Commit 6e0cc90b by Kelvin Nilsen

rs6000-p8swap.c (const_load_sequence_p): Revise this function to return false if…

rs6000-p8swap.c (const_load_sequence_p): Revise this function to return false if the definition used by the swap...

gcc/ChangeLog:

2017-09-27  Kelvin Nilsen  <kelvin@gcc.gnu.org>

	* config/rs6000/rs6000-p8swap.c (const_load_sequence_p): Revise
	this function to return false if the definition used by the swap
	instruction is artificial, or if the memory address from which the
	constant value is loaded is not represented by a base address held
	in a register or if the base address register is a frame or stack
	pointer.  Additionally, return false if the base address of the
	loaded constant is a SYMBOL_REF but is not considered to be a
	constant.
	(replace_swapped_load_constant): New function.
	(rs6000_analyze_swaps): Add a new pass to replace a swap of a
	loaded constant vector with a load of a swapped constant vector.

gcc/testsuite/ChangeLog:

2017-09-27  Kelvin Nilsen  <kelvin@gcc.gnu.org>

	* gcc.target/powerpc/swaps-p8-28.c: New test.
	* gcc.target/powerpc/swaps-p8-29.c: New test.
	* gcc.target/powerpc/swaps-p8-30.c: New test.
	* gcc.target/powerpc/swaps-p8-31.c: New test.
	* gcc.target/powerpc/swaps-p8-32.c: New test.
	* gcc.target/powerpc/swaps-p8-33.c: New test.
	* gcc.target/powerpc/swaps-p8-34.c: New test.
	* gcc.target/powerpc/swaps-p8-35.c: New test.
	* gcc.target/powerpc/swaps-p8-36.c: New test.
	* gcc.target/powerpc/swaps-p8-37.c: New test.
	* gcc.target/powerpc/swaps-p8-38.c: New test.
	* gcc.target/powerpc/swaps-p8-39.c: New test.
	* gcc.target/powerpc/swaps-p8-40.c: New test.
	* gcc.target/powerpc/swaps-p8-41.c: New test.
	* gcc.target/powerpc/swaps-p8-42.c: New test.
	* gcc.target/powerpc/swaps-p8-43.c: New test.
	* gcc.target/powerpc/swaps-p8-44.c: New test.
	* gcc.target/powerpc/swaps-p8-45.c: New test.

From-SVN: r253240
parent 4ca4cf4e
2017-09-27 Kelvin Nilsen <kelvin@gcc.gnu.org>
* config/rs6000/rs6000-p8swap.c (const_load_sequence_p): Revise
this function to return false if the definition used by the swap
instruction is artificial, or if the memory address from which the
constant value is loaded is not represented by a base address held
in a register or if the base address register is a frame or stack
pointer. Additionally, return false if the base address of the
loaded constant is a SYMBOL_REF but is not considered to be a
constant.
(replace_swapped_load_constant): New function.
(rs6000_analyze_swaps): Add a new pass to replace a swap of a
loaded constant vector with a load of a swapped constant vector.
2017-09-27 Carl Love <cel@us.ibm.com>
* config/rs6000/rs6000-builtin.def (BU_FP_1MISC_1): Add define macro.
......@@ -335,21 +335,26 @@ const_load_sequence_p (swap_web_entry *insn_entry, rtx insn)
const_rtx tocrel_base;
/* Find the unique use in the swap and locate its def. If the def
isn't unique, punt. */
struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
df_ref use;
FOR_EACH_INSN_INFO_USE (use, insn_info)
{
struct df_link *def_link = DF_REF_CHAIN (use);
if (!def_link || def_link->next)
/* If there is no def or the def is artificial or there are
multiple defs, punt. */
if (!def_link || !def_link->ref || DF_REF_IS_ARTIFICIAL (def_link->ref)
|| def_link->next)
return false;
rtx def_insn = DF_REF_INSN (def_link->ref);
unsigned uid2 = INSN_UID (def_insn);
/* If this is not a load or is not a swap, return false. */
if (!insn_entry[uid2].is_load || !insn_entry[uid2].is_swap)
return false;
/* If the source of the rtl def is not a set from memory, return
false. */
rtx body = PATTERN (def_insn);
if (GET_CODE (body) != SET
|| GET_CODE (SET_SRC (body)) != VEC_SELECT
......@@ -358,11 +363,17 @@ const_load_sequence_p (swap_web_entry *insn_entry, rtx insn)
rtx mem = XEXP (SET_SRC (body), 0);
rtx base_reg = XEXP (mem, 0);
/* If the base address for the memory expression is not
represented by a register, punt. */
if (!REG_P (base_reg))
return false;
df_ref base_use;
insn_info = DF_INSN_INFO_GET (def_insn);
FOR_EACH_INSN_INFO_USE (base_use, insn_info)
{
/* If base_use does not represent base_reg, look for another
use. */
if (!rtx_equal_p (DF_REF_REG (base_use), base_reg))
continue;
......@@ -370,6 +381,14 @@ const_load_sequence_p (swap_web_entry *insn_entry, rtx insn)
if (!base_def_link || base_def_link->next)
return false;
/* Constants held on the stack are not "true" constants
because their values are not part of the static load
image. If this constant's base reference is a stack
or frame pointer, it is seen as an artificial
reference. */
if (DF_REF_IS_ARTIFICIAL (base_def_link->ref))
return false;
rtx tocrel_insn = DF_REF_INSN (base_def_link->ref);
rtx tocrel_body = PATTERN (tocrel_insn);
rtx base, offset;
......@@ -383,8 +402,26 @@ const_load_sequence_p (swap_web_entry *insn_entry, rtx insn)
if (!toc_relative_expr_p (tocrel_expr, false, &tocrel_base, NULL))
return false;
split_const (XVECEXP (tocrel_base, 0, 0), &base, &offset);
if (GET_CODE (base) != SYMBOL_REF || !CONSTANT_POOL_ADDRESS_P (base))
return false;
else
{
/* FIXME: The conditions under which
((GET_CODE (const_vector) == SYMBOL_REF) &&
!CONSTANT_POOL_ADDRESS_P (const_vector))
are not well understood. This code prevents
an internal compiler error which will occur in
replace_swapped_load_constant () if we were to return
true. Some day, we should figure out how to properly
handle this condition in
replace_swapped_load_constant () and then we can
remove this special test. */
rtx const_vector = get_pool_constant (base);
if (GET_CODE (const_vector) == SYMBOL_REF
&& !CONSTANT_POOL_ADDRESS_P (const_vector))
return false;
}
}
}
return true;
......@@ -1281,6 +1318,195 @@ replace_swap_with_copy (swap_web_entry *insn_entry, unsigned i)
insn->set_deleted ();
}
/* Given that swap_insn represents a swap of a load of a constant
vector value, replace with a single instruction that loads a
swapped variant of the original constant.
The "natural" representation of a byte array in memory is the same
for big endian and little endian.
unsigned char byte_array[] =
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f };
However, when loaded into a vector register, the representation
depends on endian conventions.
In big-endian mode, the register holds:
MSB LSB
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f ]
In little-endian mode, the register holds:
MSB LSB
[ f, e, d, c, b, a, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 ]
Word arrays require different handling. Consider the word array:
unsigned int word_array[] =
{ 0x00010203, 0x04050607, 0x08090a0b, 0x0c0d0e0f };
The in-memory representation depends on endian configuration. The
equivalent array, declared as a byte array, in memory would be:
unsigned char big_endian_word_array_data[] =
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f }
unsigned char little_endian_word_array_data[] =
{ 3, 2, 1, 0, 7, 6, 5, 4, b, a, 9, 8, f, e, d, c }
In big-endian mode, the register holds:
MSB LSB
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f ]
In little-endian mode, the register holds:
MSB LSB
[ c, d, e, f, 8, 9, a, b, 4, 5, 6, 7, 0, 1, 2, 3 ]
Similar transformations apply to the vector of half-word and vector
of double-word representations.
For now, don't handle vectors of quad-precision values. Just return.
A better solution is to fix the code generator to emit lvx/stvx for
those. */
static void
replace_swapped_load_constant (swap_web_entry *insn_entry, rtx swap_insn)
{
/* Find the load. */
struct df_insn_info *insn_info = DF_INSN_INFO_GET (swap_insn);
rtx_insn *load_insn;
df_ref use = DF_INSN_INFO_USES (insn_info);
struct df_link *def_link = DF_REF_CHAIN (use);
gcc_assert (def_link && !def_link->next);
load_insn = DF_REF_INSN (def_link->ref);
gcc_assert (load_insn);
/* Find the TOC-relative symbol access. */
insn_info = DF_INSN_INFO_GET (load_insn);
use = DF_INSN_INFO_USES (insn_info);
def_link = DF_REF_CHAIN (use);
gcc_assert (def_link && !def_link->next);
rtx_insn *tocrel_insn = DF_REF_INSN (def_link->ref);
gcc_assert (tocrel_insn);
/* Find the embedded CONST_VECTOR. We have to call toc_relative_expr_p
to set tocrel_base; otherwise it would be unnecessary as we've
already established it will return true. */
rtx base, offset;
rtx tocrel_expr = SET_SRC (PATTERN (tocrel_insn));
const_rtx tocrel_base;
/* There is an extra level of indirection for small/large code models. */
if (GET_CODE (tocrel_expr) == MEM)
tocrel_expr = XEXP (tocrel_expr, 0);
if (!toc_relative_expr_p (tocrel_expr, false, &tocrel_base, NULL))
gcc_unreachable ();
split_const (XVECEXP (tocrel_base, 0, 0), &base, &offset);
rtx const_vector = get_pool_constant (base);
/* With the extra indirection, get_pool_constant will produce the
real constant from the reg_equal expression, so get the real
constant. */
if (GET_CODE (const_vector) == SYMBOL_REF)
const_vector = get_pool_constant (const_vector);
gcc_assert (GET_CODE (const_vector) == CONST_VECTOR);
rtx new_mem;
enum machine_mode mode = GET_MODE (const_vector);
/* Create an adjusted constant from the original constant. */
if (mode == V1TImode)
/* Leave this code as is. */
return;
else if (mode == V16QImode)
{
rtx vals = gen_rtx_PARALLEL (mode, rtvec_alloc (16));
int i;
for (i = 0; i < 16; i++)
XVECEXP (vals, 0, ((i+8) % 16)) = XVECEXP (const_vector, 0, i);
rtx new_const_vector = gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0));
new_mem = force_const_mem (mode, new_const_vector);
}
else if ((mode == V8HImode)
#ifdef HAVE_V8HFmode
|| (mode == V8HFmode)
#endif
)
{
rtx vals = gen_rtx_PARALLEL (mode, rtvec_alloc (8));
int i;
for (i = 0; i < 8; i++)
XVECEXP (vals, 0, ((i+4) % 8)) = XVECEXP (const_vector, 0, i);
rtx new_const_vector = gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0));
new_mem = force_const_mem (mode, new_const_vector);
}
else if ((mode == V4SImode) || (mode == V4SFmode))
{
rtx vals = gen_rtx_PARALLEL (mode, rtvec_alloc (4));
int i;
for (i = 0; i < 4; i++)
XVECEXP (vals, 0, ((i+2) % 4)) = XVECEXP (const_vector, 0, i);
rtx new_const_vector = gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0));
new_mem = force_const_mem (mode, new_const_vector);
}
else if ((mode == V2DImode) || (mode == V2DFmode))
{
rtx vals = gen_rtx_PARALLEL (mode, rtvec_alloc (2));
int i;
for (i = 0; i < 2; i++)
XVECEXP (vals, 0, ((i+1) % 2)) = XVECEXP (const_vector, 0, i);
rtx new_const_vector = gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0));
new_mem = force_const_mem (mode, new_const_vector);
}
else
{
/* We do not expect other modes to be constant-load-swapped. */
gcc_unreachable ();
}
/* This gives us a MEM whose base operand is a SYMBOL_REF, which we
can't recognize. Force the SYMBOL_REF into a register. */
if (!REG_P (XEXP (new_mem, 0))) {
rtx base_reg = force_reg (Pmode, XEXP (new_mem, 0));
XEXP (new_mem, 0) = base_reg;
/* Move the newly created insn ahead of the load insn. */
/* The last insn is the the insn that forced new_mem into a register. */
rtx_insn *force_insn = get_last_insn ();
/* Remove this insn from the end of the instruction sequence. */
remove_insn (force_insn);
rtx_insn *before_load_insn = PREV_INSN (load_insn);
/* And insert this insn back into the sequence before the previous
load insn so this new expression will be available when the
existing load is modified to load the swapped constant. */
add_insn_after (force_insn, before_load_insn, BLOCK_FOR_INSN (load_insn));
df_insn_rescan (before_load_insn);
df_insn_rescan (force_insn);
}
/* Replace the MEM in the load instruction and rescan it. */
XEXP (SET_SRC (PATTERN (load_insn)), 0) = new_mem;
INSN_CODE (load_insn) = -1; /* Force re-recognition. */
df_insn_rescan (load_insn);
unsigned int uid = INSN_UID (swap_insn);
mark_swaps_for_removal (insn_entry, uid);
replace_swap_with_copy (insn_entry, uid);
}
/* Dump the swap table to DUMP_FILE. */
static void
dump_swap_insn_table (swap_web_entry *insn_entry)
......@@ -1873,6 +2099,44 @@ rs6000_analyze_swaps (function *fun)
/* Clean up. */
free (insn_entry);
/* Use additional pass over rtl to replace swap(load(vector constant))
with load(swapped vector constant). */
swap_web_entry *pass2_insn_entry;
pass2_insn_entry = XCNEWVEC (swap_web_entry, get_max_uid ());
/* Walk the insns to gather basic data. */
FOR_ALL_BB_FN (bb, fun)
FOR_BB_INSNS_SAFE (bb, insn, curr_insn)
{
unsigned int uid = INSN_UID (insn);
if (NONDEBUG_INSN_P (insn))
{
pass2_insn_entry[uid].insn = insn;
pass2_insn_entry[uid].is_relevant = 1;
pass2_insn_entry[uid].is_load = insn_is_load_p (insn);
pass2_insn_entry[uid].is_store = insn_is_store_p (insn);
/* Determine if this is a doubleword swap. If not,
determine whether it can legally be swapped. */
if (insn_is_swap_p (insn))
pass2_insn_entry[uid].is_swap = 1;
}
}
e = get_max_uid ();
for (unsigned i = 0; i < e; ++i)
if (pass2_insn_entry[i].is_swap && !pass2_insn_entry[i].is_load
&& !pass2_insn_entry[i].is_store)
{
insn = pass2_insn_entry[i].insn;
if (const_load_sequence_p (pass2_insn_entry, insn))
replace_swapped_load_constant (pass2_insn_entry, insn);
}
/* Clean up. */
free (pass2_insn_entry);
return 0;
}
......
2017-09-27 Kelvin Nilsen <kelvin@gcc.gnu.org>
* gcc.target/powerpc/swaps-p8-28.c: New test.
* gcc.target/powerpc/swaps-p8-29.c: New test.
* gcc.target/powerpc/swaps-p8-30.c: New test.
* gcc.target/powerpc/swaps-p8-31.c: New test.
* gcc.target/powerpc/swaps-p8-32.c: New test.
* gcc.target/powerpc/swaps-p8-33.c: New test.
* gcc.target/powerpc/swaps-p8-34.c: New test.
* gcc.target/powerpc/swaps-p8-35.c: New test.
* gcc.target/powerpc/swaps-p8-36.c: New test.
* gcc.target/powerpc/swaps-p8-37.c: New test.
* gcc.target/powerpc/swaps-p8-38.c: New test.
* gcc.target/powerpc/swaps-p8-39.c: New test.
* gcc.target/powerpc/swaps-p8-40.c: New test.
* gcc.target/powerpc/swaps-p8-41.c: New test.
* gcc.target/powerpc/swaps-p8-42.c: New test.
* gcc.target/powerpc/swaps-p8-43.c: New test.
* gcc.target/powerpc/swaps-p8-44.c: New test.
* gcc.target/powerpc/swaps-p8-45.c: New test.
2017-09-27 Carl Love <cel@us.ibm.com>
* gcc.target/powerpc/builtin-fctid-fctiw-runnable.c: New test file
for the __builtin_fctid and __builtin_fctiw.
......
/* { dg-require-effective-target p8vector_hw } */
/* { dg-do run { target { powerpc*-*-* } } } */
/* { dg-skip-if "do not override -mcpu" { powerpc*-*-* } { "-mcpu=*" } { "-mcpu=power8" } } */
/* { dg-options "-mcpu=power8 -O3 " } */
#include <altivec.h>
extern void abort (void);
vector char y = { 0, 1, 2, 3,
4, 5, 6, 7,
8, 9, 10, 11,
12, 13, 14, 15 };
vector char
foo (void)
{
return y;
}
int
main (int argc, char *argv[])
{
vector char fetched_value = foo ();
if (fetched_value[0] != 0 || fetched_value[15] != 15)
abort ();
else
return 0;
}
/* { dg-require-effective-target p8vector_hw } */
/* { dg-do run { target { powerpc*-*-* } } } */
/* { dg-skip-if "do not override -mcpu" { powerpc*-*-* } { "-mcpu=*" } { "-mcpu=power8" } } */
/* { dg-options "-mcpu=power8 -O3 " } */
#include <altivec.h>
extern void abort (void);
const vector char y = { 0, 1, 2, 3,
4, 5, 6, 7,
8, 9, 10, 11,
12, 13, 14, 15 };
vector char
foo (void)
{
return y;
}
int
main (int argc, char *argv[])
{
vector char fetched_value = foo ();
if (fetched_value[0] != 0 || fetched_value[15] != 15)
abort ();
else
return 0;
}
/* { dg-require-effective-target powerpc_p8vector_ok } */
/* { dg-do compile { target { powerpc64le-*-* } } } */
/* { dg-skip-if "do not override -mcpu" { powerpc*-*-* } { "-mcpu=*" } { "-mcpu=power8" } } */
/* { dg-options "-mcpu=power8 -O3 " } */
/* { dg-final { scan-assembler-not "xxpermdi" } } */
/* { dg-final { scan-assembler-not "xxswapd" } } */
#include <altivec.h>
extern void abort (void);
const vector char y = { 0, 1, 2, 3,
4, 5, 6, 7,
8, 9, 10, 11,
12, 13, 14, 15 };
vector char
foo (void)
{
return y;
}
int
main (int argc, char *argv[])
{
vector char fetched_value = foo ();
if (fetched_value[0] != 0 || fetched_value[15] != 15)
abort ();
else
return 0;
}
/* { dg-require-effective-target p8vector_hw } */
/* { dg-do run { target { powerpc*-*-* } } } */
/* { dg-skip-if "do not override -mcpu" { powerpc*-*-* } { "-mcpu=*" } { "-mcpu=power8" } } */
/* { dg-options "-mcpu=power8 -O3 " } */
#include <altivec.h>
extern void abort (void);
vector short y = { 0, 1, 2, 3,
4, 5, 6, 7 };
vector short
foo (void)
{
return y;
}
int
main (int argc, char *argv[])
{
vector short fetched_value = foo ();
if (fetched_value[0] != 0 || fetched_value[7] != 7)
abort ();
else
return 0;
}
/* { dg-require-effective-target p8vector_hw } */
/* { dg-do run { target { powerpc*-*-* } } } */
/* { dg-skip-if "do not override -mcpu" { powerpc*-*-* } { "-mcpu=*" } { "-mcpu=power8" } } */
/* { dg-options "-mcpu=power8 -O3 " } */
#include <altivec.h>
extern void abort (void);
const vector short y = { 0, 1, 2, 3,
4, 5, 6, 7 };
vector short
foo (void)
{
return y;
}
int
main (int argc, char *argv[])
{
vector short fetched_value = foo ();
if (fetched_value[0] != 0 || fetched_value[7] != 7)
abort ();
else
return 0;
}
/* { dg-require-effective-target powerpc_p8vector_ok } */
/* { dg-do compile { target { powerpc64le-*-* } } } */
/* { dg-skip-if "do not override -mcpu" { powerpc*-*-* } { "-mcpu=*" } { "-mcpu=power8" } } */
/* { dg-options "-mcpu=power8 -O3 " } */
/* { dg-final { scan-assembler-not "xxpermdi" } } */
/* { dg-final { scan-assembler-not "xxswapd" } } */
#include <altivec.h>
extern void abort (void);
const vector short y = { 0, 1, 2, 3,
4, 5, 6, 7 };
vector short
foo (void)
{
return y;
}
int
main (int argc, char *argv[])
{
vector short fetched_value = foo ();
if (fetched_value[0] != 0 || fetched_value[15] != 15)
abort ();
else
return 0;
}
/* { dg-require-effective-target p8vector_hw } */
/* { dg-do run { target { powerpc*-*-* } } } */
/* { dg-skip-if "do not override -mcpu" { powerpc*-*-* } { "-mcpu=*" } { "-mcpu=power8" } } */
/* { dg-options "-mcpu=power8 -O3 " } */
#include <altivec.h>
extern void abort (void);
vector int y = { 0, 1, 2, 3 };
vector int
foo (void)
{
return y;
}
int
main (int argc, char *argv[])
{
vector int fetched_value = foo ();
if (fetched_value[0] != 0 || fetched_value[3] != 3)
abort ();
else
return 0;
}
/* { dg-require-effective-target p8vector_hw } */
/* { dg-do run { target { powerpc*-*-* } } } */
/* { dg-skip-if "do not override -mcpu" { powerpc*-*-* } { "-mcpu=*" } { "-mcpu=power8" } } */
/* { dg-options "-mcpu=power8 -O3 " } */
#include <altivec.h>
extern void abort (void);
const vector int y = { 0, 1, 2, 3 };
vector int
foo (void)
{
return y;
}
int
main (int argc, char *argv[])
{
vector int fetched_value = foo ();
if (fetched_value[0] != 0 || fetched_value[3] != 3)
abort ();
else
return 0;
}
/* { dg-require-effective-target powerpc_p8vector_ok } */
/* { dg-do compile { target { powerpc64le-*-* } } } */
/* { dg-skip-if "do not override -mcpu" { powerpc*-*-* } { "-mcpu=*" } { "-mcpu=power8" } } */
/* { dg-options "-mcpu=power8 -O3 " } */
/* { dg-final { scan-assembler-not "xxpermdi" } } */
/* { dg-final { scan-assembler-not "xxswapd" } } */
#include <altivec.h>
extern void abort (void);
const vector int y = { 0, 1, 2, 3 };
vector int
foo (void)
{
return y;
}
int
main (int argc, char *argv[])
{
vector int fetched_value = foo ();
if (fetched_value[0] != 0 || fetched_value[3] != 3)
abort ();
else
return 0;
}
/* { dg-require-effective-target p8vector_hw } */
/* { dg-do run { target { powerpc*-*-* } } } */
/* { dg-skip-if "do not override -mcpu" { powerpc*-*-* } { "-mcpu=*" } { "-mcpu=power8" } } */
/* { dg-options "-mcpu=power8 -O3 " } */
#include <altivec.h>
extern void abort (void);
vector float y = { 0.0f, 0.1f, 0.2f, 0.3f };
vector float
foo (void)
{
return y;
}
int
main (int argc, char *argv[])
{
vector float fetched_value = foo ();
if (fetched_value[0] != 0.0f || fetched_value[3] != 0.3f)
abort ();
else
return 0;
}
/* { dg-require-effective-target p8vector_hw } */
/* { dg-do run { target { powerpc*-*-* } } } */
/* { dg-skip-if "do not override -mcpu" { powerpc*-*-* } { "-mcpu=*" } { "-mcpu=power8" } } */
/* { dg-options "-mcpu=power8 -O3 " } */
#include <altivec.h>
extern void abort (void);
const vector float y = { 0.0f, 0.1f, 0.2f, 0.3f };
vector float
foo (void)
{
return y;
}
int
main (int argc, char *argv[])
{
vector float fetched_value = foo ();
if (fetched_value[0] != 0.0f || fetched_value[3] != 0.3f)
abort ();
else
return 0;
}
/* { dg-require-effective-target powerpc_p8vector_ok } */
/* { dg-do compile { target { powerpc64le-*-* } } } */
/* { dg-skip-if "do not override -mcpu" { powerpc*-*-* } { "-mcpu=*" } { "-mcpu=power8" } } */
/* { dg-options "-mcpu=power8 -O3 " } */
/* { dg-final { scan-assembler-not "xxpermdi" } } */
/* { dg-final { scan-assembler-not "xxswapd" } } */
#include <altivec.h>
extern void abort (void);
const vector float y = { 0.0f, 0.1f, 0.2f, 0.3f };
vector float
foo (void)
{
return y;
}
int
main (int argc, char *argv[])
{
vector float fetched_value = foo ();
if (fetched_value[0] != 0.0f || fetched_value[3] != 0.3)
abort ();
else
return 0;
}
/* { dg-require-effective-target p8vector_hw } */
/* { dg-do run { target { powerpc*-*-* } } } */
/* { dg-skip-if "do not override -mcpu" { powerpc*-*-* } { "-mcpu=*" } { "-mcpu=power8" } } */
/* { dg-options "-mcpu=power8 -O3 " } */
#include <altivec.h>
extern void abort (void);
vector long long int y = { 0, 1 };
vector long long int
foo (void)
{
return y;
}
int
main (int argc, int *argv[])
{
vector long long int fetched_value = foo ();
if (fetched_value[0] != 0 || fetched_value[1] != 1)
abort ();
else
return 0;
}
/* { dg-require-effective-target p8vector_hw } */
/* { dg-do run { target { powerpc*-*-* } } } */
/* { dg-skip-if "do not override -mcpu" { powerpc*-*-* } { "-mcpu=*" } { "-mcpu=power8" } } */
/* { dg-options "-mcpu=power8 -O3 " } */
#include <altivec.h>
extern void abort (void);
const vector long long int y = { 0, 1 };
vector long long int
foo (void)
{
return y;
}
int
main (int argc, char *argv[])
{
vector long long int fetched_value = foo ();
if (fetched_value[0] != 0 || fetched_value[1] != 1)
abort ();
else
return 0;
}
/* { dg-require-effective-target powerpc_p8vector_ok } */
/* { dg-do compile { target { powerpc64le-*-* } } } */
/* { dg-skip-if "do not override -mcpu" { powerpc*-*-* } { "-mcpu=*" } { "-mcpu=power8" } } */
/* { dg-options "-mcpu=power8 -O3 " } */
/* { dg-final { scan-assembler-not "xxpermdi" } } */
/* { dg-final { scan-assembler-not "xxswapd" } } */
#include <altivec.h>
extern void abort (void);
const vector long long int y = { 0, 1 };
vector long long int
foo (void)
{
return y;
}
int
main (int argc, char *argv[])
{
vector long long int fetched_value = foo ();
if (fetched_value[0] != 0 || fetched_value[1] != 1)
abort ();
else
return 0;
}
/* { dg-require-effective-target p8vector_hw } */
/* { dg-do run { target { powerpc*-*-* } } } */
/* { dg-skip-if "do not override -mcpu" { powerpc*-*-* } { "-mcpu=*" } { "-mcpu=power8" } } */
/* { dg-options "-mcpu=power8 -O3 " } */
#include <altivec.h>
extern void abort (void);
vector double y = { 0.0, 0.1 };
vector double
foo (void)
{
return y;
}
int
main (int argc, char *argv[])
{
vector double fetched_value = foo ();
if (fetched_value[0] != 0 || fetched_value[1] != 0.1)
abort ();
else
return 0;
}
/* { dg-require-effective-target p8vector_hw } */
/* { dg-do run { target { powerpc*-*-* } } } */
/* { dg-skip-if "do not override -mcpu" { powerpc*-*-* } { "-mcpu=*" } { "-mcpu=power8" } } */
/* { dg-options "-mcpu=power8 -O3 " } */
#include <altivec.h>
extern void abort (void);
const vector double y = { 0.0, 0.1 };
vector double
foo (void)
{
return y;
}
int
main (int argc, char *argv[])
{
vector double fetched_value = foo ();
if (fetched_value[0] != 0.0 || fetched_value[1] != 0.1)
abort ();
else
return 0;
}
/* { dg-require-effective-target powerpc_p8vector_ok } */
/* { dg-do compile { target { powerpc64le-*-* } } } */
/* { dg-skip-if "do not override -mcpu" { powerpc*-*-* } { "-mcpu=*" } { "-mcpu=power8" } } */
/* { dg-options "-mcpu=power8 -O3 " } */
/* { dg-final { scan-assembler-not "xxpermdi" } } */
/* { dg-final { scan-assembler-not "xxswapd" } } */
#include <altivec.h>
extern void abort (void);
const vector double y = { 0.0, 0.1 };
vector double
foo (void)
{
return y;
}
int
main (int argc, char *argv[])
{
vector double fetched_value = foo ();
if (fetched_value[0] != 0.0 || fetched_value[15] != 0.1)
abort ();
else
return 0;
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment