Commit 88115c2a by Arnaud Charlet

[multiple changes]

2011-12-21  Robert Dewar  <dewar@adacore.com>

	* exp_ch5.adb, sem_dim.adb, sem_dim.ads, sem_ch12.adb, prj-conf.adb:
	Minor reformatting.

2011-12-21  Claire Dross  <dross@adacore.com>

	* a-cfdlli.ads (Constant_Indexing, Default_Iterator,
	Iterator_Element): Added to type List.               
	(Not_No_Element, List_Iterator_Interfaces, Iterate,
	Constant_Reference_Type, Constant_Reference): New.
	* a-cfdlli.adb (type Iterator, Finalize, First, Last, Next,
	Previous, Iterate, Not_No_Element, Constant_Reference): New.

From-SVN: r182576
parent 6c57023b
2011-12-21 Robert Dewar <dewar@adacore.com>
* exp_ch5.adb, sem_dim.adb, sem_dim.ads, sem_ch12.adb, prj-conf.adb:
Minor reformatting.
2011-12-21 Claire Dross <dross@adacore.com>
* a-cfdlli.ads (Constant_Indexing, Default_Iterator,
Iterator_Element): Added to type List.
(Not_No_Element, List_Iterator_Interfaces, Iterate,
Constant_Reference_Type, Constant_Reference): New.
* a-cfdlli.adb (type Iterator, Finalize, First, Last, Next,
Previous, Iterate, Not_No_Element, Constant_Reference): New.
2011-12-21 Gary Dismukes <dismukes@adacore.com>
* gnat_ugn.texi: Minor reformatting.
......
......@@ -26,9 +26,30 @@
------------------------------------------------------------------------------
with System; use type System.Address;
with Ada.Finalization;
package body Ada.Containers.Formal_Doubly_Linked_Lists is
type Iterator is new Ada.Finalization.Limited_Controlled and
List_Iterator_Interfaces.Reversible_Iterator with
record
Container : List_Access;
Node : Count_Type;
end record;
overriding procedure Finalize (Object : in out Iterator);
overriding function First (Object : Iterator) return Cursor;
overriding function Last (Object : Iterator) return Cursor;
overriding function Next
(Object : Iterator;
Position : Cursor) return Cursor;
overriding function Previous
(Object : Iterator;
Position : Cursor) return Cursor;
-----------------------
-- Local Subprograms --
-----------------------
......@@ -423,6 +444,21 @@ package body Ada.Containers.Formal_Doubly_Linked_Lists is
return Container.Nodes (Position.Node).Element;
end Element;
--------------
-- Finalize --
--------------
procedure Finalize (Object : in out Iterator) is
begin
if Object.Container /= null then
declare
B : Natural renames Object.Container.all.Busy;
begin
B := B - 1;
end;
end if;
end Finalize;
----------
-- Find --
----------
......@@ -474,6 +510,28 @@ package body Ada.Containers.Formal_Doubly_Linked_Lists is
return (Node => Container.First);
end First;
function First (Object : Iterator) return Cursor is
begin
-- The value of the iterator object's Node component influences the
-- behavior of the First (and Last) selector function.
-- When the Node component is null, this means the iterator object was
-- constructed without a start expression, in which case the (forward)
-- iteration starts from the (logical) beginning of the entire sequence
-- of items (corresponding to Container.First, for a forward iterator).
-- Otherwise, this is iteration over a partial sequence of items. When
-- the Node component is non-null, the iterator object was constructed
-- with a start expression, that specifies the position from which the
-- (forward) partial iteration begins.
if Object.Node = 0 then
return First (Object.Container.all);
else
return (Node => Object.Node);
end if;
end First;
-------------------
-- First_Element --
-------------------
......@@ -915,6 +973,71 @@ package body Ada.Containers.Formal_Doubly_Linked_Lists is
B := B - 1;
end Iterate;
function Iterate (Container : List)
return List_Iterator_Interfaces.Reversible_Iterator'Class
is
B : Natural renames Container'Unrestricted_Access.all.Busy;
begin
-- The value of the Node component influences the behavior of the First
-- and Last selector functions of the iterator object. When the Node
-- component is null (as is the case here), this means the iterator
-- object was constructed without a start expression. This is a
-- complete iterator, meaning that the iteration starts from the
-- (logical) beginning of the sequence of items.
-- Note: For a forward iterator, Container.First is the beginning, and
-- for a reverse iterator, Container.Last is the beginning.
return It : constant Iterator :=
Iterator'(Ada.Finalization.Limited_Controlled with
Container => Container'Unrestricted_Access,
Node => 0)
do
B := B + 1;
end return;
end Iterate;
function Iterate (Container : List; Start : Cursor)
return List_Iterator_Interfaces.Reversible_Iterator'Class
is
B : Natural renames Container'Unrestricted_Access.all.Busy;
begin
-- It was formerly the case that when Start = No_Element, the partial
-- iterator was defined to behave the same as for a complete iterator,
-- and iterate over the entire sequence of items. However, those
-- semantics were unintuitive and arguably error-prone (it is too easy
-- to accidentally create an endless loop), and so they were changed,
-- per the ARG meeting in Denver on 2011/11. However, there was no
-- consensus about what positive meaning this corner case should have,
-- and so it was decided to simply raise an exception. This does imply,
-- however, that it is not possible to use a partial iterator to specify
-- an empty sequence of items.
if not Has_Element (Container, Start) then
raise Constraint_Error with
"Start position for iterator is not a valid cursor";
end if;
-- The value of the Node component influences the behavior of the First
-- and Last selector functions of the iterator object. When the Node
-- component is non-null (as is the case here), it means that this
-- is a partial iteration, over a subset of the complete sequence of
-- items. The iterator object was constructed with a start expression,
-- indicating the position from which the iteration begins. Note that
-- the start position has the same value irrespective of whether this
-- is a forward or reverse iteration.
return It : constant Iterator :=
Iterator'(Ada.Finalization.Limited_Controlled with
Container => Container'Unrestricted_Access,
Node => Start.Node)
do
B := B + 1;
end return;
end Iterate;
----------
-- Last --
----------
......@@ -927,6 +1050,28 @@ package body Ada.Containers.Formal_Doubly_Linked_Lists is
return (Node => Container.Last);
end Last;
function Last (Object : Iterator) return Cursor is
begin
-- The value of the iterator object's Node component influences the
-- behavior of the Last (and First) selector function.
-- When the Node component is null, this means the iterator object was
-- constructed without a start expression, in which case the (reverse)
-- iteration starts from the (logical) beginning of the entire sequence
-- (corresponding to Container.Last, for a reverse iterator).
-- Otherwise, this is iteration over a partial sequence of items. When
-- the Node component is non-null, the iterator object was constructed
-- with a start expression, that specifies the position from which the
-- (reverse) partial iteration begins.
if Object.Node = 0 then
return Last (Object.Container.all);
else
return (Node => Object.Node);
end if;
end Last;
------------------
-- Last_Element --
------------------
......@@ -1085,6 +1230,24 @@ package body Ada.Containers.Formal_Doubly_Linked_Lists is
return (Node => Container.Nodes (Position.Node).Next);
end Next;
function Next
(Object : Iterator;
Position : Cursor) return Cursor
is
begin
return Next (Object.Container.all, Position);
end Next;
--------------------
-- Not_No_Element --
--------------------
function Not_No_Element (Position : Cursor) return Boolean is
begin
return Position /= No_Element;
end Not_No_Element;
-------------
-- Prepend --
-------------
......@@ -1120,6 +1283,15 @@ package body Ada.Containers.Formal_Doubly_Linked_Lists is
return (Node => Container.Nodes (Position.Node).Prev);
end Previous;
function Previous
(Object : Iterator;
Position : Cursor) return Cursor
is
begin
return Previous (Object.Container.all, Position);
end Previous;
-------------------
-- Query_Element --
-------------------
......@@ -1196,6 +1368,21 @@ package body Ada.Containers.Formal_Doubly_Linked_Lists is
raise Program_Error with "attempt to stream list cursor";
end Read;
---------------
-- Reference --
---------------
function Constant_Reference (Container : List; Position : Cursor)
return Constant_Reference_Type is
begin
if not Has_Element (Container, Position) then
raise Constraint_Error with "Position cursor has no element";
end if;
return (Element => Container.Nodes (Position.Node).Element'Access);
end Constant_Reference;
---------------------
-- Replace_Element --
---------------------
......
......@@ -53,6 +53,7 @@
private with Ada.Streams;
with Ada.Containers;
with Ada.Iterator_Interfaces;
generic
type Element_Type is private;
......@@ -63,7 +64,10 @@ generic
package Ada.Containers.Formal_Doubly_Linked_Lists is
pragma Pure;
type List (Capacity : Count_Type) is tagged private;
type List (Capacity : Count_Type) is tagged private with
Constant_Indexing => Constant_Reference,
Default_Iterator => Iterate,
Iterator_Element => Element_Type;
-- pragma Preelaborable_Initialization (List);
type Cursor is private;
......@@ -73,6 +77,17 @@ package Ada.Containers.Formal_Doubly_Linked_Lists is
No_Element : constant Cursor;
function Not_No_Element (Position : Cursor) return Boolean;
package List_Iterator_Interfaces is new
Ada.Iterator_Interfaces (Cursor => Cursor, Has_Element => Not_No_Element);
function Iterate (Container : List; Start : Cursor)
return List_Iterator_Interfaces.Reversible_Iterator'Class;
function Iterate (Container : List)
return List_Iterator_Interfaces.Reversible_Iterator'Class;
function "=" (Left, Right : List) return Boolean;
function Length (Container : List) return Count_Type;
......@@ -225,6 +240,15 @@ package Ada.Containers.Formal_Doubly_Linked_Lists is
end Generic_Sorting;
type Constant_Reference_Type
(Element : not null access constant Element_Type) is private
with
Implicit_Dereference => Element;
function Constant_Reference
(Container : List; Position : Cursor) -- SHOULD BE ALIASED
return Constant_Reference_Type;
function Strict_Equal (Left, Right : List) return Boolean;
-- Strict_Equal returns True if the containers are physically equal, i.e.
-- they are structurally equal (function "=" returns True) and that they
......@@ -244,8 +268,9 @@ private
type Node_Type is record
Prev : Count_Type'Base := -1;
Next : Count_Type;
Element : Element_Type;
Element : aliased Element_Type;
end record;
function "=" (L, R : Node_Type) return Boolean is abstract;
type Node_Array is array (Count_Type range <>) of Node_Type;
......@@ -275,6 +300,9 @@ private
for List'Write use Write;
type List_Access is access all List;
for List_Access'Storage_Size use 0;
type Cursor is record
Node : Count_Type := 0;
end record;
......@@ -295,4 +323,7 @@ private
No_Element : constant Cursor := (Node => 0);
type Constant_Reference_Type
(Element : not null access constant Element_Type) is null record;
end Ada.Containers.Formal_Doubly_Linked_Lists;
......@@ -3003,7 +3003,7 @@ package body Exp_Ch5 is
-- Cursor : Cursor_type := First (Iter);
-- while Has_Element (Iter) loop
-- declare
-- -- the block is added when Element_Type is controlled
-- -- The block is added when Element_Type is controlled
-- Obj : Pack.Element_Type := Element (Cursor);
-- -- for the "of" loop form
......@@ -3052,7 +3052,7 @@ package body Exp_Ch5 is
-- The "of" case uses an internally generated cursor whose type
-- is found in the container package. The domain of iteration
-- is expanded into a call to the default Iterator function, but
-- this expansion does not take place in a quantifier expressions
-- this expansion does not take place in quantified expressions
-- that are analyzed with expansion disabled, and in that case the
-- type of the iterator must be obtained from the aspect.
......@@ -3103,8 +3103,8 @@ package body Exp_Ch5 is
New_List (Container_Arg)));
Analyze_And_Resolve (Name (I_Spec));
-- Find cursor type in proper iterator package, which
-- is an instantiation of Iterator_Interfaces.
-- Find cursor type in proper iterator package, which is an
-- instantiation of Iterator_Interfaces.
Ent := First_Entity (Pack);
while Present (Ent) loop
......@@ -3218,7 +3218,7 @@ package body Exp_Ch5 is
-- while Iterator.Has_Element loop
-- <Stats>
-- end loop;
--
-- Has_Element is the second actual in the iterator package
New_Loop :=
......@@ -3236,12 +3236,8 @@ package body Exp_Ch5 is
Statements => Stats,
End_Label => Empty);
-- Make_Selected_Component (Loc,
-- Prefix => New_Reference_To (Cursor, Loc),
-- Selector_Name =>
-- Make_Identifier (Loc, Name_Has_Element))),
-- Create the declarations for Iterator and cursor and insert then
-- Create the declarations for Iterator and cursor and insert them
-- before the source loop. Given that the domain of iteration is
-- already an entity, the iterator is just a renaming of that
-- entity. Possible optimization ???
......
......@@ -1157,8 +1157,8 @@ package body Prj.Conf is
if Path_FD /= Invalid_FD then
declare
Temp_Dir : constant String :=
Containing_Directory
(Get_Name_String (Path_Name));
Containing_Directory
(Get_Name_String (Path_Name));
begin
GNAT.OS_Lib.Close (Path_FD);
Args (3) :=
......
......@@ -3795,10 +3795,10 @@ package body Sem_Ch12 is
then
declare
Assoc : constant Node_Id := First (Generic_Associations (N));
begin
if not Has_Dimension_System
(Etype (Explicit_Generic_Actual_Parameter (Assoc))) then
(Etype (Explicit_Generic_Actual_Parameter (Assoc)))
then
Error_Msg_N ("type with a dimension system expected", Assoc);
end if;
end;
......
......@@ -217,57 +217,53 @@ package body Sem_Dim is
-----------------------
procedure Analyze_Dimension_Assignment_Statement (N : Node_Id);
-- Subroutine of Analyze_Dimension for assignment statement
-- Check that the dimensions of the left-hand side and the right-hand side
-- of N match.
-- Subroutine of Analyze_Dimension for assignment statement. Check that the
-- dimensions of the left-hand side and the right-hand side of N match.
procedure Analyze_Dimension_Binary_Op (N : Node_Id);
-- Subroutine of Analyze_Dimension for binary operators
-- Check the dimensions of the right and the left operand permit the
-- operation. Then, evaluate the resulting dimensions for each binary
-- operator.
-- Subroutine of Analyze_Dimension for binary operators. Check the
-- dimensions of the right and the left operand permit the operation.
-- Then, evaluate the resulting dimensions for each binary operator.
procedure Analyze_Dimension_Component_Declaration (N : Node_Id);
-- Subroutine of Analyze_Dimension for component declaration
-- Check that the dimensions of the type of N and of the expression match.
-- Subroutine of Analyze_Dimension for component declaration. Check that
-- the dimensions of the type of N and of the expression match.
procedure Analyze_Dimension_Extended_Return_Statement (N : Node_Id);
-- Subroutine of Analyze_Dimension for extended return statement
-- Check that the dimensions of the returned type and of the returned
-- object match.
-- Subroutine of Analyze_Dimension for extended return statement. Check
-- that the dimensions of the returned type and of the returned object
-- match.
procedure Analyze_Dimension_Function_Call (N : Node_Id);
-- Subroutine of Analyze_Dimension for function call
-- General case: propagate the dimensions from the returned type to N.
-- Elementary function case (Ada.Numerics.Generic_Elementary_Functions):
-- If N is a Sqrt call, then evaluate the resulting dimensions as half the
-- dimensions of the parameter. Otherwise, verify that each parameters are
-- dimensionless.
-- Subroutine of Analyze_Dimension for function call. General case:
-- propagate the dimensions from the returned type to N. Elementary
-- function case (Ada.Numerics.Generic_Elementary_Functions): If N
-- is a Sqrt call, then evaluate the resulting dimensions as half the
-- dimensions of the parameter. Otherwise, verify that each parameters
-- are dimensionless.
procedure Analyze_Dimension_Has_Etype (N : Node_Id);
-- Subroutine of Analyze_Dimension for a subset of N_Has_Etype denoted by
-- the list below:
-- N_Attribute_Reference
-- N_Identifier
-- N_Indexed_Component
-- N_Qualified_Expression
-- N_Selected_Component
-- N_Slice
-- N_Type_Conversion
-- N_Unchecked_Type_Conversion
-- N_Attribute_Reference
-- N_Identifier
-- N_Indexed_Component
-- N_Qualified_Expression
-- N_Selected_Component
-- N_Slice
-- N_Type_Conversion
-- N_Unchecked_Type_Conversion
procedure Analyze_Dimension_Object_Declaration (N : Node_Id);
-- Subroutine of Analyze_Dimension for object declaration
-- Check that the dimensions of the object type and the dimensions of the
-- expression (if expression is present) match.
-- Note that when the expression is a literal, no warning is returned.
-- This special case allows object declaration such as:
-- m : constant Length := 1.0;
-- Subroutine of Analyze_Dimension for object declaration. Check that
-- the dimensions of the object type and the dimensions of the expression
-- (if expression is present) match. Note that when the expression is
-- a literal, no warning is returned. This special case allows object
-- declaration such as: m : constant Length := 1.0;
procedure Analyze_Dimension_Object_Renaming_Declaration (N : Node_Id);
-- Subroutine of Analyze_Dimension for object renaming declaration
-- Check the dimensions of the type and of the renamed object name of N
-- match.
-- Subroutine of Analyze_Dimension for object renaming declaration. Check
-- the dimensions of the type and of the renamed object name of N match.
procedure Analyze_Dimension_Simple_Return_Statement (N : Node_Id);
-- Subroutine of Analyze_Dimension for simple return statement
......@@ -275,18 +271,18 @@ package body Sem_Dim is
-- expression match.
procedure Analyze_Dimension_Subtype_Declaration (N : Node_Id);
-- Subroutine of Analyze_Dimension for subtype declaration
-- Propagate the dimensions from the parent type to the identifier of N.
-- Note that if both the identifier and the parent type of N are not
-- dimensionless, return an error message.
-- Subroutine of Analyze_Dimension for subtype declaration. Propagate the
-- dimensions from the parent type to the identifier of N. Note that if
-- both the identifier and the parent type of N are not dimensionless,
-- return an error message.
procedure Analyze_Dimension_Unary_Op (N : Node_Id);
-- Subroutine of Analyze_Dimension for unary operators
-- For Plus, Minus and Abs operators, propagate the dimensions from the
-- operand to N.
-- Subroutine of Analyze_Dimension for unary operators. For Plus, Minus and
-- Abs operators, propagate the dimensions from the operand to N.
function Create_Rational_From (Expr : Node_Id;
Complain : Boolean) return Rational;
function Create_Rational_From
(Expr : Node_Id;
Complain : Boolean) return Rational;
-- Given an arbitrary expression Expr, return a valid rational if Expr can
-- be interpreted as a rational. Otherwise return No_Rational and also an
-- error message if Complain is set to True.
......@@ -301,14 +297,13 @@ package body Sem_Dim is
procedure Eval_Op_Expon_With_Rational_Exponent
(N : Node_Id;
Exponent_Value : Rational);
-- Evaluate the Expon if the exponent is a rational and the operand has a
-- dimension.
-- Evaluate the exponent it is a rational and the operand has a dimension
function Exists (Dim : Dimension_Type) return Boolean;
-- Determine whether Dim does not denote the null dimension
-- Returns True iff Dim does not denote the null dimension
function Exists (Sys : System_Type) return Boolean;
-- Determine whether Sys does not denote the null system
-- Returns True iff Sys does not denote the null system
function From_Dimension_To_String_Of_Symbols
(Dims : Dimension_Type;
......@@ -317,7 +312,7 @@ package body Sem_Dim is
-- string of symbols.
function Is_Invalid (Position : Dimension_Position) return Boolean;
-- Determine whether Pos denotes the invalid position
-- Return True if Pos denotes the invalid position
procedure Move_Dimensions (From : Node_Id; To : Node_Id);
-- Copy dimension vector of From to To, delete dimension vector of From
......@@ -385,7 +380,6 @@ package body Sem_Dim is
R : constant Rational :=
Rational'(Numerator => Left.Numerator * Right.Numerator,
Denominator => Left.Denominator * Right.Denominator);
begin
return Reduce (R);
end "*";
......@@ -558,14 +552,15 @@ package body Sem_Dim is
System : System_Type;
Typ : Entity_Id;
Errors_Count : Nat;
Errors_Count : Nat;
-- Errors_Count is a count of errors detected by the compiler so far
-- just before the extraction of names and values in the aggregate
-- (Step 3).
-- At the end of the analysis, there is a check to verify that
-- this count equals to Serious_Errors_Detected i.e. no erros have been
-- encountered during the process. Otherwise the Dimension_Table is not
-- filled.
--
-- At the end of the analysis, there is a check to verify that this
-- count equals to Serious_Errors_Detected i.e. no erros have been
-- encountered during the process. Otherwise the Dimension_Table is
-- not filled.
-- Start of processing for Analyze_Aspect_Dimension
......@@ -582,9 +577,8 @@ package body Sem_Dim is
System := System_Of (Typ);
if Nkind (Sub_Ind) = N_Subtype_Indication then
Error_Msg_NE ("constraint not allowed with aspect&",
Constraint (Sub_Ind),
Id);
Error_Msg_NE
("constraint not allowed with aspect&", Constraint (Sub_Ind), Id);
return;
end if;
......@@ -604,9 +598,8 @@ package body Sem_Dim is
-- declare a valid system.
if not Exists (System) then
Error_Msg_NE ("parent type of& lacks dimension system",
Sub_Ind,
Def_Id);
Error_Msg_NE
("parent type of& lacks dimension system", Sub_Ind, Def_Id);
return;
end if;
......@@ -656,7 +649,6 @@ package body Sem_Dim is
while Present (Assoc) loop
Expr := Expression (Assoc);
Choice := First (Choices (Assoc));
while Present (Choice) loop
-- Identifier case: NAME => EXPRESSION
......@@ -682,8 +674,10 @@ package body Sem_Dim is
begin
if Nkind (Low) /= N_Identifier then
Error_Msg_N ("bound must denote a dimension name", Low);
elsif Nkind (High) /= N_Identifier then
Error_Msg_N ("bound must denote a dimension name", High);
else
Low_Pos := Position_In_System (Low, System);
High_Pos := Position_In_System (High, System);
......@@ -743,12 +737,10 @@ package body Sem_Dim is
end if;
Num_Choices := Num_Choices + 1;
Next (Choice);
end loop;
Num_Dimensions := Num_Dimensions + 1;
Next (Assoc);
end loop;
......@@ -774,6 +766,7 @@ package body Sem_Dim is
Start_String;
Store_String_Char (UI_To_CC (Char_Literal_Value (Symbol_Decl)));
Symbol := End_String;
else
Symbol := Strval (Symbol_Decl);
end if;
......@@ -836,7 +829,7 @@ package body Sem_Dim is
(Entity (Subtype_Indication (Type_Definition (N))));
end Is_Derived_Numeric_Type;
-- Local variables
-- Local variables
Dim_Name : Node_Id;
Dim_Pair : Node_Id;
......@@ -850,10 +843,11 @@ package body Sem_Dim is
-- Errors_Count is a count of errors detected by the compiler so far
-- just before the extraction of names and symbols in the aggregate
-- (Step 3).
-- At the end of the analysis, there is a check to verify that
-- this count equals to Serious_Errors_Detected i.e. no erros have been
-- encountered during the process. Otherwise the System_Table is not
-- filled.
--
-- At the end of the analysis, there is a check to verify that this
-- count equals Serious_Errors_Detected i.e. no errors have been
-- encountered during the process. Otherwise the System_Table is
-- not filled.
-- Start of processing for Analyze_Aspect_Dimension_System
......@@ -882,7 +876,6 @@ package body Sem_Dim is
Dim_Pair := First (Expressions (Aggr));
Errors_Count := Serious_Errors_Detected;
while Present (Dim_Pair) loop
Position := Position + 1;
......@@ -941,14 +934,14 @@ package body Sem_Dim is
-- Verify that the string is not empty
if String_Length (Symbols (Position)) = 0 then
Error_Msg_N ("empty string not allowed here",
Dim_Symbol);
Error_Msg_N
("empty string not allowed here", Dim_Symbol);
end if;
end if;
else
Error_Msg_N ("two expressions expected in aggregate",
Dim_Pair);
Error_Msg_N
("two expressions expected in aggregate", Dim_Pair);
end if;
end if;
end if;
......@@ -1043,9 +1036,8 @@ package body Sem_Dim is
Dims_Of_Rhs : constant Dimension_Type := Dimensions_Of (Rhs);
procedure Error_Dim_For_Assignment_Statement (N, Lhs, Rhs : Node_Id);
-- Error using Error_Msg_N at node N
-- Output in the error message the dimensions of left and right hand
-- sides.
-- Error using Error_Msg_N at node N. Output in the error message the
-- dimensions of left and right hand sides.
----------------------------------------
-- Error_Dim_For_Assignment_Statement --
......@@ -1102,24 +1094,26 @@ package body Sem_Dim is
or else N_Kind in N_Op_Compare
then
declare
L : constant Node_Id := Left_Opnd (N);
Dims_Of_L : constant Dimension_Type := Dimensions_Of (L);
L_Has_Dimensions : constant Boolean := Exists (Dims_Of_L);
R : constant Node_Id := Right_Opnd (N);
Dims_Of_R : constant Dimension_Type := Dimensions_Of (R);
R_Has_Dimensions : constant Boolean := Exists (Dims_Of_R);
Dims_Of_N : Dimension_Type := Null_Dimension;
L : constant Node_Id := Left_Opnd (N);
Dims_Of_L : constant Dimension_Type := Dimensions_Of (L);
L_Has_Dimensions : constant Boolean := Exists (Dims_Of_L);
R : constant Node_Id := Right_Opnd (N);
Dims_Of_R : constant Dimension_Type := Dimensions_Of (R);
R_Has_Dimensions : constant Boolean := Exists (Dims_Of_R);
Dims_Of_N : Dimension_Type := Null_Dimension;
begin
-- N_Op_Add, N_Op_Mod, N_Op_Rem or N_Op_Subtract case
if Nkind_In (N, N_Op_Add, N_Op_Mod, N_Op_Rem, N_Op_Subtract) then
-- Check both operands have same dimension
if Dims_Of_L /= Dims_Of_R then
Error_Dim_For_Binary_Op (N, L, R);
else
-- Check both operands are not dimensionless
if Exists (Dims_Of_L) then
Set_Dimensions (N, Dims_Of_L);
end if;
......@@ -1128,11 +1122,13 @@ package body Sem_Dim is
-- N_Op_Multiply or N_Op_Divide case
elsif Nkind_In (N_Kind, N_Op_Multiply, N_Op_Divide) then
-- Check at least one operand is not dimensionless
if L_Has_Dimensions or R_Has_Dimensions then
-- Multiplication case
-- Get both operands dimensions and add them
if N_Kind = N_Op_Multiply then
......@@ -1142,6 +1138,7 @@ package body Sem_Dim is
end loop;
-- Division case
-- Get both operands dimensions and subtract them
else
......@@ -1156,14 +1153,15 @@ package body Sem_Dim is
end if;
end if;
-- N_Op_Expon case
-- Note that rational exponent are allowed for dimensioned operand
-- Exponentiation case
-- Note: a rational exponent is allowed for dimensioned operand
elsif N_Kind = N_Op_Expon then
-- Check the left operand is not dimensionless
-- Note that the value of the exponent must be known compile
-- time. Otherwise, the exponentiation evaluation will return
-- an error message.
-- Check the left operand is not dimensionless. Note that the
-- value of the exponent must be known compile time. Otherwise,
-- the exponentiation evaluation will return an error message.
if L_Has_Dimensions
and then Compile_Time_Known_Value (R)
......@@ -1189,7 +1187,8 @@ package body Sem_Dim is
+Whole (UI_To_Int (Expr_Value (R)));
end if;
-- Integer operand case
-- Integer operand case.
-- For integer operand, the exponent cannot be
-- interpreted as a rational.
......@@ -1208,13 +1207,14 @@ package body Sem_Dim is
end;
end if;
-- N_Op_Compare case
-- For relational operations, only a dimension checking is
-- Comparison cases
-- For relational operations, only dimension checking is
-- performed (no propagation).
elsif N_Kind in N_Op_Compare then
if (L_Has_Dimensions or R_Has_Dimensions)
and then Dims_Of_L /= Dims_Of_R
and then Dims_Of_L /= Dims_Of_R
then
Error_Dim_For_Binary_Op (N, L, R);
end if;
......@@ -1233,9 +1233,9 @@ package body Sem_Dim is
---------------------------------------------
procedure Analyze_Dimension_Component_Declaration (N : Node_Id) is
Expr : constant Node_Id := Expression (N);
Id : constant Entity_Id := Defining_Identifier (N);
Etyp : constant Entity_Id := Etype (Id);
Expr : constant Node_Id := Expression (N);
Id : constant Entity_Id := Defining_Identifier (N);
Etyp : constant Entity_Id := Etype (Id);
Dims_Of_Etyp : constant Dimension_Type := Dimensions_Of (Etyp);
Dims_Of_Expr : Dimension_Type;
......@@ -1243,9 +1243,8 @@ package body Sem_Dim is
(N : Node_Id;
Etyp : Entity_Id;
Expr : Node_Id);
-- Error using Error_Msg_N at node N
-- Output in the error message the dimensions of the type Etyp and the
-- expression Expr of N.
-- Error using Error_Msg_N at node N. Output in the error message the
-- dimensions of the type Etyp and the expression Expr of N.
-----------------------------------------
-- Error_Dim_For_Component_Declaration --
......@@ -1257,8 +1256,8 @@ package body Sem_Dim is
Expr : Node_Id) is
begin
Error_Msg_N ("?dimensions mismatch in component declaration", N);
Error_Msg_N ("?component type " & Dimensions_Msg_Of (Etyp), N);
Error_Msg_N ("?component expression " & Dimensions_Msg_Of (Expr), N);
Error_Msg_N ("\?component type " & Dimensions_Msg_Of (Etyp), N);
Error_Msg_N ("\?component expression " & Dimensions_Msg_Of (Expr), N);
end Error_Dim_For_Component_Declaration;
-- Start of processing for Analyze_Dimension_Component_Declaration
......@@ -1301,9 +1300,9 @@ package body Sem_Dim is
(N : Node_Id;
Return_Etyp : Entity_Id;
Return_Obj_Id : Entity_Id);
-- Error using Error_Msg_N at node N
-- Output in the error message the dimensions of the returned type
-- Return_Etyp and the returned object Return_Obj_Id of N.
-- Warning using Error_Msg_N at node N. Output in the error message the
-- dimensions of the returned type Return_Etyp and the returned object
-- Return_Obj_Id of N.
---------------------------------------------
-- Error_Dim_For_Extended_Return_Statement --
......@@ -1325,7 +1324,6 @@ package body Sem_Dim is
begin
if Present (Return_Obj_Decls) then
Return_Obj_Decl := First (Return_Obj_Decls);
while Present (Return_Obj_Decl) loop
if Nkind (Return_Obj_Decl) = N_Object_Declaration then
Return_Obj_Id := Defining_Identifier (Return_Obj_Decl);
......@@ -1369,7 +1367,7 @@ package body Sem_Dim is
Ent : Entity_Id;
begin
-- Note that the node must come from source
-- Note that the node must come from source (why not???)
if Comes_From_Source (N) and then Is_Entity_Name (Name_Call) then
Ent := Entity (Name_Call);
......@@ -1415,8 +1413,7 @@ package body Sem_Dim is
end if;
-- All other functions in Ada.Numerics.Generic_Elementary_Functions
-- case.
-- Note that all parameters here should be dimensionless
-- case. Note that all parameters here should be dimensionless.
else
Actual := First (Actuals);
......@@ -1427,8 +1424,8 @@ package body Sem_Dim is
Error_Msg_NE
("?parameter should be dimensionless for elementary "
& "function&", Actual, Name_Call);
Error_Msg_N ("?parameter " & Dimensions_Msg_Of (Actual),
Actual);
Error_Msg_N
("?parameter " & Dimensions_Msg_Of (Actual), Actual);
end if;
Next (Actual);
......@@ -1460,11 +1457,12 @@ package body Sem_Dim is
-- Removal of dimensions in expression
-- Wouldn't a case statement be clearer here???
if Nkind_In (N_Kind, N_Attribute_Reference, N_Indexed_Component) then
declare
Expr : Node_Id;
Exprs : constant List_Id := Expressions (N);
begin
if Present (Exprs) then
Expr := First (Exprs);
......@@ -1475,11 +1473,9 @@ package body Sem_Dim is
end if;
end;
elsif Nkind_In
(N_Kind,
N_Qualified_Expression,
N_Type_Conversion,
N_Unchecked_Type_Conversion)
elsif Nkind_In (N_Kind, N_Qualified_Expression,
N_Type_Conversion,
N_Unchecked_Type_Conversion)
then
Remove_Dimensions (Expression (N));
......@@ -1503,9 +1499,8 @@ package body Sem_Dim is
(N : Node_Id;
Etyp : Entity_Id;
Expr : Node_Id);
-- Error using Error_Msg_N at node N
-- Output in the error message the dimensions of the type Etyp and the
-- expression Expr of N.
-- Warnings using Error_Msg_N at node N. Output in the error message the
-- dimensions of the type Etyp and the ???
--------------------------------------
-- Error_Dim_For_Object_Declaration --
......@@ -1517,8 +1512,8 @@ package body Sem_Dim is
Expr : Node_Id) is
begin
Error_Msg_N ("?dimensions mismatch in object declaration", N);
Error_Msg_N ("?object type " & Dimensions_Msg_Of (Etyp), N);
Error_Msg_N ("?object expression " & Dimensions_Msg_Of (Expr), N);
Error_Msg_N ("\?object type " & Dimensions_Msg_Of (Etyp), N);
Error_Msg_N ("\?object expression " & Dimensions_Msg_Of (Expr), N);
end Error_Dim_For_Object_Declaration;
-- Start of processing for Analyze_Dimension_Object_Declaration
......@@ -1558,9 +1553,8 @@ package body Sem_Dim is
(N : Node_Id;
Sub_Mark : Node_Id;
Renamed_Name : Node_Id);
-- Error using Error_Msg_N at node N
-- Output in the error message the dimensions of Sub_Mark and of
-- Renamed_Name.
-- Error using Error_Msg_N at node N. Output in the error message the
-- dimensions of Sub_Mark and of Renamed_Name.
-----------------------------------------------
-- Error_Dim_For_Object_Renaming_Declaration --
......@@ -1604,9 +1598,9 @@ package body Sem_Dim is
(N : Node_Id;
Return_Etyp : Entity_Id;
Expr : Node_Id);
-- Error using Error_Msg_N at node N
-- Output in the error message the dimensions of the returned type
-- Return_Etyp and the returned expression Expr of N.
-- Error using Error_Msg_N at node N. Output in the error message
-- the dimensions of the returned type Return_Etyp and the returned
-- expression Expr of N.
-------------------------------------------
-- Error_Dim_For_Simple_Return_Statement --
......@@ -1619,8 +1613,8 @@ package body Sem_Dim is
is
begin
Error_Msg_N ("?dimensions mismatch in return statement", N);
Error_Msg_N ("?returned type " & Dimensions_Msg_Of (Return_Etyp), N);
Error_Msg_N ("?returned expression " & Dimensions_Msg_Of (Expr), N);
Error_Msg_N ("\?returned type " & Dimensions_Msg_Of (Return_Etyp), N);
Error_Msg_N ("\?returned expression " & Dimensions_Msg_Of (Expr), N);
end Error_Dim_For_Simple_Return_Statement;
-- Start of processing for Analyze_Dimension_Simple_Return_Statement
......@@ -1650,6 +1644,7 @@ package body Sem_Dim is
Dims_Of_Etyp := Dimensions_Of (Etyp);
if Exists (Dims_Of_Etyp) then
-- If subtype already has a dimension (from Aspect_Dimension),
-- it cannot inherit a dimension from its subtype.
......@@ -1705,19 +1700,21 @@ package body Sem_Dim is
-- A rational number is a number that can be expressed as the quotient or
-- fraction a/b of two integers, where b is non-zero.
function Create_Rational_From (Expr : Node_Id;
Complain : Boolean) return Rational is
function Create_Rational_From
(Expr : Node_Id;
Complain : Boolean) return Rational
is
Or_Node_Of_Expr : constant Node_Id := Original_Node (Expr);
Result : Rational := No_Rational;
function Process_Minus (N : Node_Id) return Rational;
-- Create a rational from a N_Op_Minus
-- Create a rational from a N_Op_Minus node
function Process_Divide (N : Node_Id) return Rational;
-- Create a rational from a N_Op_Divide
-- Create a rational from a N_Op_Divide node
function Process_Literal (N : Node_Id) return Rational;
-- Create a rational from a N_Integer_Literal
-- Create a rational from a N_Integer_Literal node
-------------------
-- Process_Minus --
......@@ -1725,7 +1722,7 @@ package body Sem_Dim is
function Process_Minus (N : Node_Id) return Rational is
Right : constant Node_Id := Original_Node (Right_Opnd (N));
Result : Rational := No_Rational;
Result : Rational;
begin
-- Operand is an integer literal
......@@ -1737,6 +1734,9 @@ package body Sem_Dim is
elsif Nkind (Right) = N_Op_Divide then
Result := -Process_Divide (Right);
else
Result := No_Rational;
end if;
return Result;
......@@ -1780,9 +1780,8 @@ package body Sem_Dim is
begin
-- Check the expression is either a division of two integers or an
-- integer itself.
-- Note that the check applies to the original node since the node could
-- have already been rewritten.
-- integer itself. Note that the check applies to the original node
-- since the node could have already been rewritten.
-- Integer literal case
......@@ -1801,7 +1800,7 @@ package body Sem_Dim is
end if;
-- When Expr cannot be interpreted as a rational and Complain is true,
-- return an error message.
-- generate an error message.
if Complain and then Result = No_Rational then
Error_Msg_N ("must be a rational", Expr);
......@@ -1915,8 +1914,8 @@ package body Sem_Dim is
-- Eval_Op_Expon_For_Dimensioned_Type --
----------------------------------------
-- Evaluate the expon operator for real dimensioned type
-- Note that the node must come from source
-- Evaluate the expon operator for real dimensioned type. Note that the
-- node must come from source. Why???
-- Note that if the exponent is an integer (denominator = 1) the node is
-- evaluated by the regular Eval_Op_Expon routine (see Sem_Eval).
......@@ -1937,9 +1936,7 @@ package body Sem_Dim is
-- Check that the exponent is not an integer
if R_Value /= No_Rational
and then R_Value.Denominator /= 1
then
if R_Value /= No_Rational and then R_Value.Denominator /= 1 then
Eval_Op_Expon_With_Rational_Exponent (N, R_Value);
else
Eval_Op_Expon (N);
......@@ -2051,7 +2048,7 @@ package body Sem_Dim is
Analyze (New_Subtyp_Decl_For_L);
-- Case where the operand is dimensionless
-- Case where the operand is dimensionless
else
New_Id := Btyp_Of_L;
......@@ -2068,8 +2065,9 @@ package body Sem_Dim is
-- (T (Expon_LLF (Actual_1, Actual_2)));
-- -- where T is the subtype declared in step 1
-- -- The node is rewritten as a type conversion
-- where T is the subtype declared in step 1
-- The node is rewritten as a type conversion
-- Step 1: Creation of the two parameters of Expon_LLF function call
......@@ -2098,7 +2096,7 @@ package body Sem_Dim is
Parameter_Associations => New_List (
Actual_1, Actual_2)));
-- Step 3: Rewitten of N
-- Step 3: Rewrite N with the result
Rewrite (N, New_N);
Set_Etype (N, New_Id);
......@@ -2128,9 +2126,10 @@ package body Sem_Dim is
-- symbols in the output of a dimensioned object.
-- Case 1: the parameter is a variable
-- The default string parameter is replaced by the symbol defined in the
-- aspect Dimension of the subtype.
-- For instance if the user wants to output a speed:
-- aspect Dimension of the subtype. For instance to output a speed:
-- subtype Force is Mks_Type
-- with
-- Dimension => ("N",
......@@ -2143,11 +2142,12 @@ package body Sem_Dim is
-- > 2.1 N
-- Case 2: the parameter is an expression
-- then we call the procedure Expand_Put_Call_With_Dimension_Symbol that
-- creates the string of symbols (for instance "m.s**(-1)") and rewrites
-- the default string parameter of Put with the corresponding the
-- String_Id.
-- For instance:
-- In this case we call the procedure Expand_Put_Call_With_Dimension_Symbol
-- that creates the string of symbols (for instance "m.s**(-1)") and
-- rewrites the default string parameter of Put with the corresponding
-- the String_Id. For instance:
-- Put (2.1 * m * kg * s**(-2));
-- > 2.1 m.kg.s**(-2)
......@@ -2170,6 +2170,10 @@ package body Sem_Dim is
-- procedure Put defined in the package System.Dim_Float_IO and
-- System.Dim_Integer_IO.
---------------------------
-- Is_Procedure_Put_Call --
---------------------------
function Is_Procedure_Put_Call return Boolean is
Ent : Entity_Id;
......@@ -2307,9 +2311,9 @@ package body Sem_Dim is
-- From_Dimension_To_String_Of_Symbols --
-----------------------------------------
-- Given a dimension vector and the corresponding dimension system, create
-- a String_Id to output the dimension symbols corresponding to the
-- dimensions Dims.
-- Given a dimension vector and the corresponding dimension system,
-- create a String_Id to output the dimension symbols corresponding to
-- the dimensions Dims.
function From_Dimension_To_String_Of_Symbols
(Dims : Dimension_Type;
......@@ -2492,7 +2496,6 @@ package body Sem_Dim is
declare
G : constant Int := GCD (X.Numerator, X.Denominator);
begin
return Rational'(Numerator => Whole (Int (X.Numerator) / G),
Denominator => Whole (Int (X.Denominator) / G));
......
......@@ -98,10 +98,9 @@ package Sem_Dim is
Id : Entity_Id;
Aggr : Node_Id);
-- Analyze the contents of aspect Dimension. Associate the provided values
-- and quantifiers with the related context N.
-- Id is the corresponding Aspect_Id (Aspect_Dimension)
-- Aggr is the corresponding expression for the aspect Dimension declared
-- by the declaration of N.
-- and quantifiers with the related context N. Id is the corresponding
-- Aspect_Id (Aspect_Dimension) Aggr is the corresponding expression for
-- the aspect Dimension declared by the declaration of N.
procedure Analyze_Aspect_Dimension_System
(N : Node_Id;
......@@ -141,9 +140,8 @@ package Sem_Dim is
Btyp : Entity_Id);
-- Evaluate the Expon operator for dimensioned type with rational exponent.
-- Indeed the regular Eval_Op_Expon routine (see package Sem_Eval) is
-- restricted to Integer exponent.
-- This routine deals only with rational exponent which is not an integer
-- if Btyp is a dimensioned type.
-- restricted to Integer exponent. This routine deals only with rational
-- exponent which is not an integer if Btyp is a dimensioned type.
procedure Expand_Put_Call_With_Dimension_Symbol (N : Node_Id);
-- Determine whether N denotes a subprogram call to one of the routines
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment