %0
mov %1,%0\;extxbu %0
movbu %1,%0"
[(set_attr "cc" "none_0hit")])
;; ----------------------------------------------------------------------
;; SHIFTS
;; ----------------------------------------------------------------------
;; If the shift count is small, we expand it into several single bit
;; shift insns. Otherwise we expand into a generic shift insn which
;; handles larger shift counts, shift by variable amounts, etc.
(define_expand "ashlhi3"
[(set (match_operand:HI 0 "general_operand" "")
(ashift:HI (match_operand:HI 1 "general_operand" "")
(match_operand:HI 2 "general_operand" "")))]
""
"
{
/* This is an experiment to see if exposing more of the underlying
operations results in better code. */
if (GET_CODE (operands[2]) == CONST_INT
&& INTVAL (operands[2]) <= 4)
{
int count = INTVAL (operands[2]);
emit_move_insn (operands[0], operands[1]);
while (count > 0)
{
emit_insn (gen_rtx (SET, HImode, operands[0],
gen_rtx (ASHIFT, HImode,
operands[0], GEN_INT (1))));
count--;
}
DONE;
}
else
{
expand_a_shift (HImode, ASHIFT, operands);
DONE;
}
}")
;; ASHIFT one bit.
(define_insn ""
[(set (match_operand:HI 0 "general_operand" "=d")
(ashift:HI (match_operand:HI 1 "general_operand" "0")
(const_int 1)))]
""
"add %0,%0"
[(set_attr "cc" "set_zn")])
(define_expand "lshrhi3"
[(set (match_operand:HI 0 "general_operand" "")
(lshiftrt:HI (match_operand:HI 1 "general_operand" "")
(match_operand:HI 2 "general_operand" "")))]
""
"
{
/* This is an experiment to see if exposing more of the underlying
operations results in better code. */
if (GET_CODE (operands[2]) == CONST_INT
&& INTVAL (operands[2]) <= 4)
{
int count = INTVAL (operands[2]);
emit_move_insn (operands[0], operands[1]);
while (count > 0)
{
emit_insn (gen_rtx (SET, HImode, operands[0],
gen_rtx (LSHIFTRT, HImode,
operands[0], GEN_INT (1))));
count--;
}
DONE;
}
else
{
expand_a_shift (HImode, LSHIFTRT, operands);
DONE;
}
}")
;; LSHIFTRT one bit.
(define_insn ""
[(set (match_operand:HI 0 "general_operand" "=d")
(lshiftrt:HI (match_operand:HI 1 "general_operand" "0")
(const_int 1)))]
""
"lsr %0"
[(set_attr "cc" "set_znv")])
(define_expand "ashrhi3"
[(set (match_operand:HI 0 "general_operand" "")
(ashiftrt:HI (match_operand:HI 1 "general_operand" "")
(match_operand:HI 2 "general_operand" "")))]
""
"
{
/* This is an experiment to see if exposing more of the underlying
operations results in better code. */
if (GET_CODE (operands[2]) == CONST_INT
&& INTVAL (operands[2]) <= 4)
{
int count = INTVAL (operands[2]);
emit_move_insn (operands[0], operands[1]);
while (count > 0)
{
emit_insn (gen_rtx (SET, HImode, operands[0],
gen_rtx (ASHIFTRT, HImode,
operands[0], GEN_INT (1))));
count--;
}
DONE;
}
else
{
expand_a_shift (HImode, ASHIFTRT, operands);
DONE;
}
}")
;; ASHIFTRT one bit.
(define_insn ""
[(set (match_operand:HI 0 "general_operand" "=d")
(ashiftrt:HI (match_operand:HI 1 "general_operand" "0")
(const_int 1)))]
""
"asr %0"
[(set_attr "cc" "set_znv")])
;; And the general HImode shift pattern. Handles both shift by constants
;; and shift by variable counts.
(define_insn ""
[(set (match_operand:HI 0 "general_operand" "=d,d")
(match_operator:HI 3 "nshift_operator"
[ (match_operand:HI 1 "general_operand" "0,0")
(match_operand:HI 2 "general_operand" "KL,dan")]))
(clobber (match_scratch:HI 4 "=X,&d"))]
""
"* return emit_a_shift (insn, operands);"
[(set_attr "cc" "clobber")])
;; We expect only ASHIFT with constant shift counts to be common for
;; PSImode, so we optimize just that case. For all other cases we
;; extend the value to SImode and perform the shift in SImode.
(define_expand "ashlpsi3"
[(set (match_operand:PSI 0 "general_operand" "")
(ashift:PSI (match_operand:PSI 1 "general_operand" "")
(match_operand:HI 2 "general_operand" "")))]
""
"
{
/* This is an experiment to see if exposing more of the underlying
operations results in better code. */
if (GET_CODE (operands[2]) == CONST_INT
&& INTVAL (operands[2]) <= 7)
{
int count = INTVAL (operands[2]);
emit_move_insn (operands[0], operands[1]);
while (count > 0)
{
emit_insn (gen_rtx (SET, PSImode, operands[0],
gen_rtx (ASHIFT, PSImode,
operands[0], GEN_INT (1))));
count--;
}
DONE;
}
else
{
expand_a_shift (PSImode, ASHIFT, operands);
DONE;
}
}")
;; ASHIFT one bit.
(define_insn ""
[(set (match_operand:PSI 0 "general_operand" "=d")
(ashift:PSI (match_operand:PSI 1 "general_operand" "0")
(const_int 1)))]
""
"add %0,%0"
[(set_attr "cc" "set_zn")])
(define_expand "lshrpsi3"
[(set (match_operand:PSI 0 "general_operand" "")
(lshiftrt:PSI (match_operand:PSI 1 "general_operand" "")
(match_operand:HI 2 "general_operand" "")))]
""
"
{
rtx reg = gen_reg_rtx (SImode);
emit_insn (gen_zero_extendpsisi2 (reg, operands[1]));
reg = expand_binop (SImode, lshr_optab, reg,
operands[2], reg, 1, OPTAB_WIDEN);
emit_insn (gen_truncsipsi2 (operands[0], reg));
DONE;
}")
(define_expand "ashrpsi3"
[(set (match_operand:PSI 0 "general_operand" "")
(ashiftrt:PSI (match_operand:PSI 1 "general_operand" "")
(match_operand:HI 2 "general_operand" "")))]
""
"
{
rtx reg = gen_reg_rtx (SImode);
emit_insn (gen_extendpsisi2 (reg, operands[1]));
reg = expand_binop (SImode, ashr_optab, reg,
operands[2], reg, 0, OPTAB_WIDEN);
emit_insn (gen_truncsipsi2 (operands[0], reg));
DONE;
}")
(define_expand "ashlsi3"
[(set (match_operand:SI 0 "register_operand" "")
(ashift:SI (match_operand:SI 1 "nonmemory_operand" "")
(match_operand:HI 2 "general_operand" "")))]
""
"
{
/* For small shifts, just emit a series of single bit shifts inline.
For other constant shift counts smaller than a word or non-constant
shift counts we call out to a library call during RTL generation time;
after RTL generation time we allow optabs.c to open code the operation.
See comments in addsi3/subsi3 expanders.
Otherwise we allow optabs.c to open code the operation. */
if (GET_CODE (operands[2]) == CONST_INT
&& (INTVAL (operands[2]) <= 3))
{
int count = INTVAL (operands[2]);
emit_move_insn (operands[0], operands[1]);
while (count > 0)
{
emit_insn (gen_rtx (SET, SImode, operands[0],
gen_rtx (ASHIFT, SImode,
operands[0], GEN_INT (1))));
count--;
}
DONE;
}
else if (rtx_equal_function_value_matters
&& (GET_CODE (operands[2]) != CONST_INT
|| INTVAL (operands[2]) <= 15))
{
rtx ret, insns;
extern rtx emit_library_call_value ();
start_sequence ();
ret = emit_library_call_value (gen_rtx (SYMBOL_REF, Pmode, \"__ashlsi3\"),
NULL_RTX, 1, SImode, 2, operands[1],
SImode, operands[2], HImode);
insns = get_insns ();
end_sequence ();
emit_libcall_block (insns, operands[0], ret,
gen_rtx (ASHIFT, SImode, operands[1], operands[2]));
DONE;
}
else
FAIL;
}")
;; ASHIFT one bit.
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=d")
(ashift:SI (match_operand:SI 1 "general_operand" "0")
(const_int 1)))]
""
"add %L0,%L0\;addc %H0,%H0"
[(set_attr "cc" "clobber")])
(define_expand "lshrsi3"
[(set (match_operand:SI 0 "register_operand" "")
(lshiftrt:SI (match_operand:SI 1 "general_operand" "")
(match_operand:HI 2 "general_operand" "")))]
""
"
{
/* For small shifts, just emit a series of single bit shifts inline.
For other constant shift counts smaller than a word or non-constant
shift counts we call out to a library call during RTL generation time;
after RTL generation time we allow optabs.c to open code the operation.
See comments in addsi3/subsi3 expanders.
Otherwise we allow optabs.c to open code the operation. */
if (GET_CODE (operands[2]) == CONST_INT
&& (INTVAL (operands[2]) <= 2))
{
int count = INTVAL (operands[2]);
emit_move_insn (operands[0], operands[1]);
while (count > 0)
{
emit_insn (gen_rtx (SET, SImode, operands[0],
gen_rtx (LSHIFTRT, SImode,
operands[0], GEN_INT (1))));
count--;
}
DONE;
}
else if (rtx_equal_function_value_matters
&& (GET_CODE (operands[2]) != CONST_INT
|| INTVAL (operands[2]) <= 15))
{
rtx ret, insns;
extern rtx emit_library_call_value ();
start_sequence ();
ret = emit_library_call_value (gen_rtx (SYMBOL_REF, Pmode, \"__lshrsi3\"),
NULL_RTX, 1, SImode, 2, operands[1],
SImode, operands[2], HImode);
insns = get_insns ();
end_sequence ();
emit_libcall_block (insns, operands[0], ret,
gen_rtx (LSHIFTRT, SImode, operands[1], operands[2]));
DONE;
}
else
FAIL;
}")
;; LSHIFTRT one bit.
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=d")
(lshiftrt:SI (match_operand:SI 1 "general_operand" "0")
(const_int 1)))]
""
"lsr %H0\;ror %L0"
[(set_attr "cc" "clobber")])
(define_expand "ashrsi3"
[(set (match_operand:SI 0 "register_operand" "")
(ashiftrt:SI (match_operand:SI 1 "register_operand" "")
(match_operand:HI 2 "general_operand" "")))]
""
"
{
/* For small shifts, just emit a series of single bit shifts inline.
For other constant shift counts smaller than a word or non-constant
shift counts we call out to a library call during RTL generation time;
after RTL generation time we allow optabs.c to open code the operation.
See comments in addsi3/subsi3 expanders.
Otherwise we allow optabs.c to open code the operation. */
if (GET_CODE (operands[2]) == CONST_INT
&& (INTVAL (operands[2]) <= 2))
{
int count = INTVAL (operands[2]);
emit_move_insn (operands[0], operands[1]);
while (count > 0)
{
emit_insn (gen_rtx (SET, SImode, operands[0],
gen_rtx (ASHIFTRT, SImode,
operands[0], GEN_INT (1))));
count--;
}
DONE;
}
else if (rtx_equal_function_value_matters
&& (GET_CODE (operands[2]) != CONST_INT
|| INTVAL (operands[2]) <= 15))
{
rtx ret, insns;
extern rtx emit_library_call_value ();
start_sequence ();
ret = emit_library_call_value (gen_rtx (SYMBOL_REF, Pmode, \"__ashrsi3\"),
NULL_RTX, 1, SImode, 2, operands[1],
SImode, operands[2], HImode);
insns = get_insns ();
end_sequence ();
emit_libcall_block (insns, operands[0], ret,
gen_rtx (ASHIFTRT, SImode, operands[1], operands[2]));
DONE;
}
else
FAIL;
}")
;; ASHIFTRT one bit.
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=d")
(ashiftrt:SI (match_operand:SI 1 "general_operand" "0")
(const_int 1)))]
""
"asr %H0\;ror %L0"
[(set_attr "cc" "clobber")])
;; ----------------------------------------------------------------------
;; PROLOGUE/EPILOGUE
;; ----------------------------------------------------------------------
(define_expand "prologue"
[(const_int 0)]
""
"expand_prologue (); DONE;")
(define_insn "outline_prologue_call"
[(const_int 1)]
""
"jsr ___prologue"
[(set_attr "cc" "clobber")])
(define_expand "epilogue"
[(return)]
""
"
{
expand_epilogue ();
DONE;
}")
(define_insn "outline_epilogue_call_a0"
[(const_int 2)]
""
"jsr ___epilogue_a0"
[(set_attr "cc" "clobber")])
(define_insn "outline_epilogue_call_d0"
[(const_int 3)]
""
"jsr ___epilogue_d0"
[(set_attr "cc" "clobber")])
(define_insn "outline_epilogue_jump"
[(const_int 4)]
""
"jmp ___epilogue_noreturn"
[(set_attr "cc" "clobber")])
(define_insn "return"
[(return)]
"reload_completed && total_frame_size () == 0
&& !current_function_needs_context"
"*
{
rtx next = next_active_insn (insn);
if (next
&& GET_CODE (next) == JUMP_INSN
&& GET_CODE (PATTERN (next)) == RETURN)
return \"\";
return \"rts\";
}"
[(set_attr "cc" "clobber")])
(define_insn "return_internal"
[(const_int 0)
(return)]
""
"rts"
[(set_attr "cc" "clobber")])
;; These are special combiner patterns to improve array/pointer accesses.
;;
;; A typical sequence involves extending an integer/char, shifting it left
;; a few times, then truncating the value to PSImode.
;;
;; This first pattern combines the shifting & truncation operations, by
;; itself it is a win because the shifts end up occuring in PSImode instead
;; of SImode. However, it has the secondary effect of giving us the
;; opportunity to match patterns which allow us to remove the initial
;; extension completely, which is a big win.
(define_insn ""
[(set (match_operand:PSI 0 "general_operand" "=d,d,a")
(truncate:PSI
(ashift:SI (match_operand:SI 1 "general_operand" "d,m,m")
(match_operand:HI 2 "const_int_operand" "i,i,i"))))]
""
"*
{
int count = INTVAL (operands[2]);
if (which_alternative == 0)
output_asm_insn (\"jsr ___truncsipsi2_%1_%0\", operands);
else if (which_alternative == 1)
output_asm_insn (\"movx %A1,%0\", operands);
else
output_asm_insn (\" mov %1,%0\", operands);
while (count)
{
output_asm_insn (\"add %0,%0\", operands);
count--;
}
return \"\";
}"
[(set_attr "cc" "clobber")])
;; Similarly, except that we also have zero/sign extension of the
;; original operand. */
(define_insn ""
[(set (match_operand:PSI 0 "general_operand" "=d,d")
(truncate:PSI
(ashift:SI
(zero_extend:SI (match_operand:HI 1 "general_operand" "0,dim"))
(match_operand:HI 2 "const_int_operand" "i,i"))))]
""
"*
{
int count = INTVAL (operands[2]);
/* First extend operand 1 to PSImode. */
if (which_alternative == 0)
output_asm_insn (\"extxu %0\", operands);
else
output_asm_insn (\"mov %1,%0\;extxu %0\", operands);
/* Now do the shifting. */
while (count)
{
output_asm_insn (\"add %0,%0\", operands);
count--;
}
return \"\";
}"
[(set_attr "cc" "clobber")])
(define_insn ""
[(set (match_operand:PSI 0 "general_operand" "=d,d,d")
(truncate:PSI
(ashift:SI
(sign_extend:SI (match_operand:HI 1 "general_operand" "0,di,m"))
(match_operand:HI 2 "const_int_operand" "i,i,i"))))]
""
"*
{
int count = INTVAL (operands[2]);
/* First extend operand 1 to PSImode. */
if (which_alternative == 0)
output_asm_insn (\"extx %0\", operands);
else if (which_alternative == 1)
output_asm_insn (\"mov %1,%0\;extx %0\", operands);
else
output_asm_insn (\"mov %1,%0\", operands);
/* Now do the shifting. */
while (count)
{
output_asm_insn (\"add %0,%0\", operands);
count--;
}
return \"\";
}"
[(set_attr "cc" "clobber")])
(define_insn ""
[(set (match_operand:PSI 0 "general_operand" "=d,d,d")
(truncate:PSI
(ashift:SI
(sign_extend:SI
(zero_extend:HI (match_operand:QI 1 "general_operand" "0,di,m")))
(match_operand:HI 2 "const_int_operand" "i,i,i"))))]
""
"*
{
int count = INTVAL (operands[2]);
/* First extend operand 1 to PSImode. */
if (which_alternative == 0)
output_asm_insn (\"extxbu %0\", operands);
else if (which_alternative == 1)
output_asm_insn (\"mov %1,%0\;extxbu %0\", operands);
else
output_asm_insn (\"movbu %1,%0\", operands);
/* Now do the shifting. */
while (count)
{
output_asm_insn (\"add %0,%0\", operands);
count--;
}
return \"\";
}"
[(set_attr "cc" "clobber")])
(define_insn ""
[(set (match_operand:PSI 0 "general_operand" "=d,d,d")
(truncate:PSI
(ashift:SI
(sign_extend:SI
(match_operand:QI 1 "general_operand" "0,di,m"))
(match_operand:HI 2 "const_int_operand" "i,i,i"))))]
""
"*
{
int count = INTVAL (operands[2]);
/* First extend operand 1 to PSImode. */
if (which_alternative == 0)
output_asm_insn (\"extxb %0\", operands);
else if (which_alternative == 1)
output_asm_insn (\"mov %1,%0\;extxb %0\", operands);
else if (GET_CODE (XEXP (operands[1], 0)) == REG)
output_asm_insn (\"movbu %1,%0\;extxb %0\", operands);
else
output_asm_insn (\"movb %1,%0\", operands);
/* Now do the shifting. */
while (count)
{
output_asm_insn (\"add %0,%0\", operands);
count--;
}
return \"\";
}"
[(set_attr "cc" "clobber")])
;; Try to combine consecutive updates of the stack pointer (or any
;; other register for that matter).
(define_peephole
[(set (match_operand:PSI 0 "register_operand" "=da")
(plus:PSI (match_dup 0)
(match_operand 1 "const_int_operand" "")))
(set (match_dup 0)
(plus:PSI (match_dup 0)
(match_operand 2 "const_int_operand" "")))]
""
"*
{
operands[1] = GEN_INT (INTVAL (operands[2]) + INTVAL (operands[1]));
return \"add %1,%0\";
}"
[(set_attr "cc" "clobber")])
;;
;; We had patterns to check eq/ne, but the they don't work because
;; 0x80000000 + 0x80000000 = 0x0 with a carry out.
;;
;; The Z flag and C flag would be set, and we have no way to
;; check for the Z flag set and C flag clear.
;;
;; This will work on the mn10200 because we can check the ZX flag
;; if the comparison is in HImode.
(define_peephole
[(set (cc0) (match_operand:HI 0 "register_operand" "d"))
(set (pc) (if_then_else (ge (cc0) (const_int 0))
(match_operand 1 "" "")
(pc)))]
"dead_or_set_p (ins1, operands[0]) && REG_OK_FOR_INDEX_P (operands[0])"
"add %0,%0\;bcc %1"
[(set_attr "cc" "clobber")])
(define_peephole
[(set (cc0) (match_operand:HI 0 "register_operand" "d"))
(set (pc) (if_then_else (lt (cc0) (const_int 0))
(match_operand 1 "" "")
(pc)))]
"dead_or_set_p (ins1, operands[0]) && REG_OK_FOR_INDEX_P (operands[0])"
"add %0,%0\;bcs %1"
[(set_attr "cc" "clobber")])
(define_peephole
[(set (cc0) (match_operand:HI 0 "register_operand" "d"))
(set (pc) (if_then_else (ge (cc0) (const_int 0))
(pc)
(match_operand 1 "" "")))]
"dead_or_set_p (ins1, operands[0]) && REG_OK_FOR_INDEX_P (operands[0])"
"add %0,%0\;bcs %1"
[(set_attr "cc" "clobber")])
(define_peephole
[(set (cc0) (match_operand:HI 0 "register_operand" "d"))
(set (pc) (if_then_else (lt (cc0) (const_int 0))
(pc)
(match_operand 1 "" "")))]
"dead_or_set_p (ins1, operands[0]) && REG_OK_FOR_INDEX_P (operands[0])"
"add %0,%0\;bcc %1"
[(set_attr "cc" "clobber")])
(define_peephole
[(set (cc0) (match_operand:PSI 0 "register_operand" "d"))
(set (pc) (if_then_else (ge (cc0) (const_int 0))
(match_operand 1 "" "")
(pc)))]
"dead_or_set_p (ins1, operands[0]) && REG_OK_FOR_INDEX_P (operands[0])"
"add %0,%0\;bccx %1"
[(set_attr "cc" "clobber")])
(define_peephole
[(set (cc0) (match_operand:PSI 0 "register_operand" "d"))
(set (pc) (if_then_else (lt (cc0) (const_int 0))
(match_operand 1 "" "")
(pc)))]
"dead_or_set_p (ins1, operands[0]) && REG_OK_FOR_INDEX_P (operands[0])"
"add %0,%0\;bcsx %1"
[(set_attr "cc" "clobber")])
(define_peephole
[(set (cc0) (match_operand:PSI 0 "register_operand" "d"))
(set (pc) (if_then_else (ge (cc0) (const_int 0))
(pc)
(match_operand 1 "" "")))]
"dead_or_set_p (ins1, operands[0]) && REG_OK_FOR_INDEX_P (operands[0])"
"add %0,%0\;bcsx %1"
[(set_attr "cc" "clobber")])
(define_peephole
[(set (cc0) (match_operand:PSI 0 "register_operand" "d"))
(set (pc) (if_then_else (lt (cc0) (const_int 0))
(pc)
(match_operand 1 "" "")))]
"dead_or_set_p (ins1, operands[0]) && REG_OK_FOR_INDEX_P (operands[0])"
"add %0,%0\;bccx %1"
[(set_attr "cc" "clobber")])
;; We call out to library routines to perform 32bit addition and subtraction
;; operations (see addsi3/subsi3 expanders for why). These peepholes catch
;; the trivial case where the operation could be done with an add;addc or
;; sub;subc sequence.
(define_peephole
[(set (mem:SI (reg:PSI 7)) (reg:SI 2))
(set (reg:SI 0) (call (match_operand:QI 1 "general_operand" "")
(match_operand:HI 2 "general_operand" "")))]
"GET_CODE (XEXP (operands[1], 0)) == SYMBOL_REF
&& strcmp (XSTR (XEXP (operands[1], 0), 0), \"__addsi3\") == 0"
"add d2,d0\;addc d3,d1"
[(set_attr "cc" "clobber")])
(define_peephole
[(set (mem:SI (reg:PSI 7)) (reg:SI 2))
(set (reg:SI 0) (call (match_operand:QI 1 "general_operand" "")
(match_operand:HI 2 "general_operand" "")))]
"GET_CODE (XEXP (operands[1], 0)) == SYMBOL_REF
&& strcmp (XSTR (XEXP (operands[1], 0), 0), \"__subsi3\") == 0"
"sub d2,d0\;subc d3,d1"
[(set_attr "cc" "clobber")])
LIBGCC1=libgcc1.null
CROSS_LIBGCC1 = libgcc1-asm.a
LIB1ASMSRC = mn10200/lib1funcs.asm
LIB1ASMFUNCS = _divhi3 \
_modhi3 \
_addsi3 \
_subsi3 \
_mulsi3 \
_ashlsi3 \
_lshrsi3 \
_ashrsi3 \
_negsi2_d0 \
_negsi2_d2 \
_zero_extendpsisi2_d0 \
_zero_extendpsisi2_d2 \
_sign_extendpsisi2_d0 \
_sign_extendpsisi2_d2 \
_truncsipsi2_d0_d0 \
_truncsipsi2_d0_d1 \
_truncsipsi2_d0_d2 \
_truncsipsi2_d0_d3 \
_truncsipsi2_d2_d0 \
_truncsipsi2_d2_d1 \
_truncsipsi2_d2_d2 \
_truncsipsi2_d2_d3 \
_cmpsi2 \
_ucmpsi2 \
_prologue \
_epilogue_a0 \
_epilogue_d0 \
_epilogue_noreturn
# These are really part of libgcc1, but this will cause them to be
# built correctly, so...
# We do not have DF or DI types, so fake out the libgcc2 compilation.
LIBGCC2_CFLAGS = -g -O2 -DDF=SF -DDI=SI $(GCC_CFLAGS) $(LIBGCC2_INCLUDES)
LIB2FUNCS_EXTRA = fp-bit.c $(srcdir)/config/mn10200/udivmodsi4.c \
$(srcdir)/config/mn10200/divmod.c $(srcdir)/config/mn10200/udivmod.c
fp-bit.c: $(srcdir)/config/fp-bit.c
echo '#define FLOAT' > fp-bit.c
echo '#define FLOAT_ONLY' >> fp-bit.c
echo '#define SMALL_MACHINE' >> fp-bit.c
echo '#define CMPtype HItype' >> fp-bit.c
echo '#ifdef __LITTLE_ENDIAN__' >> fp-bit.c
echo '#define FLOAT_BIT_ORDER_MISMATCH' >>fp-bit.c
echo '#endif' >> fp-bit.c
cat $(srcdir)/config/fp-bit.c >> fp-bit.c
long udivmodsi4 ();
long
__udivsi3 (long a, long b)
{
return udivmodsi4 (a, b, 0);
}
long
__umodsi3 (long a, long b)
{
return udivmodsi4 (a, b, 1);
}
unsigned long
udivmodsi4(unsigned long num, unsigned long den, int modwanted)
{
unsigned long bit = 1;
unsigned long res = 0;
while (den < num && bit && !(den & (1L<<31)))
{
den <<=1;
bit <<=1;
}
while (bit)
{
if (num >= den)
{
num -= den;
res |= bit;
}
bit >>=1;
den >>=1;
}
if (modwanted) return num;
return res;
}
/* Configuration for Matsushita MN10200.
Copyright (C) 1997 Free Software Foundation, Inc.
Contributed by Cygnus Support.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* #defines that need visibility everywhere. */
#define FALSE 0
#define TRUE 1
/* This describes the machine the compiler is hosted on. */
#define HOST_BITS_PER_CHAR 8
#define HOST_BITS_PER_SHORT 16
#define HOST_BITS_PER_INT 16
#define HOST_BITS_PER_LONG 32
#define HOST_BITS_PER_LONGLONG 64
/* Arguments to use with `exit'. */
#define SUCCESS_EXIT_CODE 0
#define FATAL_EXIT_CODE 33
/* target machine dependencies.
tm.h is a symbolic link to the actual target specific file. */
#include "tm.h"
#ifndef __STDC__
extern char *malloc (), *realloc (), *calloc ();
#else
extern void *malloc (), *realloc (), *calloc ();
#endif
extern void free ();
/* CYGNUS LOCAL entire file/law */
/* Define __gnuc_va_list. */
#ifndef __GNUC_VA_LIST
#define __GNUC_VA_LIST
typedef void *__gnuc_va_list;
#endif /* not __GNUC_VA_LIST */
/* If this is for internal libc use, don't define anything but
__gnuc_va_list. */
#if defined (_STDARG_H) || defined (_VARARGS_H)
#define __gnuc_va_start(AP) (AP = (__gnuc_va_list)__builtin_saveregs())
#define __va_ellipsis ...
#ifdef _STDARG_H
#define va_start(AP, LASTARG) \
(AP = ((__gnuc_va_list) __builtin_next_arg (LASTARG)))
#else
#define va_alist __builtin_va_alist
#define va_dcl int __builtin_va_alist; __va_ellipsis
#define va_start(AP) AP=(char *) &__builtin_va_alist
#endif
/* Now stuff common to both varargs & stdarg implementations. */
#define __va_rounded_size(TYPE) \
(((sizeof (TYPE) + sizeof (int) - 1) / sizeof (int)) * sizeof (int))
#undef va_end
void va_end (__gnuc_va_list);
#define va_end(AP) ((void)0)
#define va_arg(AP, TYPE) \
(sizeof (TYPE) > 8 \
? (AP = (__gnuc_va_list) ((char *) (AP) + __va_rounded_size (char *)),\
**((TYPE **) (void *) ((char *) (AP) - __va_rounded_size (char *))))\
: (AP = (__gnuc_va_list) ((char *) (AP) + __va_rounded_size (TYPE)), \
*((TYPE *) (void *) ((char *) (AP) - __va_rounded_size (TYPE)))))
#endif
/* END CYGNUS LOCAL */
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment