Commit 75505450 by Kazu Hirata Committed by Kazu Hirata

* fold-const.c (fold): Remove handling of binary expressions.

From-SVN: r95961
parent 5c2ff394
......@@ -6,6 +6,8 @@
(NON_TYPE_CHECK): Use TYPE_P instead of
IS_NON_TYPE_CODE_CLASS.
* fold-const.c (fold): Remove handling of binary expressions.
2005-03-05 James A. Morrison <phython@gcc.gnu.org>
* doc/c-tree.texi: Wrap comments in @r{}.
......
......@@ -9873,17 +9873,9 @@ tree
fold (tree expr)
{
const tree t = expr;
const tree type = TREE_TYPE (expr);
tree t1 = NULL_TREE;
tree tem;
tree arg0 = NULL_TREE, arg1 = NULL_TREE;
enum tree_code code = TREE_CODE (t);
enum tree_code_class kind = TREE_CODE_CLASS (code);
/* WINS will be nonzero when the switch is done
if all operands are constant. */
int wins = 1;
/* Return right away if a constant. */
if (kind == tcc_constant)
return t;
......@@ -9903,2601 +9895,11 @@ fold (tree expr)
}
}
if (IS_EXPR_CODE_CLASS (kind))
{
int len = TREE_CODE_LENGTH (code);
int i;
for (i = 0; i < len; i++)
{
tree op = TREE_OPERAND (t, i);
tree subop;
if (op == 0)
continue; /* Valid for CALL_EXPR, at least. */
/* Strip any conversions that don't change the mode. This is
safe for every expression, except for a comparison expression
because its signedness is derived from its operands. So, in
the latter case, only strip conversions that don't change the
signedness.
Note that this is done as an internal manipulation within the
constant folder, in order to find the simplest representation
of the arguments so that their form can be studied. In any
cases, the appropriate type conversions should be put back in
the tree that will get out of the constant folder. */
if (kind == tcc_comparison)
STRIP_SIGN_NOPS (op);
else
STRIP_NOPS (op);
if (TREE_CODE (op) == COMPLEX_CST)
subop = TREE_REALPART (op);
else
subop = op;
if (TREE_CODE (subop) != INTEGER_CST
&& TREE_CODE (subop) != REAL_CST)
/* Note that TREE_CONSTANT isn't enough:
static var addresses are constant but we can't
do arithmetic on them. */
wins = 0;
if (i == 0)
arg0 = op;
else if (i == 1)
arg1 = op;
}
}
/* If this is a commutative operation, and ARG0 is a constant, move it
to ARG1 to reduce the number of tests below. */
if (commutative_tree_code (code)
&& tree_swap_operands_p (arg0, arg1, true))
return fold (build2 (code, type, TREE_OPERAND (t, 1),
TREE_OPERAND (t, 0)));
/* Now WINS is set as described above,
ARG0 is the first operand of EXPR,
and ARG1 is the second operand (if it has more than one operand).
First check for cases where an arithmetic operation is applied to a
compound, conditional, or comparison operation. Push the arithmetic
operation inside the compound or conditional to see if any folding
can then be done. Convert comparison to conditional for this purpose.
The also optimizes non-constant cases that used to be done in
expand_expr.
Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
one of the operands is a comparison and the other is a comparison, a
BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
code below would make the expression more complex. Change it to a
TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
|| code == EQ_EXPR || code == NE_EXPR)
&& ((truth_value_p (TREE_CODE (arg0))
&& (truth_value_p (TREE_CODE (arg1))
|| (TREE_CODE (arg1) == BIT_AND_EXPR
&& integer_onep (TREE_OPERAND (arg1, 1)))))
|| (truth_value_p (TREE_CODE (arg1))
&& (truth_value_p (TREE_CODE (arg0))
|| (TREE_CODE (arg0) == BIT_AND_EXPR
&& integer_onep (TREE_OPERAND (arg0, 1)))))))
{
tem = fold (build2 (code == BIT_AND_EXPR ? TRUTH_AND_EXPR
: code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
: TRUTH_XOR_EXPR,
type, fold_convert (boolean_type_node, arg0),
fold_convert (boolean_type_node, arg1)));
if (code == EQ_EXPR)
tem = invert_truthvalue (tem);
return tem;
}
if (TREE_CODE_CLASS (code) == tcc_comparison
&& TREE_CODE (arg0) == COMPOUND_EXPR)
return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
fold (build2 (code, type, TREE_OPERAND (arg0, 1), arg1)));
else if (TREE_CODE_CLASS (code) == tcc_comparison
&& TREE_CODE (arg1) == COMPOUND_EXPR)
return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
fold (build2 (code, type, arg0, TREE_OPERAND (arg1, 1))));
else if (TREE_CODE_CLASS (code) == tcc_binary
|| TREE_CODE_CLASS (code) == tcc_comparison)
{
if (TREE_CODE (arg0) == COMPOUND_EXPR)
return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
fold (build2 (code, type, TREE_OPERAND (arg0, 1),
arg1)));
if (TREE_CODE (arg1) == COMPOUND_EXPR
&& reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
fold (build2 (code, type,
arg0, TREE_OPERAND (arg1, 1))));
if (TREE_CODE (arg0) == COND_EXPR || COMPARISON_CLASS_P (arg0))
{
tem = fold_binary_op_with_conditional_arg (t, code, arg0, arg1,
/*cond_first_p=*/1);
if (tem != NULL_TREE)
return tem;
}
if (TREE_CODE (arg1) == COND_EXPR || COMPARISON_CLASS_P (arg1))
{
tem = fold_binary_op_with_conditional_arg (t, code, arg1, arg0,
/*cond_first_p=*/0);
if (tem != NULL_TREE)
return tem;
}
}
switch (code)
{
case CONST_DECL:
return fold (DECL_INITIAL (t));
case RANGE_EXPR:
if (TREE_CONSTANT (t) != wins)
{
tem = copy_node (t);
TREE_CONSTANT (tem) = wins;
TREE_INVARIANT (tem) = wins;
return tem;
}
return t;
case PLUS_EXPR:
/* A + (-B) -> A - B */
if (TREE_CODE (arg1) == NEGATE_EXPR)
return fold (build2 (MINUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0)));
/* (-A) + B -> B - A */
if (TREE_CODE (arg0) == NEGATE_EXPR
&& reorder_operands_p (TREE_OPERAND (arg0, 0), arg1))
return fold (build2 (MINUS_EXPR, type, arg1, TREE_OPERAND (arg0, 0)));
if (TREE_CODE (type) == COMPLEX_TYPE)
{
tem = fold_complex_add (type, arg0, arg1, PLUS_EXPR);
if (tem)
return tem;
}
if (! FLOAT_TYPE_P (type))
{
if (integer_zerop (arg1))
return non_lvalue (fold_convert (type, arg0));
/* If we are adding two BIT_AND_EXPR's, both of which are and'ing
with a constant, and the two constants have no bits in common,
we should treat this as a BIT_IOR_EXPR since this may produce more
simplifications. */
if (TREE_CODE (arg0) == BIT_AND_EXPR
&& TREE_CODE (arg1) == BIT_AND_EXPR
&& TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
&& TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
&& integer_zerop (const_binop (BIT_AND_EXPR,
TREE_OPERAND (arg0, 1),
TREE_OPERAND (arg1, 1), 0)))
{
code = BIT_IOR_EXPR;
goto bit_ior;
}
/* Reassociate (plus (plus (mult) (foo)) (mult)) as
(plus (plus (mult) (mult)) (foo)) so that we can
take advantage of the factoring cases below. */
if (((TREE_CODE (arg0) == PLUS_EXPR
|| TREE_CODE (arg0) == MINUS_EXPR)
&& TREE_CODE (arg1) == MULT_EXPR)
|| ((TREE_CODE (arg1) == PLUS_EXPR
|| TREE_CODE (arg1) == MINUS_EXPR)
&& TREE_CODE (arg0) == MULT_EXPR))
{
tree parg0, parg1, parg, marg;
enum tree_code pcode;
if (TREE_CODE (arg1) == MULT_EXPR)
parg = arg0, marg = arg1;
else
parg = arg1, marg = arg0;
pcode = TREE_CODE (parg);
parg0 = TREE_OPERAND (parg, 0);
parg1 = TREE_OPERAND (parg, 1);
STRIP_NOPS (parg0);
STRIP_NOPS (parg1);
if (TREE_CODE (parg0) == MULT_EXPR
&& TREE_CODE (parg1) != MULT_EXPR)
return fold (build2 (pcode, type,
fold (build2 (PLUS_EXPR, type,
fold_convert (type, parg0),
fold_convert (type, marg))),
fold_convert (type, parg1)));
if (TREE_CODE (parg0) != MULT_EXPR
&& TREE_CODE (parg1) == MULT_EXPR)
return fold (build2 (PLUS_EXPR, type,
fold_convert (type, parg0),
fold (build2 (pcode, type,
fold_convert (type, marg),
fold_convert (type,
parg1)))));
}
if (TREE_CODE (arg0) == MULT_EXPR && TREE_CODE (arg1) == MULT_EXPR)
{
tree arg00, arg01, arg10, arg11;
tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
/* (A * C) + (B * C) -> (A+B) * C.
We are most concerned about the case where C is a constant,
but other combinations show up during loop reduction. Since
it is not difficult, try all four possibilities. */
arg00 = TREE_OPERAND (arg0, 0);
arg01 = TREE_OPERAND (arg0, 1);
arg10 = TREE_OPERAND (arg1, 0);
arg11 = TREE_OPERAND (arg1, 1);
same = NULL_TREE;
if (operand_equal_p (arg01, arg11, 0))
same = arg01, alt0 = arg00, alt1 = arg10;
else if (operand_equal_p (arg00, arg10, 0))
same = arg00, alt0 = arg01, alt1 = arg11;
else if (operand_equal_p (arg00, arg11, 0))
same = arg00, alt0 = arg01, alt1 = arg10;
else if (operand_equal_p (arg01, arg10, 0))
same = arg01, alt0 = arg00, alt1 = arg11;
/* No identical multiplicands; see if we can find a common
power-of-two factor in non-power-of-two multiplies. This
can help in multi-dimensional array access. */
else if (TREE_CODE (arg01) == INTEGER_CST
&& TREE_CODE (arg11) == INTEGER_CST
&& TREE_INT_CST_HIGH (arg01) == 0
&& TREE_INT_CST_HIGH (arg11) == 0)
{
HOST_WIDE_INT int01, int11, tmp;
int01 = TREE_INT_CST_LOW (arg01);
int11 = TREE_INT_CST_LOW (arg11);
/* Move min of absolute values to int11. */
if ((int01 >= 0 ? int01 : -int01)
< (int11 >= 0 ? int11 : -int11))
{
tmp = int01, int01 = int11, int11 = tmp;
alt0 = arg00, arg00 = arg10, arg10 = alt0;
alt0 = arg01, arg01 = arg11, arg11 = alt0;
}
if (exact_log2 (int11) > 0 && int01 % int11 == 0)
{
alt0 = fold (build2 (MULT_EXPR, type, arg00,
build_int_cst (NULL_TREE,
int01 / int11)));
alt1 = arg10;
same = arg11;
}
}
if (same)
return fold (build2 (MULT_EXPR, type,
fold (build2 (PLUS_EXPR, type,
fold_convert (type, alt0),
fold_convert (type, alt1))),
same));
}
/* Try replacing &a[i1] + c * i2 with &a[i1 + i2], if c is step
of the array. Loop optimizer sometimes produce this type of
expressions. */
if (TREE_CODE (arg0) == ADDR_EXPR
&& TREE_CODE (arg1) == MULT_EXPR)
{
tem = try_move_mult_to_index (PLUS_EXPR, arg0, arg1);
if (tem)
return fold_convert (type, fold (tem));
}
else if (TREE_CODE (arg1) == ADDR_EXPR
&& TREE_CODE (arg0) == MULT_EXPR)
{
tem = try_move_mult_to_index (PLUS_EXPR, arg1, arg0);
if (tem)
return fold_convert (type, fold (tem));
}
}
else
{
/* See if ARG1 is zero and X + ARG1 reduces to X. */
if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 0))
return non_lvalue (fold_convert (type, arg0));
/* Likewise if the operands are reversed. */
if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
return non_lvalue (fold_convert (type, arg1));
/* Convert X + -C into X - C. */
if (TREE_CODE (arg1) == REAL_CST
&& REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1)))
{
tem = fold_negate_const (arg1, type);
if (!TREE_OVERFLOW (arg1) || !flag_trapping_math)
return fold (build2 (MINUS_EXPR, type,
fold_convert (type, arg0),
fold_convert (type, tem)));
}
/* Convert x+x into x*2.0. */
if (operand_equal_p (arg0, arg1, 0)
&& SCALAR_FLOAT_TYPE_P (type))
return fold (build2 (MULT_EXPR, type, arg0,
build_real (type, dconst2)));
/* Convert x*c+x into x*(c+1). */
if (flag_unsafe_math_optimizations
&& TREE_CODE (arg0) == MULT_EXPR
&& TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
&& ! TREE_CONSTANT_OVERFLOW (TREE_OPERAND (arg0, 1))
&& operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
{
REAL_VALUE_TYPE c;
c = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
return fold (build2 (MULT_EXPR, type, arg1,
build_real (type, c)));
}
/* Convert x+x*c into x*(c+1). */
if (flag_unsafe_math_optimizations
&& TREE_CODE (arg1) == MULT_EXPR
&& TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST
&& ! TREE_CONSTANT_OVERFLOW (TREE_OPERAND (arg1, 1))
&& operand_equal_p (TREE_OPERAND (arg1, 0), arg0, 0))
{
REAL_VALUE_TYPE c;
c = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
return fold (build2 (MULT_EXPR, type, arg0,
build_real (type, c)));
}
/* Convert x*c1+x*c2 into x*(c1+c2). */
if (flag_unsafe_math_optimizations
&& TREE_CODE (arg0) == MULT_EXPR
&& TREE_CODE (arg1) == MULT_EXPR
&& TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
&& ! TREE_CONSTANT_OVERFLOW (TREE_OPERAND (arg0, 1))
&& TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST
&& ! TREE_CONSTANT_OVERFLOW (TREE_OPERAND (arg1, 1))
&& operand_equal_p (TREE_OPERAND (arg0, 0),
TREE_OPERAND (arg1, 0), 0))
{
REAL_VALUE_TYPE c1, c2;
c1 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
c2 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
real_arithmetic (&c1, PLUS_EXPR, &c1, &c2);
return fold (build2 (MULT_EXPR, type,
TREE_OPERAND (arg0, 0),
build_real (type, c1)));
}
/* Convert a + (b*c + d*e) into (a + b*c) + d*e. */
if (flag_unsafe_math_optimizations
&& TREE_CODE (arg1) == PLUS_EXPR
&& TREE_CODE (arg0) != MULT_EXPR)
{
tree tree10 = TREE_OPERAND (arg1, 0);
tree tree11 = TREE_OPERAND (arg1, 1);
if (TREE_CODE (tree11) == MULT_EXPR
&& TREE_CODE (tree10) == MULT_EXPR)
{
tree tree0;
tree0 = fold (build2 (PLUS_EXPR, type, arg0, tree10));
return fold (build2 (PLUS_EXPR, type, tree0, tree11));
}
}
/* Convert (b*c + d*e) + a into b*c + (d*e +a). */
if (flag_unsafe_math_optimizations
&& TREE_CODE (arg0) == PLUS_EXPR
&& TREE_CODE (arg1) != MULT_EXPR)
{
tree tree00 = TREE_OPERAND (arg0, 0);
tree tree01 = TREE_OPERAND (arg0, 1);
if (TREE_CODE (tree01) == MULT_EXPR
&& TREE_CODE (tree00) == MULT_EXPR)
{
tree tree0;
tree0 = fold (build2 (PLUS_EXPR, type, tree01, arg1));
return fold (build2 (PLUS_EXPR, type, tree00, tree0));
}
}
}
bit_rotate:
/* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
is a rotate of A by C1 bits. */
/* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
is a rotate of A by B bits. */
{
enum tree_code code0, code1;
code0 = TREE_CODE (arg0);
code1 = TREE_CODE (arg1);
if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
|| (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
&& operand_equal_p (TREE_OPERAND (arg0, 0),
TREE_OPERAND (arg1, 0), 0)
&& TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
{
tree tree01, tree11;
enum tree_code code01, code11;
tree01 = TREE_OPERAND (arg0, 1);
tree11 = TREE_OPERAND (arg1, 1);
STRIP_NOPS (tree01);
STRIP_NOPS (tree11);
code01 = TREE_CODE (tree01);
code11 = TREE_CODE (tree11);
if (code01 == INTEGER_CST
&& code11 == INTEGER_CST
&& TREE_INT_CST_HIGH (tree01) == 0
&& TREE_INT_CST_HIGH (tree11) == 0
&& ((TREE_INT_CST_LOW (tree01) + TREE_INT_CST_LOW (tree11))
== TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
return build2 (LROTATE_EXPR, type, TREE_OPERAND (arg0, 0),
code0 == LSHIFT_EXPR ? tree01 : tree11);
else if (code11 == MINUS_EXPR)
{
tree tree110, tree111;
tree110 = TREE_OPERAND (tree11, 0);
tree111 = TREE_OPERAND (tree11, 1);
STRIP_NOPS (tree110);
STRIP_NOPS (tree111);
if (TREE_CODE (tree110) == INTEGER_CST
&& 0 == compare_tree_int (tree110,
TYPE_PRECISION
(TREE_TYPE (TREE_OPERAND
(arg0, 0))))
&& operand_equal_p (tree01, tree111, 0))
return build2 ((code0 == LSHIFT_EXPR
? LROTATE_EXPR
: RROTATE_EXPR),
type, TREE_OPERAND (arg0, 0), tree01);
}
else if (code01 == MINUS_EXPR)
{
tree tree010, tree011;
tree010 = TREE_OPERAND (tree01, 0);
tree011 = TREE_OPERAND (tree01, 1);
STRIP_NOPS (tree010);
STRIP_NOPS (tree011);
if (TREE_CODE (tree010) == INTEGER_CST
&& 0 == compare_tree_int (tree010,
TYPE_PRECISION
(TREE_TYPE (TREE_OPERAND
(arg0, 0))))
&& operand_equal_p (tree11, tree011, 0))
return build2 ((code0 != LSHIFT_EXPR
? LROTATE_EXPR
: RROTATE_EXPR),
type, TREE_OPERAND (arg0, 0), tree11);
}
}
}
associate:
/* In most languages, can't associate operations on floats through
parentheses. Rather than remember where the parentheses were, we
don't associate floats at all, unless the user has specified
-funsafe-math-optimizations. */
if (! wins
&& (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations))
{
tree var0, con0, lit0, minus_lit0;
tree var1, con1, lit1, minus_lit1;
/* Split both trees into variables, constants, and literals. Then
associate each group together, the constants with literals,
then the result with variables. This increases the chances of
literals being recombined later and of generating relocatable
expressions for the sum of a constant and literal. */
var0 = split_tree (arg0, code, &con0, &lit0, &minus_lit0, 0);
var1 = split_tree (arg1, code, &con1, &lit1, &minus_lit1,
code == MINUS_EXPR);
/* Only do something if we found more than two objects. Otherwise,
nothing has changed and we risk infinite recursion. */
if (2 < ((var0 != 0) + (var1 != 0)
+ (con0 != 0) + (con1 != 0)
+ (lit0 != 0) + (lit1 != 0)
+ (minus_lit0 != 0) + (minus_lit1 != 0)))
{
/* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
if (code == MINUS_EXPR)
code = PLUS_EXPR;
var0 = associate_trees (var0, var1, code, type);
con0 = associate_trees (con0, con1, code, type);
lit0 = associate_trees (lit0, lit1, code, type);
minus_lit0 = associate_trees (minus_lit0, minus_lit1, code, type);
/* Preserve the MINUS_EXPR if the negative part of the literal is
greater than the positive part. Otherwise, the multiplicative
folding code (i.e extract_muldiv) may be fooled in case
unsigned constants are subtracted, like in the following
example: ((X*2 + 4) - 8U)/2. */
if (minus_lit0 && lit0)
{
if (TREE_CODE (lit0) == INTEGER_CST
&& TREE_CODE (minus_lit0) == INTEGER_CST
&& tree_int_cst_lt (lit0, minus_lit0))
{
minus_lit0 = associate_trees (minus_lit0, lit0,
MINUS_EXPR, type);
lit0 = 0;
}
else
{
lit0 = associate_trees (lit0, minus_lit0,
MINUS_EXPR, type);
minus_lit0 = 0;
}
}
if (minus_lit0)
{
if (con0 == 0)
return fold_convert (type,
associate_trees (var0, minus_lit0,
MINUS_EXPR, type));
else
{
con0 = associate_trees (con0, minus_lit0,
MINUS_EXPR, type);
return fold_convert (type,
associate_trees (var0, con0,
PLUS_EXPR, type));
}
}
con0 = associate_trees (con0, lit0, code, type);
return fold_convert (type, associate_trees (var0, con0,
code, type));
}
}
binary:
if (wins)
t1 = const_binop (code, arg0, arg1, 0);
if (t1 != NULL_TREE)
{
/* The return value should always have
the same type as the original expression. */
if (TREE_TYPE (t1) != type)
t1 = fold_convert (type, t1);
return t1;
}
return t;
case MINUS_EXPR:
/* A - (-B) -> A + B */
if (TREE_CODE (arg1) == NEGATE_EXPR)
return fold (build2 (PLUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0)));
/* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
if (TREE_CODE (arg0) == NEGATE_EXPR
&& (FLOAT_TYPE_P (type)
|| (INTEGRAL_TYPE_P (type) && flag_wrapv && !flag_trapv))
&& negate_expr_p (arg1)
&& reorder_operands_p (arg0, arg1))
return fold (build2 (MINUS_EXPR, type, negate_expr (arg1),
TREE_OPERAND (arg0, 0)));
if (TREE_CODE (type) == COMPLEX_TYPE)
{
tem = fold_complex_add (type, arg0, arg1, MINUS_EXPR);
if (tem)
return tem;
}
if (! FLOAT_TYPE_P (type))
{
if (! wins && integer_zerop (arg0))
return negate_expr (fold_convert (type, arg1));
if (integer_zerop (arg1))
return non_lvalue (fold_convert (type, arg0));
/* Fold A - (A & B) into ~B & A. */
if (!TREE_SIDE_EFFECTS (arg0)
&& TREE_CODE (arg1) == BIT_AND_EXPR)
{
if (operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0))
return fold (build2 (BIT_AND_EXPR, type,
fold (build1 (BIT_NOT_EXPR, type,
TREE_OPERAND (arg1, 0))),
arg0));
if (operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
return fold (build2 (BIT_AND_EXPR, type,
fold (build1 (BIT_NOT_EXPR, type,
TREE_OPERAND (arg1, 1))),
arg0));
}
/* Fold (A & ~B) - (A & B) into (A ^ B) - B, where B is
any power of 2 minus 1. */
if (TREE_CODE (arg0) == BIT_AND_EXPR
&& TREE_CODE (arg1) == BIT_AND_EXPR
&& operand_equal_p (TREE_OPERAND (arg0, 0),
TREE_OPERAND (arg1, 0), 0))
{
tree mask0 = TREE_OPERAND (arg0, 1);
tree mask1 = TREE_OPERAND (arg1, 1);
tree tem = fold (build1 (BIT_NOT_EXPR, type, mask0));
if (operand_equal_p (tem, mask1, 0))
{
tem = fold (build2 (BIT_XOR_EXPR, type,
TREE_OPERAND (arg0, 0), mask1));
return fold (build2 (MINUS_EXPR, type, tem, mask1));
}
}
}
/* See if ARG1 is zero and X - ARG1 reduces to X. */
else if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 1))
return non_lvalue (fold_convert (type, arg0));
/* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
ARG0 is zero and X + ARG0 reduces to X, since that would mean
(-ARG1 + ARG0) reduces to -ARG1. */
else if (!wins && fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
return negate_expr (fold_convert (type, arg1));
/* Fold &x - &x. This can happen from &x.foo - &x.
This is unsafe for certain floats even in non-IEEE formats.
In IEEE, it is unsafe because it does wrong for NaNs.
Also note that operand_equal_p is always false if an operand
is volatile. */
if ((! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
&& operand_equal_p (arg0, arg1, 0))
return fold_convert (type, integer_zero_node);
/* A - B -> A + (-B) if B is easily negatable. */
if (!wins && negate_expr_p (arg1)
&& ((FLOAT_TYPE_P (type)
/* Avoid this transformation if B is a positive REAL_CST. */
&& (TREE_CODE (arg1) != REAL_CST
|| REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1))))
|| (INTEGRAL_TYPE_P (type) && flag_wrapv && !flag_trapv)))
return fold (build2 (PLUS_EXPR, type, arg0, negate_expr (arg1)));
/* Try folding difference of addresses. */
{
HOST_WIDE_INT diff;
if ((TREE_CODE (arg0) == ADDR_EXPR
|| TREE_CODE (arg1) == ADDR_EXPR)
&& ptr_difference_const (arg0, arg1, &diff))
return build_int_cst_type (type, diff);
}
/* Try replacing &a[i1] - c * i2 with &a[i1 - i2], if c is step
of the array. Loop optimizer sometimes produce this type of
expressions. */
if (TREE_CODE (arg0) == ADDR_EXPR
&& TREE_CODE (arg1) == MULT_EXPR)
{
tem = try_move_mult_to_index (MINUS_EXPR, arg0, arg1);
if (tem)
return fold_convert (type, fold (tem));
}
if (TREE_CODE (arg0) == MULT_EXPR
&& TREE_CODE (arg1) == MULT_EXPR
&& (!FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations))
{
/* (A * C) - (B * C) -> (A-B) * C. */
if (operand_equal_p (TREE_OPERAND (arg0, 1),
TREE_OPERAND (arg1, 1), 0))
return fold (build2 (MULT_EXPR, type,
fold (build2 (MINUS_EXPR, type,
TREE_OPERAND (arg0, 0),
TREE_OPERAND (arg1, 0))),
TREE_OPERAND (arg0, 1)));
/* (A * C1) - (A * C2) -> A * (C1-C2). */
if (operand_equal_p (TREE_OPERAND (arg0, 0),
TREE_OPERAND (arg1, 0), 0))
return fold (build2 (MULT_EXPR, type,
TREE_OPERAND (arg0, 0),
fold (build2 (MINUS_EXPR, type,
TREE_OPERAND (arg0, 1),
TREE_OPERAND (arg1, 1)))));
}
goto associate;
case MULT_EXPR:
/* (-A) * (-B) -> A * B */
if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
return fold (build2 (MULT_EXPR, type,
TREE_OPERAND (arg0, 0),
negate_expr (arg1)));
if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
return fold (build2 (MULT_EXPR, type,
negate_expr (arg0),
TREE_OPERAND (arg1, 0)));
if (TREE_CODE (type) == COMPLEX_TYPE)
{
tem = fold_complex_mult (type, arg0, arg1);
if (tem)
return tem;
}
if (! FLOAT_TYPE_P (type))
{
if (integer_zerop (arg1))
return omit_one_operand (type, arg1, arg0);
if (integer_onep (arg1))
return non_lvalue (fold_convert (type, arg0));
/* (a * (1 << b)) is (a << b) */
if (TREE_CODE (arg1) == LSHIFT_EXPR
&& integer_onep (TREE_OPERAND (arg1, 0)))
return fold (build2 (LSHIFT_EXPR, type, arg0,
TREE_OPERAND (arg1, 1)));
if (TREE_CODE (arg0) == LSHIFT_EXPR
&& integer_onep (TREE_OPERAND (arg0, 0)))
return fold (build2 (LSHIFT_EXPR, type, arg1,
TREE_OPERAND (arg0, 1)));
if (TREE_CODE (arg1) == INTEGER_CST
&& 0 != (tem = extract_muldiv (TREE_OPERAND (t, 0),
fold_convert (type, arg1),
code, NULL_TREE)))
return fold_convert (type, tem);
}
else
{
/* Maybe fold x * 0 to 0. The expressions aren't the same
when x is NaN, since x * 0 is also NaN. Nor are they the
same in modes with signed zeros, since multiplying a
negative value by 0 gives -0, not +0. */
if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
&& !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
&& real_zerop (arg1))
return omit_one_operand (type, arg1, arg0);
/* In IEEE floating point, x*1 is not equivalent to x for snans. */
if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
&& real_onep (arg1))
return non_lvalue (fold_convert (type, arg0));
/* Transform x * -1.0 into -x. */
if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
&& real_minus_onep (arg1))
return fold_convert (type, negate_expr (arg0));
/* Convert (C1/X)*C2 into (C1*C2)/X. */
if (flag_unsafe_math_optimizations
&& TREE_CODE (arg0) == RDIV_EXPR
&& TREE_CODE (arg1) == REAL_CST
&& TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST)
{
tree tem = const_binop (MULT_EXPR, TREE_OPERAND (arg0, 0),
arg1, 0);
if (tem)
return fold (build2 (RDIV_EXPR, type, tem,
TREE_OPERAND (arg0, 1)));
}
/* Strip sign operations from X in X*X, i.e. -Y*-Y -> Y*Y. */
if (operand_equal_p (arg0, arg1, 0))
{
tree tem = fold_strip_sign_ops (arg0);
if (tem != NULL_TREE)
{
tem = fold_convert (type, tem);
return fold (build2 (MULT_EXPR, type, tem, tem));
}
}
if (flag_unsafe_math_optimizations)
{
enum built_in_function fcode0 = builtin_mathfn_code (arg0);
enum built_in_function fcode1 = builtin_mathfn_code (arg1);
/* Optimizations of root(...)*root(...). */
if (fcode0 == fcode1 && BUILTIN_ROOT_P (fcode0))
{
tree rootfn, arg, arglist;
tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
/* Optimize sqrt(x)*sqrt(x) as x. */
if (BUILTIN_SQRT_P (fcode0)
&& operand_equal_p (arg00, arg10, 0)
&& ! HONOR_SNANS (TYPE_MODE (type)))
return arg00;
/* Optimize root(x)*root(y) as root(x*y). */
rootfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
arg = fold (build2 (MULT_EXPR, type, arg00, arg10));
arglist = build_tree_list (NULL_TREE, arg);
return build_function_call_expr (rootfn, arglist);
}
/* Optimize expN(x)*expN(y) as expN(x+y). */
if (fcode0 == fcode1 && BUILTIN_EXPONENT_P (fcode0))
{
tree expfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
tree arg = build2 (PLUS_EXPR, type,
TREE_VALUE (TREE_OPERAND (arg0, 1)),
TREE_VALUE (TREE_OPERAND (arg1, 1)));
tree arglist = build_tree_list (NULL_TREE, fold (arg));
return build_function_call_expr (expfn, arglist);
}
/* Optimizations of pow(...)*pow(...). */
if ((fcode0 == BUILT_IN_POW && fcode1 == BUILT_IN_POW)
|| (fcode0 == BUILT_IN_POWF && fcode1 == BUILT_IN_POWF)
|| (fcode0 == BUILT_IN_POWL && fcode1 == BUILT_IN_POWL))
{
tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0,
1)));
tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1,
1)));
/* Optimize pow(x,y)*pow(z,y) as pow(x*z,y). */
if (operand_equal_p (arg01, arg11, 0))
{
tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
tree arg = build2 (MULT_EXPR, type, arg00, arg10);
tree arglist = tree_cons (NULL_TREE, fold (arg),
build_tree_list (NULL_TREE,
arg01));
return build_function_call_expr (powfn, arglist);
}
/* Optimize pow(x,y)*pow(x,z) as pow(x,y+z). */
if (operand_equal_p (arg00, arg10, 0))
{
tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
tree arg = fold (build2 (PLUS_EXPR, type, arg01, arg11));
tree arglist = tree_cons (NULL_TREE, arg00,
build_tree_list (NULL_TREE,
arg));
return build_function_call_expr (powfn, arglist);
}
}
/* Optimize tan(x)*cos(x) as sin(x). */
if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_COS)
|| (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_COSF)
|| (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_COSL)
|| (fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_TAN)
|| (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_TANF)
|| (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_TANL))
&& operand_equal_p (TREE_VALUE (TREE_OPERAND (arg0, 1)),
TREE_VALUE (TREE_OPERAND (arg1, 1)), 0))
{
tree sinfn = mathfn_built_in (type, BUILT_IN_SIN);
if (sinfn != NULL_TREE)
return build_function_call_expr (sinfn,
TREE_OPERAND (arg0, 1));
}
/* Optimize x*pow(x,c) as pow(x,c+1). */
if (fcode1 == BUILT_IN_POW
|| fcode1 == BUILT_IN_POWF
|| fcode1 == BUILT_IN_POWL)
{
tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1,
1)));
if (TREE_CODE (arg11) == REAL_CST
&& ! TREE_CONSTANT_OVERFLOW (arg11)
&& operand_equal_p (arg0, arg10, 0))
{
tree powfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
REAL_VALUE_TYPE c;
tree arg, arglist;
c = TREE_REAL_CST (arg11);
real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
arg = build_real (type, c);
arglist = build_tree_list (NULL_TREE, arg);
arglist = tree_cons (NULL_TREE, arg0, arglist);
return build_function_call_expr (powfn, arglist);
}
}
/* Optimize pow(x,c)*x as pow(x,c+1). */
if (fcode0 == BUILT_IN_POW
|| fcode0 == BUILT_IN_POWF
|| fcode0 == BUILT_IN_POWL)
{
tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0,
1)));
if (TREE_CODE (arg01) == REAL_CST
&& ! TREE_CONSTANT_OVERFLOW (arg01)
&& operand_equal_p (arg1, arg00, 0))
{
tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
REAL_VALUE_TYPE c;
tree arg, arglist;
c = TREE_REAL_CST (arg01);
real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
arg = build_real (type, c);
arglist = build_tree_list (NULL_TREE, arg);
arglist = tree_cons (NULL_TREE, arg1, arglist);
return build_function_call_expr (powfn, arglist);
}
}
/* Optimize x*x as pow(x,2.0), which is expanded as x*x. */
if (! optimize_size
&& operand_equal_p (arg0, arg1, 0))
{
tree powfn = mathfn_built_in (type, BUILT_IN_POW);
if (powfn)
{
tree arg = build_real (type, dconst2);
tree arglist = build_tree_list (NULL_TREE, arg);
arglist = tree_cons (NULL_TREE, arg0, arglist);
return build_function_call_expr (powfn, arglist);
}
}
}
}
goto associate;
case BIT_IOR_EXPR:
bit_ior:
if (integer_all_onesp (arg1))
return omit_one_operand (type, arg1, arg0);
if (integer_zerop (arg1))
return non_lvalue (fold_convert (type, arg0));
if (operand_equal_p (arg0, arg1, 0))
return non_lvalue (fold_convert (type, arg0));
/* ~X | X is -1. */
if (TREE_CODE (arg0) == BIT_NOT_EXPR
&& operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
{
t1 = build_int_cst (type, -1);
t1 = force_fit_type (t1, 0, false, false);
return omit_one_operand (type, t1, arg1);
}
/* X | ~X is -1. */
if (TREE_CODE (arg1) == BIT_NOT_EXPR
&& operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
{
t1 = build_int_cst (type, -1);
t1 = force_fit_type (t1, 0, false, false);
return omit_one_operand (type, t1, arg0);
}
t1 = distribute_bit_expr (code, type, arg0, arg1);
if (t1 != NULL_TREE)
return t1;
/* Convert (or (not arg0) (not arg1)) to (not (and (arg0) (arg1))).
This results in more efficient code for machines without a NAND
instruction. Combine will canonicalize to the first form
which will allow use of NAND instructions provided by the
backend if they exist. */
if (TREE_CODE (arg0) == BIT_NOT_EXPR
&& TREE_CODE (arg1) == BIT_NOT_EXPR)
{
return fold (build1 (BIT_NOT_EXPR, type,
build2 (BIT_AND_EXPR, type,
TREE_OPERAND (arg0, 0),
TREE_OPERAND (arg1, 0))));
}
/* See if this can be simplified into a rotate first. If that
is unsuccessful continue in the association code. */
goto bit_rotate;
case BIT_XOR_EXPR:
if (integer_zerop (arg1))
return non_lvalue (fold_convert (type, arg0));
if (integer_all_onesp (arg1))
return fold (build1 (BIT_NOT_EXPR, type, arg0));
if (operand_equal_p (arg0, arg1, 0))
return omit_one_operand (type, integer_zero_node, arg0);
/* ~X ^ X is -1. */
if (TREE_CODE (arg0) == BIT_NOT_EXPR
&& operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
{
t1 = build_int_cst (type, -1);
t1 = force_fit_type (t1, 0, false, false);
return omit_one_operand (type, t1, arg1);
}
/* X ^ ~X is -1. */
if (TREE_CODE (arg1) == BIT_NOT_EXPR
&& operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
{
t1 = build_int_cst (type, -1);
t1 = force_fit_type (t1, 0, false, false);
return omit_one_operand (type, t1, arg0);
}
/* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
with a constant, and the two constants have no bits in common,
we should treat this as a BIT_IOR_EXPR since this may produce more
simplifications. */
if (TREE_CODE (arg0) == BIT_AND_EXPR
&& TREE_CODE (arg1) == BIT_AND_EXPR
&& TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
&& TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
&& integer_zerop (const_binop (BIT_AND_EXPR,
TREE_OPERAND (arg0, 1),
TREE_OPERAND (arg1, 1), 0)))
{
code = BIT_IOR_EXPR;
goto bit_ior;
}
/* See if this can be simplified into a rotate first. If that
is unsuccessful continue in the association code. */
goto bit_rotate;
case BIT_AND_EXPR:
if (integer_all_onesp (arg1))
return non_lvalue (fold_convert (type, arg0));
if (integer_zerop (arg1))
return omit_one_operand (type, arg1, arg0);
if (operand_equal_p (arg0, arg1, 0))
return non_lvalue (fold_convert (type, arg0));
/* ~X & X is always zero. */
if (TREE_CODE (arg0) == BIT_NOT_EXPR
&& operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
return omit_one_operand (type, integer_zero_node, arg1);
/* X & ~X is always zero. */
if (TREE_CODE (arg1) == BIT_NOT_EXPR
&& operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
return omit_one_operand (type, integer_zero_node, arg0);
t1 = distribute_bit_expr (code, type, arg0, arg1);
if (t1 != NULL_TREE)
return t1;
/* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
&& TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
{
unsigned int prec
= TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)));
if (prec < BITS_PER_WORD && prec < HOST_BITS_PER_WIDE_INT
&& (~TREE_INT_CST_LOW (arg1)
& (((HOST_WIDE_INT) 1 << prec) - 1)) == 0)
return fold_convert (type, TREE_OPERAND (arg0, 0));
}
/* Convert (and (not arg0) (not arg1)) to (not (or (arg0) (arg1))).
This results in more efficient code for machines without a NOR
instruction. Combine will canonicalize to the first form
which will allow use of NOR instructions provided by the
backend if they exist. */
if (TREE_CODE (arg0) == BIT_NOT_EXPR
&& TREE_CODE (arg1) == BIT_NOT_EXPR)
{
return fold (build1 (BIT_NOT_EXPR, type,
build2 (BIT_IOR_EXPR, type,
TREE_OPERAND (arg0, 0),
TREE_OPERAND (arg1, 0))));
}
goto associate;
case RDIV_EXPR:
/* Don't touch a floating-point divide by zero unless the mode
of the constant can represent infinity. */
if (TREE_CODE (arg1) == REAL_CST
&& !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
&& real_zerop (arg1))
return t;
/* (-A) / (-B) -> A / B */
if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
return fold (build2 (RDIV_EXPR, type,
TREE_OPERAND (arg0, 0),
negate_expr (arg1)));
if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
return fold (build2 (RDIV_EXPR, type,
negate_expr (arg0),
TREE_OPERAND (arg1, 0)));
/* In IEEE floating point, x/1 is not equivalent to x for snans. */
if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
&& real_onep (arg1))
return non_lvalue (fold_convert (type, arg0));
/* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
&& real_minus_onep (arg1))
return non_lvalue (fold_convert (type, negate_expr (arg0)));
/* If ARG1 is a constant, we can convert this to a multiply by the
reciprocal. This does not have the same rounding properties,
so only do this if -funsafe-math-optimizations. We can actually
always safely do it if ARG1 is a power of two, but it's hard to
tell if it is or not in a portable manner. */
if (TREE_CODE (arg1) == REAL_CST)
{
if (flag_unsafe_math_optimizations
&& 0 != (tem = const_binop (code, build_real (type, dconst1),
arg1, 0)))
return fold (build2 (MULT_EXPR, type, arg0, tem));
/* Find the reciprocal if optimizing and the result is exact. */
if (optimize)
{
REAL_VALUE_TYPE r;
r = TREE_REAL_CST (arg1);
if (exact_real_inverse (TYPE_MODE(TREE_TYPE(arg0)), &r))
{
tem = build_real (type, r);
return fold (build2 (MULT_EXPR, type, arg0, tem));
}
}
}
/* Convert A/B/C to A/(B*C). */
if (flag_unsafe_math_optimizations
&& TREE_CODE (arg0) == RDIV_EXPR)
return fold (build2 (RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
fold (build2 (MULT_EXPR, type,
TREE_OPERAND (arg0, 1), arg1))));
/* Convert A/(B/C) to (A/B)*C. */
if (flag_unsafe_math_optimizations
&& TREE_CODE (arg1) == RDIV_EXPR)
return fold (build2 (MULT_EXPR, type,
fold (build2 (RDIV_EXPR, type, arg0,
TREE_OPERAND (arg1, 0))),
TREE_OPERAND (arg1, 1)));
/* Convert C1/(X*C2) into (C1/C2)/X. */
if (flag_unsafe_math_optimizations
&& TREE_CODE (arg1) == MULT_EXPR
&& TREE_CODE (arg0) == REAL_CST
&& TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
{
tree tem = const_binop (RDIV_EXPR, arg0,
TREE_OPERAND (arg1, 1), 0);
if (tem)
return fold (build2 (RDIV_EXPR, type, tem,
TREE_OPERAND (arg1, 0)));
}
if (TREE_CODE (type) == COMPLEX_TYPE)
{
tem = fold_complex_div (type, arg0, arg1, code);
if (tem)
return tem;
}
if (flag_unsafe_math_optimizations)
{
enum built_in_function fcode = builtin_mathfn_code (arg1);
/* Optimize x/expN(y) into x*expN(-y). */
if (BUILTIN_EXPONENT_P (fcode))
{
tree expfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
tree arg = negate_expr (TREE_VALUE (TREE_OPERAND (arg1, 1)));
tree arglist = build_tree_list (NULL_TREE,
fold_convert (type, arg));
arg1 = build_function_call_expr (expfn, arglist);
return fold (build2 (MULT_EXPR, type, arg0, arg1));
}
/* Optimize x/pow(y,z) into x*pow(y,-z). */
if (fcode == BUILT_IN_POW
|| fcode == BUILT_IN_POWF
|| fcode == BUILT_IN_POWL)
{
tree powfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1, 1)));
tree neg11 = fold_convert (type, negate_expr (arg11));
tree arglist = tree_cons(NULL_TREE, arg10,
build_tree_list (NULL_TREE, neg11));
arg1 = build_function_call_expr (powfn, arglist);
return fold (build2 (MULT_EXPR, type, arg0, arg1));
}
}
if (flag_unsafe_math_optimizations)
{
enum built_in_function fcode0 = builtin_mathfn_code (arg0);
enum built_in_function fcode1 = builtin_mathfn_code (arg1);
/* Optimize sin(x)/cos(x) as tan(x). */
if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_COS)
|| (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_COSF)
|| (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_COSL))
&& operand_equal_p (TREE_VALUE (TREE_OPERAND (arg0, 1)),
TREE_VALUE (TREE_OPERAND (arg1, 1)), 0))
{
tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
if (tanfn != NULL_TREE)
return build_function_call_expr (tanfn,
TREE_OPERAND (arg0, 1));
}
/* Optimize cos(x)/sin(x) as 1.0/tan(x). */
if (((fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_SIN)
|| (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_SINF)
|| (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_SINL))
&& operand_equal_p (TREE_VALUE (TREE_OPERAND (arg0, 1)),
TREE_VALUE (TREE_OPERAND (arg1, 1)), 0))
{
tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
if (tanfn != NULL_TREE)
{
tree tmp = TREE_OPERAND (arg0, 1);
tmp = build_function_call_expr (tanfn, tmp);
return fold (build2 (RDIV_EXPR, type,
build_real (type, dconst1), tmp));
}
}
/* Optimize pow(x,c)/x as pow(x,c-1). */
if (fcode0 == BUILT_IN_POW
|| fcode0 == BUILT_IN_POWF
|| fcode0 == BUILT_IN_POWL)
{
tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0, 1)));
if (TREE_CODE (arg01) == REAL_CST
&& ! TREE_CONSTANT_OVERFLOW (arg01)
&& operand_equal_p (arg1, arg00, 0))
{
tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
REAL_VALUE_TYPE c;
tree arg, arglist;
c = TREE_REAL_CST (arg01);
real_arithmetic (&c, MINUS_EXPR, &c, &dconst1);
arg = build_real (type, c);
arglist = build_tree_list (NULL_TREE, arg);
arglist = tree_cons (NULL_TREE, arg1, arglist);
return build_function_call_expr (powfn, arglist);
}
}
}
goto binary;
case TRUNC_DIV_EXPR:
case ROUND_DIV_EXPR:
case FLOOR_DIV_EXPR:
case CEIL_DIV_EXPR:
case EXACT_DIV_EXPR:
if (integer_onep (arg1))
return non_lvalue (fold_convert (type, arg0));
if (integer_zerop (arg1))
return t;
/* X / -1 is -X. */
if (!TYPE_UNSIGNED (type)
&& TREE_CODE (arg1) == INTEGER_CST
&& TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
&& TREE_INT_CST_HIGH (arg1) == -1)
return fold_convert (type, negate_expr (arg0));
/* If arg0 is a multiple of arg1, then rewrite to the fastest div
operation, EXACT_DIV_EXPR.
Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
At one time others generated faster code, it's not clear if they do
after the last round to changes to the DIV code in expmed.c. */
if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
&& multiple_of_p (type, arg0, arg1))
return fold (build2 (EXACT_DIV_EXPR, type, arg0, arg1));
if (TREE_CODE (arg1) == INTEGER_CST
&& 0 != (tem = extract_muldiv (TREE_OPERAND (t, 0), arg1,
code, NULL_TREE)))
return fold_convert (type, tem);
if (TREE_CODE (type) == COMPLEX_TYPE)
{
tem = fold_complex_div (type, arg0, arg1, code);
if (tem)
return tem;
}
goto binary;
case CEIL_MOD_EXPR:
case FLOOR_MOD_EXPR:
case ROUND_MOD_EXPR:
case TRUNC_MOD_EXPR:
/* X % 1 is always zero, but be sure to preserve any side
effects in X. */
if (integer_onep (arg1))
return omit_one_operand (type, integer_zero_node, arg0);
/* X % 0, return X % 0 unchanged so that we can get the
proper warnings and errors. */
if (integer_zerop (arg1))
return t;
/* 0 % X is always zero, but be sure to preserve any side
effects in X. Place this after checking for X == 0. */
if (integer_zerop (arg0))
return omit_one_operand (type, integer_zero_node, arg1);
/* X % -1 is zero. */
if (!TYPE_UNSIGNED (type)
&& TREE_CODE (arg1) == INTEGER_CST
&& TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
&& TREE_INT_CST_HIGH (arg1) == -1)
return omit_one_operand (type, integer_zero_node, arg0);
/* Optimize unsigned TRUNC_MOD_EXPR by a power of two into a
BIT_AND_EXPR, i.e. "X % C" into "X & C2". */
if (code == TRUNC_MOD_EXPR
&& TYPE_UNSIGNED (type)
&& integer_pow2p (arg1))
{
unsigned HOST_WIDE_INT high, low;
tree mask;
int l;
l = tree_log2 (arg1);
if (l >= HOST_BITS_PER_WIDE_INT)
{
high = ((unsigned HOST_WIDE_INT) 1
<< (l - HOST_BITS_PER_WIDE_INT)) - 1;
low = -1;
}
else
{
high = 0;
low = ((unsigned HOST_WIDE_INT) 1 << l) - 1;
}
mask = build_int_cst_wide (type, low, high);
return fold (build2 (BIT_AND_EXPR, type,
fold_convert (type, arg0), mask));
}
/* X % -C is the same as X % C. */
if (code == TRUNC_MOD_EXPR
&& !TYPE_UNSIGNED (type)
&& TREE_CODE (arg1) == INTEGER_CST
&& TREE_INT_CST_HIGH (arg1) < 0
&& !flag_trapv
/* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
&& !sign_bit_p (arg1, arg1))
return fold (build2 (code, type, fold_convert (type, arg0),
fold_convert (type, negate_expr (arg1))));
/* X % -Y is the same as X % Y. */
if (code == TRUNC_MOD_EXPR
&& !TYPE_UNSIGNED (type)
&& TREE_CODE (arg1) == NEGATE_EXPR
&& !flag_trapv)
return fold (build2 (code, type, fold_convert (type, arg0),
fold_convert (type, TREE_OPERAND (arg1, 0))));
if (TREE_CODE (arg1) == INTEGER_CST
&& 0 != (tem = extract_muldiv (TREE_OPERAND (t, 0), arg1,
code, NULL_TREE)))
return fold_convert (type, tem);
goto binary;
case LROTATE_EXPR:
case RROTATE_EXPR:
if (integer_all_onesp (arg0))
return omit_one_operand (type, arg0, arg1);
goto shift;
case RSHIFT_EXPR:
/* Optimize -1 >> x for arithmetic right shifts. */
if (integer_all_onesp (arg0) && !TYPE_UNSIGNED (type))
return omit_one_operand (type, arg0, arg1);
/* ... fall through ... */
case LSHIFT_EXPR:
shift:
if (integer_zerop (arg1))
return non_lvalue (fold_convert (type, arg0));
if (integer_zerop (arg0))
return omit_one_operand (type, arg0, arg1);
/* Since negative shift count is not well-defined,
don't try to compute it in the compiler. */
if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
return t;
/* Rewrite an LROTATE_EXPR by a constant into an
RROTATE_EXPR by a new constant. */
if (code == LROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST)
{
tree tem = build_int_cst (NULL_TREE,
GET_MODE_BITSIZE (TYPE_MODE (type)));
tem = fold_convert (TREE_TYPE (arg1), tem);
tem = const_binop (MINUS_EXPR, tem, arg1, 0);
return fold (build2 (RROTATE_EXPR, type, arg0, tem));
}
/* If we have a rotate of a bit operation with the rotate count and
the second operand of the bit operation both constant,
permute the two operations. */
if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
&& (TREE_CODE (arg0) == BIT_AND_EXPR
|| TREE_CODE (arg0) == BIT_IOR_EXPR
|| TREE_CODE (arg0) == BIT_XOR_EXPR)
&& TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
return fold (build2 (TREE_CODE (arg0), type,
fold (build2 (code, type,
TREE_OPERAND (arg0, 0), arg1)),
fold (build2 (code, type,
TREE_OPERAND (arg0, 1), arg1))));
/* Two consecutive rotates adding up to the width of the mode can
be ignored. */
if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
&& TREE_CODE (arg0) == RROTATE_EXPR
&& TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
&& TREE_INT_CST_HIGH (arg1) == 0
&& TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1)) == 0
&& ((TREE_INT_CST_LOW (arg1)
+ TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)))
== (unsigned int) GET_MODE_BITSIZE (TYPE_MODE (type))))
return TREE_OPERAND (arg0, 0);
goto binary;
case MIN_EXPR:
if (operand_equal_p (arg0, arg1, 0))
return omit_one_operand (type, arg0, arg1);
if (INTEGRAL_TYPE_P (type)
&& operand_equal_p (arg1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
return omit_one_operand (type, arg1, arg0);
goto associate;
case MAX_EXPR:
if (operand_equal_p (arg0, arg1, 0))
return omit_one_operand (type, arg0, arg1);
if (INTEGRAL_TYPE_P (type)
&& TYPE_MAX_VALUE (type)
&& operand_equal_p (arg1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
return omit_one_operand (type, arg1, arg0);
goto associate;
case TRUTH_ANDIF_EXPR:
/* Note that the operands of this must be ints
and their values must be 0 or 1.
("true" is a fixed value perhaps depending on the language.) */
/* If first arg is constant zero, return it. */
if (integer_zerop (arg0))
return fold_convert (type, arg0);
case TRUTH_AND_EXPR:
/* If either arg is constant true, drop it. */
if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
return non_lvalue (fold_convert (type, arg1));
if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
/* Preserve sequence points. */
&& (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
return non_lvalue (fold_convert (type, arg0));
/* If second arg is constant zero, result is zero, but first arg
must be evaluated. */
if (integer_zerop (arg1))
return omit_one_operand (type, arg1, arg0);
/* Likewise for first arg, but note that only the TRUTH_AND_EXPR
case will be handled here. */
if (integer_zerop (arg0))
return omit_one_operand (type, arg0, arg1);
/* !X && X is always false. */
if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
&& operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
return omit_one_operand (type, integer_zero_node, arg1);
/* X && !X is always false. */
if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
&& operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
return omit_one_operand (type, integer_zero_node, arg0);
/* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
means A >= Y && A != MAX, but in this case we know that
A < X <= MAX. */
if (!TREE_SIDE_EFFECTS (arg0)
&& !TREE_SIDE_EFFECTS (arg1))
{
tem = fold_to_nonsharp_ineq_using_bound (arg0, arg1);
if (tem)
return fold (build2 (code, type, tem, arg1));
tem = fold_to_nonsharp_ineq_using_bound (arg1, arg0);
if (tem)
return fold (build2 (code, type, arg0, tem));
}
truth_andor:
/* We only do these simplifications if we are optimizing. */
if (!optimize)
return t;
/* Check for things like (A || B) && (A || C). We can convert this
to A || (B && C). Note that either operator can be any of the four
truth and/or operations and the transformation will still be
valid. Also note that we only care about order for the
ANDIF and ORIF operators. If B contains side effects, this
might change the truth-value of A. */
if (TREE_CODE (arg0) == TREE_CODE (arg1)
&& (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
|| TREE_CODE (arg0) == TRUTH_ORIF_EXPR
|| TREE_CODE (arg0) == TRUTH_AND_EXPR
|| TREE_CODE (arg0) == TRUTH_OR_EXPR)
&& ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
{
tree a00 = TREE_OPERAND (arg0, 0);
tree a01 = TREE_OPERAND (arg0, 1);
tree a10 = TREE_OPERAND (arg1, 0);
tree a11 = TREE_OPERAND (arg1, 1);
int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
|| TREE_CODE (arg0) == TRUTH_AND_EXPR)
&& (code == TRUTH_AND_EXPR
|| code == TRUTH_OR_EXPR));
if (operand_equal_p (a00, a10, 0))
return fold (build2 (TREE_CODE (arg0), type, a00,
fold (build2 (code, type, a01, a11))));
else if (commutative && operand_equal_p (a00, a11, 0))
return fold (build2 (TREE_CODE (arg0), type, a00,
fold (build2 (code, type, a01, a10))));
else if (commutative && operand_equal_p (a01, a10, 0))
return fold (build2 (TREE_CODE (arg0), type, a01,
fold (build2 (code, type, a00, a11))));
/* This case if tricky because we must either have commutative
operators or else A10 must not have side-effects. */
else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
&& operand_equal_p (a01, a11, 0))
return fold (build2 (TREE_CODE (arg0), type,
fold (build2 (code, type, a00, a10)),
a01));
}
/* See if we can build a range comparison. */
if (0 != (tem = fold_range_test (t)))
return tem;
/* Check for the possibility of merging component references. If our
lhs is another similar operation, try to merge its rhs with our
rhs. Then try to merge our lhs and rhs. */
if (TREE_CODE (arg0) == code
&& 0 != (tem = fold_truthop (code, type,
TREE_OPERAND (arg0, 1), arg1)))
return fold (build2 (code, type, TREE_OPERAND (arg0, 0), tem));
if ((tem = fold_truthop (code, type, arg0, arg1)) != 0)
return tem;
return t;
case TRUTH_ORIF_EXPR:
/* Note that the operands of this must be ints
and their values must be 0 or true.
("true" is a fixed value perhaps depending on the language.) */
/* If first arg is constant true, return it. */
if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
return fold_convert (type, arg0);
case TRUTH_OR_EXPR:
/* If either arg is constant zero, drop it. */
if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
return non_lvalue (fold_convert (type, arg1));
if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
/* Preserve sequence points. */
&& (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
return non_lvalue (fold_convert (type, arg0));
/* If second arg is constant true, result is true, but we must
evaluate first arg. */
if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
return omit_one_operand (type, arg1, arg0);
/* Likewise for first arg, but note this only occurs here for
TRUTH_OR_EXPR. */
if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
return omit_one_operand (type, arg0, arg1);
/* !X || X is always true. */
if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
&& operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
return omit_one_operand (type, integer_one_node, arg1);
/* X || !X is always true. */
if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
&& operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
return omit_one_operand (type, integer_one_node, arg0);
goto truth_andor;
case TRUTH_XOR_EXPR:
/* If the second arg is constant zero, drop it. */
if (integer_zerop (arg1))
return non_lvalue (fold_convert (type, arg0));
/* If the second arg is constant true, this is a logical inversion. */
if (integer_onep (arg1))
return non_lvalue (fold_convert (type, invert_truthvalue (arg0)));
/* Identical arguments cancel to zero. */
if (operand_equal_p (arg0, arg1, 0))
return omit_one_operand (type, integer_zero_node, arg0);
/* !X ^ X is always true. */
if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
&& operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
return omit_one_operand (type, integer_one_node, arg1);
/* X ^ !X is always true. */
if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
&& operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
return omit_one_operand (type, integer_one_node, arg0);
return t;
case EQ_EXPR:
case NE_EXPR:
case LT_EXPR:
case GT_EXPR:
case LE_EXPR:
case GE_EXPR:
/* If one arg is a real or integer constant, put it last. */
if (tree_swap_operands_p (arg0, arg1, true))
return fold (build2 (swap_tree_comparison (code), type, arg1, arg0));
/* If this is an equality comparison of the address of a non-weak
object against zero, then we know the result. */
if ((code == EQ_EXPR || code == NE_EXPR)
&& TREE_CODE (arg0) == ADDR_EXPR
&& DECL_P (TREE_OPERAND (arg0, 0))
&& ! DECL_WEAK (TREE_OPERAND (arg0, 0))
&& integer_zerop (arg1))
return constant_boolean_node (code != EQ_EXPR, type);
/* If this is an equality comparison of the address of two non-weak,
unaliased symbols neither of which are extern (since we do not
have access to attributes for externs), then we know the result. */
if ((code == EQ_EXPR || code == NE_EXPR)
&& TREE_CODE (arg0) == ADDR_EXPR
&& DECL_P (TREE_OPERAND (arg0, 0))
&& ! DECL_WEAK (TREE_OPERAND (arg0, 0))
&& ! lookup_attribute ("alias",
DECL_ATTRIBUTES (TREE_OPERAND (arg0, 0)))
&& ! DECL_EXTERNAL (TREE_OPERAND (arg0, 0))
&& TREE_CODE (arg1) == ADDR_EXPR
&& DECL_P (TREE_OPERAND (arg1, 0))
&& ! DECL_WEAK (TREE_OPERAND (arg1, 0))
&& ! lookup_attribute ("alias",
DECL_ATTRIBUTES (TREE_OPERAND (arg1, 0)))
&& ! DECL_EXTERNAL (TREE_OPERAND (arg1, 0)))
return constant_boolean_node (operand_equal_p (arg0, arg1, 0)
? code == EQ_EXPR : code != EQ_EXPR,
type);
/* If this is a comparison of two exprs that look like an
ARRAY_REF of the same object, then we can fold this to a
comparison of the two offsets. */
if (COMPARISON_CLASS_P (t))
{
tree base0, offset0, base1, offset1;
if (extract_array_ref (arg0, &base0, &offset0)
&& extract_array_ref (arg1, &base1, &offset1)
&& operand_equal_p (base0, base1, 0))
{
if (offset0 == NULL_TREE
&& offset1 == NULL_TREE)
{
offset0 = integer_zero_node;
offset1 = integer_zero_node;
}
else if (offset0 == NULL_TREE)
offset0 = build_int_cst (TREE_TYPE (offset1), 0);
else if (offset1 == NULL_TREE)
offset1 = build_int_cst (TREE_TYPE (offset0), 0);
if (TREE_TYPE (offset0) == TREE_TYPE (offset1))
return fold (build2 (code, type, offset0, offset1));
}
}
if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
{
tree targ0 = strip_float_extensions (arg0);
tree targ1 = strip_float_extensions (arg1);
tree newtype = TREE_TYPE (targ0);
if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
newtype = TREE_TYPE (targ1);
/* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
return fold (build2 (code, type, fold_convert (newtype, targ0),
fold_convert (newtype, targ1)));
/* (-a) CMP (-b) -> b CMP a */
if (TREE_CODE (arg0) == NEGATE_EXPR
&& TREE_CODE (arg1) == NEGATE_EXPR)
return fold (build2 (code, type, TREE_OPERAND (arg1, 0),
TREE_OPERAND (arg0, 0)));
if (TREE_CODE (arg1) == REAL_CST)
{
REAL_VALUE_TYPE cst;
cst = TREE_REAL_CST (arg1);
/* (-a) CMP CST -> a swap(CMP) (-CST) */
if (TREE_CODE (arg0) == NEGATE_EXPR)
return
fold (build2 (swap_tree_comparison (code), type,
TREE_OPERAND (arg0, 0),
build_real (TREE_TYPE (arg1),
REAL_VALUE_NEGATE (cst))));
/* IEEE doesn't distinguish +0 and -0 in comparisons. */
/* a CMP (-0) -> a CMP 0 */
if (REAL_VALUE_MINUS_ZERO (cst))
return fold (build2 (code, type, arg0,
build_real (TREE_TYPE (arg1), dconst0)));
/* x != NaN is always true, other ops are always false. */
if (REAL_VALUE_ISNAN (cst)
&& ! HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1))))
{
tem = (code == NE_EXPR) ? integer_one_node : integer_zero_node;
return omit_one_operand (type, tem, arg0);
}
/* Fold comparisons against infinity. */
if (REAL_VALUE_ISINF (cst))
{
tem = fold_inf_compare (code, type, arg0, arg1);
if (tem != NULL_TREE)
return tem;
}
}
/* If this is a comparison of a real constant with a PLUS_EXPR
or a MINUS_EXPR of a real constant, we can convert it into a
comparison with a revised real constant as long as no overflow
occurs when unsafe_math_optimizations are enabled. */
if (flag_unsafe_math_optimizations
&& TREE_CODE (arg1) == REAL_CST
&& (TREE_CODE (arg0) == PLUS_EXPR
|| TREE_CODE (arg0) == MINUS_EXPR)
&& TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
&& 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
? MINUS_EXPR : PLUS_EXPR,
arg1, TREE_OPERAND (arg0, 1), 0))
&& ! TREE_CONSTANT_OVERFLOW (tem))
return fold (build2 (code, type, TREE_OPERAND (arg0, 0), tem));
/* Likewise, we can simplify a comparison of a real constant with
a MINUS_EXPR whose first operand is also a real constant, i.e.
(c1 - x) < c2 becomes x > c1-c2. */
if (flag_unsafe_math_optimizations
&& TREE_CODE (arg1) == REAL_CST
&& TREE_CODE (arg0) == MINUS_EXPR
&& TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST
&& 0 != (tem = const_binop (MINUS_EXPR, TREE_OPERAND (arg0, 0),
arg1, 0))
&& ! TREE_CONSTANT_OVERFLOW (tem))
return fold (build2 (swap_tree_comparison (code), type,
TREE_OPERAND (arg0, 1), tem));
/* Fold comparisons against built-in math functions. */
if (TREE_CODE (arg1) == REAL_CST
&& flag_unsafe_math_optimizations
&& ! flag_errno_math)
{
enum built_in_function fcode = builtin_mathfn_code (arg0);
if (fcode != END_BUILTINS)
{
tem = fold_mathfn_compare (fcode, code, type, arg0, arg1);
if (tem != NULL_TREE)
return tem;
}
}
}
/* Convert foo++ == CONST into ++foo == CONST + INCR. */
if (TREE_CONSTANT (arg1)
&& (TREE_CODE (arg0) == POSTINCREMENT_EXPR
|| TREE_CODE (arg0) == POSTDECREMENT_EXPR)
/* This optimization is invalid for ordered comparisons
if CONST+INCR overflows or if foo+incr might overflow.
This optimization is invalid for floating point due to rounding.
For pointer types we assume overflow doesn't happen. */
&& (POINTER_TYPE_P (TREE_TYPE (arg0))
|| (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
&& (code == EQ_EXPR || code == NE_EXPR))))
{
tree varop, newconst;
if (TREE_CODE (arg0) == POSTINCREMENT_EXPR)
{
newconst = fold (build2 (PLUS_EXPR, TREE_TYPE (arg0),
arg1, TREE_OPERAND (arg0, 1)));
varop = build2 (PREINCREMENT_EXPR, TREE_TYPE (arg0),
TREE_OPERAND (arg0, 0),
TREE_OPERAND (arg0, 1));
}
else
{
newconst = fold (build2 (MINUS_EXPR, TREE_TYPE (arg0),
arg1, TREE_OPERAND (arg0, 1)));
varop = build2 (PREDECREMENT_EXPR, TREE_TYPE (arg0),
TREE_OPERAND (arg0, 0),
TREE_OPERAND (arg0, 1));
}
/* If VAROP is a reference to a bitfield, we must mask
the constant by the width of the field. */
if (TREE_CODE (TREE_OPERAND (varop, 0)) == COMPONENT_REF
&& DECL_BIT_FIELD (TREE_OPERAND (TREE_OPERAND (varop, 0), 1))
&& host_integerp (DECL_SIZE (TREE_OPERAND
(TREE_OPERAND (varop, 0), 1)), 1))
{
tree fielddecl = TREE_OPERAND (TREE_OPERAND (varop, 0), 1);
HOST_WIDE_INT size = tree_low_cst (DECL_SIZE (fielddecl), 1);
tree folded_compare, shift;
/* First check whether the comparison would come out
always the same. If we don't do that we would
change the meaning with the masking. */
folded_compare = fold (build2 (code, type,
TREE_OPERAND (varop, 0), arg1));
if (integer_zerop (folded_compare)
|| integer_onep (folded_compare))
return omit_one_operand (type, folded_compare, varop);
shift = build_int_cst (NULL_TREE,
TYPE_PRECISION (TREE_TYPE (varop)) - size);
shift = fold_convert (TREE_TYPE (varop), shift);
newconst = fold (build2 (LSHIFT_EXPR, TREE_TYPE (varop),
newconst, shift));
newconst = fold (build2 (RSHIFT_EXPR, TREE_TYPE (varop),
newconst, shift));
}
return fold (build2 (code, type, varop, newconst));
}
/* Change X >= C to X > (C - 1) and X < C to X <= (C - 1) if C > 0.
This transformation affects the cases which are handled in later
optimizations involving comparisons with non-negative constants. */
if (TREE_CODE (arg1) == INTEGER_CST
&& TREE_CODE (arg0) != INTEGER_CST
&& tree_int_cst_sgn (arg1) > 0)
{
switch (code)
{
case GE_EXPR:
arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
return fold (build2 (GT_EXPR, type, arg0, arg1));
case LT_EXPR:
arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
return fold (build2 (LE_EXPR, type, arg0, arg1));
default:
break;
}
}
/* Comparisons with the highest or lowest possible integer of
the specified size will have known values.
This is quite similar to fold_relational_hi_lo, however,
attempts to share the code have been nothing but trouble. */
{
int width = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg1)));
if (TREE_CODE (arg1) == INTEGER_CST
&& ! TREE_CONSTANT_OVERFLOW (arg1)
&& width <= 2 * HOST_BITS_PER_WIDE_INT
&& (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
|| POINTER_TYPE_P (TREE_TYPE (arg1))))
{
HOST_WIDE_INT signed_max_hi;
unsigned HOST_WIDE_INT signed_max_lo;
unsigned HOST_WIDE_INT max_hi, max_lo, min_hi, min_lo;
if (width <= HOST_BITS_PER_WIDE_INT)
{
signed_max_lo = ((unsigned HOST_WIDE_INT) 1 << (width - 1))
- 1;
signed_max_hi = 0;
max_hi = 0;
if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
{
max_lo = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
min_lo = 0;
min_hi = 0;
}
else
{
max_lo = signed_max_lo;
min_lo = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
min_hi = -1;
}
}
else
{
width -= HOST_BITS_PER_WIDE_INT;
signed_max_lo = -1;
signed_max_hi = ((unsigned HOST_WIDE_INT) 1 << (width - 1))
- 1;
max_lo = -1;
min_lo = 0;
if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
{
max_hi = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
min_hi = 0;
}
else
{
max_hi = signed_max_hi;
min_hi = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
}
}
if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1) == max_hi
&& TREE_INT_CST_LOW (arg1) == max_lo)
switch (code)
{
case GT_EXPR:
return omit_one_operand (type, integer_zero_node, arg0);
case GE_EXPR:
return fold (build2 (EQ_EXPR, type, arg0, arg1));
case LE_EXPR:
return omit_one_operand (type, integer_one_node, arg0);
case LT_EXPR:
return fold (build2 (NE_EXPR, type, arg0, arg1));
/* The GE_EXPR and LT_EXPR cases above are not normally
reached because of previous transformations. */
default:
break;
}
else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
== max_hi
&& TREE_INT_CST_LOW (arg1) == max_lo - 1)
switch (code)
{
case GT_EXPR:
arg1 = const_binop (PLUS_EXPR, arg1, integer_one_node, 0);
return fold (build2 (EQ_EXPR, type, arg0, arg1));
case LE_EXPR:
arg1 = const_binop (PLUS_EXPR, arg1, integer_one_node, 0);
return fold (build2 (NE_EXPR, type, arg0, arg1));
default:
break;
}
else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
== min_hi
&& TREE_INT_CST_LOW (arg1) == min_lo)
switch (code)
{
case LT_EXPR:
return omit_one_operand (type, integer_zero_node, arg0);
case LE_EXPR:
return fold (build2 (EQ_EXPR, type, arg0, arg1));
case GE_EXPR:
return omit_one_operand (type, integer_one_node, arg0);
case GT_EXPR:
return fold (build2 (NE_EXPR, type, arg0, arg1));
default:
break;
}
else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
== min_hi
&& TREE_INT_CST_LOW (arg1) == min_lo + 1)
switch (code)
{
case GE_EXPR:
arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
return fold (build2 (NE_EXPR, type, arg0, arg1));
case LT_EXPR:
arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
return fold (build2 (EQ_EXPR, type, arg0, arg1));
default:
break;
}
else if (!in_gimple_form
&& TREE_INT_CST_HIGH (arg1) == signed_max_hi
&& TREE_INT_CST_LOW (arg1) == signed_max_lo
&& TYPE_UNSIGNED (TREE_TYPE (arg1))
/* signed_type does not work on pointer types. */
&& INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
{
/* The following case also applies to X < signed_max+1
and X >= signed_max+1 because previous transformations. */
if (code == LE_EXPR || code == GT_EXPR)
{
tree st0, st1;
st0 = lang_hooks.types.signed_type (TREE_TYPE (arg0));
st1 = lang_hooks.types.signed_type (TREE_TYPE (arg1));
return fold
(build2 (code == LE_EXPR ? GE_EXPR: LT_EXPR,
type, fold_convert (st0, arg0),
fold_convert (st1, integer_zero_node)));
}
}
}
}
/* If this is an EQ or NE comparison of a constant with a PLUS_EXPR or
a MINUS_EXPR of a constant, we can convert it into a comparison with
a revised constant as long as no overflow occurs. */
if ((code == EQ_EXPR || code == NE_EXPR)
&& TREE_CODE (arg1) == INTEGER_CST
&& (TREE_CODE (arg0) == PLUS_EXPR
|| TREE_CODE (arg0) == MINUS_EXPR)
&& TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
&& 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
? MINUS_EXPR : PLUS_EXPR,
arg1, TREE_OPERAND (arg0, 1), 0))
&& ! TREE_CONSTANT_OVERFLOW (tem))
return fold (build2 (code, type, TREE_OPERAND (arg0, 0), tem));
/* Similarly for a NEGATE_EXPR. */
else if ((code == EQ_EXPR || code == NE_EXPR)
&& TREE_CODE (arg0) == NEGATE_EXPR
&& TREE_CODE (arg1) == INTEGER_CST
&& 0 != (tem = negate_expr (arg1))
&& TREE_CODE (tem) == INTEGER_CST
&& ! TREE_CONSTANT_OVERFLOW (tem))
return fold (build2 (code, type, TREE_OPERAND (arg0, 0), tem));
/* If we have X - Y == 0, we can convert that to X == Y and similarly
for !=. Don't do this for ordered comparisons due to overflow. */
else if ((code == NE_EXPR || code == EQ_EXPR)
&& integer_zerop (arg1) && TREE_CODE (arg0) == MINUS_EXPR)
return fold (build2 (code, type,
TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1)));
else if (TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE
&& TREE_CODE (arg0) == NOP_EXPR)
{
/* If we are widening one operand of an integer comparison,
see if the other operand is similarly being widened. Perhaps we
can do the comparison in the narrower type. */
tem = fold_widened_comparison (code, type, arg0, arg1);
if (tem)
return tem;
/* Or if we are changing signedness. */
tem = fold_sign_changed_comparison (code, type, arg0, arg1);
if (tem)
return tem;
}
/* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
constant, we can simplify it. */
else if (TREE_CODE (arg1) == INTEGER_CST
&& (TREE_CODE (arg0) == MIN_EXPR
|| TREE_CODE (arg0) == MAX_EXPR)
&& TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
return optimize_minmax_comparison (t);
/* If we are comparing an ABS_EXPR with a constant, we can
convert all the cases into explicit comparisons, but they may
well not be faster than doing the ABS and one comparison.
But ABS (X) <= C is a range comparison, which becomes a subtraction
and a comparison, and is probably faster. */
else if (code == LE_EXPR && TREE_CODE (arg1) == INTEGER_CST
&& TREE_CODE (arg0) == ABS_EXPR
&& ! TREE_SIDE_EFFECTS (arg0)
&& (0 != (tem = negate_expr (arg1)))
&& TREE_CODE (tem) == INTEGER_CST
&& ! TREE_CONSTANT_OVERFLOW (tem))
return fold (build2 (TRUTH_ANDIF_EXPR, type,
build2 (GE_EXPR, type,
TREE_OPERAND (arg0, 0), tem),
build2 (LE_EXPR, type,
TREE_OPERAND (arg0, 0), arg1)));
/* Convert ABS_EXPR<x> >= 0 to true. */
else if (code == GE_EXPR
&& tree_expr_nonnegative_p (arg0)
&& (integer_zerop (arg1)
|| (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
&& real_zerop (arg1))))
return omit_one_operand (type, integer_one_node, arg0);
/* Convert ABS_EXPR<x> < 0 to false. */
else if (code == LT_EXPR
&& tree_expr_nonnegative_p (arg0)
&& (integer_zerop (arg1) || real_zerop (arg1)))
return omit_one_operand (type, integer_zero_node, arg0);
/* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
else if ((code == EQ_EXPR || code == NE_EXPR)
&& TREE_CODE (arg0) == ABS_EXPR
&& (integer_zerop (arg1) || real_zerop (arg1)))
return fold (build2 (code, type, TREE_OPERAND (arg0, 0), arg1));
/* If this is an EQ or NE comparison with zero and ARG0 is
(1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
two operations, but the latter can be done in one less insn
on machines that have only two-operand insns or on which a
constant cannot be the first operand. */
if (integer_zerop (arg1) && (code == EQ_EXPR || code == NE_EXPR)
&& TREE_CODE (arg0) == BIT_AND_EXPR)
{
tree arg00 = TREE_OPERAND (arg0, 0);
tree arg01 = TREE_OPERAND (arg0, 1);
if (TREE_CODE (arg00) == LSHIFT_EXPR
&& integer_onep (TREE_OPERAND (arg00, 0)))
return
fold (build2 (code, type,
build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
build2 (RSHIFT_EXPR, TREE_TYPE (arg00),
arg01, TREE_OPERAND (arg00, 1)),
fold_convert (TREE_TYPE (arg0),
integer_one_node)),
arg1));
else if (TREE_CODE (TREE_OPERAND (arg0, 1)) == LSHIFT_EXPR
&& integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 1), 0)))
return
fold (build2 (code, type,
build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
build2 (RSHIFT_EXPR, TREE_TYPE (arg01),
arg00, TREE_OPERAND (arg01, 1)),
fold_convert (TREE_TYPE (arg0),
integer_one_node)),
arg1));
}
/* If this is an NE or EQ comparison of zero against the result of a
signed MOD operation whose second operand is a power of 2, make
the MOD operation unsigned since it is simpler and equivalent. */
if ((code == NE_EXPR || code == EQ_EXPR)
&& integer_zerop (arg1)
&& !TYPE_UNSIGNED (TREE_TYPE (arg0))
&& (TREE_CODE (arg0) == TRUNC_MOD_EXPR
|| TREE_CODE (arg0) == CEIL_MOD_EXPR
|| TREE_CODE (arg0) == FLOOR_MOD_EXPR
|| TREE_CODE (arg0) == ROUND_MOD_EXPR)
&& integer_pow2p (TREE_OPERAND (arg0, 1)))
{
tree newtype = lang_hooks.types.unsigned_type (TREE_TYPE (arg0));
tree newmod = fold (build2 (TREE_CODE (arg0), newtype,
fold_convert (newtype,
TREE_OPERAND (arg0, 0)),
fold_convert (newtype,
TREE_OPERAND (arg0, 1))));
return fold (build2 (code, type, newmod,
fold_convert (newtype, arg1)));
}
/* If this is an NE comparison of zero with an AND of one, remove the
comparison since the AND will give the correct value. */
if (code == NE_EXPR && integer_zerop (arg1)
&& TREE_CODE (arg0) == BIT_AND_EXPR
&& integer_onep (TREE_OPERAND (arg0, 1)))
return fold_convert (type, arg0);
/* If we have (A & C) == C where C is a power of 2, convert this into
(A & C) != 0. Similarly for NE_EXPR. */
if ((code == EQ_EXPR || code == NE_EXPR)
&& TREE_CODE (arg0) == BIT_AND_EXPR
&& integer_pow2p (TREE_OPERAND (arg0, 1))
&& operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
return fold (build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
arg0, fold_convert (TREE_TYPE (arg0),
integer_zero_node)));
/* If we have (A & C) != 0 or (A & C) == 0 and C is a power of
2, then fold the expression into shifts and logical operations. */
tem = fold_single_bit_test (code, arg0, arg1, type);
if (tem)
return tem;
/* If we have (A & C) == D where D & ~C != 0, convert this into 0.
Similarly for NE_EXPR. */
if ((code == EQ_EXPR || code == NE_EXPR)
&& TREE_CODE (arg0) == BIT_AND_EXPR
&& TREE_CODE (arg1) == INTEGER_CST
&& TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
{
tree notc = fold (build1 (BIT_NOT_EXPR,
TREE_TYPE (TREE_OPERAND (arg0, 1)),
TREE_OPERAND (arg0, 1)));
tree dandnotc = fold (build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
arg1, notc));
tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
if (integer_nonzerop (dandnotc))
return omit_one_operand (type, rslt, arg0);
}
/* If we have (A | C) == D where C & ~D != 0, convert this into 0.
Similarly for NE_EXPR. */
if ((code == EQ_EXPR || code == NE_EXPR)
&& TREE_CODE (arg0) == BIT_IOR_EXPR
&& TREE_CODE (arg1) == INTEGER_CST
&& TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
{
tree notd = fold (build1 (BIT_NOT_EXPR, TREE_TYPE (arg1), arg1));
tree candnotd = fold (build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
TREE_OPERAND (arg0, 1), notd));
tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
if (integer_nonzerop (candnotd))
return omit_one_operand (type, rslt, arg0);
}
/* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
and similarly for >= into !=. */
if ((code == LT_EXPR || code == GE_EXPR)
&& TYPE_UNSIGNED (TREE_TYPE (arg0))
&& TREE_CODE (arg1) == LSHIFT_EXPR
&& integer_onep (TREE_OPERAND (arg1, 0)))
return build2 (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
TREE_OPERAND (arg1, 1)),
fold_convert (TREE_TYPE (arg0), integer_zero_node));
else if ((code == LT_EXPR || code == GE_EXPR)
&& TYPE_UNSIGNED (TREE_TYPE (arg0))
&& (TREE_CODE (arg1) == NOP_EXPR
|| TREE_CODE (arg1) == CONVERT_EXPR)
&& TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
&& integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
return
build2 (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
fold_convert (TREE_TYPE (arg0),
build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
TREE_OPERAND (TREE_OPERAND (arg1, 0),
1))),
fold_convert (TREE_TYPE (arg0), integer_zero_node));
/* Simplify comparison of something with itself. (For IEEE
floating-point, we can only do some of these simplifications.) */
if (operand_equal_p (arg0, arg1, 0))
{
switch (code)
{
case EQ_EXPR:
if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
|| ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
return constant_boolean_node (1, type);
break;
case GE_EXPR:
case LE_EXPR:
if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
|| ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
return constant_boolean_node (1, type);
return fold (build2 (EQ_EXPR, type, arg0, arg1));
case NE_EXPR:
/* For NE, we can only do this simplification if integer
or we don't honor IEEE floating point NaNs. */
if (FLOAT_TYPE_P (TREE_TYPE (arg0))
&& HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
break;
/* ... fall through ... */
case GT_EXPR:
case LT_EXPR:
return constant_boolean_node (0, type);
default:
gcc_unreachable ();
}
}
/* If we are comparing an expression that just has comparisons
of two integer values, arithmetic expressions of those comparisons,
and constants, we can simplify it. There are only three cases
to check: the two values can either be equal, the first can be
greater, or the second can be greater. Fold the expression for
those three values. Since each value must be 0 or 1, we have
eight possibilities, each of which corresponds to the constant 0
or 1 or one of the six possible comparisons.
This handles common cases like (a > b) == 0 but also handles
expressions like ((x > y) - (y > x)) > 0, which supposedly
occur in macroized code. */
if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
{
tree cval1 = 0, cval2 = 0;
int save_p = 0;
if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
/* Don't handle degenerate cases here; they should already
have been handled anyway. */
&& cval1 != 0 && cval2 != 0
&& ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
&& TREE_TYPE (cval1) == TREE_TYPE (cval2)
&& INTEGRAL_TYPE_P (TREE_TYPE (cval1))
&& TYPE_MAX_VALUE (TREE_TYPE (cval1))
&& TYPE_MAX_VALUE (TREE_TYPE (cval2))
&& ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
{
tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
/* We can't just pass T to eval_subst in case cval1 or cval2
was the same as ARG1. */
tree high_result
= fold (build2 (code, type,
eval_subst (arg0, cval1, maxval,
cval2, minval),
arg1));
tree equal_result
= fold (build2 (code, type,
eval_subst (arg0, cval1, maxval,
cval2, maxval),
arg1));
tree low_result
= fold (build2 (code, type,
eval_subst (arg0, cval1, minval,
cval2, maxval),
arg1));
/* All three of these results should be 0 or 1. Confirm they
are. Then use those values to select the proper code
to use. */
if ((integer_zerop (high_result)
|| integer_onep (high_result))
&& (integer_zerop (equal_result)
|| integer_onep (equal_result))
&& (integer_zerop (low_result)
|| integer_onep (low_result)))
{
/* Make a 3-bit mask with the high-order bit being the
value for `>', the next for '=', and the low for '<'. */
switch ((integer_onep (high_result) * 4)
+ (integer_onep (equal_result) * 2)
+ integer_onep (low_result))
{
case 0:
/* Always false. */
return omit_one_operand (type, integer_zero_node, arg0);
case 1:
code = LT_EXPR;
break;
case 2:
code = EQ_EXPR;
break;
case 3:
code = LE_EXPR;
break;
case 4:
code = GT_EXPR;
break;
case 5:
code = NE_EXPR;
break;
case 6:
code = GE_EXPR;
break;
case 7:
/* Always true. */
return omit_one_operand (type, integer_one_node, arg0);
}
tem = build2 (code, type, cval1, cval2);
if (save_p)
return save_expr (tem);
else
return fold (tem);
}
}
}
/* If this is a comparison of a field, we may be able to simplify it. */
if (((TREE_CODE (arg0) == COMPONENT_REF
&& lang_hooks.can_use_bit_fields_p ())
|| TREE_CODE (arg0) == BIT_FIELD_REF)
&& (code == EQ_EXPR || code == NE_EXPR)
/* Handle the constant case even without -O
to make sure the warnings are given. */
&& (optimize || TREE_CODE (arg1) == INTEGER_CST))
{
t1 = optimize_bit_field_compare (code, type, arg0, arg1);
if (t1)
return t1;
}
/* If this is a comparison of complex values and either or both sides
are a COMPLEX_EXPR or COMPLEX_CST, it is best to split up the
comparisons and join them with a TRUTH_ANDIF_EXPR or TRUTH_ORIF_EXPR.
This may prevent needless evaluations. */
if ((code == EQ_EXPR || code == NE_EXPR)
&& TREE_CODE (TREE_TYPE (arg0)) == COMPLEX_TYPE
&& (TREE_CODE (arg0) == COMPLEX_EXPR
|| TREE_CODE (arg1) == COMPLEX_EXPR
|| TREE_CODE (arg0) == COMPLEX_CST
|| TREE_CODE (arg1) == COMPLEX_CST))
{
tree subtype = TREE_TYPE (TREE_TYPE (arg0));
tree real0, imag0, real1, imag1;
arg0 = save_expr (arg0);
arg1 = save_expr (arg1);
real0 = fold (build1 (REALPART_EXPR, subtype, arg0));
imag0 = fold (build1 (IMAGPART_EXPR, subtype, arg0));
real1 = fold (build1 (REALPART_EXPR, subtype, arg1));
imag1 = fold (build1 (IMAGPART_EXPR, subtype, arg1));
return fold (build2 ((code == EQ_EXPR ? TRUTH_ANDIF_EXPR
: TRUTH_ORIF_EXPR),
type,
fold (build2 (code, type, real0, real1)),
fold (build2 (code, type, imag0, imag1))));
}
/* Optimize comparisons of strlen vs zero to a compare of the
first character of the string vs zero. To wit,
strlen(ptr) == 0 => *ptr == 0
strlen(ptr) != 0 => *ptr != 0
Other cases should reduce to one of these two (or a constant)
due to the return value of strlen being unsigned. */
if ((code == EQ_EXPR || code == NE_EXPR)
&& integer_zerop (arg1)
&& TREE_CODE (arg0) == CALL_EXPR)
{
tree fndecl = get_callee_fndecl (arg0);
tree arglist;
if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
&& DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
&& (arglist = TREE_OPERAND (arg0, 1))
&& TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) == POINTER_TYPE
&& ! TREE_CHAIN (arglist))
return fold (build2 (code, type,
build1 (INDIRECT_REF, char_type_node,
TREE_VALUE (arglist)),
fold_convert (char_type_node,
integer_zero_node)));
}
/* We can fold X/C1 op C2 where C1 and C2 are integer constants
into a single range test. */
if ((TREE_CODE (arg0) == TRUNC_DIV_EXPR
|| TREE_CODE (arg0) == EXACT_DIV_EXPR)
&& TREE_CODE (arg1) == INTEGER_CST
&& TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
&& !integer_zerop (TREE_OPERAND (arg0, 1))
&& !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
&& !TREE_OVERFLOW (arg1))
{
t1 = fold_div_compare (code, type, arg0, arg1);
if (t1 != NULL_TREE)
return t1;
}
if ((code == EQ_EXPR || code == NE_EXPR)
&& !TREE_SIDE_EFFECTS (arg0)
&& integer_zerop (arg1)
&& tree_expr_nonzero_p (arg0))
return constant_boolean_node (code==NE_EXPR, type);
t1 = fold_relational_const (code, type, arg0, arg1);
return t1 == NULL_TREE ? t : t1;
case UNORDERED_EXPR:
case ORDERED_EXPR:
case UNLT_EXPR:
case UNLE_EXPR:
case UNGT_EXPR:
case UNGE_EXPR:
case UNEQ_EXPR:
case LTGT_EXPR:
if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
{
t1 = fold_relational_const (code, type, arg0, arg1);
if (t1 != NULL_TREE)
return t1;
}
/* If the first operand is NaN, the result is constant. */
if (TREE_CODE (arg0) == REAL_CST
&& REAL_VALUE_ISNAN (TREE_REAL_CST (arg0))
&& (code != LTGT_EXPR || ! flag_trapping_math))
{
t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
? integer_zero_node
: integer_one_node;
return omit_one_operand (type, t1, arg1);
}
/* If the second operand is NaN, the result is constant. */
if (TREE_CODE (arg1) == REAL_CST
&& REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
&& (code != LTGT_EXPR || ! flag_trapping_math))
{
t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
? integer_zero_node
: integer_one_node;
return omit_one_operand (type, t1, arg0);
}
/* Simplify unordered comparison of something with itself. */
if ((code == UNLE_EXPR || code == UNGE_EXPR || code == UNEQ_EXPR)
&& operand_equal_p (arg0, arg1, 0))
return constant_boolean_node (1, type);
if (code == LTGT_EXPR
&& !flag_trapping_math
&& operand_equal_p (arg0, arg1, 0))
return constant_boolean_node (0, type);
/* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
{
tree targ0 = strip_float_extensions (arg0);
tree targ1 = strip_float_extensions (arg1);
tree newtype = TREE_TYPE (targ0);
if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
newtype = TREE_TYPE (targ1);
if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
return fold (build2 (code, type, fold_convert (newtype, targ0),
fold_convert (newtype, targ1)));
}
return t;
case COMPOUND_EXPR:
/* When pedantic, a compound expression can be neither an lvalue
nor an integer constant expression. */
if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
return t;
/* Don't let (0, 0) be null pointer constant. */
tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
: fold_convert (type, arg1);
return pedantic_non_lvalue (tem);
case COMPLEX_EXPR:
if (wins)
return build_complex (type, arg0, arg1);
return t;
default:
return t;
} /* switch (code) */
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment