Commit 8fd52141 by Kito Cheng Committed by Chung-Ju Wu

[NDS32] Implement n8 pipeline.

gcc/
	* config.gcc (nds32*-*-*): Check that n6/n8/s8 are valid to --with-cpu.
	* config/nds32/nds32-n8.md: New file.
	* config/nds32/nds32-opts.h (nds32_cpu_type): Add CPU_N6 and CPU_N8.
	* config/nds32/nds32-pipelines-auxiliary.c: Implementation for n8
	pipeline.
	* config/nds32/nds32-protos.h: More declarations for n8 pipeline.
	* config/nds32/nds32-utils.c: More implementations for n8 pipeline.
	* config/nds32/nds32.md (pipeline_model): Add n8.
	* config/nds32/nds32.opt (mcpu): Support n8 pipeline cpus.
	* config/nds32/pipelines.md: Include n8 settings.

Co-Authored-By: Chung-Ju Wu <jasonwucj@gmail.com>

From-SVN: r259219
parent b99353a2
2018-04-08 Kito Cheng <kito.cheng@gmail.com>
Chung-Ju Wu <jasonwucj@gmail.com>
* config.gcc (nds32*-*-*): Check that n6/n8/s8 are valid to --with-cpu.
* config/nds32/nds32-n8.md: New file.
* config/nds32/nds32-opts.h (nds32_cpu_type): Add CPU_N6 and CPU_N8.
* config/nds32/nds32-pipelines-auxiliary.c: Implementation for n8
pipeline.
* config/nds32/nds32-protos.h: More declarations for n8 pipeline.
* config/nds32/nds32-utils.c: More implementations for n8 pipeline.
* config/nds32/nds32.md (pipeline_model): Add n8.
* config/nds32/nds32.opt (mcpu): Support n8 pipeline cpus.
* config/nds32/pipelines.md: Include n8 settings.
2018-04-08 Kito Cheng <kito.cheng@gmail.com>
Chung-Ju Wu <jasonwucj@gmail.com>
* config.gcc (nds32*): Add nds32-utils.o into extra_objs.
* config/nds32/nds32-n9-2r1w.md: New file.
* config/nds32/nds32-n9-3r2w.md: New file.
......
......@@ -4315,11 +4315,11 @@ case "${target}" in
"")
with_cpu=n9
;;
n9)
n6 | n8 | s8 | n9)
# OK
;;
*)
echo "Cannot accept --with-cpu=$with_cpu, available values are: n9" 1>&2
echo "Cannot accept --with-cpu=$with_cpu, available values are: n6 n8 s8 n9" 1>&2
exit 1
;;
esac
......
;; Pipeline descriptions of Andes NDS32 cpu for GNU compiler
;; Copyright (C) 2012-2018 Free Software Foundation, Inc.
;; Contributed by Andes Technology Corporation.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published
;; by the Free Software Foundation; either version 3, or (at your
;; option) any later version.
;;
;; GCC is distributed in the hope that it will be useful, but WITHOUT
;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
;; License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
;; ------------------------------------------------------------------------
;; Define N8 pipeline settings.
;; ------------------------------------------------------------------------
(define_automaton "nds32_n8_machine")
;; ------------------------------------------------------------------------
;; Pipeline Stages
;; ------------------------------------------------------------------------
;; IF - Instruction Fetch
;; II - Instruction Issue / Address Generation
;; EX - Instruction Execution
;; EXD - Psuedo Stage / Load Data Completion
(define_cpu_unit "n8_ii" "nds32_n8_machine")
(define_cpu_unit "n8_ex" "nds32_n8_machine")
(define_insn_reservation "nds_n8_unknown" 1
(and (eq_attr "type" "unknown")
(eq_attr "pipeline_model" "n8"))
"n8_ii, n8_ex")
(define_insn_reservation "nds_n8_misc" 1
(and (eq_attr "type" "misc")
(eq_attr "pipeline_model" "n8"))
"n8_ii, n8_ex")
(define_insn_reservation "nds_n8_alu" 1
(and (eq_attr "type" "alu")
(eq_attr "pipeline_model" "n8"))
"n8_ii, n8_ex")
(define_insn_reservation "nds_n8_load" 1
(and (match_test "nds32::load_single_p (insn)")
(eq_attr "pipeline_model" "n8"))
"n8_ii, n8_ex")
(define_insn_reservation "nds_n8_store" 1
(and (match_test "nds32::store_single_p (insn)")
(eq_attr "pipeline_model" "n8"))
"n8_ii, n8_ex")
(define_insn_reservation "nds_n8_load_multiple_1" 1
(and (and (eq_attr "type" "load_multiple")
(eq_attr "combo" "1"))
(eq_attr "pipeline_model" "n8"))
"n8_ii, n8_ex")
(define_insn_reservation "nds_n8_load_multiple_2" 1
(and (ior (and (eq_attr "type" "load_multiple")
(eq_attr "combo" "2"))
(match_test "nds32::load_double_p (insn)"))
(eq_attr "pipeline_model" "n8"))
"n8_ii, n8_ii+n8_ex, n8_ex")
(define_insn_reservation "nds_n8_load_multiple_3" 1
(and (and (eq_attr "type" "load_multiple")
(eq_attr "combo" "3"))
(eq_attr "pipeline_model" "n8"))
"n8_ii, (n8_ii+n8_ex)*2, n8_ex")
(define_insn_reservation "nds_n8_load_multiple_4" 1
(and (and (eq_attr "type" "load_multiple")
(eq_attr "combo" "4"))
(eq_attr "pipeline_model" "n8"))
"n8_ii, (n8_ii+n8_ex)*3, n8_ex")
(define_insn_reservation "nds_n8_load_multiple_5" 1
(and (and (eq_attr "type" "load_multiple")
(eq_attr "combo" "5"))
(eq_attr "pipeline_model" "n8"))
"n8_ii, (n8_ii+n8_ex)*4, n8_ex")
(define_insn_reservation "nds_n8_load_multiple_6" 1
(and (and (eq_attr "type" "load_multiple")
(eq_attr "combo" "6"))
(eq_attr "pipeline_model" "n8"))
"n8_ii, (n8_ii+n8_ex)*5, n8_ex")
(define_insn_reservation "nds_n8_load_multiple_7" 1
(and (and (eq_attr "type" "load_multiple")
(eq_attr "combo" "7"))
(eq_attr "pipeline_model" "n8"))
"n8_ii, (n8_ii+n8_ex)*6, n8_ex")
(define_insn_reservation "nds_n8_load_multiple_8" 1
(and (and (eq_attr "type" "load_multiple")
(eq_attr "combo" "8"))
(eq_attr "pipeline_model" "n8"))
"n8_ii, (n8_ii+n8_ex)*7, n8_ex")
(define_insn_reservation "nds_n8_load_multiple_12" 1
(and (and (eq_attr "type" "load_multiple")
(eq_attr "combo" "12"))
(eq_attr "pipeline_model" "n8"))
"n8_ii, (n8_ii+n8_ex)*11, n8_ex")
(define_insn_reservation "nds_n8_store_multiple_1" 1
(and (and (eq_attr "type" "store_multiple")
(eq_attr "combo" "1"))
(eq_attr "pipeline_model" "n8"))
"n8_ii, n8_ex")
(define_insn_reservation "nds_n8_store_multiple_2" 1
(and (ior (and (eq_attr "type" "store_multiple")
(eq_attr "combo" "2"))
(match_test "nds32::store_double_p (insn)"))
(eq_attr "pipeline_model" "n8"))
"n8_ii, n8_ii+n8_ex, n8_ex")
(define_insn_reservation "nds_n8_store_multiple_3" 1
(and (and (eq_attr "type" "store_multiple")
(eq_attr "combo" "3"))
(eq_attr "pipeline_model" "n8"))
"n8_ii, (n8_ii+n8_ex)*2, n8_ex")
(define_insn_reservation "nds_n8_store_multiple_4" 1
(and (and (eq_attr "type" "store_multiple")
(eq_attr "combo" "4"))
(eq_attr "pipeline_model" "n8"))
"n8_ii, (n8_ii+n8_ex)*3, n8_ex")
(define_insn_reservation "nds_n8_store_multiple_5" 1
(and (and (eq_attr "type" "store_multiple")
(eq_attr "combo" "5"))
(eq_attr "pipeline_model" "n8"))
"n8_ii, (n8_ii+n8_ex)*4, n8_ex")
(define_insn_reservation "nds_n8_store_multiple_6" 1
(and (and (eq_attr "type" "store_multiple")
(eq_attr "combo" "6"))
(eq_attr "pipeline_model" "n8"))
"n8_ii, (n8_ii+n8_ex)*5, n8_ex")
(define_insn_reservation "nds_n8_store_multiple_7" 1
(and (and (eq_attr "type" "store_multiple")
(eq_attr "combo" "7"))
(eq_attr "pipeline_model" "n8"))
"n8_ii, (n8_ii+n8_ex)*6, n8_ex")
(define_insn_reservation "nds_n8_store_multiple_8" 1
(and (and (eq_attr "type" "store_multiple")
(eq_attr "combo" "8"))
(eq_attr "pipeline_model" "n8"))
"n8_ii, (n8_ii+n8_ex)*7, n8_ex")
(define_insn_reservation "nds_n8_store_multiple_12" 1
(and (and (eq_attr "type" "store_multiple")
(eq_attr "combo" "12"))
(eq_attr "pipeline_model" "n8"))
"n8_ii, (n8_ii+n8_ex)*11, n8_ex")
(define_insn_reservation "nds_n8_mul_fast" 1
(and (match_test "nds32_mul_config != MUL_TYPE_SLOW")
(and (eq_attr "type" "mul")
(eq_attr "pipeline_model" "n8")))
"n8_ii, n8_ex")
(define_insn_reservation "nds_n8_mul_slow" 1
(and (match_test "nds32_mul_config == MUL_TYPE_SLOW")
(and (eq_attr "type" "mul")
(eq_attr "pipeline_model" "n8")))
"n8_ii, n8_ex*16")
(define_insn_reservation "nds_n8_mac_fast" 1
(and (match_test "nds32_mul_config != MUL_TYPE_SLOW")
(and (eq_attr "type" "mac")
(eq_attr "pipeline_model" "n8")))
"n8_ii, n8_ii+n8_ex, n8_ex")
(define_insn_reservation "nds_n8_mac_slow" 1
(and (match_test "nds32_mul_config == MUL_TYPE_SLOW")
(and (eq_attr "type" "mac")
(eq_attr "pipeline_model" "n8")))
"n8_ii, (n8_ii+n8_ex)*16, n8_ex")
(define_insn_reservation "nds_n8_div" 1
(and (eq_attr "type" "div")
(eq_attr "pipeline_model" "n8"))
"n8_ii, (n8_ii+n8_ex)*36, n8_ex")
(define_insn_reservation "nds_n8_branch" 1
(and (eq_attr "type" "branch")
(eq_attr "pipeline_model" "n8"))
"n8_ii, n8_ex")
;; ------------------------------------------------------------------------
;; Comment Notations and Bypass Rules
;; ------------------------------------------------------------------------
;; Producers (LHS)
;; LD_!bi
;; Load data from the memory (without updating the base register) and
;; produce the loaded data. The result is ready at EXD.
;; LD_bi
;; Load data from the memory (with updating the base register) and
;; produce the loaded data. The result is ready at EXD. Because the
;; register port is 2R1W, two micro-operations are required in order
;; to write two registers. The base register is updated by the second
;; micro-operation and the result is ready at EX.
;; LMW(N, M)
;; There are N micro-operations within an instruction that loads multiple
;; words. The result produced by the M-th micro-operation is sent to
;; consumers. The result is ready at EXD. If the base register should be
;; updated, an extra micro-operation is inserted to the sequence, and the
;; result is ready at EX.
;; ADDR_OUT
;; Most load/store instructions can produce an address output if updating
;; the base register is required. The result is ready at EX, which is
;; produced by ALU.
;; ALU, MUL, MAC
;; The result is ready at EX.
;; MOVD44_O
;; A double-word move instruction needs to write registers twice. Because
;; the register port is 2R1W, two micro-operations are required. The even
;; number reigster is updated by the first one, and the odd number register
;; is updated by the second one. Each of the results is ready at EX.
;; The letter 'O' stands for odd.
;; DIV_Rs
;; A division instruction saves the quotient result to Rt and saves the
;; remainder result to Rs. It requires two micro-operations because the
;; register port is 2R1W. The first micro-operation writes to Rt, and
;; the seconde one writes to Rs. Each of the results is ready at EX.
;;
;; Consumers (RHS)
;; ALU, MUL, DIV
;; Require operands at EX.
;; MOVD44_E
;; The letter 'E' stands for even, which is accessed by the first micro-
;; operation and a movd44 instruction. The operand is required at EX.
;; MAC_RaRb
;; A MAC instruction is separated into two micro-operations. The first
;; micro-operation does the multiplication, which requires operands Ra
;; and Rb at EX. The second micro-options does the accumulation, which
;; requires the operand Rt at EX.
;; ADDR_IN_MOP(N)
;; Because the reigster port is 2R1W, some load/store instructions are
;; separated into many micro-operations. N denotes the address input is
;; required by the N-th micro-operation. Such operand is required at II.
;; ST_bi
;; A post-increment store instruction requires its data at EX.
;; ST_!bi_RI
;; A store instruction with an immediate offset requires its data at EX.
;; If the offset field is a register (ST_!bi_RR), the instruction will be
;; separated into two micro-operations, and the second one requires the
;; input operand at EX in order to store it to the memory.
;; SMW(N, M)
;; There are N micro-operations within an instruction that stores multiple
;; words. Each M-th micro-operation requires its data at EX. If the base
;; register should be updated, an extra micro-operation is inserted to the
;; sequence.
;; BR_COND
;; If a branch instruction is conditional, its input data is required at EX.
;; LD_!bi -> ADDR_IN_MOP(1)
(define_bypass 3
"nds_n8_load"
"nds_n8_branch,\
nds_n8_load, nds_n8_store,\
nds_n8_load_multiple_1,nds_n8_load_multiple_2, nds_n8_load_multiple_3,\
nds_n8_load_multiple_4,nds_n8_load_multiple_5, nds_n8_load_multiple_6,\
nds_n8_load_multiple_7,nds_n8_load_multiple_8, nds_n8_load_multiple_12,\
nds_n8_store_multiple_1,nds_n8_store_multiple_2, nds_n8_store_multiple_3,\
nds_n8_store_multiple_4,nds_n8_store_multiple_5, nds_n8_store_multiple_6,\
nds_n8_store_multiple_7,nds_n8_store_multiple_8, nds_n8_store_multiple_12"
"nds32_n8_load_to_ii_p"
)
;; LMW(N, N) -> ADDR_IN_MOP(1)
(define_bypass 3
"nds_n8_load_multiple_1,nds_n8_load_multiple_2, nds_n8_load_multiple_3,\
nds_n8_load_multiple_4,nds_n8_load_multiple_5, nds_n8_load_multiple_6,\
nds_n8_load_multiple_7,nds_n8_load_multiple_8, nds_n8_load_multiple_12"
"nds_n8_branch,\
nds_n8_load, nds_n8_store,\
nds_n8_load_multiple_1,nds_n8_load_multiple_2, nds_n8_load_multiple_3,\
nds_n8_load_multiple_4,nds_n8_load_multiple_5, nds_n8_load_multiple_6,\
nds_n8_load_multiple_7,nds_n8_load_multiple_8, nds_n8_load_multiple_12,\
nds_n8_store_multiple_1,nds_n8_store_multiple_2, nds_n8_store_multiple_3,\
nds_n8_store_multiple_4,nds_n8_store_multiple_5, nds_n8_store_multiple_6,\
nds_n8_store_multiple_7,nds_n8_store_multiple_8, nds_n8_store_multiple_12"
"nds32_n8_last_load_to_ii_p"
)
;; LMW(N, N - 1) -> ADDR_IN_MOP(1)
(define_bypass 2
"nds_n8_load_multiple_1,nds_n8_load_multiple_2, nds_n8_load_multiple_3,\
nds_n8_load_multiple_4,nds_n8_load_multiple_5, nds_n8_load_multiple_6,\
nds_n8_load_multiple_7,nds_n8_load_multiple_8, nds_n8_load_multiple_12"
"nds_n8_branch,\
nds_n8_load, nds_n8_store,\
nds_n8_load_multiple_1,nds_n8_load_multiple_2, nds_n8_load_multiple_3,\
nds_n8_load_multiple_4,nds_n8_load_multiple_5, nds_n8_load_multiple_6,\
nds_n8_load_multiple_7,nds_n8_load_multiple_8, nds_n8_load_multiple_12,\
nds_n8_store_multiple_1,nds_n8_store_multiple_2, nds_n8_store_multiple_3,\
nds_n8_store_multiple_4,nds_n8_store_multiple_5, nds_n8_store_multiple_6,\
nds_n8_store_multiple_7,nds_n8_store_multiple_8, nds_n8_store_multiple_12"
"nds32_n8_last_load_two_to_ii_p"
)
;; LD_bi -> ADDR_IN_MOP(1)
(define_bypass 2
"nds_n8_load"
"nds_n8_branch,\
nds_n8_load, nds_n8_store,\
nds_n8_load_multiple_1,nds_n8_load_multiple_2, nds_n8_load_multiple_3,\
nds_n8_load_multiple_4,nds_n8_load_multiple_5, nds_n8_load_multiple_6,\
nds_n8_load_multiple_7,nds_n8_load_multiple_8, nds_n8_load_multiple_12,\
nds_n8_store_multiple_1,nds_n8_store_multiple_2, nds_n8_store_multiple_3,\
nds_n8_store_multiple_4,nds_n8_store_multiple_5, nds_n8_store_multiple_6,\
nds_n8_store_multiple_7,nds_n8_store_multiple_8, nds_n8_store_multiple_12"
"nds32_n8_load_bi_to_ii_p"
)
;; LD_!bi -> ALU, MOVD44_E, MUL, MAC_RaRb, DIV, BR_COND, ST_bi, ST_!bi_RI, SMW(N, 1)
(define_bypass 2
"nds_n8_load"
"nds_n8_alu,
nds_n8_mul_fast, nds_n8_mul_slow,\
nds_n8_mac_fast, nds_n8_mac_slow,\
nds_n8_div,\
nds_n8_branch,\
nds_n8_store,\
nds_n8_store_multiple_1,nds_n8_store_multiple_2, nds_n8_store_multiple_3,\
nds_n8_store_multiple_4,nds_n8_store_multiple_5, nds_n8_store_multiple_6,\
nds_n8_store_multiple_7,nds_n8_store_multiple_8, nds_n8_store_multiple_12"
"nds32_n8_load_to_ex_p"
)
;; ALU, MOVD44_O, MUL, MAC, DIV_Rs, LD_bi, ADDR_OUT -> ADDR_IN_MOP(1)
(define_bypass 2
"nds_n8_alu,
nds_n8_mul_fast, nds_n8_mul_slow,\
nds_n8_mac_fast, nds_n8_mac_slow,\
nds_n8_div,\
nds_n8_load, nds_n8_store,\
nds_n8_load_multiple_1,nds_n8_load_multiple_2, nds_n8_load_multiple_3,\
nds_n8_load_multiple_4,nds_n8_load_multiple_5, nds_n8_load_multiple_6,\
nds_n8_load_multiple_7,nds_n8_load_multiple_8, nds_n8_load_multiple_12,\
nds_n8_store_multiple_1,nds_n8_store_multiple_2, nds_n8_store_multiple_3,\
nds_n8_store_multiple_4,nds_n8_store_multiple_5, nds_n8_store_multiple_6,\
nds_n8_store_multiple_7,nds_n8_store_multiple_8, nds_n8_store_multiple_12"
"nds_n8_branch,\
nds_n8_load, nds_n8_store,\
nds_n8_load_multiple_1,nds_n8_load_multiple_2, nds_n8_load_multiple_3,\
nds_n8_load_multiple_4,nds_n8_load_multiple_5, nds_n8_load_multiple_6,\
nds_n8_load_multiple_7,nds_n8_load_multiple_8, nds_n8_load_multiple_12,\
nds_n8_store_multiple_1,nds_n8_store_multiple_2, nds_n8_store_multiple_3,\
nds_n8_store_multiple_4,nds_n8_store_multiple_5, nds_n8_store_multiple_6,\
nds_n8_store_multiple_7,nds_n8_store_multiple_8, nds_n8_store_multiple_12"
"nds32_n8_ex_to_ii_p"
)
;; LMW(N, N) -> ALU, MOVD44_E, MUL, MAC_RaRb, DIV, BR_COND, ST_bi, ST_!bi_RI, SMW(N, 1)
(define_bypass 2
"nds_n8_load_multiple_1,nds_n8_load_multiple_2, nds_n8_load_multiple_3,\
nds_n8_load_multiple_4,nds_n8_load_multiple_5, nds_n8_load_multiple_6,\
nds_n8_load_multiple_7,nds_n8_load_multiple_8, nds_n8_load_multiple_12"
"nds_n8_alu,
nds_n8_mul_fast, nds_n8_mul_slow,\
nds_n8_mac_fast, nds_n8_mac_slow,\
nds_n8_div,\
nds_n8_branch,\
nds_n8_store,\
nds_n8_store_multiple_1,nds_n8_store_multiple_2, nds_n8_store_multiple_3,\
nds_n8_store_multiple_4,nds_n8_store_multiple_5, nds_n8_store_multiple_6,\
nds_n8_store_multiple_7,nds_n8_store_multiple_8, nds_n8_store_multiple_12"
"nds32_n8_last_load_to_ex_p"
)
......@@ -37,6 +37,8 @@ enum nds32_arch_type
/* The various ANDES CPU. */
enum nds32_cpu_type
{
CPU_N6,
CPU_N8,
CPU_N9,
CPU_SIMPLE
};
......
......@@ -343,6 +343,108 @@ movd44_even_dep_p (rtx_insn *insn, rtx def_reg)
using namespace nds32;
using namespace nds32::scheduling;
namespace { // anonymous namespace
/* Check the dependency between the producer defining DEF_REG and CONSUMER
requiring input operand at AG (II). */
bool
n8_consumed_by_addr_in_p (rtx_insn *consumer, rtx def_reg)
{
rtx use_rtx;
switch (get_attr_type (consumer))
{
case TYPE_BRANCH:
use_rtx = extract_branch_target_rtx (consumer);
break;
case TYPE_LOAD:
if (load_single_p (consumer))
use_rtx = extract_mem_rtx (consumer);
else
use_rtx = extract_base_reg (consumer);
break;
case TYPE_STORE:
if (store_single_p (consumer)
&& (!post_update_insn_p (consumer)
|| immed_offset_p (extract_mem_rtx (consumer))))
use_rtx = extract_mem_rtx (consumer);
else
use_rtx = extract_base_reg (consumer);
break;
case TYPE_LOAD_MULTIPLE:
case TYPE_STORE_MULTIPLE:
use_rtx = extract_base_reg (consumer);
break;
default:
gcc_unreachable ();
}
return reg_overlap_p (def_reg, use_rtx);
}
/* Check the dependency between the producer defining DEF_REG and CONSUMER
requiring input operand at EX. */
bool
n8_consumed_by_ex_p (rtx_insn *consumer, rtx def_reg)
{
rtx use_rtx;
switch (get_attr_type (consumer))
{
case TYPE_ALU:
if (movd44_even_dep_p (consumer, def_reg))
return true;
use_rtx = SET_SRC (PATTERN (consumer));
break;
case TYPE_MUL:
use_rtx = SET_SRC (PATTERN (consumer));
break;
case TYPE_MAC:
use_rtx = extract_mac_non_acc_rtx (consumer);
break;
/* Some special instructions, divmodsi4 and udivmodsi4, produce two
results, the quotient and the remainder. It requires two micro-
operations in order to write two registers. We have to check the
dependency from the producer to the first micro-operation. */
case TYPE_DIV:
if (INSN_CODE (consumer) == CODE_FOR_divmodsi4
|| INSN_CODE (consumer) == CODE_FOR_udivmodsi4)
use_rtx = SET_SRC (parallel_element (consumer, 0));
else
use_rtx = SET_SRC (PATTERN (consumer));
break;
case TYPE_BRANCH:
use_rtx = extract_branch_condition_rtx (consumer);
break;
case TYPE_STORE:
/* exclude ST_!bi_RR */
if (!post_update_insn_p (consumer)
&& !immed_offset_p (extract_mem_rtx (consumer)))
return false;
use_rtx = SET_SRC (PATTERN (consumer));
break;
case TYPE_STORE_MULTIPLE:
use_rtx = extract_nth_access_rtx (consumer, 0);
break;
default:
gcc_unreachable ();
}
return reg_overlap_p (def_reg, use_rtx);
}
/* Check the dependency between the producer defining DEF_REG and CONSUMER
requiring input operand at EX. */
bool
......@@ -514,6 +616,152 @@ n9_3r2w_consumed_by_ex_dep_p (rtx_insn *consumer, rtx def_reg)
return false;
}
} // anonymous namespace
/* ------------------------------------------------------------------------ */
/* Guard functions for N8 core. */
bool
nds32_n8_load_to_ii_p (rtx_insn *producer, rtx_insn *consumer)
{
if (post_update_insn_p (producer))
return false;
rtx def_reg = SET_DEST (PATTERN (producer));
return n8_consumed_by_addr_in_p (consumer, def_reg);
}
bool
nds32_n8_load_bi_to_ii_p (rtx_insn *producer, rtx_insn *consumer)
{
if (!post_update_insn_p (producer))
return false;
rtx def_reg = SET_DEST (PATTERN (producer));
return n8_consumed_by_addr_in_p (consumer, def_reg);
}
bool
nds32_n8_load_to_ex_p (rtx_insn *producer, rtx_insn *consumer)
{
if (post_update_insn_p (producer))
return false;
rtx def_reg = SET_DEST (PATTERN (producer));
return n8_consumed_by_ex_p (consumer, def_reg);
}
bool
nds32_n8_ex_to_ii_p (rtx_insn *producer, rtx_insn *consumer)
{
rtx def_reg;
switch (get_attr_type (producer))
{
case TYPE_ALU:
if (movd44_insn_p (producer))
def_reg = extract_movd44_odd_reg (producer);
else
def_reg = SET_DEST (PATTERN (producer));
break;
case TYPE_MUL:
case TYPE_MAC:
def_reg = SET_DEST (PATTERN (producer));
break;
case TYPE_DIV:
if (INSN_CODE (producer) == CODE_FOR_divmodsi4
|| INSN_CODE (producer) == CODE_FOR_udivmodsi4)
def_reg = SET_DEST (parallel_element (producer, 1));
else
def_reg = SET_DEST (PATTERN (producer));
break;
case TYPE_LOAD:
case TYPE_STORE:
case TYPE_LOAD_MULTIPLE:
case TYPE_STORE_MULTIPLE:
if (!post_update_insn_p (producer))
return false;
def_reg = extract_base_reg (producer);
break;
default:
gcc_unreachable ();
}
return n8_consumed_by_addr_in_p (consumer, def_reg);
}
bool
nds32_n8_last_load_to_ii_p (rtx_insn *producer, rtx_insn *consumer)
{
/* If PRODUCER is a post-update LMW insn, the last micro-operation updates
the base register and the result is ready in EX stage, so we don't need
to handle that case in this guard function and the corresponding bypass
rule. */
if (post_update_insn_p (producer))
return false;
rtx last_def_reg = extract_nth_access_reg (producer, -1);
if (last_def_reg == NULL_RTX)
return false;
gcc_assert (REG_P (last_def_reg) || GET_CODE (last_def_reg) == SUBREG);
return n8_consumed_by_addr_in_p (consumer, last_def_reg);
}
bool
nds32_n8_last_load_two_to_ii_p (rtx_insn *producer, rtx_insn *consumer)
{
int index = -2;
/* If PRODUCER is a post-update insn, there is an additional one micro-
operation inserted in the end, so the last memory access operation should
be handled by this guard function and the corresponding bypass rule. */
if (post_update_insn_p (producer))
index = -1;
rtx last_two_def_reg = extract_nth_access_reg (producer, index);
if (last_two_def_reg == NULL_RTX)
return false;
gcc_assert (REG_P (last_two_def_reg)
|| GET_CODE (last_two_def_reg) == SUBREG);
return n8_consumed_by_addr_in_p (consumer, last_two_def_reg);
}
bool
nds32_n8_last_load_to_ex_p (rtx_insn *producer, rtx_insn *consumer)
{
/* If PRODUCER is a post-update LMW insn, the last micro-operation updates
the base register and the result is ready in EX stage, so we don't need
to handle that case in this guard function and the corresponding bypass
rule. */
if (post_update_insn_p (producer))
return false;
rtx last_def_reg = extract_nth_access_reg (producer, -1);
if (last_def_reg == NULL_RTX)
return false;
gcc_assert (REG_P (last_def_reg) || GET_CODE (last_def_reg) == SUBREG);
return n8_consumed_by_ex_p (consumer, last_def_reg);
}
/* Guard functions for N9 cores. */
/* Check dependencies from MM to EX. */
......
......@@ -99,6 +99,14 @@ extern bool nds32_valid_multiple_load_store_p (rtx, bool, bool);
/* Auxiliary functions for guard function checking in pipelines.md. */
extern bool nds32_n8_load_to_ii_p (rtx_insn *, rtx_insn *);
extern bool nds32_n8_load_bi_to_ii_p (rtx_insn *, rtx_insn *);
extern bool nds32_n8_load_to_ex_p (rtx_insn *, rtx_insn *);
extern bool nds32_n8_ex_to_ii_p (rtx_insn *, rtx_insn *);
extern bool nds32_n8_last_load_to_ii_p (rtx_insn *, rtx_insn *);
extern bool nds32_n8_last_load_two_to_ii_p (rtx_insn *, rtx_insn *);
extern bool nds32_n8_last_load_to_ex_p (rtx_insn *, rtx_insn *);
extern bool nds32_n9_2r1w_mm_to_ex_p (rtx_insn *, rtx_insn *);
extern bool nds32_n9_3r2w_mm_to_ex_p (rtx_insn *, rtx_insn *);
extern bool nds32_n9_last_load_to_ex_p (rtx_insn *, rtx_insn *);
......@@ -251,8 +259,12 @@ rtx extract_base_reg (rtx_insn *);
rtx extract_shift_reg (rtx);
bool movd44_insn_p (rtx_insn *);
rtx extract_movd44_odd_reg (rtx_insn *);
rtx extract_mac_non_acc_rtx (rtx_insn *);
rtx extract_branch_target_rtx (rtx_insn *);
rtx extract_branch_condition_rtx (rtx_insn *);
} // namespace nds32
/* Functions for create nds32 specific optimization pass. */
......
......@@ -377,6 +377,33 @@ movd44_insn_p (rtx_insn *insn)
return false;
}
/* Extract the second result (odd reg) of a movd44 insn. */
rtx
extract_movd44_odd_reg (rtx_insn *insn)
{
gcc_assert (movd44_insn_p (insn));
rtx def_reg = SET_DEST (PATTERN (insn));
machine_mode mode;
gcc_assert (REG_P (def_reg) || GET_CODE (def_reg) == SUBREG);
switch (GET_MODE (def_reg))
{
case E_DImode:
mode = SImode;
break;
case E_DFmode:
mode = SFmode;
break;
default:
gcc_unreachable ();
}
return gen_highpart (mode, def_reg);
}
/* Extract the rtx representing non-accumulation operands of a MAC insn. */
rtx
extract_mac_non_acc_rtx (rtx_insn *insn)
......@@ -396,4 +423,89 @@ extract_mac_non_acc_rtx (rtx_insn *insn)
}
}
/* Extract the rtx representing the branch target to help recognize
data hazards. */
rtx
extract_branch_target_rtx (rtx_insn *insn)
{
gcc_assert (CALL_P (insn) || JUMP_P (insn));
rtx body = PATTERN (insn);
if (GET_CODE (body) == SET)
{
/* RTXs in IF_THEN_ELSE are branch conditions. */
if (GET_CODE (SET_SRC (body)) == IF_THEN_ELSE)
return NULL_RTX;
return SET_SRC (body);
}
if (GET_CODE (body) == CALL)
return XEXP (body, 0);
if (GET_CODE (body) == PARALLEL)
{
rtx first_rtx = parallel_element (body, 0);
if (GET_CODE (first_rtx) == SET)
return SET_SRC (first_rtx);
if (GET_CODE (first_rtx) == CALL)
return XEXP (first_rtx, 0);
}
/* Handle special cases of bltzal, bgezal and jralnez. */
if (GET_CODE (body) == COND_EXEC)
{
rtx addr_rtx = XEXP (body, 1);
if (GET_CODE (addr_rtx) == SET)
return SET_SRC (addr_rtx);
if (GET_CODE (addr_rtx) == PARALLEL)
{
rtx first_rtx = parallel_element (addr_rtx, 0);
if (GET_CODE (first_rtx) == SET)
{
rtx call_rtx = SET_SRC (first_rtx);
gcc_assert (GET_CODE (call_rtx) == CALL);
return XEXP (call_rtx, 0);
}
if (GET_CODE (first_rtx) == CALL)
return XEXP (first_rtx, 0);
}
}
gcc_unreachable ();
}
/* Extract the rtx representing the branch condition to help recognize
data hazards. */
rtx
extract_branch_condition_rtx (rtx_insn *insn)
{
gcc_assert (CALL_P (insn) || JUMP_P (insn));
rtx body = PATTERN (insn);
if (GET_CODE (body) == SET)
{
rtx if_then_else_rtx = SET_SRC (body);
if (GET_CODE (if_then_else_rtx) == IF_THEN_ELSE)
return XEXP (if_then_else_rtx, 0);
return NULL_RTX;
}
if (GET_CODE (body) == COND_EXEC)
return XEXP (body, 0);
return NULL_RTX;
}
} // namespace nds32
......@@ -56,9 +56,10 @@
;; ------------------------------------------------------------------------
;; CPU pipeline model.
(define_attr "pipeline_model" "n9,simple"
(define_attr "pipeline_model" "n8,n9,simple"
(const
(cond [(match_test "nds32_cpu_option == CPU_N9") (const_string "n9")
(cond [(match_test "nds32_cpu_option == CPU_N6 || nds32_cpu_option == CPU_N8") (const_string "n8")
(match_test "nds32_cpu_option == CPU_N9") (const_string "n9")
(match_test "nds32_cpu_option == CPU_SIMPLE") (const_string "simple")]
(const_string "n9"))))
......
......@@ -175,6 +175,30 @@ Name(nds32_cpu_type) Type(enum nds32_cpu_type)
Known cpu types (for use with the -mcpu= option):
EnumValue
Enum(nds32_cpu_type) String(n6) Value(CPU_N6)
EnumValue
Enum(nds32_cpu_type) String(n650) Value(CPU_N6)
EnumValue
Enum(nds32_cpu_type) String(n8) Value(CPU_N8)
EnumValue
Enum(nds32_cpu_type) String(n801) Value(CPU_N8)
EnumValue
Enum(nds32_cpu_type) String(sn8) Value(CPU_N8)
EnumValue
Enum(nds32_cpu_type) String(sn801) Value(CPU_N8)
EnumValue
Enum(nds32_cpu_type) String(s8) Value(CPU_N8)
EnumValue
Enum(nds32_cpu_type) String(s801) Value(CPU_N8)
EnumValue
Enum(nds32_cpu_type) String(n9) Value(CPU_N9)
EnumValue
......
......@@ -18,6 +18,10 @@
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
;; ------------------------------------------------------------------------
;; Include N8 pipeline settings.
;; ------------------------------------------------------------------------
(include "nds32-n8.md")
;; ------------------------------------------------------------------------
;; Include N9/N10 pipeline settings.
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment