Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
R
riscv-gcc-1
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
lvzhengyang
riscv-gcc-1
Commits
a130a441
Commit
a130a441
authored
Mar 14, 1992
by
Michael Meissner
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Initial revision
From-SVN: r480
parent
cce8749e
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
2442 additions
and
0 deletions
+2442
-0
gcc/final.c
+2442
-0
No files found.
gcc/final.c
0 → 100644
View file @
a130a441
/* Convert RTL to assembler code and output it, for GNU compiler.
Copyright (C) 1987, 1988, 1989, 1992 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
/* This is the final pass of the compiler.
It looks at the rtl code for a function and outputs assembler code.
Call `final_start_function' to output the assembler code for function entry,
`final' to output assembler code for some RTL code,
`final_end_function' to output assembler code for function exit.
If a function is compiled in several pieces, each piece is
output separately with `final'.
Some optimizations are also done at this level.
Move instructions that were made unnecessary by good register allocation
are detected and omitted from the output. (Though most of these
are removed by the last jump pass.)
Instructions to set the condition codes are omitted when it can be
seen that the condition codes already had the desired values.
In some cases it is sufficient if the inherited condition codes
have related values, but this may require the following insn
(the one that tests the condition codes) to be modified.
The code for the function prologue and epilogue are generated
directly as assembler code by the macros FUNCTION_PROLOGUE and
FUNCTION_EPILOGUE. Those instructions never exist as rtl. */
#include <stdio.h>
#include "config.h"
#include "gvarargs.h"
#include "rtl.h"
#include "regs.h"
#include "insn-config.h"
#include "insn-attr.h"
#include "insn-codes.h"
#include "recog.h"
#include "conditions.h"
#include "flags.h"
#include "real.h"
#include "output.h"
#include "hard-reg-set.h"
#ifndef ASM_STABD_OP
#define ASM_STABD_OP ".stabd"
#endif
/* Get N_SLINE and N_SOL from stab.h if we can expect the file to exist. */
#if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
#ifdef USG
#include "gstab.h"
/* If doing DBX on sysV, use our own stab.h. */
#else
#include <stab.h>
/* On BSD, use the system's stab.h. */
#endif
/* not USG */
#endif
/* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */
#ifdef XCOFF_DEBUGGING_INFO
#include "xcoff.h"
#endif
/* .stabd code for line number. */
#ifndef N_SLINE
#define N_SLINE 0x44
#endif
/* .stabs code for included file name. */
#ifndef N_SOL
#define N_SOL 0x84
#endif
#ifndef INT_TYPE_SIZE
#define INT_TYPE_SIZE BITS_PER_WORD
#endif
/* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
null default for it to save conditionalization later. */
#ifndef CC_STATUS_INIT
#define CC_STATUS_INIT
#endif
/* How to start an assembler comment. */
#ifndef ASM_COMMENT_START
#define ASM_COMMENT_START ";#"
#endif
rtx
peephole
();
void
output_asm_insn
();
rtx
alter_subreg
();
static
int
alter_cond
();
void
output_asm_label
();
static
void
output_operand
();
void
output_address
();
void
output_addr_const
();
static
void
output_source_line
();
rtx
final_scan_insn
();
void
profile_function
();
#ifdef HAVE_ATTR_length
static
int
asm_insn_count
();
#endif
/* Nonzero means this function is a leaf function, with no function calls.
This variable exists to be examined in FUNCTION_PROLOGUE
and FUNCTION_EPILOGUE. Always zero, unless set by some action. */
int
leaf_function
;
int
leaf_function_p
();
#ifdef LEAF_REGISTERS
int
only_leaf_regs_used
();
static
void
leaf_renumber_regs
();
void
leaf_renumber_regs_insn
();
#endif
/* Last insn processed by final_scan_insn. */
static
rtx
debug_insn
=
0
;
/* Line number of last NOTE. */
static
int
last_linenum
;
/* Number of basic blocks seen so far;
used if profile_block_flag is set. */
static
int
count_basic_blocks
;
/* Nonzero while outputting an `asm' with operands.
This means that inconsistencies are the user's fault, so don't abort.
The precise value is the insn being output, to pass to error_for_asm. */
static
rtx
this_is_asm_operands
;
/* Number of operands of this insn, for an `asm' with operands. */
static
int
insn_noperands
;
/* Compare optimization flag. */
static
rtx
last_ignored_compare
=
0
;
/* Flag indicating this insn is the start of a new basic block. */
static
int
new_block
=
1
;
/* All the symbol-blocks (levels of scoping) in the compilation
are assigned sequence numbers in order of appearance of the
beginnings of the symbol-blocks. Both final and dbxout do this,
and assume that they will both give the same number to each block.
Final uses these sequence numbers to generate assembler label names
LBBnnn and LBEnnn for the beginning and end of the symbol-block.
Dbxout uses the sequence nunbers to generate references to the same labels
from the dbx debugging information.
Sdb records this level at the beginning of each function,
in order to find the current level when recursing down declarations.
It outputs the block beginning and endings
at the point in the asm file where the blocks would begin and end. */
int
next_block_index
;
/* Assign a unique number to each insn that is output.
This can be used to generate unique local labels. */
static
int
insn_counter
=
0
;
#ifdef HAVE_cc0
/* This variable contains machine-dependent flags (defined in tm.h)
set and examined by output routines
that describe how to interpret the condition codes properly. */
CC_STATUS
cc_status
;
/* During output of an insn, this contains a copy of cc_status
from before the insn. */
CC_STATUS
cc_prev_status
;
#endif
/* Indexed by hardware reg number, is 1 if that register is ever
used in the current function.
In life_analysis, or in stupid_life_analysis, this is set
up to record the hard regs used explicitly. Reload adds
in the hard regs used for holding pseudo regs. Final uses
it to generate the code in the function prologue and epilogue
to save and restore registers as needed. */
char
regs_ever_live
[
FIRST_PSEUDO_REGISTER
];
/* Nonzero means current function must be given a frame pointer.
Set in stmt.c if anything is allocated on the stack there.
Set in reload1.c if anything is allocated on the stack there. */
int
frame_pointer_needed
;
/* Assign unique numbers to labels generated for profiling. */
int
profile_label_no
;
/* Length so far allocated in PENDING_BLOCKS. */
static
int
max_block_depth
;
/* Stack of sequence numbers of symbol-blocks of which we have seen the
beginning but not yet the end. Sequence numbers are assigned at
the beginning; this stack allows us to find the sequence number
of a block that is ending. */
static
int
*
pending_blocks
;
/* Number of elements currently in use in PENDING_BLOCKS. */
static
int
block_depth
;
/* Nonzero if have enabled APP processing of our assembler output. */
static
int
app_on
;
/* If we are outputting an insn sequence, this contains the sequence rtx.
Zero otherwise. */
rtx
final_sequence
;
/* Indexed by line number, nonzero if there is a note for that line. */
static
char
*
line_note_exists
;
/* Initialize data in final at the beginning of a compilation. */
void
init_final
(
filename
)
char
*
filename
;
{
next_block_index
=
2
;
app_on
=
0
;
max_block_depth
=
20
;
pending_blocks
=
(
int
*
)
xmalloc
(
20
*
sizeof
*
pending_blocks
);
final_sequence
=
0
;
}
/* Called at end of source file,
to output the block-profiling table for this entire compilation. */
void
end_final
(
filename
)
char
*
filename
;
{
int
i
;
if
(
profile_block_flag
)
{
char
name
[
12
];
data_section
();
/* Output the main header, of 6 words:
0: 1 if this file's initialized, else 0.
1: address of file name.
2: address of table of counts.
4: number of counts in the table.
5: always 0, for compatibility with Sun.
6: extra word added by GNU: address of address table
which contains addresses of basic blocks,
in parallel with the table of counts. */
ASM_OUTPUT_ALIGN
(
asm_out_file
,
exact_log2
(
BIGGEST_ALIGNMENT
/
BITS_PER_UNIT
));
ASM_OUTPUT_INTERNAL_LABEL
(
asm_out_file
,
"LPBX"
,
0
);
assemble_integer
(
const0_rtx
,
UNITS_PER_WORD
,
1
);
ASM_GENERATE_INTERNAL_LABEL
(
name
,
"LPBX"
,
1
);
assemble_integer
(
gen_rtx
(
SYMBOL_REF
,
Pmode
,
name
),
UNITS_PER_WORD
,
1
);
ASM_GENERATE_INTERNAL_LABEL
(
name
,
"LPBX"
,
2
);
assemble_integer
(
gen_rtx
(
SYMBOL_REF
,
Pmode
,
name
),
UNITS_PER_WORD
,
1
);
assemble_integer
(
gen_rtx
(
CONST_INT
,
VOIDmode
,
count_basic_blocks
),
UNITS_PER_WORD
,
1
);
assemble_integer
(
const0_rtx
,
UNITS_PER_WORD
,
1
);
ASM_GENERATE_INTERNAL_LABEL
(
name
,
"LPBX"
,
3
);
assemble_integer
(
gen_rtx
(
SYMBOL_REF
,
Pmode
,
name
),
UNITS_PER_WORD
,
1
);
/* Output the file name. */
ASM_OUTPUT_INTERNAL_LABEL
(
asm_out_file
,
"LPBX"
,
1
);
{
int
len
=
strlen
(
filename
);
char
*
data_file
=
(
char
*
)
alloca
(
len
+
3
);
strcpy
(
data_file
,
filename
);
strip_off_ending
(
data_file
,
len
);
strcat
(
data_file
,
".d"
);
assemble_string
(
data_file
,
strlen
(
data_file
)
+
1
);
}
/* Realign data section. */
ASM_OUTPUT_ALIGN
(
asm_out_file
,
exact_log2
(
BIGGEST_ALIGNMENT
/
BITS_PER_UNIT
));
/* Make space for the table of counts. */
ASM_OUTPUT_INTERNAL_LABEL
(
asm_out_file
,
"LPBX"
,
2
);
assemble_zeros
(
INT_TYPE_SIZE
/
BITS_PER_UNIT
*
count_basic_blocks
);
/* Output the table of addresses. */
readonly_data_section
();
ASM_OUTPUT_INTERNAL_LABEL
(
asm_out_file
,
"LPBX"
,
3
);
for
(
i
=
0
;
i
<
count_basic_blocks
;
i
++
)
{
char
name
[
12
];
ASM_GENERATE_INTERNAL_LABEL
(
name
,
"LPB"
,
i
);
assemble_integer
(
gen_rtx
(
SYMBOL_REF
,
Pmode
,
name
),
UNITS_PER_WORD
,
1
);
}
/* End with the address of the table of addresses,
so we can find it easily, as the last word in the file's text. */
ASM_GENERATE_INTERNAL_LABEL
(
name
,
"LPBX"
,
3
);
assemble_integer
(
gen_rtx
(
SYMBOL_REF
,
Pmode
,
name
),
UNITS_PER_WORD
,
1
);
}
}
/* Enable APP processing of subsequent output.
Used before the output from an `asm' statement. */
void
app_enable
()
{
if
(
!
app_on
)
{
fprintf
(
asm_out_file
,
ASM_APP_ON
);
app_on
=
1
;
}
}
/* Enable APP processing of subsequent output.
Called from varasm.c before most kinds of output. */
void
app_disable
()
{
if
(
app_on
)
{
fprintf
(
asm_out_file
,
ASM_APP_OFF
);
app_on
=
0
;
}
}
/* Return the number of slots filled in the current
delayed branch sequence (we don't count the insn needing the
delay slot). Zero if not in a delayed branch sequence. */
#ifdef DELAY_SLOTS
int
dbr_sequence_length
()
{
if
(
final_sequence
!=
0
)
return
XVECLEN
(
final_sequence
,
0
)
-
1
;
else
return
0
;
}
#endif
/* The next two pages contain routines used to compute the length of an insn
and to shorten branches. */
/* Arrays for insn lengths, and addresses. The latter is referenced by
`insn_current_length'. */
static
short
*
insn_lengths
;
int
*
insn_addresses
;
/* Address of insn being processed. Used by `insn_current_length'. */
int
insn_current_address
;
/* Indicate the branch shortening hasn't yet been done. */
void
init_insn_lengths
()
{
insn_lengths
=
0
;
}
/* Obtain the current length of an insn. If branch shortening has been done,
get its actual length. Otherwise, get its maximum length. */
int
get_attr_length
(
insn
)
rtx
insn
;
{
#ifdef HAVE_ATTR_length
rtx
body
;
int
i
;
int
length
=
0
;
if
(
insn_lengths
)
return
insn_lengths
[
INSN_UID
(
insn
)];
else
switch
(
GET_CODE
(
insn
))
{
case
NOTE
:
case
BARRIER
:
case
CODE_LABEL
:
return
0
;
case
CALL_INSN
:
length
=
insn_default_length
(
insn
);
break
;
case
JUMP_INSN
:
body
=
PATTERN
(
insn
);
if
(
GET_CODE
(
body
)
==
ADDR_VEC
||
GET_CODE
(
body
)
==
ADDR_DIFF_VEC
)
{
/* This only takes room if jump tables go into the text section. */
#if !defined(READONLY_DATA_SECTION) || defined(JUMP_TABLES_IN_TEXT_SECTION)
length
=
(
XVECLEN
(
body
,
GET_CODE
(
body
)
==
ADDR_DIFF_VEC
)
*
GET_MODE_SIZE
(
GET_MODE
(
body
)));
/* Be pessimistic and assume worst-case alignment. */
length
+=
(
GET_MODE_SIZE
(
GET_MODE
(
body
))
-
1
);
#else
return
0
;
#endif
}
else
length
=
insn_default_length
(
insn
);
break
;
case
INSN
:
body
=
PATTERN
(
insn
);
if
(
GET_CODE
(
body
)
==
USE
||
GET_CODE
(
body
)
==
CLOBBER
)
return
0
;
else
if
(
GET_CODE
(
body
)
==
ASM_INPUT
||
asm_noperands
(
body
)
>=
0
)
length
=
asm_insn_count
(
insn
)
*
insn_default_length
(
insn
);
else
if
(
GET_CODE
(
body
)
==
SEQUENCE
)
for
(
i
=
0
;
i
<
XVECLEN
(
body
,
0
);
i
++
)
length
+=
get_attr_length
(
XVECEXP
(
body
,
0
,
i
));
else
length
=
insn_default_length
(
insn
);
}
#ifdef ADJUST_INSN_LENGTH
ADJUST_INSN_LENGTH
(
insn
,
length
);
#endif
return
length
;
#else
/* not HAVE_ATTR_length */
return
0
;
#endif
/* not HAVE_ATTR_length */
}
/* Make a pass over all insns and compute their actual lengths by shortening
any branches of variable length if possible. */
/* Give a default value for the lowest address in a function. */
#ifndef FIRST_INSN_ADDRESS
#define FIRST_INSN_ADDRESS 0
#endif
void
shorten_branches
(
first
)
rtx
first
;
{
#ifdef HAVE_ATTR_length
rtx
insn
;
int
something_changed
=
1
;
int
max_uid
=
0
;
char
*
varying_length
;
rtx
body
;
int
uid
;
/* Compute maximum UID and allocate arrays. */
for
(
insn
=
first
;
insn
;
insn
=
NEXT_INSN
(
insn
))
if
(
INSN_UID
(
insn
)
>
max_uid
)
max_uid
=
INSN_UID
(
insn
);
max_uid
++
;
insn_lengths
=
(
short
*
)
oballoc
(
max_uid
*
sizeof
(
short
));
insn_addresses
=
(
int
*
)
oballoc
(
max_uid
*
sizeof
(
int
));
varying_length
=
(
char
*
)
oballoc
(
max_uid
*
sizeof
(
char
));
/* Compute initial lengths, addresses, and varying flags for each insn. */
for
(
insn_current_address
=
FIRST_INSN_ADDRESS
,
insn
=
first
;
insn
!=
0
;
insn_current_address
+=
insn_lengths
[
uid
],
insn
=
NEXT_INSN
(
insn
))
{
uid
=
INSN_UID
(
insn
);
insn_addresses
[
uid
]
=
insn_current_address
;
insn_lengths
[
uid
]
=
0
;
varying_length
[
uid
]
=
0
;
if
(
GET_CODE
(
insn
)
==
NOTE
||
GET_CODE
(
insn
)
==
BARRIER
||
GET_CODE
(
insn
)
==
CODE_LABEL
)
continue
;
body
=
PATTERN
(
insn
);
if
(
GET_CODE
(
body
)
==
ADDR_VEC
||
GET_CODE
(
body
)
==
ADDR_DIFF_VEC
)
{
/* This only takes room if read-only data goes into the text
section. */
#if !defined(READONLY_DATA_SECTION) || defined(JUMP_TABLES_IN_TEXT_SECTION)
int
unitsize
=
GET_MODE_SIZE
(
GET_MODE
(
body
));
insn_lengths
[
uid
]
=
(
XVECLEN
(
body
,
GET_CODE
(
body
)
==
ADDR_DIFF_VEC
)
*
GET_MODE_SIZE
(
GET_MODE
(
body
)));
/* Account for possible alignment. */
insn_lengths
[
uid
]
+=
unitsize
-
(
insn_current_address
&
(
unitsize
-
1
));
#else
;
#endif
}
else
if
(
asm_noperands
(
body
)
>=
0
)
insn_lengths
[
uid
]
=
asm_insn_count
(
body
)
*
insn_default_length
(
insn
);
else
if
(
GET_CODE
(
body
)
==
SEQUENCE
)
{
int
i
;
/* Inside a delay slot sequence, we do not do any branch shortening
(on the only machine known to have both variable-length branches
and delay slots, the ROMP, branch-with-execute is the same size
as the maximum branch anyway). So we only have to handle normal
insns (actually, reorg never puts ASM insns in a delay slot, but
we don't take advantage of that knowledge here). */
for
(
i
=
0
;
i
<
XVECLEN
(
body
,
0
);
i
++
)
{
rtx
inner_insn
=
XVECEXP
(
body
,
0
,
i
);
int
inner_uid
=
INSN_UID
(
inner_insn
);
int
inner_length
;
if
(
asm_noperands
(
PATTERN
(
XVECEXP
(
body
,
0
,
i
)))
>=
0
)
inner_length
=
(
asm_insn_count
(
PATTERN
(
inner_insn
))
*
insn_default_length
(
inner_insn
));
else
inner_length
=
insn_default_length
(
inner_insn
);
insn_lengths
[
inner_uid
]
=
inner_length
;
varying_length
[
inner_uid
]
=
0
;
insn_lengths
[
uid
]
+=
inner_length
;
}
}
else
if
(
GET_CODE
(
body
)
!=
USE
&&
GET_CODE
(
body
)
!=
CLOBBER
)
{
insn_lengths
[
uid
]
=
insn_default_length
(
insn
);
varying_length
[
uid
]
=
insn_variable_length_p
(
insn
);
}
/* If needed, do any adjustment. */
#ifdef ADJUST_INSN_LENGTH
ADJUST_INSN_LENGTH
(
insn
,
insn_lengths
[
uid
]);
#endif
}
/* Now loop over all the insns finding varying length insns. For each,
get the current insn length. If it has changed, reflect the change.
When nothing changes for a full pass, we are done. */
while
(
something_changed
)
{
something_changed
=
0
;
for
(
insn_current_address
=
FIRST_INSN_ADDRESS
,
insn
=
first
;
insn
!=
0
;
insn_current_address
+=
insn_lengths
[
uid
],
insn
=
NEXT_INSN
(
insn
))
{
int
new_length
;
uid
=
INSN_UID
(
insn
);
insn_addresses
[
uid
]
=
insn_current_address
;
if
(
!
varying_length
[
uid
])
continue
;
new_length
=
insn_current_length
(
insn
);
if
(
new_length
!=
insn_lengths
[
uid
])
{
insn_lengths
[
uid
]
=
new_length
;
something_changed
=
1
;
}
}
}
#endif
/* HAVE_ATTR_length */
}
#ifdef HAVE_ATTR_length
/* Given the body of an INSN known to be generated by an ASM statement, return
the number of machine instructions likely to be generated for this insn.
This is used to compute its length. */
static
int
asm_insn_count
(
body
)
rtx
body
;
{
char
*
template
;
int
count
=
1
;
for
(
template
=
decode_asm_operands
(
body
,
0
,
0
,
0
,
0
);
*
template
;
template
++
)
if
(
*
template
==
';'
||
*
template
==
'\n'
)
count
++
;
return
count
;
}
#endif
/* Output assembler code for the start of a function,
and initialize some of the variables in this file
for the new function. The label for the function and associated
assembler pseudo-ops have already been output in `assemble_start_function'.
FIRST is the first insn of the rtl for the function being compiled.
FILE is the file to write assembler code to.
OPTIMIZE is nonzero if we should eliminate redundant
test and compare insns. */
void
final_start_function
(
first
,
file
,
optimize
)
rtx
first
;
FILE
*
file
;
int
optimize
;
{
block_depth
=
0
;
this_is_asm_operands
=
0
;
#ifdef NON_SAVING_SETJMP
/* A function that calls setjmp should save and restore all the
call-saved registers on a system where longjmp clobbers them. */
if
(
NON_SAVING_SETJMP
&&
current_function_calls_setjmp
)
{
int
i
;
for
(
i
=
0
;
i
<
FIRST_PSEUDO_REGISTER
;
i
++
)
if
(
!
call_used_regs
[
i
]
&&
!
call_fixed_regs
[
i
])
regs_ever_live
[
i
]
=
1
;
}
#endif
/* Initial line number is supposed to be output
before the function's prologue and label
so that the function's address will not appear to be
in the last statement of the preceding function. */
if
(
NOTE_LINE_NUMBER
(
first
)
!=
NOTE_INSN_DELETED
)
{
if
(
write_symbols
==
SDB_DEBUG
)
/* For sdb, let's not, but say we did.
We need to set last_linenum for sdbout_function_begin,
but we can't have an actual line number before the .bf symbol.
(sdb_begin_function_line is not set,
and other compilers don't do it.) */
last_linenum
=
NOTE_LINE_NUMBER
(
first
);
#ifdef XCOFF_DEBUGGING_INFO
else
if
(
write_symbols
==
XCOFF_DEBUG
)
{
last_linenum
=
NOTE_LINE_NUMBER
(
first
);
xcoffout_output_first_source_line
(
file
,
last_linenum
);
}
#endif
else
output_source_line
(
file
,
first
);
}
#ifdef LEAF_REG_REMAP
if
(
leaf_function
)
leaf_renumber_regs
(
first
);
#endif
/* The Sun386i and perhaps other machines don't work right
if the profiling code comes after the prologue. */
#ifdef PROFILE_BEFORE_PROLOGUE
if
(
profile_flag
)
profile_function
(
file
);
#endif
/* PROFILE_BEFORE_PROLOGUE */
#ifdef FUNCTION_PROLOGUE
/* First output the function prologue: code to set up the stack frame. */
FUNCTION_PROLOGUE
(
file
,
get_frame_size
());
#endif
#if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
if
(
write_symbols
==
SDB_DEBUG
||
write_symbols
==
XCOFF_DEBUG
)
next_block_index
=
1
;
#endif
#ifdef FUNCTION_BLOCK_PROFILER
if
(
profile_block_flag
)
{
FUNCTION_BLOCK_PROFILER
(
file
,
profile_label_no
);
}
#endif
/* FUNCTION_BLOCK_PROFILER */
#ifndef PROFILE_BEFORE_PROLOGUE
if
(
profile_flag
)
profile_function
(
file
);
#endif
/* not PROFILE_BEFORE_PROLOGUE */
profile_label_no
++
;
}
void
profile_function
(
file
)
FILE
*
file
;
{
int
align
=
MIN
(
BIGGEST_ALIGNMENT
,
INT_TYPE_SIZE
);
int
sval
=
current_function_returns_struct
;
int
cxt
=
current_function_needs_context
;
data_section
();
ASM_OUTPUT_ALIGN
(
file
,
floor_log2
(
align
/
BITS_PER_UNIT
));
ASM_OUTPUT_INTERNAL_LABEL
(
file
,
"LP"
,
profile_label_no
);
assemble_integer
(
const0_rtx
,
UNITS_PER_WORD
,
1
);
text_section
();
#ifdef STRUCT_VALUE_INCOMING_REGNUM
if
(
sval
)
ASM_OUTPUT_REG_PUSH
(
file
,
STRUCT_VALUE_INCOMING_REGNUM
);
#else
#ifdef STRUCT_VALUE_REGNUM
if
(
sval
)
ASM_OUTPUT_REG_PUSH
(
file
,
STRUCT_VALUE_REGNUM
);
#endif
#endif
#if 0
#ifdef STATIC_CHAIN_INCOMING_REGNUM
if (cxt)
ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
#else
#ifdef STATIC_CHAIN_REGNUM
if (cxt)
ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
#endif
#endif
#endif
/* 0 */
FUNCTION_PROFILER
(
file
,
profile_label_no
);
#if 0
#ifdef STATIC_CHAIN_INCOMING_REGNUM
if (cxt)
ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
#else
#ifdef STATIC_CHAIN_REGNUM
if (cxt)
ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
#endif
#endif
#endif
/* 0 */
#ifdef STRUCT_VALUE_INCOMING_REGNUM
if
(
sval
)
ASM_OUTPUT_REG_POP
(
file
,
STRUCT_VALUE_INCOMING_REGNUM
);
#else
#ifdef STRUCT_VALUE_REGNUM
if
(
sval
)
ASM_OUTPUT_REG_POP
(
file
,
STRUCT_VALUE_REGNUM
);
#endif
#endif
}
/* Output assembler code for the end of a function.
For clarity, args are same as those of `final_start_function'
even though not all of them are needed. */
void
final_end_function
(
first
,
file
,
optimize
)
rtx
first
;
FILE
*
file
;
int
optimize
;
{
if
(
app_on
)
{
fprintf
(
file
,
ASM_APP_OFF
);
app_on
=
0
;
}
#ifdef SDB_DEBUGGING_INFO
if
(
write_symbols
==
SDB_DEBUG
)
sdbout_end_function
(
last_linenum
);
#endif
#ifdef XCOFF_DEBUGGING_INFO
if
(
write_symbols
==
XCOFF_DEBUG
)
xcoffout_end_function
(
file
,
last_linenum
);
#endif
#ifdef FUNCTION_EPILOGUE
/* Finally, output the function epilogue:
code to restore the stack frame and return to the caller. */
FUNCTION_EPILOGUE
(
file
,
get_frame_size
());
#endif
#ifdef SDB_DEBUGGING_INFO
if
(
write_symbols
==
SDB_DEBUG
)
sdbout_end_epilogue
();
#endif
#ifdef DWARF_DEBUGGING_INFO
if
(
write_symbols
==
DWARF_DEBUG
)
dwarfout_end_epilogue
();
#endif
#ifdef XCOFF_DEBUGGING_INFO
if
(
write_symbols
==
XCOFF_DEBUG
)
xcoffout_end_epilogue
(
file
);
#endif
/* If FUNCTION_EPILOGUE is not defined, then the function body
itself contains return instructions wherever needed. */
}
/* Output assembler code for some insns: all or part of a function.
For description of args, see `final_start_function', above.
PRESCAN is 1 if we are not really outputting,
just scanning as if we were outputting.
Prescanning deletes and rearranges insns just like ordinary output.
PRESCAN is -2 if we are outputting after having prescanned.
In this case, don't try to delete or rearrange insns
because that has already been done.
Prescanning is done only on certain machines. */
void
final
(
first
,
file
,
optimize
,
prescan
)
rtx
first
;
FILE
*
file
;
int
optimize
;
int
prescan
;
{
register
rtx
insn
;
int
max_line
=
0
;
last_ignored_compare
=
0
;
new_block
=
1
;
/* Make a map indicating which line numbers appear in this function. */
for
(
insn
=
first
;
insn
;
insn
=
NEXT_INSN
(
insn
))
if
(
GET_CODE
(
insn
)
==
NOTE
&&
NOTE_LINE_NUMBER
(
insn
)
>
max_line
)
max_line
=
NOTE_LINE_NUMBER
(
insn
);
line_note_exists
=
(
char
*
)
oballoc
(
max_line
+
1
);
bzero
(
line_note_exists
,
max_line
+
1
);
for
(
insn
=
first
;
insn
;
insn
=
NEXT_INSN
(
insn
))
if
(
GET_CODE
(
insn
)
==
NOTE
&&
NOTE_LINE_NUMBER
(
insn
)
>
0
)
line_note_exists
[
NOTE_LINE_NUMBER
(
insn
)]
=
1
;
init_recog
();
CC_STATUS_INIT
;
/* Output the insns. */
for
(
insn
=
NEXT_INSN
(
first
);
insn
;)
insn
=
final_scan_insn
(
insn
,
file
,
optimize
,
prescan
,
0
);
/* Do basic-block profiling here
if the last insn was a conditional branch. */
if
(
profile_block_flag
&&
new_block
)
{
new_block
=
0
;
/* Enable the table of basic-block use counts
to point at the code it applies to. */
ASM_OUTPUT_INTERNAL_LABEL
(
file
,
"LPB"
,
count_basic_blocks
);
/* Before first insn of this basic block, increment the
count of times it was entered. */
#ifdef BLOCK_PROFILER
BLOCK_PROFILER
(
file
,
count_basic_blocks
);
CC_STATUS_INIT
;
#endif
count_basic_blocks
++
;
}
}
/* The final scan for one insn, INSN.
Args are same as in `final', except that INSN
is the insn being scanned.
Value returned is the next insn to be scanned.
NOPEEPHOLES is the flag to disallow peephole processing (currently
used for within delayed branch sequence output). */
rtx
final_scan_insn
(
insn
,
file
,
optimize
,
prescan
,
nopeepholes
)
rtx
insn
;
FILE
*
file
;
int
optimize
;
int
prescan
;
int
nopeepholes
;
{
register
int
i
;
insn_counter
++
;
/* Ignore deleted insns. These can occur when we split insns (due to a
template of "#") while not optimizing. */
if
(
INSN_DELETED_P
(
insn
))
return
NEXT_INSN
(
insn
);
switch
(
GET_CODE
(
insn
))
{
case
NOTE
:
if
(
prescan
>
0
)
break
;
/* Align the beginning of a loop, for higher speed
on certain machines. */
if
(
NOTE_LINE_NUMBER
(
insn
)
==
NOTE_INSN_LOOP_BEG
&&
optimize
>
0
)
{
#ifdef ASM_OUTPUT_LOOP_ALIGN
rtx
next
=
next_nonnote_insn
(
insn
);
if
(
next
&&
GET_CODE
(
next
)
==
CODE_LABEL
)
{
ASM_OUTPUT_LOOP_ALIGN
(
asm_out_file
);
}
#endif
break
;
}
if
(
NOTE_LINE_NUMBER
(
insn
)
==
NOTE_INSN_LOOP_END
)
break
;
if
(
write_symbols
==
NO_DEBUG
)
break
;
if
(
NOTE_LINE_NUMBER
(
insn
)
==
NOTE_INSN_FUNCTION_BEG
)
{
#ifdef SDB_DEBUGGING_INFO
if
(
write_symbols
==
SDB_DEBUG
)
sdbout_begin_function
(
last_linenum
);
#endif
#ifdef XCOFF_DEBUGGING_INFO
if
(
write_symbols
==
XCOFF_DEBUG
)
xcoffout_begin_function
(
file
,
last_linenum
);
#endif
break
;
}
if
(
NOTE_LINE_NUMBER
(
insn
)
==
NOTE_INSN_DELETED
)
break
;
/* An insn that was "deleted" */
if
(
app_on
)
{
fprintf
(
file
,
ASM_APP_OFF
);
app_on
=
0
;
}
if
(
NOTE_LINE_NUMBER
(
insn
)
==
NOTE_INSN_BLOCK_BEG
&&
(
debug_info_level
==
DINFO_LEVEL_NORMAL
||
debug_info_level
==
DINFO_LEVEL_VERBOSE
))
{
/* Beginning of a symbol-block. Assign it a sequence number
and push the number onto the stack PENDING_BLOCKS. */
if
(
block_depth
==
max_block_depth
)
{
/* PENDING_BLOCKS is full; make it longer. */
max_block_depth
*=
2
;
pending_blocks
=
(
int
*
)
xrealloc
(
pending_blocks
,
max_block_depth
*
sizeof
(
int
));
}
pending_blocks
[
block_depth
++
]
=
next_block_index
;
/* Output debugging info about the symbol-block beginning. */
#ifdef SDB_DEBUGGING_INFO
if
(
write_symbols
==
SDB_DEBUG
)
sdbout_begin_block
(
file
,
last_linenum
,
next_block_index
);
#endif
#ifdef XCOFF_DEBUGGING_INFO
if
(
write_symbols
==
XCOFF_DEBUG
)
xcoffout_begin_block
(
file
,
last_linenum
,
next_block_index
);
#endif
#ifdef DBX_DEBUGGING_INFO
if
(
write_symbols
==
DBX_DEBUG
)
ASM_OUTPUT_INTERNAL_LABEL
(
file
,
"LBB"
,
next_block_index
);
#endif
#ifdef DWARF_DEBUGGING_INFO
if
(
write_symbols
==
DWARF_DEBUG
&&
block_depth
>
1
)
dwarfout_begin_block
(
next_block_index
);
#endif
next_block_index
++
;
}
else
if
(
NOTE_LINE_NUMBER
(
insn
)
==
NOTE_INSN_BLOCK_END
&&
(
debug_info_level
==
DINFO_LEVEL_NORMAL
||
debug_info_level
==
DINFO_LEVEL_VERBOSE
))
{
/* End of a symbol-block. Pop its sequence number off
PENDING_BLOCKS and output debugging info based on that. */
--
block_depth
;
#ifdef XCOFF_DEBUGGING_INFO
if
(
write_symbols
==
XCOFF_DEBUG
&&
block_depth
>=
0
)
xcoffout_end_block
(
file
,
last_linenum
,
pending_blocks
[
block_depth
]);
#endif
#ifdef DBX_DEBUGGING_INFO
if
(
write_symbols
==
DBX_DEBUG
&&
block_depth
>=
0
)
ASM_OUTPUT_INTERNAL_LABEL
(
file
,
"LBE"
,
pending_blocks
[
block_depth
]);
#endif
#ifdef SDB_DEBUGGING_INFO
if
(
write_symbols
==
SDB_DEBUG
&&
block_depth
>=
0
)
sdbout_end_block
(
file
,
last_linenum
);
#endif
#ifdef DWARF_DEBUGGING_INFO
if
(
write_symbols
==
DWARF_DEBUG
&&
block_depth
>=
1
)
dwarfout_end_block
(
pending_blocks
[
block_depth
]);
#endif
}
else
if
(
NOTE_LINE_NUMBER
(
insn
)
>
0
)
/* This note is a line-number. */
{
register
rtx
note
;
#if 0 /* This is what we used to do. */
output_source_line (file, insn);
#endif
int
note_after
=
0
;
/* If there is anything real after this note,
output it. If another line note follows, omit this one. */
for
(
note
=
NEXT_INSN
(
insn
);
note
;
note
=
NEXT_INSN
(
note
))
{
if
(
GET_CODE
(
note
)
!=
NOTE
&&
GET_CODE
(
note
)
!=
CODE_LABEL
)
break
;
else
if
(
GET_CODE
(
note
)
==
NOTE
&&
NOTE_LINE_NUMBER
(
note
)
>
0
)
{
/* Another note follows; we can delete this note provided
no intervening line numbers have notes elsewhere. */
int
num
;
for
(
num
=
NOTE_LINE_NUMBER
(
insn
)
+
1
;
num
<
NOTE_LINE_NUMBER
(
note
);
num
++
)
if
(
line_note_exists
[
num
])
break
;
if
(
num
==
NOTE_LINE_NUMBER
(
note
))
note_after
=
1
;
break
;
}
}
/* Output this line note
if it is the first or the last line note in a row. */
if
(
!
note_after
)
output_source_line
(
file
,
insn
);
}
break
;
case
BARRIER
:
#ifdef ASM_OUTPUT_ALIGN_CODE
ASM_OUTPUT_ALIGN_CODE
(
file
);
#endif
break
;
case
CODE_LABEL
:
CC_STATUS_INIT
;
if
(
prescan
>
0
)
break
;
new_block
=
1
;
#ifdef SDB_DEBUGGING_INFO
if
(
write_symbols
==
SDB_DEBUG
&&
LABEL_NAME
(
insn
))
sdbout_label
(
insn
);
#endif
#ifdef DWARF_DEBUGGING_INFO
if
(
write_symbols
==
DWARF_DEBUG
&&
LABEL_NAME
(
insn
))
dwarfout_label
(
insn
);
#endif
if
(
app_on
)
{
fprintf
(
file
,
ASM_APP_OFF
);
app_on
=
0
;
}
if
(
NEXT_INSN
(
insn
)
!=
0
&&
GET_CODE
(
NEXT_INSN
(
insn
))
==
JUMP_INSN
)
{
rtx
nextbody
=
PATTERN
(
NEXT_INSN
(
insn
));
/* If this label is followed by a jump-table,
make sure we put the label in the read-only section. Also
possibly write the label and jump table together. */
if
(
GET_CODE
(
nextbody
)
==
ADDR_VEC
||
GET_CODE
(
nextbody
)
==
ADDR_DIFF_VEC
)
{
#ifndef JUMP_TABLES_IN_TEXT_SECTION
readonly_data_section
();
#else
text_section
();
#endif
#ifdef ASM_OUTPUT_CASE_LABEL
ASM_OUTPUT_CASE_LABEL
(
file
,
"L"
,
CODE_LABEL_NUMBER
(
insn
),
NEXT_INSN
(
insn
));
#else
ASM_OUTPUT_INTERNAL_LABEL
(
file
,
"L"
,
CODE_LABEL_NUMBER
(
insn
));
#endif
break
;
}
}
ASM_OUTPUT_INTERNAL_LABEL
(
file
,
"L"
,
CODE_LABEL_NUMBER
(
insn
));
break
;
default
:
{
register
rtx
body
=
PATTERN
(
insn
);
int
insn_code_number
;
char
*
template
;
rtx
note
;
/* An INSN, JUMP_INSN or CALL_INSN.
First check for special kinds that recog doesn't recognize. */
if
(
GET_CODE
(
body
)
==
USE
/* These are just declarations */
||
GET_CODE
(
body
)
==
CLOBBER
)
break
;
#ifdef HAVE_cc0
/* If there is a REG_CC_SETTER note on this insn, it means that
the setting of the condition code was done in the delay slot
of the insn that branched here. So recover the cc status
from the insn that set it. */
note
=
find_reg_note
(
insn
,
REG_CC_SETTER
,
0
);
if
(
note
)
{
NOTICE_UPDATE_CC
(
PATTERN
(
XEXP
(
note
,
0
)),
XEXP
(
note
,
0
));
cc_prev_status
=
cc_status
;
}
#endif
/* Detect insns that are really jump-tables
and output them as such. */
if
(
GET_CODE
(
body
)
==
ADDR_VEC
||
GET_CODE
(
body
)
==
ADDR_DIFF_VEC
)
{
register
int
vlen
,
idx
;
if
(
prescan
>
0
)
break
;
if
(
app_on
)
{
fprintf
(
file
,
ASM_APP_OFF
);
app_on
=
0
;
}
vlen
=
XVECLEN
(
body
,
GET_CODE
(
body
)
==
ADDR_DIFF_VEC
);
for
(
idx
=
0
;
idx
<
vlen
;
idx
++
)
{
if
(
GET_CODE
(
body
)
==
ADDR_VEC
)
ASM_OUTPUT_ADDR_VEC_ELT
(
file
,
CODE_LABEL_NUMBER
(
XEXP
(
XVECEXP
(
body
,
0
,
idx
),
0
)));
else
ASM_OUTPUT_ADDR_DIFF_ELT
(
file
,
CODE_LABEL_NUMBER
(
XEXP
(
XVECEXP
(
body
,
1
,
idx
),
0
)),
CODE_LABEL_NUMBER
(
XEXP
(
XEXP
(
body
,
0
),
0
)));
}
#ifdef ASM_OUTPUT_CASE_END
ASM_OUTPUT_CASE_END
(
file
,
CODE_LABEL_NUMBER
(
PREV_INSN
(
insn
)),
insn
);
#endif
text_section
();
break
;
}
/* Do basic-block profiling when we reach a new block.
Done here to avoid jump tables. */
if
(
profile_block_flag
&&
new_block
)
{
new_block
=
0
;
/* Enable the table of basic-block use counts
to point at the code it applies to. */
ASM_OUTPUT_INTERNAL_LABEL
(
file
,
"LPB"
,
count_basic_blocks
);
/* Before first insn of this basic block, increment the
count of times it was entered. */
#ifdef BLOCK_PROFILER
BLOCK_PROFILER
(
file
,
count_basic_blocks
);
CC_STATUS_INIT
;
#endif
count_basic_blocks
++
;
}
if
(
GET_CODE
(
body
)
==
ASM_INPUT
)
{
/* There's no telling what that did to the condition codes. */
CC_STATUS_INIT
;
if
(
prescan
>
0
)
break
;
if
(
!
app_on
)
{
fprintf
(
file
,
ASM_APP_ON
);
app_on
=
1
;
}
fprintf
(
asm_out_file
,
"
\t
%s
\n
"
,
XSTR
(
body
,
0
));
break
;
}
/* Detect `asm' construct with operands. */
if
(
asm_noperands
(
body
)
>=
0
)
{
int
noperands
=
asm_noperands
(
body
);
rtx
*
ops
;
char
*
string
;
/* There's no telling what that did to the condition codes. */
CC_STATUS_INIT
;
if
(
prescan
>
0
)
break
;
/* alloca won't do here, since only return from `final'
would free it. */
if
(
noperands
>
0
)
ops
=
(
rtx
*
)
xmalloc
(
noperands
*
sizeof
(
rtx
));
if
(
!
app_on
)
{
fprintf
(
file
,
ASM_APP_ON
);
app_on
=
1
;
}
/* Get out the operand values. */
string
=
decode_asm_operands
(
body
,
ops
,
0
,
0
,
0
);
/* Inhibit aborts on what would otherwise be compiler bugs. */
insn_noperands
=
noperands
;
this_is_asm_operands
=
insn
;
/* Output the insn using them. */
output_asm_insn
(
string
,
ops
);
this_is_asm_operands
=
0
;
if
(
noperands
>
0
)
free
(
ops
);
break
;
}
if
(
prescan
<=
0
&&
app_on
)
{
fprintf
(
file
,
ASM_APP_OFF
);
app_on
=
0
;
}
if
(
GET_CODE
(
body
)
==
SEQUENCE
)
{
/* A delayed-branch sequence */
register
int
i
;
rtx
next
;
if
(
prescan
>
0
)
break
;
final_sequence
=
body
;
/* The first insn in this SEQUENCE might be a JUMP_INSN that will
force the restoration of a comparison that was previously
thought unnecessary. If that happens, cancel this sequence
and cause that insn to be restored. */
next
=
final_scan_insn
(
XVECEXP
(
body
,
0
,
0
),
file
,
0
,
prescan
,
1
);
if
(
next
!=
XVECEXP
(
body
,
0
,
1
))
{
final_sequence
=
0
;
return
next
;
}
for
(
i
=
1
;
i
<
XVECLEN
(
body
,
0
);
i
++
)
final_scan_insn
(
XVECEXP
(
body
,
0
,
i
),
file
,
0
,
prescan
,
1
);
#ifdef DBR_OUTPUT_SEQEND
DBR_OUTPUT_SEQEND
(
file
);
#endif
final_sequence
=
0
;
/* If the insn requiring the delay slot was a CALL_INSN, the
insns in the delay slot are actually executed before the
called function. Hence we don't preserve any CC-setting
actions in these insns and the CC must be marked as being
clobbered by the function. */
if
(
GET_CODE
(
XVECEXP
(
body
,
0
,
0
))
==
CALL_INSN
)
CC_STATUS_INIT
;
break
;
}
/* We have a real machine instruction as rtl. */
body
=
PATTERN
(
insn
);
#ifdef HAVE_cc0
/* Check for redundant test and compare instructions
(when the condition codes are already set up as desired).
This is done only when optimizing; if not optimizing,
it should be possible for the user to alter a variable
with the debugger in between statements
and the next statement should reexamine the variable
to compute the condition codes. */
if
(
optimize
&&
GET_CODE
(
body
)
==
SET
&&
GET_CODE
(
SET_DEST
(
body
))
==
CC0
&&
insn
!=
last_ignored_compare
)
{
if
(
GET_CODE
(
SET_SRC
(
body
))
==
SUBREG
)
SET_SRC
(
body
)
=
alter_subreg
(
SET_SRC
(
body
));
else
if
(
GET_CODE
(
SET_SRC
(
body
))
==
COMPARE
)
{
if
(
GET_CODE
(
XEXP
(
SET_SRC
(
body
),
0
))
==
SUBREG
)
XEXP
(
SET_SRC
(
body
),
0
)
=
alter_subreg
(
XEXP
(
SET_SRC
(
body
),
0
));
if
(
GET_CODE
(
XEXP
(
SET_SRC
(
body
),
1
))
==
SUBREG
)
XEXP
(
SET_SRC
(
body
),
1
)
=
alter_subreg
(
XEXP
(
SET_SRC
(
body
),
1
));
}
if
((
cc_status
.
value1
!=
0
&&
rtx_equal_p
(
SET_SRC
(
body
),
cc_status
.
value1
))
||
(
cc_status
.
value2
!=
0
&&
rtx_equal_p
(
SET_SRC
(
body
),
cc_status
.
value2
)))
{
/* Don't delete insn if it has an addressing side-effect. */
if
(
!
FIND_REG_INC_NOTE
(
insn
,
0
)
/* or if anything in it is volatile. */
&&
!
volatile_refs_p
(
PATTERN
(
insn
)))
{
/* We don't really delete the insn; just ignore it. */
last_ignored_compare
=
insn
;
break
;
}
}
}
#endif
/* Following a conditional branch, we have a new basic block. */
if
((
GET_CODE
(
insn
)
==
JUMP_INSN
&&
GET_CODE
(
body
)
==
SET
&&
GET_CODE
(
SET_SRC
(
body
))
!=
LABEL_REF
)
||
(
GET_CODE
(
insn
)
==
JUMP_INSN
&&
GET_CODE
(
body
)
==
PARALLEL
&&
GET_CODE
(
XVECEXP
(
body
,
0
,
0
))
==
SET
&&
GET_CODE
(
SET_SRC
(
XVECEXP
(
body
,
0
,
0
)))
!=
LABEL_REF
))
new_block
=
1
;
#ifndef STACK_REGS
/* Don't bother outputting obvious no-ops, even without -O.
This optimization is fast and doesn't interfere with debugging.
Don't do this if the insn is in a delay slot, since this
will cause an improper number of delay insns to be written. */
if
(
final_sequence
==
0
&&
prescan
>=
0
&&
GET_CODE
(
insn
)
==
INSN
&&
GET_CODE
(
body
)
==
SET
&&
GET_CODE
(
SET_SRC
(
body
))
==
REG
&&
GET_CODE
(
SET_DEST
(
body
))
==
REG
&&
REGNO
(
SET_SRC
(
body
))
==
REGNO
(
SET_DEST
(
body
)))
break
;
#endif
#ifdef HAVE_cc0
/* If this is a conditional branch, maybe modify it
if the cc's are in a nonstandard state
so that it accomplishes the same thing that it would
do straightforwardly if the cc's were set up normally. */
if
(
cc_status
.
flags
!=
0
&&
GET_CODE
(
insn
)
==
JUMP_INSN
&&
GET_CODE
(
body
)
==
SET
&&
SET_DEST
(
body
)
==
pc_rtx
&&
GET_CODE
(
SET_SRC
(
body
))
==
IF_THEN_ELSE
/* This is done during prescan; it is not done again
in final scan when prescan has been done. */
&&
prescan
>=
0
)
{
/* This function may alter the contents of its argument
and clear some of the cc_status.flags bits.
It may also return 1 meaning condition now always true
or -1 meaning condition now always false
or 2 meaning condition nontrivial but altered. */
register
int
result
=
alter_cond
(
XEXP
(
SET_SRC
(
body
),
0
));
/* If condition now has fixed value, replace the IF_THEN_ELSE
with its then-operand or its else-operand. */
if
(
result
==
1
)
SET_SRC
(
body
)
=
XEXP
(
SET_SRC
(
body
),
1
);
if
(
result
==
-
1
)
SET_SRC
(
body
)
=
XEXP
(
SET_SRC
(
body
),
2
);
/* The jump is now either unconditional or a no-op.
If it has become a no-op, don't try to output it.
(It would not be recognized.) */
if
(
SET_SRC
(
body
)
==
pc_rtx
)
{
PUT_CODE
(
insn
,
NOTE
);
NOTE_LINE_NUMBER
(
insn
)
=
NOTE_INSN_DELETED
;
NOTE_SOURCE_FILE
(
insn
)
=
0
;
break
;
}
else
if
(
GET_CODE
(
SET_SRC
(
body
))
==
RETURN
)
/* Replace (set (pc) (return)) with (return). */
PATTERN
(
insn
)
=
body
=
SET_SRC
(
body
);
/* Rerecognize the instruction if it has changed. */
if
(
result
!=
0
)
INSN_CODE
(
insn
)
=
-
1
;
}
/* Make same adjustments to instructions that examine the
condition codes without jumping (if this machine has them). */
if
(
cc_status
.
flags
!=
0
&&
GET_CODE
(
body
)
==
SET
)
{
switch
(
GET_CODE
(
SET_SRC
(
body
)))
{
case
GTU
:
case
GT
:
case
LTU
:
case
LT
:
case
GEU
:
case
GE
:
case
LEU
:
case
LE
:
case
EQ
:
case
NE
:
{
register
int
result
;
if
(
XEXP
(
SET_SRC
(
body
),
0
)
!=
cc0_rtx
)
break
;
result
=
alter_cond
(
SET_SRC
(
body
));
if
(
result
==
1
)
validate_change
(
insn
,
&
SET_SRC
(
body
),
const_true_rtx
,
0
);
else
if
(
result
==
-
1
)
validate_change
(
insn
,
&
SET_SRC
(
body
),
const0_rtx
,
0
);
else
if
(
result
==
2
)
INSN_CODE
(
insn
)
=
-
1
;
}
}
}
#endif
/* Do machine-specific peephole optimizations if desired. */
if
(
optimize
&&
!
flag_no_peephole
&&
!
nopeepholes
)
{
rtx
next
=
peephole
(
insn
);
/* When peepholing, if there were notes within the peephole,
emit them before the peephole. */
if
(
next
!=
0
&&
next
!=
NEXT_INSN
(
insn
))
{
rtx
prev
=
PREV_INSN
(
insn
);
rtx
note
;
for
(
note
=
NEXT_INSN
(
insn
);
note
!=
next
;
note
=
NEXT_INSN
(
note
))
final_scan_insn
(
note
,
file
,
optimize
,
prescan
,
nopeepholes
);
/* In case this is prescan, put the notes
in proper position for later rescan. */
note
=
NEXT_INSN
(
insn
);
PREV_INSN
(
note
)
=
prev
;
NEXT_INSN
(
prev
)
=
note
;
NEXT_INSN
(
PREV_INSN
(
next
))
=
insn
;
PREV_INSN
(
insn
)
=
PREV_INSN
(
next
);
NEXT_INSN
(
insn
)
=
next
;
PREV_INSN
(
next
)
=
insn
;
}
/* PEEPHOLE might have changed this. */
body
=
PATTERN
(
insn
);
}
/* Try to recognize the instruction.
If successful, verify that the operands satisfy the
constraints for the instruction. Crash if they don't,
since `reload' should have changed them so that they do. */
insn_code_number
=
recog_memoized
(
insn
);
insn_extract
(
insn
);
for
(
i
=
0
;
i
<
insn_n_operands
[
insn_code_number
];
i
++
)
{
if
(
GET_CODE
(
recog_operand
[
i
])
==
SUBREG
)
recog_operand
[
i
]
=
alter_subreg
(
recog_operand
[
i
]);
}
#ifdef REGISTER_CONSTRAINTS
if
(
!
constrain_operands
(
insn_code_number
,
1
))
fatal_insn_not_found
(
insn
);
#endif
/* Some target machines need to prescan each insn before
it is output. */
#ifdef FINAL_PRESCAN_INSN
FINAL_PRESCAN_INSN
(
insn
,
recog_operand
,
insn_n_operands
[
insn_code_number
]);
#endif
#ifdef HAVE_cc0
cc_prev_status
=
cc_status
;
/* Update `cc_status' for this instruction.
The instruction's output routine may change it further.
If the output routine for a jump insn needs to depend
on the cc status, it should look at cc_prev_status. */
NOTICE_UPDATE_CC
(
body
,
insn
);
#endif
debug_insn
=
insn
;
/* If the proper template needs to be chosen by some C code,
run that code and get the real template. */
template
=
insn_template
[
insn_code_number
];
if
(
template
==
0
)
{
template
=
(
*
insn_outfun
[
insn_code_number
])
(
recog_operand
,
insn
);
/* If the C code returns 0, it means that it is a jump insn
which follows a deleted test insn, and that test insn
needs to be reinserted. */
if
(
template
==
0
)
{
if
(
prev_nonnote_insn
(
insn
)
!=
last_ignored_compare
)
abort
();
new_block
=
0
;
return
prev_nonnote_insn
(
insn
);
}
}
/* If the template is the string "#", it means that this insn must
be split. */
if
(
template
[
0
]
==
'#'
&&
template
[
1
]
==
'\0'
)
{
rtx
new
=
try_split
(
body
,
insn
,
0
);
/* If we didn't split the insn, go away. */
if
(
new
==
insn
&&
PATTERN
(
new
)
==
body
)
abort
();
new_block
=
0
;
return
new
;
}
if
(
prescan
>
0
)
break
;
/* Output assembler code from the template. */
output_asm_insn
(
template
,
recog_operand
);
#if 0
/* It's not at all clear why we did this and doing so interferes
with tests we'd like to do to use REG_WAS_0 notes, so let's try
with this out. */
/* Mark this insn as having been output. */
INSN_DELETED_P (insn) = 1;
#endif
debug_insn
=
0
;
}
}
return
NEXT_INSN
(
insn
);
}
/* Output debugging info to the assembler file FILE
based on the NOTE-insn INSN, assumed to be a line number. */
static
void
output_source_line
(
file
,
insn
)
FILE
*
file
;
rtx
insn
;
{
char
ltext_label_name
[
100
];
register
char
*
filename
=
NOTE_SOURCE_FILE
(
insn
);
last_linenum
=
NOTE_LINE_NUMBER
(
insn
);
if
(
write_symbols
!=
NO_DEBUG
)
{
#ifdef SDB_DEBUGGING_INFO
if
(
write_symbols
==
SDB_DEBUG
#if 0 /* People like having line numbers even in wrong file! */
/* COFF can't handle multiple source files--lose, lose. */
&& !strcmp (filename, main_input_filename)
#endif
/* COFF relative line numbers must be positive. */
&&
last_linenum
>
sdb_begin_function_line
)
{
#ifdef ASM_OUTPUT_SOURCE_LINE
ASM_OUTPUT_SOURCE_LINE
(
file
,
last_linenum
);
#else
fprintf
(
file
,
"
\t
.ln
\t
%d
\n
"
,
((
sdb_begin_function_line
>
-
1
)
?
last_linenum
-
sdb_begin_function_line
:
1
));
#endif
}
#endif
#if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
if
(
write_symbols
==
DBX_DEBUG
||
write_symbols
==
XCOFF_DEBUG
)
{
dbxout_source_file
(
file
,
filename
);
#ifdef ASM_OUTPUT_SOURCE_LINE
ASM_OUTPUT_SOURCE_LINE
(
file
,
NOTE_LINE_NUMBER
(
insn
));
#else
fprintf
(
file
,
"
\t
%s %d,0,%d
\n
"
,
ASM_STABD_OP
,
N_SLINE
,
NOTE_LINE_NUMBER
(
insn
));
#endif
}
#endif
/* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */
#ifdef DWARF_DEBUGGING_INFO
if
(
write_symbols
==
DWARF_DEBUG
)
dwarfout_line
(
filename
,
NOTE_LINE_NUMBER
(
insn
));
#endif
}
}
/* If X is a SUBREG, replace it with a REG or a MEM,
based on the thing it is a subreg of. */
rtx
alter_subreg
(
x
)
register
rtx
x
;
{
register
rtx
y
=
SUBREG_REG
(
x
);
if
(
GET_CODE
(
y
)
==
SUBREG
)
y
=
alter_subreg
(
y
);
if
(
GET_CODE
(
y
)
==
REG
)
{
/* If the containing reg really gets a hard reg, so do we. */
PUT_CODE
(
x
,
REG
);
REGNO
(
x
)
=
REGNO
(
y
)
+
SUBREG_WORD
(
x
);
}
else
if
(
GET_CODE
(
y
)
==
MEM
)
{
register
int
offset
=
SUBREG_WORD
(
x
)
*
UNITS_PER_WORD
;
#if BYTES_BIG_ENDIAN
offset
-=
(
MIN
(
UNITS_PER_WORD
,
GET_MODE_SIZE
(
GET_MODE
(
x
)))
-
MIN
(
UNITS_PER_WORD
,
GET_MODE_SIZE
(
GET_MODE
(
y
))));
#endif
PUT_CODE
(
x
,
MEM
);
MEM_VOLATILE_P
(
x
)
=
MEM_VOLATILE_P
(
y
);
XEXP
(
x
,
0
)
=
plus_constant
(
XEXP
(
y
,
0
),
offset
);
}
return
x
;
}
/* Do alter_subreg on all the SUBREGs contained in X. */
static
rtx
walk_alter_subreg
(
x
)
rtx
x
;
{
switch
(
GET_CODE
(
x
))
{
case
PLUS
:
case
MULT
:
XEXP
(
x
,
0
)
=
walk_alter_subreg
(
XEXP
(
x
,
0
));
XEXP
(
x
,
1
)
=
walk_alter_subreg
(
XEXP
(
x
,
1
));
break
;
case
MEM
:
XEXP
(
x
,
0
)
=
walk_alter_subreg
(
XEXP
(
x
,
0
));
break
;
case
SUBREG
:
return
alter_subreg
(
x
);
}
return
x
;
}
#ifdef HAVE_cc0
/* Given BODY, the body of a jump instruction, alter the jump condition
as required by the bits that are set in cc_status.flags.
Not all of the bits there can be handled at this level in all cases.
The value is normally 0.
1 means that the condition has become always true.
-1 means that the condition has become always false.
2 means that COND has been altered. */
static
int
alter_cond
(
cond
)
register
rtx
cond
;
{
int
value
=
0
;
if
(
cc_status
.
flags
&
CC_REVERSED
)
{
value
=
2
;
PUT_CODE
(
cond
,
swap_condition
(
GET_CODE
(
cond
)));
}
if
(
cc_status
.
flags
&
CC_INVERTED
)
{
value
=
2
;
PUT_CODE
(
cond
,
reverse_condition
(
GET_CODE
(
cond
)));
}
if
(
cc_status
.
flags
&
CC_NOT_POSITIVE
)
switch
(
GET_CODE
(
cond
))
{
case
LE
:
case
LEU
:
case
GEU
:
/* Jump becomes unconditional. */
return
1
;
case
GT
:
case
GTU
:
case
LTU
:
/* Jump becomes no-op. */
return
-
1
;
case
GE
:
PUT_CODE
(
cond
,
EQ
);
value
=
2
;
break
;
case
LT
:
PUT_CODE
(
cond
,
NE
);
value
=
2
;
break
;
}
if
(
cc_status
.
flags
&
CC_NOT_NEGATIVE
)
switch
(
GET_CODE
(
cond
))
{
case
GE
:
case
GEU
:
/* Jump becomes unconditional. */
return
1
;
case
LT
:
case
LTU
:
/* Jump becomes no-op. */
return
-
1
;
case
LE
:
case
LEU
:
PUT_CODE
(
cond
,
EQ
);
value
=
2
;
break
;
case
GT
:
case
GTU
:
PUT_CODE
(
cond
,
NE
);
value
=
2
;
break
;
}
if
(
cc_status
.
flags
&
CC_NO_OVERFLOW
)
switch
(
GET_CODE
(
cond
))
{
case
GEU
:
/* Jump becomes unconditional. */
return
1
;
case
LEU
:
PUT_CODE
(
cond
,
EQ
);
value
=
2
;
break
;
case
GTU
:
PUT_CODE
(
cond
,
NE
);
value
=
2
;
break
;
case
LTU
:
/* Jump becomes no-op. */
return
-
1
;
}
if
(
cc_status
.
flags
&
(
CC_Z_IN_NOT_N
|
CC_Z_IN_N
))
switch
(
GET_CODE
(
cond
))
{
case
LE
:
case
LEU
:
case
GE
:
case
GEU
:
case
LT
:
case
LTU
:
case
GT
:
case
GTU
:
abort
();
case
NE
:
PUT_CODE
(
cond
,
cc_status
.
flags
&
CC_Z_IN_N
?
GE
:
LT
);
value
=
2
;
break
;
case
EQ
:
PUT_CODE
(
cond
,
cc_status
.
flags
&
CC_Z_IN_N
?
LT
:
GE
);
value
=
2
;
break
;
}
return
value
;
}
#endif
/* Report inconsistency between the assembler template and the operands.
In an `asm', it's the user's fault; otherwise, the compiler's fault. */
void
output_operand_lossage
(
str
)
char
*
str
;
{
if
(
this_is_asm_operands
)
error_for_asm
(
this_is_asm_operands
,
"invalid `asm': %s"
,
str
);
else
abort
();
}
/* Output of assembler code from a template, and its subroutines. */
/* Output text from TEMPLATE to the assembler output file,
obeying %-directions to substitute operands taken from
the vector OPERANDS.
%N (for N a digit) means print operand N in usual manner.
%lN means require operand N to be a CODE_LABEL or LABEL_REF
and print the label name with no punctuation.
%cN means require operand N to be a constant
and print the constant expression with no punctuation.
%aN means expect operand N to be a memory address
(not a memory reference!) and print a reference
to that address.
%nN means expect operand N to be a constant
and print a constant expression for minus the value
of the operand, with no other punctuation. */
void
output_asm_insn
(
template
,
operands
)
char
*
template
;
rtx
*
operands
;
{
register
char
*
p
;
register
int
c
;
/* An insn may return a null string template
in a case where no assembler code is needed. */
if
(
*
template
==
0
)
return
;
p
=
template
;
putc
(
'\t'
,
asm_out_file
);
#ifdef ASM_OUTPUT_OPCODE
ASM_OUTPUT_OPCODE
(
asm_out_file
,
p
);
#endif
while
(
c
=
*
p
++
)
{
#ifdef ASM_OUTPUT_OPCODE
if
(
c
==
'\n'
)
{
putc
(
c
,
asm_out_file
);
while
((
c
=
*
p
)
==
'\t'
)
{
putc
(
c
,
asm_out_file
);
p
++
;
}
ASM_OUTPUT_OPCODE
(
asm_out_file
,
p
);
}
else
#endif
if
(
c
!=
'%'
)
putc
(
c
,
asm_out_file
);
else
{
/* %% outputs a single %. */
if
(
*
p
==
'%'
)
{
p
++
;
putc
(
c
,
asm_out_file
);
}
/* %= outputs a number which is unique to each insn in the entire
compilation. This is useful for making local labels that are
referred to more than once in a given insn. */
else
if
(
*
p
==
'='
)
fprintf
(
asm_out_file
,
"%d"
,
insn_counter
);
/* % followed by a letter and some digits
outputs an operand in a special way depending on the letter.
Letters `acln' are implemented directly.
Other letters are passed to `output_operand' so that
the PRINT_OPERAND macro can define them. */
else
if
((
*
p
>=
'a'
&&
*
p
<=
'z'
)
||
(
*
p
>=
'A'
&&
*
p
<=
'Z'
))
{
int
letter
=
*
p
++
;
c
=
atoi
(
p
);
if
(
!
(
*
p
>=
'0'
&&
*
p
<=
'9'
))
output_operand_lossage
(
"operand number missing after %-letter"
);
else
if
(
this_is_asm_operands
&&
c
>=
(
unsigned
)
insn_noperands
)
output_operand_lossage
(
"operand number out of range"
);
else
if
(
letter
==
'l'
)
output_asm_label
(
operands
[
c
]);
else
if
(
letter
==
'a'
)
output_address
(
operands
[
c
]);
else
if
(
letter
==
'c'
)
{
if
(
CONSTANT_ADDRESS_P
(
operands
[
c
]))
output_addr_const
(
asm_out_file
,
operands
[
c
]);
else
output_operand
(
operands
[
c
],
'c'
);
}
else
if
(
letter
==
'n'
)
{
if
(
GET_CODE
(
operands
[
c
])
==
CONST_INT
)
fprintf
(
asm_out_file
,
"%d"
,
-
INTVAL
(
operands
[
c
]));
else
{
putc
(
'-'
,
asm_out_file
);
output_addr_const
(
asm_out_file
,
operands
[
c
]);
}
}
else
output_operand
(
operands
[
c
],
letter
);
while
((
c
=
*
p
)
>=
'0'
&&
c
<=
'9'
)
p
++
;
}
/* % followed by a digit outputs an operand the default way. */
else
if
(
*
p
>=
'0'
&&
*
p
<=
'9'
)
{
c
=
atoi
(
p
);
if
(
this_is_asm_operands
&&
c
>=
(
unsigned
)
insn_noperands
)
output_operand_lossage
(
"operand number out of range"
);
else
output_operand
(
operands
[
c
],
0
);
while
((
c
=
*
p
)
>=
'0'
&&
c
<=
'9'
)
p
++
;
}
/* % followed by punctuation: output something for that
punctuation character alone, with no operand.
The PRINT_OPERAND macro decides what is actually done. */
#ifdef PRINT_OPERAND_PUNCT_VALID_P
else
if
(
PRINT_OPERAND_PUNCT_VALID_P
(
*
p
))
output_operand
(
0
,
*
p
++
);
#endif
else
output_operand_lossage
(
"invalid %%-code"
);
}
}
if
(
flag_print_asm_name
)
{
/* Annotate the assembly with a comment describing the pattern and
alternative used. */
if
(
debug_insn
)
{
register
int
num
=
INSN_CODE
(
debug_insn
);
fprintf
(
asm_out_file
,
" %s %d %s"
,
ASM_COMMENT_START
,
INSN_UID
(
debug_insn
),
insn_name
[
num
]);
if
(
insn_n_alternatives
[
num
]
>
1
)
fprintf
(
asm_out_file
,
"/%d"
,
which_alternative
+
1
);
/* Clear this so only the first assembler insn
of any rtl insn will get the special comment for -dp. */
debug_insn
=
0
;
}
}
putc
(
'\n'
,
asm_out_file
);
}
/* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
void
output_asm_label
(
x
)
rtx
x
;
{
char
buf
[
256
];
if
(
GET_CODE
(
x
)
==
LABEL_REF
)
ASM_GENERATE_INTERNAL_LABEL
(
buf
,
"L"
,
CODE_LABEL_NUMBER
(
XEXP
(
x
,
0
)));
else
if
(
GET_CODE
(
x
)
==
CODE_LABEL
)
ASM_GENERATE_INTERNAL_LABEL
(
buf
,
"L"
,
CODE_LABEL_NUMBER
(
x
));
else
output_operand_lossage
(
"`%l' operand isn't a label"
);
assemble_name
(
asm_out_file
,
buf
);
}
/* Print operand X using machine-dependent assembler syntax.
The macro PRINT_OPERAND is defined just to control this function.
CODE is a non-digit that preceded the operand-number in the % spec,
such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
between the % and the digits.
When CODE is a non-letter, X is 0.
The meanings of the letters are machine-dependent and controlled
by PRINT_OPERAND. */
static
void
output_operand
(
x
,
code
)
rtx
x
;
int
code
;
{
if
(
x
&&
GET_CODE
(
x
)
==
SUBREG
)
x
=
alter_subreg
(
x
);
PRINT_OPERAND
(
asm_out_file
,
x
,
code
);
}
/* Print a memory reference operand for address X
using machine-dependent assembler syntax.
The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
void
output_address
(
x
)
rtx
x
;
{
walk_alter_subreg
(
x
);
PRINT_OPERAND_ADDRESS
(
asm_out_file
,
x
);
}
/* Print an integer constant expression in assembler syntax.
Addition and subtraction are the only arithmetic
that may appear in these expressions. */
void
output_addr_const
(
file
,
x
)
FILE
*
file
;
rtx
x
;
{
char
buf
[
256
];
restart
:
switch
(
GET_CODE
(
x
))
{
case
PC
:
if
(
flag_pic
)
putc
(
'.'
,
file
);
else
abort
();
break
;
case
SYMBOL_REF
:
assemble_name
(
file
,
XSTR
(
x
,
0
));
break
;
case
LABEL_REF
:
ASM_GENERATE_INTERNAL_LABEL
(
buf
,
"L"
,
CODE_LABEL_NUMBER
(
XEXP
(
x
,
0
)));
assemble_name
(
asm_out_file
,
buf
);
break
;
case
CODE_LABEL
:
ASM_GENERATE_INTERNAL_LABEL
(
buf
,
"L"
,
CODE_LABEL_NUMBER
(
x
));
assemble_name
(
asm_out_file
,
buf
);
break
;
case
CONST_INT
:
fprintf
(
file
,
"%d"
,
INTVAL
(
x
));
break
;
case
CONST
:
/* This used to output parentheses around the expression,
but that does not work on the 386 (either ATT or BSD assembler). */
output_addr_const
(
file
,
XEXP
(
x
,
0
));
break
;
case
CONST_DOUBLE
:
if
(
GET_MODE
(
x
)
==
VOIDmode
)
{
/* We can use %d if the number is <32 bits and positive. */
if
(
CONST_DOUBLE_HIGH
(
x
)
||
CONST_DOUBLE_LOW
(
x
)
<
0
)
fprintf
(
file
,
"0x%x%08x"
,
CONST_DOUBLE_HIGH
(
x
),
CONST_DOUBLE_LOW
(
x
));
else
fprintf
(
file
,
"%d"
,
CONST_DOUBLE_LOW
(
x
));
}
else
/* We can't handle floating point constants;
PRINT_OPERAND must handle them. */
output_operand_lossage
(
"floating constant misused"
);
break
;
case
PLUS
:
/* Some assemblers need integer constants to appear last (eg masm). */
if
(
GET_CODE
(
XEXP
(
x
,
0
))
==
CONST_INT
)
{
output_addr_const
(
file
,
XEXP
(
x
,
1
));
if
(
INTVAL
(
XEXP
(
x
,
0
))
>=
0
)
fprintf
(
file
,
"+"
);
output_addr_const
(
file
,
XEXP
(
x
,
0
));
}
else
{
output_addr_const
(
file
,
XEXP
(
x
,
0
));
if
(
INTVAL
(
XEXP
(
x
,
1
))
>=
0
)
fprintf
(
file
,
"+"
);
output_addr_const
(
file
,
XEXP
(
x
,
1
));
}
break
;
case
MINUS
:
output_addr_const
(
file
,
XEXP
(
x
,
0
));
fprintf
(
file
,
"-"
);
output_addr_const
(
file
,
XEXP
(
x
,
1
));
break
;
default
:
output_operand_lossage
(
"invalid expression as operand"
);
}
}
/* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
%R prints the value of REGISTER_PREFIX.
%L prints the value of LOCAL_LABEL_PREFIX.
%U prints the value of USER_LABEL_PREFIX.
%I prints the value of IMMEDIATE_PREFIX.
%O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
Also supported are %d, %x, %s, %e, %f, %g and %%. */
void
asm_fprintf
(
va_alist
)
va_dcl
{
va_list
argptr
;
FILE
*
file
;
char
buf
[
10
];
char
*
p
,
*
q
,
c
;
va_start
(
argptr
);
file
=
va_arg
(
argptr
,
FILE
*
);
p
=
va_arg
(
argptr
,
char
*
);
buf
[
0
]
=
'%'
;
while
(
c
=
*
p
++
)
switch
(
c
)
{
case
'%'
:
c
=
*
p
++
;
q
=
&
buf
[
1
];
while
((
c
>=
'0'
&&
c
<=
'9'
)
||
c
==
'.'
)
{
*
q
++
=
c
;
c
=
*
p
++
;
}
switch
(
c
)
{
case
'%'
:
fprintf
(
file
,
"%%"
);
break
;
case
'd'
:
case
'i'
:
case
'u'
:
case
'x'
:
case
'p'
:
case
'X'
:
case
'o'
:
*
q
++
=
c
;
*
q
=
0
;
fprintf
(
file
,
buf
,
va_arg
(
argptr
,
int
));
break
;
case
'e'
:
case
'f'
:
case
'g'
:
*
q
++
=
c
;
*
q
=
0
;
fprintf
(
file
,
buf
,
va_arg
(
argptr
,
double
));
break
;
case
's'
:
*
q
++
=
c
;
*
q
=
0
;
fprintf
(
file
,
buf
,
va_arg
(
argptr
,
char
*
));
break
;
case
'O'
:
#ifdef ASM_OUTPUT_OPCODE
ASM_OUTPUT_OPCODE
(
asm_out_file
,
p
);
#endif
break
;
case
'R'
:
#ifdef REGISTER_PREFIX
fprintf
(
file
,
"%s"
,
REGISTER_PREFIX
);
#endif
break
;
case
'I'
:
#ifdef IMMEDIATE_PREFIX
fprintf
(
file
,
"%s"
,
IMMEDIATE_PREFIX
);
#endif
break
;
case
'L'
:
#ifdef LOCAL_LABEL_PREFIX
fprintf
(
file
,
"%s"
,
LOCAL_LABEL_PREFIX
);
#endif
break
;
case
'U'
:
#ifdef USER_LABEL_PREFIX
fprintf
(
file
,
"%s"
,
USER_LABEL_PREFIX
);
#endif
break
;
default
:
abort
();
}
break
;
default
:
fputc
(
c
,
file
);
}
}
/* Split up a CONST_DOUBLE or integer constant rtx
into two rtx's for single words,
storing in *FIRST the word that comes first in memory in the target
and in *SECOND the other. */
void
split_double
(
value
,
first
,
second
)
rtx
value
;
rtx
*
first
,
*
second
;
{
if
(
GET_CODE
(
value
)
==
CONST_INT
)
{
/* The rule for using CONST_INT for a wider mode
is that we regard the value as signed.
So sign-extend it. */
rtx
high
=
(
INTVAL
(
value
)
<
0
?
constm1_rtx
:
const0_rtx
);
#if WORDS_BIG_ENDIAN
*
first
=
high
;
*
second
=
value
;
#else
*
first
=
value
;
*
second
=
high
;
#endif
}
else
if
(
GET_CODE
(
value
)
!=
CONST_DOUBLE
)
{
#if WORDS_BIG_ENDIAN
*
first
=
const0_rtx
;
*
second
=
value
;
#else
*
first
=
value
;
*
second
=
const0_rtx
;
#endif
}
else
if
(
GET_MODE
(
value
)
==
VOIDmode
/* This is the old way we did CONST_DOUBLE integers. */
||
GET_MODE_CLASS
(
GET_MODE
(
value
))
==
MODE_INT
)
{
/* In an integer, the words are defined as most and least significant.
So order them by the target's convention. */
#if WORDS_BIG_ENDIAN
*
first
=
gen_rtx
(
CONST_INT
,
VOIDmode
,
CONST_DOUBLE_HIGH
(
value
));
*
second
=
gen_rtx
(
CONST_INT
,
VOIDmode
,
CONST_DOUBLE_LOW
(
value
));
#else
*
first
=
gen_rtx
(
CONST_INT
,
VOIDmode
,
CONST_DOUBLE_LOW
(
value
));
*
second
=
gen_rtx
(
CONST_INT
,
VOIDmode
,
CONST_DOUBLE_HIGH
(
value
));
#endif
}
else
{
if
((
HOST_FLOAT_FORMAT
!=
TARGET_FLOAT_FORMAT
||
HOST_BITS_PER_INT
!=
BITS_PER_WORD
)
&&
!
flag_pretend_float
)
abort
();
#if defined (HOST_WORDS_BIG_ENDIAN) == WORDS_BIG_ENDIAN
/* Host and target agree => no need to swap. */
*
first
=
gen_rtx
(
CONST_INT
,
VOIDmode
,
CONST_DOUBLE_LOW
(
value
));
*
second
=
gen_rtx
(
CONST_INT
,
VOIDmode
,
CONST_DOUBLE_HIGH
(
value
));
#else
*
second
=
gen_rtx
(
CONST_INT
,
VOIDmode
,
CONST_DOUBLE_LOW
(
value
));
*
first
=
gen_rtx
(
CONST_INT
,
VOIDmode
,
CONST_DOUBLE_HIGH
(
value
));
#endif
}
}
/* Return nonzero if this function has no function calls. */
int
leaf_function_p
()
{
rtx
insn
;
if
(
profile_flag
||
profile_block_flag
)
return
0
;
for
(
insn
=
get_insns
();
insn
;
insn
=
NEXT_INSN
(
insn
))
{
if
(
GET_CODE
(
insn
)
==
CALL_INSN
)
return
0
;
if
(
GET_CODE
(
insn
)
==
INSN
&&
GET_CODE
(
PATTERN
(
insn
))
==
SEQUENCE
&&
GET_CODE
(
XVECEXP
(
PATTERN
(
insn
),
0
,
0
))
==
CALL_INSN
)
return
0
;
}
for
(
insn
=
current_function_epilogue_delay_list
;
insn
;
insn
=
XEXP
(
insn
,
1
))
{
if
(
GET_CODE
(
XEXP
(
insn
,
0
))
==
CALL_INSN
)
return
0
;
if
(
GET_CODE
(
XEXP
(
insn
,
0
))
==
INSN
&&
GET_CODE
(
PATTERN
(
XEXP
(
insn
,
0
)))
==
SEQUENCE
&&
GET_CODE
(
XVECEXP
(
PATTERN
(
XEXP
(
insn
,
0
)),
0
,
0
))
==
CALL_INSN
)
return
0
;
}
return
1
;
}
/* On some machines, a function with no call insns
can run faster if it doesn't create its own register window.
When output, the leaf function should use only the "output"
registers. Ordinarily, the function would be compiled to use
the "input" registers to find its arguments; it is a candidate
for leaf treatment if it uses only the "input" registers.
Leaf function treatment means renumbering so the function
uses the "output" registers instead. */
#ifdef LEAF_REGISTERS
static
char
permitted_reg_in_leaf_functions
[]
=
LEAF_REGISTERS
;
/* Return 1 if this function uses only the registers that can be
safely renumbered. */
int
only_leaf_regs_used
()
{
int
i
;
for
(
i
=
0
;
i
<
FIRST_PSEUDO_REGISTER
;
i
++
)
{
if
(
regs_ever_live
[
i
]
>
permitted_reg_in_leaf_functions
[
i
])
return
0
;
}
return
1
;
}
/* Scan all instructions and renumber all registers into those
available in leaf functions. */
static
void
leaf_renumber_regs
(
first
)
rtx
first
;
{
rtx
insn
;
/* Renumber only the actual patterns.
The reg-notes can contain frame pointer refs,
and renumbering them could crash, and should not be needed. */
for
(
insn
=
first
;
insn
;
insn
=
NEXT_INSN
(
insn
))
if
(
GET_RTX_CLASS
(
GET_CODE
(
insn
))
==
'i'
)
leaf_renumber_regs_insn
(
PATTERN
(
insn
));
for
(
insn
=
current_function_epilogue_delay_list
;
insn
;
insn
=
XEXP
(
insn
,
1
))
if
(
GET_RTX_CLASS
(
GET_CODE
(
XEXP
(
insn
,
0
)))
==
'i'
)
leaf_renumber_regs_insn
(
PATTERN
(
XEXP
(
insn
,
0
)));
}
/* Scan IN_RTX and its subexpressions, and renumber all regs into those
available in leaf functions. */
void
leaf_renumber_regs_insn
(
in_rtx
)
register
rtx
in_rtx
;
{
register
int
i
,
j
;
register
char
*
format_ptr
;
if
(
in_rtx
==
0
)
return
;
/* Renumber all input-registers into output-registers.
renumbered_regs would be 1 for an output-register;
they */
if
(
GET_CODE
(
in_rtx
)
==
REG
)
{
int
newreg
;
/* Don't renumber the same reg twice. */
if
(
in_rtx
->
used
)
return
;
newreg
=
REGNO
(
in_rtx
);
/* Don't try to renumber pseudo regs. It is possible for a pseudo reg
to reach here as part of a REG_NOTE. */
if
(
newreg
>=
FIRST_PSEUDO_REGISTER
)
{
in_rtx
->
used
=
1
;
return
;
}
newreg
=
LEAF_REG_REMAP
(
newreg
);
if
(
newreg
<
0
)
abort
();
regs_ever_live
[
REGNO
(
in_rtx
)]
=
0
;
regs_ever_live
[
newreg
]
=
1
;
REGNO
(
in_rtx
)
=
newreg
;
in_rtx
->
used
=
1
;
}
if
(
GET_RTX_CLASS
(
GET_CODE
(
in_rtx
))
==
'i'
)
{
/* Inside a SEQUENCE, we find insns.
Renumber just the patterns of these insns,
just as we do for the top-level insns. */
leaf_renumber_regs_insn
(
PATTERN
(
in_rtx
));
return
;
}
format_ptr
=
GET_RTX_FORMAT
(
GET_CODE
(
in_rtx
));
for
(
i
=
0
;
i
<
GET_RTX_LENGTH
(
GET_CODE
(
in_rtx
));
i
++
)
switch
(
*
format_ptr
++
)
{
case
'e'
:
leaf_renumber_regs_insn
(
XEXP
(
in_rtx
,
i
));
break
;
case
'E'
:
if
(
NULL
!=
XVEC
(
in_rtx
,
i
))
{
for
(
j
=
0
;
j
<
XVECLEN
(
in_rtx
,
i
);
j
++
)
leaf_renumber_regs_insn
(
XVECEXP
(
in_rtx
,
i
,
j
));
}
break
;
case
'S'
:
case
's'
:
case
'0'
:
case
'i'
:
case
'n'
:
case
'u'
:
break
;
default
:
abort
();
}
}
#endif
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment