Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
R
riscv-gcc-1
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
lvzhengyang
riscv-gcc-1
Commits
9878760c
Commit
9878760c
authored
Feb 09, 1992
by
Richard Kenner
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Initial revision
From-SVN: r296
parent
c98f8742
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
1509 additions
and
0 deletions
+1509
-0
gcc/config/rs6000/rs6000.c
+1509
-0
No files found.
gcc/config/rs6000/rs6000.c
0 → 100644
View file @
9878760c
/* Subroutines used for code generation on IBM RS/6000.
Copyright (C) 1991 Free Software Foundation, Inc.
Contributed by Richard Kenner (kenner@nyu.edu)
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
#include <stdio.h>
#include "config.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "recog.h"
#include "expr.h"
#include "obstack.h"
#define min(A,B) ((A) < (B) ? (A) : (B))
#define max(A,B) ((A) > (B) ? (A) : (B))
/* Names of bss and data sections. These should be unique names for each
compilation unit. */
char
*
rs6000_bss_section_name
;
char
*
rs6000_private_data_section_name
;
char
*
rs6000_read_only_section_name
;
/* Set to non-zero by "fix" operation to indicate that itrunc and
uitrunc must be defined. */
int
rs6000_trunc_used
;
/* Set to non-zero once they have been defined. */
static
int
trunc_defined
;
/* Save information from a "cmpxx" operation until the branch or scc is
emitted. */
rtx
rs6000_compare_op0
,
rs6000_compare_op1
;
int
rs6000_compare_fp_p
;
/* Return non-zero if this function is known to have a null epilogue. */
int
direct_return
()
{
return
(
reload_completed
&&
first_reg_to_save
()
==
32
&&
first_fp_reg_to_save
()
==
64
&&
!
regs_ever_live
[
65
]
&&
!
rs6000_pushes_stack
());
}
/* Returns 1 always. */
int
any_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
return
1
;
}
/* Return 1 if OP is a constant that can fit in a D field. */
int
short_cint_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
return
(
GET_CODE
(
op
)
==
CONST_INT
&&
(
unsigned
)
(
INTVAL
(
op
)
+
0x8000
)
<
0x10000
);
}
/* Similar for a unsigned D field. */
int
u_short_cint_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
return
(
GET_CODE
(
op
)
==
CONST_INT
&&
(
INTVAL
(
op
)
&
0xffff0000
)
==
0
);
}
/* Returns 1 if OP is a register that is not special (i.e., not MQ,
ctr, or lr). */
int
gen_reg_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
return
(
register_operand
(
op
,
mode
)
&&
(
GET_CODE
(
op
)
!=
REG
||
REGNO
(
op
)
>=
67
||
REGNO
(
op
)
<
64
));
}
/* Returns 1 if OP is either a pseudo-register or a register denoting a
CR field. */
int
cc_reg_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
return
(
register_operand
(
op
,
mode
)
&&
(
GET_CODE
(
op
)
!=
REG
||
REGNO
(
op
)
>=
FIRST_PSEUDO_REGISTER
||
CR_REGNO_P
(
REGNO
(
op
))));
}
/* Returns 1 if OP is either a constant integer valid for a D-field or a
non-special register. If a register, it must be in the proper mode unless
MODE is VOIDmode. */
int
reg_or_short_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
if
(
GET_CODE
(
op
)
==
CONST_INT
)
return
short_cint_operand
(
op
,
mode
);
return
gen_reg_operand
(
op
,
mode
);
}
/* Similar, except check if the negation of the constant would be valid for
a D-field. */
int
reg_or_neg_short_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
if
(
GET_CODE
(
op
)
==
CONST_INT
)
return
CONST_OK_FOR_LETTER_P
(
INTVAL
(
op
),
'P'
);
return
gen_reg_operand
(
op
,
mode
);
}
/* Return 1 if the operand is either a register or an integer whose high-order
16 bits are zero. */
int
reg_or_u_short_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
if
(
GET_CODE
(
op
)
==
CONST_INT
&&
(
INTVAL
(
op
)
&
0xffff0000
)
==
0
)
return
1
;
return
gen_reg_operand
(
op
,
mode
);
}
/* Return 1 is the operand is either a non-special register or ANY
constant integer. */
int
reg_or_cint_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
return
GET_CODE
(
op
)
==
CONST_INT
||
gen_reg_operand
(
op
,
mode
);
}
/* Return 1 if the operand is a CONST_DOUBLE and it can be put into a
register with one instruction per word. For SFmode, this means that
the low 16-bits are zero. For DFmode, it means the low 16-bits of
the first word are zero and the high 16 bits of the second word
are zero (usually all bits in the low-order word will be zero).
We only do this if we can safely read CONST_DOUBLE_{LOW,HIGH}. */
int
easy_fp_constant
(
op
,
mode
)
register
rtx
op
;
register
enum
machine_mode
mode
;
{
rtx
low
,
high
;
if
(
GET_CODE
(
op
)
!=
CONST_DOUBLE
||
GET_MODE
(
op
)
!=
mode
||
GET_MODE_CLASS
(
mode
)
!=
MODE_FLOAT
)
return
0
;
high
=
operand_subword
(
op
,
0
,
0
,
mode
);
low
=
operand_subword
(
op
,
1
,
0
,
mode
);
if
(
high
==
0
||
GET_CODE
(
high
)
!=
CONST_INT
||
(
INTVAL
(
high
)
&
0xffff
))
return
0
;
return
(
mode
==
SFmode
||
(
low
!=
0
&&
GET_CODE
(
low
)
==
CONST_INT
&&
(
INTVAL
(
low
)
&
0xffff0000
)
==
0
));
}
/* Return 1 if the operand is either a floating-point register, a pseudo
register, or memory. */
int
fp_reg_or_mem_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
return
(
memory_operand
(
op
,
mode
)
||
(
register_operand
(
op
,
mode
)
&&
(
GET_CODE
(
op
)
!=
REG
||
REGNO
(
op
)
>=
FIRST_PSEUDO_REGISTER
||
FP_REGNO_P
(
REGNO
(
op
)))));
}
/* Return 1 if the operand is either an easy FP constant (see above) or
memory. */
int
mem_or_easy_const_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
return
memory_operand
(
op
,
mode
)
||
easy_fp_constant
(
op
,
mode
);
}
/* Return 1 if the operand is either a non-special register or an item
that can be used as the operand of an SI add insn. */
int
add_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
return
(
reg_or_short_operand
(
op
,
mode
)
||
(
GET_CODE
(
op
)
==
CONST_INT
&&
(
INTVAL
(
op
)
&
0xffff
)
==
0
));
}
/* Return 1 if the operand is a non-special register or a constant that
can be used as the operand of an OR or XOR insn on the RS/6000. */
int
logical_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
return
(
gen_reg_operand
(
op
,
mode
)
||
(
GET_CODE
(
op
)
==
CONST_INT
&&
((
INTVAL
(
op
)
&
0xffff0000
)
==
0
||
(
INTVAL
(
op
)
&
0xffff
)
==
0
)));
}
/* Return 1 if C is a constant that can be encoded in a mask on the
RS/6000. It is if there are no more than two 1->0 or 0->1 transitions.
Reject all ones and all zeros, since these should have been optimized
away and confuse the making of MB and ME. */
int
mask_constant
(
c
)
register
int
c
;
{
int
i
;
int
last_bit_value
;
int
transitions
=
0
;
if
(
c
==
0
||
c
==
~
0
)
return
0
;
last_bit_value
=
c
&
1
;
for
(
i
=
1
;
i
<
32
;
i
++
)
if
(((
c
>>=
1
)
&
1
)
!=
last_bit_value
)
last_bit_value
^=
1
,
transitions
++
;
return
transitions
<=
2
;
}
/* Return 1 if the operand is a constant that is a mask on the RS/6000. */
int
mask_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
return
GET_CODE
(
op
)
==
CONST_INT
&&
mask_constant
(
INTVAL
(
op
));
}
/* Return 1 if the operand is either a non-special register or a
constant that can be used as the operand of an RS/6000 logical AND insn. */
int
and_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
return
(
reg_or_short_operand
(
op
,
mode
)
||
logical_operand
(
op
,
mode
)
||
mask_operand
(
op
,
mode
));
}
/* Return 1 if the operand is a general register or memory operand. */
int
reg_or_mem_operand
(
op
,
mode
)
register
rtx
op
;
register
enum
machine_mode
mode
;
{
return
gen_reg_operand
(
op
,
mode
)
||
memory_operand
(
op
,
mode
);
}
/* Return 1 if the operand, used inside a MEM, is a valid first argument
to CALL. This is a SYMBOL_REF or a pseudo-register, which will be
forced to lr. */
int
call_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
if
(
mode
!=
VOIDmode
&&
GET_MODE
(
op
)
!=
mode
)
return
0
;
return
(
GET_CODE
(
op
)
==
SYMBOL_REF
||
(
GET_CODE
(
op
)
==
REG
&&
REGNO
(
op
)
>=
FIRST_PSEUDO_REGISTER
));
}
/* Return 1 if this operand is a valid input for a move insn. */
int
input_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
if
(
memory_operand
(
op
,
mode
))
return
1
;
/* For floating-point or multi-word mode, only register or memory
is valid. */
if
(
GET_MODE_CLASS
(
mode
)
==
MODE_FLOAT
||
GET_MODE_SIZE
(
mode
)
>
UNITS_PER_WORD
)
return
gen_reg_operand
(
op
,
mode
);
/* For SImode, we can also load from a special register, so any register
is valid. */
if
(
mode
==
SImode
&&
register_operand
(
op
,
mode
))
return
1
;
/* For HImode and QImode, any constant is valid along with any
non-special register. */
if
(
mode
==
HImode
||
mode
==
QImode
)
return
register_operand
(
op
,
mode
)
||
GET_CODE
(
op
)
==
CONST_INT
;
/* Otherwise, we will be doing this SET with an add, so anything valid
for an add will be valid. */
return
add_operand
(
op
,
mode
);
}
/* Return 1 if OP is a load multiple operation. It is known to be a
PARALLEL and the first section will be tested. */
int
load_multiple_operation
(
op
,
mode
)
rtx
op
;
enum
machine_mode
mode
;
{
int
count
=
XVECLEN
(
op
,
0
);
int
dest_regno
;
rtx
src_addr
;
int
i
;
/* Perform a quick check so we don't blow up below. */
if
(
count
<=
1
||
GET_CODE
(
XVECEXP
(
op
,
0
,
0
))
!=
SET
||
GET_CODE
(
SET_DEST
(
XVECEXP
(
op
,
0
,
0
)))
!=
REG
||
GET_CODE
(
SET_SRC
(
XVECEXP
(
op
,
0
,
0
)))
!=
MEM
)
return
0
;
dest_regno
=
REGNO
(
SET_DEST
(
XVECEXP
(
op
,
0
,
0
)));
src_addr
=
XEXP
(
SET_SRC
(
XVECEXP
(
op
,
0
,
0
)),
0
);
for
(
i
=
1
;
i
<
count
;
i
++
)
{
rtx
elt
=
XVECEXP
(
op
,
0
,
i
);
if
(
GET_CODE
(
elt
)
!=
SET
||
GET_CODE
(
SET_DEST
(
elt
))
!=
REG
||
GET_MODE
(
SET_DEST
(
elt
))
!=
SImode
||
REGNO
(
SET_DEST
(
elt
))
!=
dest_regno
+
i
||
GET_CODE
(
SET_SRC
(
elt
))
!=
MEM
||
GET_MODE
(
SET_SRC
(
elt
))
!=
SImode
||
GET_CODE
(
XEXP
(
SET_SRC
(
elt
),
0
))
!=
PLUS
||
!
rtx_equal_p
(
XEXP
(
XEXP
(
SET_SRC
(
elt
),
0
),
0
),
src_addr
)
||
GET_CODE
(
XEXP
(
XEXP
(
SET_SRC
(
elt
),
0
),
1
))
!=
CONST_INT
||
INTVAL
(
XEXP
(
XEXP
(
SET_SRC
(
elt
),
0
),
1
))
!=
i
*
4
)
return
0
;
}
return
1
;
}
/* Similar, but tests for store multiple. Here, the second vector element
is a CLOBBER. It will be tested later. */
int
store_multiple_operation
(
op
,
mode
)
rtx
op
;
enum
machine_mode
mode
;
{
int
count
=
XVECLEN
(
op
,
0
)
-
1
;
int
src_regno
;
rtx
dest_addr
;
int
i
;
/* Perform a quick check so we don't blow up below. */
if
(
count
<=
1
||
GET_CODE
(
XVECEXP
(
op
,
0
,
0
))
!=
SET
||
GET_CODE
(
SET_DEST
(
XVECEXP
(
op
,
0
,
0
)))
!=
MEM
||
GET_CODE
(
SET_SRC
(
XVECEXP
(
op
,
0
,
0
)))
!=
REG
)
return
0
;
src_regno
=
REGNO
(
SET_SRC
(
XVECEXP
(
op
,
0
,
0
)));
dest_addr
=
XEXP
(
SET_DEST
(
XVECEXP
(
op
,
0
,
0
)),
0
);
for
(
i
=
1
;
i
<
count
;
i
++
)
{
rtx
elt
=
XVECEXP
(
op
,
0
,
i
+
1
);
if
(
GET_CODE
(
elt
)
!=
SET
||
GET_CODE
(
SET_SRC
(
elt
))
!=
REG
||
GET_MODE
(
SET_SRC
(
elt
))
!=
SImode
||
REGNO
(
SET_SRC
(
elt
))
!=
src_regno
+
i
||
GET_CODE
(
SET_DEST
(
elt
))
!=
MEM
||
GET_MODE
(
SET_DEST
(
elt
))
!=
SImode
||
GET_CODE
(
XEXP
(
SET_DEST
(
elt
),
0
))
!=
PLUS
||
!
rtx_equal_p
(
XEXP
(
XEXP
(
SET_DEST
(
elt
),
0
),
0
),
dest_addr
)
||
GET_CODE
(
XEXP
(
XEXP
(
SET_DEST
(
elt
),
0
),
1
))
!=
CONST_INT
||
INTVAL
(
XEXP
(
XEXP
(
SET_DEST
(
elt
),
0
),
1
))
!=
i
*
4
)
return
0
;
}
return
1
;
}
/* Return 1 if OP is a comparison operation that is valid for a branch insn.
We only check the opcode against the mode of the CC value here. */
int
branch_comparison_operator
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
enum
rtx_code
code
=
GET_CODE
(
op
);
enum
machine_mode
cc_mode
;
if
(
GET_RTX_CLASS
(
code
)
!=
'<'
)
return
0
;
cc_mode
=
GET_MODE
(
XEXP
(
op
,
0
));
if
(
GET_MODE_CLASS
(
cc_mode
)
!=
MODE_CC
)
return
0
;
if
((
code
==
GT
||
code
==
LT
||
code
==
GE
||
code
==
LE
)
&&
cc_mode
==
CCUNSmode
)
return
0
;
if
((
code
==
GTU
||
code
==
LTU
||
code
==
GEU
||
code
==
LEU
)
&&
(
cc_mode
!=
CCUNSmode
))
return
0
;
return
1
;
}
/* Return 1 if OP is a comparison operation that is valid for an scc insn.
We check the opcode against the mode of the CC value and disallow EQ or
NE comparisons for integers. */
int
scc_comparison_operator
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
enum
rtx_code
code
=
GET_CODE
(
op
);
enum
machine_mode
cc_mode
;
if
(
GET_MODE
(
op
)
!=
mode
&&
mode
!=
VOIDmode
)
return
0
;
if
(
GET_RTX_CLASS
(
code
)
!=
'<'
)
return
0
;
cc_mode
=
GET_MODE
(
XEXP
(
op
,
0
));
if
(
GET_MODE_CLASS
(
cc_mode
)
!=
MODE_CC
)
return
0
;
if
(
code
==
NE
&&
cc_mode
!=
CCFPmode
)
return
0
;
if
((
code
==
GT
||
code
==
LT
||
code
==
GE
||
code
==
LE
)
&&
cc_mode
==
CCUNSmode
)
return
0
;
if
((
code
==
GTU
||
code
==
LTU
||
code
==
GEU
||
code
==
LEU
)
&&
(
cc_mode
!=
CCUNSmode
))
return
0
;
return
1
;
}
/* Return 1 if ANDOP is a mask that has no bits on that are not in the
mask required to convert the result of a rotate insn into a shift
left insn of SHIFTOP bits. Both are known to be CONST_INT. */
int
includes_lshift_p
(
shiftop
,
andop
)
register
rtx
shiftop
;
register
rtx
andop
;
{
int
shift_mask
=
(
~
0
<<
INTVAL
(
shiftop
));
return
(
INTVAL
(
andop
)
&
~
shift_mask
)
==
0
;
}
/* Similar, but for right shift. */
int
includes_rshift_p
(
shiftop
,
andop
)
register
rtx
shiftop
;
register
rtx
andop
;
{
unsigned
shift_mask
=
~
0
;
shift_mask
>>=
INTVAL
(
shiftop
);
return
(
INTVAL
(
andop
)
&
~
shift_mask
)
==
0
;
}
/* Return the register class of a scratch register needed to copy IN into
or out of a register in CLASS in MODE. If it can be done directly,
NO_REGS is returned. */
enum
reg_class
secondary_reload_class
(
class
,
mode
,
in
)
enum
reg_class
class
;
enum
machine_mode
mode
;
rtx
in
;
{
int
regno
=
true_regnum
(
in
);
if
(
regno
>=
FIRST_PSEUDO_REGISTER
)
regno
=
-
1
;
/* We can place anything into GENERAL_REGS and can put GENERAL_REGS
into anything. */
if
(
class
==
GENERAL_REGS
||
class
==
BASE_REGS
||
(
regno
>=
0
&&
INT_REGNO_P
(
regno
)))
return
NO_REGS
;
/* Constants, memory, and FP registers can go into FP registers. */
if
((
regno
==
-
1
||
FP_REGNO_P
(
regno
))
&&
(
class
==
FLOAT_REGS
||
class
==
NON_SPECIAL_REGS
))
return
NO_REGS
;
/* We can copy among the CR registers. */
if
((
class
==
CR_REGS
||
class
==
CR0_REGS
)
&&
regno
>=
0
&&
CR_REGNO_P
(
regno
))
return
NO_REGS
;
/* Otherwise, we need GENERAL_REGS. */
return
GENERAL_REGS
;
}
/* Given a comparison operation, return the bit number in CCR to test. We
know this is a valid comparison.
SCC_P is 1 if this is for an scc. That means that %D will have been
used instead of %C, so the bits will be in different places.
Return -1 if OP isn't a valid compaison for some reason. */
int
ccr_bit
(
op
,
scc_p
)
register
rtx
op
;
int
scc_p
;
{
enum
rtx_code
code
=
GET_CODE
(
op
);
enum
machine_mode
cc_mode
;
int
cc_regnum
;
int
base_bit
;
if
(
GET_RTX_CLASS
(
code
)
!=
'<'
)
return
-
1
;
cc_mode
=
GET_MODE
(
XEXP
(
op
,
0
));
cc_regnum
=
REGNO
(
XEXP
(
op
,
0
));
base_bit
=
4
*
(
cc_regnum
-
68
);
switch
(
code
)
{
case
NE
:
return
scc_p
?
base_bit
+
3
:
base_bit
+
2
;
case
EQ
:
return
base_bit
+
2
;
case
GT
:
case
GTU
:
return
base_bit
+
1
;
case
LT
:
case
LTU
:
return
base_bit
;
case
GE
:
case
GEU
:
/* If floating-point, we will have done a cror to put the bit in the
unordered position. So test that bit. For integer, this is ! LT
unless this is an scc insn. */
return
cc_mode
==
CCFPmode
||
scc_p
?
base_bit
+
3
:
base_bit
;
case
LE
:
case
LEU
:
return
cc_mode
==
CCFPmode
||
scc_p
?
base_bit
+
3
:
base_bit
+
1
;
default
:
abort
();
}
}
/* Print an operand. Recognize special options, documented below. */
void
print_operand
(
file
,
x
,
code
)
FILE
*
file
;
rtx
x
;
char
code
;
{
int
i
;
int
val
;
/* These macros test for integers and extract the low-order bits. */
#define INT_P(X) \
((GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST_DOUBLE) \
&& GET_MODE (X) == VOIDmode)
#define INT_LOWPART(X) \
(GET_CODE (X) == CONST_INT ? INTVAL (X) : CONST_DOUBLE_LOW (X))
switch
(
code
)
{
case
'h'
:
/* If constant, output low-order six bits. Otherwise, write normally. */
if
(
INT_P
(
x
))
fprintf
(
file
,
"%d"
,
INT_LOWPART
(
x
)
&
31
);
else
print_operand
(
file
,
x
,
0
);
return
;
case
'H'
:
/* X must be a constant. Output the low order 6 bits plus 24. */
if
(
!
INT_P
(
x
))
output_operand_lossage
(
"invalid %%H value"
);
fprintf
(
file
,
"%d"
,
(
INT_LOWPART
(
x
)
+
24
)
&
31
);
return
;
case
'b'
:
/* Low-order 16 bits of constant, unsigned. */
if
(
!
INT_P
(
x
))
output_operand_lossage
(
"invalid %%b value"
);
fprintf
(
file
,
"%d"
,
INT_LOWPART
(
x
)
&
0xffff
);
return
;
case
'w'
:
/* If constant, low-order 16 bits of constant, signed. Otherwise, write
normally. */
if
(
INT_P
(
x
))
fprintf
(
file
,
"%d"
,
(
INT_LOWPART
(
x
)
<<
16
)
>>
16
);
else
print_operand
(
file
,
x
,
0
);
return
;
case
'W'
:
/* If constant, low-order 16 bits of constant, unsigned.
Otherwise, write normally. */
if
(
INT_P
(
x
))
fprintf
(
file
,
"%d"
,
INT_LOWPART
(
x
)
&
0xffff
);
else
print_operand
(
file
,
x
,
0
);
return
;
case
'u'
:
/* High-order 16 bits of constant. */
if
(
!
INT_P
(
x
))
output_operand_lossage
(
"invalid %%u value"
);
fprintf
(
file
,
"%d"
,
(
INT_LOWPART
(
x
)
>>
16
)
&
0xffff
);
return
;
case
's'
:
/* Low 5 bits of 32 - value */
if
(
!
INT_P
(
x
))
output_operand_lossage
(
"invalid %%s value"
);
fprintf
(
file
,
"%d"
,
(
32
-
INT_LOWPART
(
x
))
&
31
);
return
;
case
'S'
:
/* Low 5 bits of 31 - value */
if
(
!
INT_P
(
x
))
output_operand_lossage
(
"invalid %%S value"
);
fprintf
(
file
,
"%d"
,
(
31
-
INT_LOWPART
(
x
))
&
31
);
return
;
case
'p'
:
/* X is a CONST_INT that is a power of two. Output the logarithm. */
if
(
!
INT_P
(
x
)
||
(
i
=
exact_log2
(
INT_LOWPART
(
x
)))
<
0
)
output_operand_lossage
(
"invalid %%p value"
);
fprintf
(
file
,
"%d"
,
i
);
return
;
case
'm'
:
/* MB value for a mask operand. */
if
(
!
mask_operand
(
x
,
VOIDmode
))
output_operand_lossage
(
"invalid %%m value"
);
val
=
INT_LOWPART
(
x
);
/* If the high bit is set and the low bit is not, the value is zero.
If the high bit is zero, the value is the first 1 bit we find from
the left. */
if
(
val
<
0
&&
(
val
&
1
)
==
0
)
{
fprintf
(
file
,
"0"
);
return
;
}
else
if
(
val
>=
0
)
{
for
(
i
=
1
;
i
<
32
;
i
++
)
if
((
val
<<=
1
)
<
0
)
break
;
fprintf
(
file
,
"%d"
,
i
);
return
;
}
/* Otherwise, look for the first 0 bit from the right. The result is its
number plus 1. We know the low-order bit is one. */
for
(
i
=
0
;
i
<
32
;
i
++
)
if
(((
val
>>=
1
)
&
1
)
==
0
)
break
;
/* If we ended in ...01, I would be 0. The correct value is 31, so
we want 31 - i. */
fprintf
(
file
,
"%d"
,
31
-
i
);
return
;
case
'M'
:
/* ME value for a mask operand. */
if
(
!
mask_operand
(
x
,
VOIDmode
))
output_operand_lossage
(
"invalid %%m value"
);
val
=
INT_LOWPART
(
x
);
/* If the low bit is set and the high bit is not, the value is 31.
If the low bit is zero, the value is the first 1 bit we find from
the right. */
if
((
val
&
1
)
&&
val
>=
0
)
{
fprintf
(
file
,
"31"
);
return
;
}
else
if
((
val
&
1
)
==
0
)
{
for
(
i
=
0
;
i
<
32
;
i
++
)
if
((
val
>>=
1
)
&
1
)
break
;
/* If we had ....10, I would be 0. The result should be
30, so we need 30 - i. */
fprintf
(
file
,
"%d"
,
30
-
i
);
return
;
}
/* Otherwise, look for the first 0 bit from the left. The result is its
number minus 1. We know the high-order bit is one. */
for
(
i
=
0
;
i
<
32
;
i
++
)
if
((
val
<<=
1
)
>=
0
)
break
;
fprintf
(
file
,
"%d"
,
i
);
return
;
case
'f'
:
/* X is a CR register. Print the shift count needed to move it
to the high-order four bits. */
if
(
GET_CODE
(
x
)
!=
REG
||
!
CR_REGNO_P
(
REGNO
(
x
)))
output_operand_lossage
(
"invalid %%f value"
);
else
fprintf
(
file
,
"%d"
,
4
*
(
REGNO
(
x
)
-
68
));
return
;
case
'F'
:
/* Similar, but print the count for the rotate in the opposite
direction. */
if
(
GET_CODE
(
x
)
!=
REG
||
!
CR_REGNO_P
(
REGNO
(
x
)))
output_operand_lossage
(
"invalid %%F value"
);
else
fprintf
(
file
,
"%d"
,
32
-
4
*
(
REGNO
(
x
)
-
68
));
return
;
case
'R'
:
/* X is a CR register. Print the mask for `mtcrf'. */
if
(
GET_CODE
(
x
)
!=
REG
||
!
CR_REGNO_P
(
REGNO
(
x
)))
output_operand_lossage
(
"invalid %%R value"
);
else
fprintf
(
file
,
"%d"
,
128
>>
(
REGNO
(
x
)
-
68
));
return
;
case
'X'
:
if
(
GET_CODE
(
x
)
==
MEM
&&
LEGITIMATE_INDEXED_ADDRESS_P
(
XEXP
(
x
,
0
)))
fprintf
(
file
,
"x"
);
return
;
case
'U'
:
/* Print `u' is this has an auto-increment or auto-decremement. */
if
(
GET_CODE
(
x
)
==
MEM
&&
(
GET_CODE
(
XEXP
(
x
,
0
))
==
PRE_INC
||
GET_CODE
(
XEXP
(
x
,
0
))
==
PRE_DEC
))
fprintf
(
file
,
"u"
);
return
;
case
'I'
:
/* Print `i' is this is a constant, else nothing. */
if
(
INT_P
(
x
))
fprintf
(
file
,
"i"
);
return
;
case
'N'
:
/* Write the number of elements in the vector times 4. */
if
(
GET_CODE
(
x
)
!=
PARALLEL
)
output_operand_lossage
(
"invalid %%N value"
);
fprintf
(
file
,
"%d"
,
XVECLEN
(
x
,
0
)
*
4
);
return
;
case
'O'
:
/* Similar, but subtract 1 first. */
if
(
GET_CODE
(
x
)
!=
PARALLEL
)
output_operand_lossage
(
"invalid %%N value"
);
fprintf
(
file
,
"%d"
,
(
XVECLEN
(
x
,
0
)
-
1
)
*
4
);
return
;
case
'P'
:
/* The operand must be an indirect memory reference. The result
is the register number. */
if
(
GET_CODE
(
x
)
!=
MEM
||
GET_CODE
(
XEXP
(
x
,
0
))
!=
REG
||
REGNO
(
XEXP
(
x
,
0
))
>=
32
)
output_operand_lossage
(
"invalid %%P value"
);
fprintf
(
file
,
"%d"
,
REGNO
(
XEXP
(
x
,
0
)));
return
;
case
'L'
:
/* Write second word of DImode or DFmode reference. Works on register
or non-indexed memory only. */
if
(
GET_CODE
(
x
)
==
REG
)
fprintf
(
file
,
"%d"
,
REGNO
(
x
)
+
1
);
else
if
(
GET_CODE
(
x
)
==
MEM
)
{
/* Handle possible auto-increment. Since it is pre-increment and
we have already done it, we can just use an offset of four. */
if
(
GET_CODE
(
XEXP
(
x
,
0
))
==
PRE_INC
||
GET_CODE
(
XEXP
(
x
,
0
))
==
PRE_DEC
)
output_address
(
plus_constant
(
XEXP
(
XEXP
(
x
,
0
),
0
),
4
));
else
output_address
(
plus_constant
(
XEXP
(
x
,
0
),
4
));
}
return
;
case
'Y'
:
/* Similar, for third word of TImode */
if
(
GET_CODE
(
x
)
==
REG
)
fprintf
(
file
,
"%d"
,
REGNO
(
x
)
+
2
);
else
if
(
GET_CODE
(
x
)
==
MEM
)
{
if
(
GET_CODE
(
XEXP
(
x
,
0
))
==
PRE_INC
||
GET_CODE
(
XEXP
(
x
,
0
))
==
PRE_DEC
)
output_address
(
plus_constant
(
XEXP
(
XEXP
(
x
,
0
),
0
),
8
));
else
output_address
(
plus_constant
(
XEXP
(
x
,
0
),
8
));
}
return
;
case
'Z'
:
/* Similar, for last word of TImode. */
if
(
GET_CODE
(
x
)
==
REG
)
fprintf
(
file
,
"%d"
,
REGNO
(
x
)
+
3
);
else
if
(
GET_CODE
(
x
)
==
MEM
)
{
if
(
GET_CODE
(
XEXP
(
x
,
0
))
==
PRE_INC
||
GET_CODE
(
XEXP
(
x
,
0
))
==
PRE_DEC
)
output_address
(
plus_constant
(
XEXP
(
XEXP
(
x
,
0
),
0
),
12
));
else
output_address
(
plus_constant
(
XEXP
(
x
,
0
),
12
));
}
return
;
case
't'
:
/* Write 12 if this jump operation will branch if true, 4 otherwise.
All floating-point operations except NE branch true and integer
EQ, LT, GT, LTU and GTU also branch true. */
if
(
GET_RTX_CLASS
(
GET_CODE
(
x
))
!=
'<'
)
output_operand_lossage
(
"invalid %%t value"
);
else
if
((
GET_MODE
(
XEXP
(
x
,
0
))
==
CCFPmode
&&
GET_CODE
(
x
)
!=
NE
)
||
GET_CODE
(
x
)
==
EQ
||
GET_CODE
(
x
)
==
LT
||
GET_CODE
(
x
)
==
GT
||
GET_CODE
(
x
)
==
LTU
||
GET_CODE
(
x
)
==
GTU
)
fprintf
(
file
,
"12"
);
else
fprintf
(
file
,
"4"
);
return
;
case
'T'
:
/* Opposite of 't': write 4 if this jump operation will branch if true,
12 otherwise. */
if
(
GET_RTX_CLASS
(
GET_CODE
(
x
))
!=
'<'
)
output_operand_lossage
(
"invalid %%t value"
);
else
if
((
GET_MODE
(
XEXP
(
x
,
0
))
==
CCFPmode
&&
GET_CODE
(
x
)
!=
NE
)
||
GET_CODE
(
x
)
==
EQ
||
GET_CODE
(
x
)
==
LT
||
GET_CODE
(
x
)
==
GT
||
GET_CODE
(
x
)
==
LTU
||
GET_CODE
(
x
)
==
GTU
)
fprintf
(
file
,
"4"
);
else
fprintf
(
file
,
"12"
);
return
;
case
'j'
:
/* Write the bit number in CCR for jump. */
i
=
ccr_bit
(
x
,
0
);
if
(
i
==
-
1
)
output_operand_lossage
(
"invalid %%j code"
);
else
fprintf
(
file
,
"%d"
,
i
);
return
;
case
'J'
:
/* Similar, but add one for shift count in rlinm for scc and pass
scc flag to `ccr_bit'. */
i
=
ccr_bit
(
x
,
1
);
if
(
i
==
-
1
)
output_operand_lossage
(
"invalid %%J code"
);
else
fprintf
(
file
,
"%d"
,
i
+
1
);
return
;
case
'C'
:
/* This is an optional cror needed for LE or GE floating-point
comparisons. Otherwise write nothing. */
if
((
GET_CODE
(
x
)
==
LE
||
GET_CODE
(
x
)
==
GE
)
&&
GET_MODE
(
XEXP
(
x
,
0
))
==
CCFPmode
)
{
int
base_bit
=
4
*
(
REGNO
(
XEXP
(
x
,
0
))
-
68
);
fprintf
(
file
,
"cror %d,%d,%d
\n\t
"
,
base_bit
+
3
,
base_bit
+
2
,
base_bit
+
(
GET_CODE
(
x
)
==
GE
));
}
return
;
case
'D'
:
/* Similar, except that this is for an scc, so we must be able to
encode the test in a single bit that is one. We do the above
for any LE, GE, GEU, or LEU and invert the bit for NE. */
if
(
GET_CODE
(
x
)
==
LE
||
GET_CODE
(
x
)
==
GE
||
GET_CODE
(
x
)
==
LEU
||
GET_CODE
(
x
)
==
GEU
)
{
int
base_bit
=
4
*
(
REGNO
(
XEXP
(
x
,
0
))
-
68
);
fprintf
(
file
,
"cror %d,%d,%d
\n\t
"
,
base_bit
+
3
,
base_bit
+
2
,
base_bit
+
(
GET_CODE
(
x
)
==
GE
||
GET_CODE
(
x
)
==
GEU
));
}
else
if
(
GET_CODE
(
x
)
==
NE
)
{
int
base_bit
=
4
*
(
REGNO
(
XEXP
(
x
,
0
))
-
68
);
fprintf
(
file
,
"crnor %d,%d,%d
\n\t
"
,
base_bit
+
3
,
base_bit
+
2
,
base_bit
+
2
);
}
return
;
case
'z'
:
/* X is a SYMBOL_REF. Write out the name preceeded by a
period and without any trailing data in backets. Used for function
names. */
if
(
GET_CODE
(
x
)
!=
SYMBOL_REF
)
abort
();
fprintf
(
file
,
"."
);
RS6000_OUTPUT_BASENAME
(
file
,
XSTR
(
x
,
0
));
return
;
case
0
:
if
(
GET_CODE
(
x
)
==
REG
)
fprintf
(
file
,
"%s"
,
reg_names
[
REGNO
(
x
)]);
else
if
(
GET_CODE
(
x
)
==
MEM
)
{
/* We need to handle PRE_INC and PRE_DEC here, since we need to
know the width from the mode. */
if
(
GET_CODE
(
XEXP
(
x
,
0
))
==
PRE_INC
)
fprintf
(
file
,
"%d(%d)"
,
GET_MODE_SIZE
(
GET_MODE
(
x
)),
REGNO
(
XEXP
(
XEXP
(
x
,
0
),
0
)));
else
if
(
GET_CODE
(
XEXP
(
x
,
0
))
==
PRE_DEC
)
fprintf
(
file
,
"%d(%d)"
,
-
GET_MODE_SIZE
(
GET_MODE
(
x
)),
REGNO
(
XEXP
(
XEXP
(
x
,
0
),
0
)));
else
output_address
(
XEXP
(
x
,
0
));
}
else
output_addr_const
(
file
,
x
);
break
;
default
:
output_operand_lossage
(
"invalid %%xn code"
);
}
}
/* Print the address of an operand. */
void
print_operand_address
(
file
,
x
)
FILE
*
file
;
register
rtx
x
;
{
if
(
GET_CODE
(
x
)
==
REG
)
fprintf
(
file
,
"0(%d)"
,
REGNO
(
x
));
else
if
(
GET_CODE
(
x
)
==
SYMBOL_REF
||
GET_CODE
(
x
)
==
CONST
)
{
output_addr_const
(
file
,
x
);
fprintf
(
file
,
"(2)"
);
}
else
if
(
GET_CODE
(
x
)
==
PLUS
&&
GET_CODE
(
XEXP
(
x
,
1
))
==
REG
)
{
if
(
REGNO
(
XEXP
(
x
,
0
))
==
0
)
fprintf
(
file
,
"%d,%d"
,
REGNO
(
XEXP
(
x
,
1
)),
REGNO
(
XEXP
(
x
,
0
)));
else
fprintf
(
file
,
"%d,%d"
,
REGNO
(
XEXP
(
x
,
0
)),
REGNO
(
XEXP
(
x
,
1
)));
}
else
if
(
GET_CODE
(
x
)
==
PLUS
&&
GET_CODE
(
XEXP
(
x
,
1
))
==
CONST_INT
)
fprintf
(
file
,
"%d(%d)"
,
INTVAL
(
XEXP
(
x
,
1
)),
REGNO
(
XEXP
(
x
,
0
)));
else
abort
();
}
/* This page contains routines that are used to determine what the function
prologue and epilogue code will do and write them out. */
/* Return the first fixed-point register that is required to be saved. 32 if
none. */
int
first_reg_to_save
()
{
int
first_reg
;
/* Find lowest numbered live register. */
for
(
first_reg
=
13
;
first_reg
<=
31
;
first_reg
++
)
if
(
regs_ever_live
[
first_reg
])
break
;
return
first_reg
;
}
/* Similar, for FP regs. */
int
first_fp_reg_to_save
()
{
int
first_reg
;
/* Find lowest numbered live register. */
for
(
first_reg
=
14
+
32
;
first_reg
<=
63
;
first_reg
++
)
if
(
regs_ever_live
[
first_reg
])
break
;
return
first_reg
;
}
/* Return 1 if we need to save CR. */
int
must_save_cr
()
{
return
regs_ever_live
[
70
]
||
regs_ever_live
[
71
]
||
regs_ever_live
[
72
];
}
/* Compute the size of the save area in the stack, including the space for
the fixed area. */
int
rs6000_sa_size
()
{
int
size
;
int
i
;
/* We have the six fixed words, plus the size of the register save
areas, rounded to a double-word. */
size
=
6
+
(
32
-
first_reg_to_save
())
+
(
64
-
first_fp_reg_to_save
())
*
2
;
if
(
size
&
1
)
size
++
;
return
size
*
4
;
}
/* Return non-zero if this function makes calls. */
int
rs6000_makes_calls
()
{
rtx
insn
;
for
(
insn
=
get_insns
();
insn
;
insn
=
next_insn
(
insn
))
if
(
GET_CODE
(
insn
)
==
CALL_INSN
)
return
1
;
return
0
;
}
/* Return non-zero if this function needs to push space on the stack. */
int
rs6000_pushes_stack
()
{
int
total_size
=
(
rs6000_sa_size
()
+
get_frame_size
()
+
current_function_outgoing_args_size
);
/* We need to push the stack if a frame pointer is needed (because the
stack might be dynamically adjusted), if we are debugging, if the
total stack size is more than 220 bytes, or if we make calls. */
return
(
frame_pointer_needed
||
write_symbols
!=
NO_DEBUG
||
total_size
>
220
||
rs6000_makes_calls
());
}
/* Write function prologue. */
void
output_prolog
(
file
,
size
)
FILE
*
file
;
int
size
;
{
int
first_reg
=
first_reg_to_save
();
int
must_push
=
rs6000_pushes_stack
();
int
first_fp_reg
=
first_fp_reg_to_save
();
int
basic_size
=
rs6000_sa_size
();
int
total_size
=
(
basic_size
+
size
+
current_function_outgoing_args_size
);
/* Round size to multiple of 8 bytes. */
total_size
=
(
total_size
+
7
)
&
~
7
;
/* Write .extern for any function we will call to save and restore fp
values. */
if
(
first_fp_reg
<
62
)
fprintf
(
file
,
"
\t
.extern ._savef%d
\n\t
.extern ._restf%d
\n
"
,
first_fp_reg
-
32
,
first_fp_reg
-
32
);
/* Write .extern for truncation routines, if needed. */
if
(
rs6000_trunc_used
&&
!
trunc_defined
)
{
fprintf
(
file
,
"
\t
.extern .itrunc
\n\t
.extern .uitrunc
\n
"
);
trunc_defined
=
1
;
}
/* If we have to call a function to save fpr's, we will be using LR. */
if
(
first_fp_reg
<
62
)
regs_ever_live
[
65
]
=
1
;
/* If we use the link register, get it into r0. */
if
(
regs_ever_live
[
65
])
fprintf
(
file
,
"
\t
mflr 0
\n
"
);
/* If we need to save CR, put it into r12. */
if
(
must_save_cr
())
fprintf
(
file
,
"
\t
mfcr 12
\n
"
);
/* Do any required saving of fpr's. If only one or two to save, do it
ourself. Otherwise, call function. */
if
(
first_fp_reg
==
62
)
fprintf
(
file
,
"
\t
stfd 30,-16(1)
\n\t
stfd 31,-8(1)
\n
"
);
else
if
(
first_fp_reg
==
63
)
fprintf
(
file
,
"
\t
stfd 31,-8(1)
\n
"
);
else
if
(
first_fp_reg
!=
64
)
fprintf
(
file
,
"
\t
bl ._savef%d
\n\t
cror 15,15,15
\n
"
,
first_fp_reg
-
32
);
/* Now save gpr's. */
if
(
first_reg
==
31
)
fprintf
(
file
,
"
\t
st 31,%d(1)
\n
"
,
-
4
-
(
64
-
first_fp_reg
)
*
8
);
else
if
(
first_reg
!=
32
)
fprintf
(
file
,
"
\t
stm %d,%d(1)
\n
"
,
first_reg
,
-
(
32
-
first_reg
)
*
4
-
(
64
-
first_fp_reg
)
*
8
);
/* Save lr if we used it. */
if
(
regs_ever_live
[
65
])
fprintf
(
file
,
"
\t
st 0,8(1)
\n
"
);
/* Save CR if we use any that must be preserved. */
if
(
must_save_cr
())
fprintf
(
file
,
"
\t
st 12,4(1)
\n
"
);
/* Update stack and set back pointer. */
if
(
must_push
)
{
if
(
total_size
<
32767
)
fprintf
(
file
,
"
\t
stu 1,%d(1)
\n
"
,
-
total_size
);
else
{
fprintf
(
file
,
"
\t
cau 0,0,%d
\n\t
oril 0,0,%d
\n
"
,
(
total_size
>>
16
)
&
0xffff
,
total_size
&
0xffff
);
fprintf
(
file
,
"
\t
sf 12,0,1
\n\t
st 1,0(12)
\n\t
oril 1,12,0
\n
"
);
}
}
/* Set frame pointer, if needed. */
if
(
frame_pointer_needed
)
fprintf
(
file
,
"
\t
oril 31,1,0
\n
"
);
}
/* Write function epilogue. */
void
output_epilog
(
file
,
size
)
FILE
*
file
;
int
size
;
{
int
first_reg
=
first_reg_to_save
();
int
must_push
=
rs6000_pushes_stack
();
int
first_fp_reg
=
first_fp_reg_to_save
();
int
basic_size
=
rs6000_sa_size
();
int
total_size
=
(
basic_size
+
size
+
current_function_outgoing_args_size
);
rtx
insn
=
get_last_insn
();
/* Round size to multiple of 8 bytes. */
total_size
=
(
total_size
+
7
)
&
~
7
;
/* If the last insn was a BARRIER, we don't have to write anything except
the trace table. */
if
(
GET_CODE
(
insn
)
==
NOTE
)
insn
=
prev_nonnote_insn
(
insn
);
if
(
insn
==
0
||
GET_CODE
(
insn
)
!=
BARRIER
)
{
/* If we have a frame pointer, a call to alloca, or a large stack
frame, restore the old stack pointer using the backchain. Otherwise,
we know what size to update it with. */
if
(
frame_pointer_needed
||
current_function_calls_alloca
||
total_size
>
32767
)
fprintf
(
file
,
"
\t
l 1,0(1)
\n
"
);
else
if
(
must_push
)
fprintf
(
file
,
"
\t
ai 1,1,%d
\n
"
,
total_size
);
/* Get the old lr if we saved it. To speed things up, copy it into
lr here if we don't have to save more than 2 fp regs. */
if
(
regs_ever_live
[
65
])
{
fprintf
(
file
,
"
\t
l 0,8(1)
\n
"
);
if
(
first_fp_reg
>=
62
)
fprintf
(
file
,
"
\t
mtlr 0
\n
"
);
}
/* Get the old cr if we saved it. */
if
(
must_save_cr
())
fprintf
(
file
,
"
\t
l 12,4(1)
\n
"
);
/* Restore gpr's. */
if
(
first_reg
==
31
)
fprintf
(
file
,
"
\t
l 31,%d(1)
\n
"
,
-
4
-
(
64
-
first_fp_reg
)
*
8
);
else
if
(
first_reg
!=
32
)
fprintf
(
file
,
"
\t
lm %d,%d(1)
\n
"
,
first_reg
,
-
(
32
-
first_reg
)
*
4
-
(
64
-
first_fp_reg
)
*
8
);
/* Restore fpr's. */
if
(
first_fp_reg
==
62
)
fprintf
(
file
,
"
\t
lfd 30,-16(1)
\n\t
lfd 31,-8(1)
\n
"
);
else
if
(
first_fp_reg
==
63
)
fprintf
(
file
,
"
\t
lfd 31,-8(1)
\n
"
);
else
if
(
first_fp_reg
!=
64
)
fprintf
(
file
,
"
\t
bl ._restf%d
\n\t
cror 15,15,15
\n
"
,
first_fp_reg
-
32
);
/* If we used the link register, get it from r0 if we haven't
already. */
if
(
regs_ever_live
[
65
]
&&
first_fp_reg
<
62
)
fprintf
(
file
,
"
\t
mtlr 0
\n
"
);
/* If we saved cr, restore it here. Just set cr2, cr3, and cr4. */
if
(
must_save_cr
())
fprintf
(
file
,
"
\t
mtcrf 0x38,12
\n
"
);
fprintf
(
file
,
"
\t
br
\n
"
);
}
}
/* Output a TOC entry. We derive the entry name from what is
being written. */
void
output_toc
(
file
,
x
,
labelno
)
FILE
*
file
;
rtx
x
;
int
labelno
;
{
char
buf
[
256
];
char
*
name
=
buf
;
rtx
base
=
x
;
int
offset
=
0
;
ASM_OUTPUT_INTERNAL_LABEL
(
file
,
"LC"
,
labelno
);
/* Handle FP constants specially. */
if
(
GET_CODE
(
x
)
==
CONST_DOUBLE
&&
GET_MODE
(
x
)
==
DFmode
&&
TARGET_FLOAT_FORMAT
==
HOST_FLOAT_FORMAT
&&
BITS_PER_WORD
==
HOST_BITS_PER_INT
&&
TARGET_FP_IN_TOC
)
{
fprintf
(
file
,
"
\t
.tc FD_%x_%x[TC],%d,%d
\n
"
,
CONST_DOUBLE_LOW
(
x
),
CONST_DOUBLE_HIGH
(
x
),
CONST_DOUBLE_LOW
(
x
),
CONST_DOUBLE_HIGH
(
x
));
return
;
}
else
if
(
GET_CODE
(
x
)
==
CONST_DOUBLE
&&
GET_MODE
(
x
)
==
SFmode
&&
TARGET_FP_IN_TOC
)
{
rtx
val
=
operand_subword
(
x
,
0
,
0
,
SFmode
);
if
(
val
==
0
||
GET_CODE
(
val
)
!=
CONST_INT
)
abort
();
fprintf
(
file
,
"
\t
.tc FS_%x[TC],%d
\n
"
,
INTVAL
(
val
),
INTVAL
(
val
));
return
;
}
if
(
GET_CODE
(
x
)
==
CONST
)
{
base
=
XEXP
(
XEXP
(
x
,
0
),
0
);
offset
=
INTVAL
(
XEXP
(
XEXP
(
x
,
0
),
1
));
}
if
(
GET_CODE
(
base
)
==
SYMBOL_REF
)
name
=
XSTR
(
base
,
0
);
else
if
(
GET_CODE
(
base
)
==
LABEL_REF
)
ASM_GENERATE_INTERNAL_LABEL
(
buf
,
"L"
,
CODE_LABEL_NUMBER
(
XEXP
(
base
,
0
)));
else
if
(
GET_CODE
(
base
)
==
CODE_LABEL
)
ASM_GENERATE_INTERNAL_LABEL
(
buf
,
"L"
,
CODE_LABEL_NUMBER
(
base
));
else
abort
();
fprintf
(
file
,
"
\t
.tc "
);
RS6000_OUTPUT_BASENAME
(
file
,
name
);
if
(
offset
<
0
)
fprintf
(
file
,
"P.N.%d"
,
-
offset
);
else
if
(
offset
)
fprintf
(
file
,
".P.%d"
,
offset
);
fprintf
(
file
,
"[TC],"
);
output_addr_const
(
file
,
x
);
fprintf
(
file
,
"
\n
"
);
}
/* Output an assembler pseudo-op to write an ASCII string of N characters
starting at P to FILE.
On the RS/6000, we have to do this using the .byte operation and
write out special characters outside the quoted string.
Also, the assembler is broken; very long strings are truncated,
so we must artificially break them up early. */
void
output_ascii
(
file
,
p
,
n
)
FILE
*
file
;
char
*
p
;
int
n
;
{
char
c
;
int
i
,
count_string
;
char
*
for_string
=
"
\t
.byte
\"
"
;
char
*
for_decimal
=
"
\t
.byte "
;
char
*
to_close
=
NULL
;
count_string
=
0
;
for
(
i
=
0
;
i
<
n
;
i
++
)
{
c
=
*
p
++
;
if
(
c
>=
' '
&&
c
<
0177
)
{
if
(
for_string
)
fputs
(
for_string
,
file
);
putc
(
c
,
file
);
/* Write two quotes to get one. */
if
(
c
==
'"'
)
{
putc
(
c
,
file
);
++
count_string
;
}
for_string
=
NULL
;
for_decimal
=
"
\"\n\t
.byte "
;
to_close
=
"
\"\n
"
;
++
count_string
;
if
(
count_string
>=
512
)
{
fputs
(
to_close
,
file
);
for_string
=
"
\t
.byte
\"
"
;
for_decimal
=
"
\t
.byte "
;
to_close
=
NULL
;
count_string
=
0
;
}
}
else
{
if
(
for_decimal
)
fputs
(
for_decimal
,
file
);
fprintf
(
file
,
"%d"
,
c
);
for_string
=
"
\n\t
.byte
\"
"
;
for_decimal
=
", "
;
to_close
=
"
\n
"
;
count_string
=
0
;
}
}
/* Now close the string if we have written one. Then end the line. */
if
(
to_close
)
fprintf
(
file
,
to_close
);
}
/* Generate a unique section name for FILENAME for a section type
represented by SECTION_DESC. Output goes into BUF.
SECTION_DESC can be any string, as long as it is different for each
possible section type.
We name the section in the same manner as xlc. The name begins with an
underscore followed by the filename (after stripping any leading directory
names) with the period replaced by the string SECTION_DESC. If FILENAME
does not contain a period, SECTION_DESC is appended at the end of the
name. */
void
rs6000_gen_section_name
(
buf
,
filename
,
section_desc
)
char
**
buf
;
char
*
filename
;
char
*
section_desc
;
{
char
*
q
,
*
after_last_slash
;
char
*
p
;
int
len
;
int
used_desc
=
0
;
after_last_slash
=
filename
;
for
(
q
=
filename
;
*
q
;
q
++
)
if
(
*
q
==
'/'
)
after_last_slash
=
q
+
1
;
len
=
strlen
(
filename
)
+
strlen
(
section_desc
)
+
2
;
*
buf
=
(
char
*
)
permalloc
(
len
);
p
=
*
buf
;
*
p
++
=
'_'
;
for
(
q
=
after_last_slash
;
*
q
;
q
++
)
{
if
(
*
q
==
'.'
)
{
strcpy
(
p
,
section_desc
);
p
+=
strlen
(
section_desc
);
used_desc
=
1
;
}
else
if
(
isalnum
(
*
q
))
*
p
++
=
*
q
;
}
if
(
!
used_desc
)
strcpy
(
p
,
section_desc
);
else
*
p
=
'\0'
;
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment