Commit 6071dc7f by Richard Henderson Committed by Richard Henderson

function.c (struct assign_parm_data_all): New.

        * function.c (struct assign_parm_data_all): New.
        (struct assign_parm_data_one): New.
        (assign_parms_initialize_all, assign_parms_augmented_arg_list,
        assign_parm_find_data_types, assign_parms_setup_varargs,
        assign_parm_find_entry_rtl, assign_parm_is_stack_parm,
        assign_parm_find_stack_rtl, assign_parm_adjust_entry_rtl,
        assign_parm_adjust_stack_rtl, assign_parm_setup_block_p,
        assign_parm_setup_block, assign_parm_setup_reg,
        assign_parm_setup_stack, assign_parms_unsplit_complex): Split from ...
        (assign_parms): ... here.

From-SVN: r84105
parent bf1df0a0
2004-07-04 Richard Henderson <rth@redhat.com>
* function.c (struct assign_parm_data_all): New.
(struct assign_parm_data_one): New.
(assign_parms_initialize_all, assign_parms_augmented_arg_list,
assign_parm_find_data_types, assign_parms_setup_varargs,
assign_parm_find_entry_rtl, assign_parm_is_stack_parm,
assign_parm_find_stack_rtl, assign_parm_adjust_entry_rtl,
assign_parm_adjust_stack_rtl, assign_parm_setup_block_p,
assign_parm_setup_block, assign_parm_setup_reg,
assign_parm_setup_stack, assign_parms_unsplit_complex): Split from ...
(assign_parms): ... here.
2004-07-04 Daniel Berlin <dberlin@dberlin.org> 2004-07-04 Daniel Berlin <dberlin@dberlin.org>
* tree-ssa-pre.c (bb_value_sets): phi_gen, tmp_gen, new_sets * tree-ssa-pre.c (bb_value_sets): phi_gen, tmp_gen, new_sets
......
...@@ -229,7 +229,6 @@ static void prepare_function_start (tree); ...@@ -229,7 +229,6 @@ static void prepare_function_start (tree);
static void do_clobber_return_reg (rtx, void *); static void do_clobber_return_reg (rtx, void *);
static void do_use_return_reg (rtx, void *); static void do_use_return_reg (rtx, void *);
static void instantiate_virtual_regs_lossage (rtx); static void instantiate_virtual_regs_lossage (rtx);
static tree split_complex_args (tree);
static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED; static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
/* Pointer to chain of `struct function' for containing functions. */ /* Pointer to chain of `struct function' for containing functions. */
...@@ -2032,52 +2031,127 @@ use_register_for_decl (tree decl) ...@@ -2032,52 +2031,127 @@ use_register_for_decl (tree decl)
return (optimize || DECL_REGISTER (decl)); return (optimize || DECL_REGISTER (decl));
} }
/* Assign RTL expressions to the function's parameters. /* Structures to communicate between the subroutines of assign_parms.
This may involve copying them into registers and using The first holds data persistent across all parameters, the second
those registers as the RTL for them. */ is cleared out for each parameter. */
void struct assign_parm_data_all
assign_parms (tree fndecl)
{ {
tree parm;
CUMULATIVE_ARGS args_so_far; CUMULATIVE_ARGS args_so_far;
/* Total space needed so far for args on the stack,
given as a constant and a tree-expression. */
struct args_size stack_args_size; struct args_size stack_args_size;
HOST_WIDE_INT extra_pretend_bytes = 0; tree function_result_decl;
tree fntype = TREE_TYPE (fndecl); tree orig_fnargs;
tree fnargs = DECL_ARGUMENTS (fndecl), orig_fnargs; rtx conversion_insns;
/* This is used for the arg pointer when referring to stack args. */ HOST_WIDE_INT pretend_args_size;
rtx internal_arg_pointer; HOST_WIDE_INT extra_pretend_bytes;
/* This is a dummy PARM_DECL that we used for the function result if int reg_parm_stack_space;
the function returns a structure. */ };
tree function_result_decl = 0;
int varargs_setup = 0;
int reg_parm_stack_space ATTRIBUTE_UNUSED = 0;
rtx conversion_insns = 0;
/* Nonzero if function takes extra anonymous args. struct assign_parm_data_one
This means the last named arg must be on the stack {
right before the anonymous ones. */ tree nominal_type;
int stdarg = current_function_stdarg; tree passed_type;
rtx entry_parm;
rtx stack_parm;
enum machine_mode nominal_mode;
enum machine_mode passed_mode;
enum machine_mode promoted_mode;
struct locate_and_pad_arg_data locate;
int partial;
BOOL_BITFIELD named_arg : 1;
BOOL_BITFIELD last_named : 1;
BOOL_BITFIELD passed_pointer : 1;
BOOL_BITFIELD on_stack : 1;
BOOL_BITFIELD loaded_in_reg : 1;
};
/* If the reg that the virtual arg pointer will be translated into is /* A subroutine of assign_parms. Initialize ALL. */
not a fixed reg or is the stack pointer, make a copy of the virtual
arg pointer, and address parms via the copy. The frame pointer is
considered fixed even though it is not marked as such.
The second time through, simply use ap to avoid generating rtx. */ static void
assign_parms_initialize_all (struct assign_parm_data_all *all)
{
tree fntype;
if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM memset (all, 0, sizeof (*all));
|| ! (fixed_regs[ARG_POINTER_REGNUM]
|| ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM))) fntype = TREE_TYPE (current_function_decl);
internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
else #ifdef INIT_CUMULATIVE_INCOMING_ARGS
internal_arg_pointer = virtual_incoming_args_rtx; INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
current_function_internal_arg_pointer = internal_arg_pointer; #else
INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
current_function_decl, -1);
#endif
#ifdef REG_PARM_STACK_SPACE
all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
#endif
}
/* If ARGS contains entries with complex types, split the entry into two
entries of the component type. Return a new list of substitutions are
needed, else the old list. */
static tree
split_complex_args (tree args)
{
tree p;
/* Before allocating memory, check for the common case of no complex. */
for (p = args; p; p = TREE_CHAIN (p))
{
tree type = TREE_TYPE (p);
if (TREE_CODE (type) == COMPLEX_TYPE
&& targetm.calls.split_complex_arg (type))
goto found;
}
return args;
found:
args = copy_list (args);
for (p = args; p; p = TREE_CHAIN (p))
{
tree type = TREE_TYPE (p);
if (TREE_CODE (type) == COMPLEX_TYPE
&& targetm.calls.split_complex_arg (type))
{
tree decl;
tree subtype = TREE_TYPE (type);
/* Rewrite the PARM_DECL's type with its component. */
TREE_TYPE (p) = subtype;
DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
DECL_MODE (p) = VOIDmode;
DECL_SIZE (p) = NULL;
DECL_SIZE_UNIT (p) = NULL;
layout_decl (p, 0);
/* Build a second synthetic decl. */
decl = build_decl (PARM_DECL, NULL_TREE, subtype);
DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
layout_decl (decl, 0);
/* Splice it in; skip the new decl. */
TREE_CHAIN (decl) = TREE_CHAIN (p);
TREE_CHAIN (p) = decl;
p = decl;
}
}
return args;
}
/* A subroutine of assign_parms. Adjust the parameter list to incorporate
the hidden struct return argument, and (abi willing) complex args.
Return the new parameter list. */
stack_args_size.constant = 0; static tree
stack_args_size.var = 0; assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
{
tree fndecl = current_function_decl;
tree fntype = TREE_TYPE (fndecl);
tree fnargs = DECL_ARGUMENTS (fndecl);
/* If struct value address is treated as the first argument, make it so. */ /* If struct value address is treated as the first argument, make it so. */
if (aggregate_value_p (DECL_RESULT (fndecl), fndecl) if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
...@@ -2085,120 +2159,98 @@ assign_parms (tree fndecl) ...@@ -2085,120 +2159,98 @@ assign_parms (tree fndecl)
&& targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0) && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
{ {
tree type = build_pointer_type (TREE_TYPE (fntype)); tree type = build_pointer_type (TREE_TYPE (fntype));
tree decl;
function_result_decl = build_decl (PARM_DECL, NULL_TREE, type); decl = build_decl (PARM_DECL, NULL_TREE, type);
DECL_ARG_TYPE (decl) = type;
DECL_ARTIFICIAL (decl) = 1;
DECL_ARG_TYPE (function_result_decl) = type; TREE_CHAIN (decl) = fnargs;
TREE_CHAIN (function_result_decl) = fnargs; fnargs = decl;
fnargs = function_result_decl; all->function_result_decl = decl;
} }
orig_fnargs = fnargs; all->orig_fnargs = fnargs;
/* If the target wants to split complex arguments into scalars, do so. */ /* If the target wants to split complex arguments into scalars, do so. */
if (targetm.calls.split_complex_arg) if (targetm.calls.split_complex_arg)
fnargs = split_complex_args (fnargs); fnargs = split_complex_args (fnargs);
#ifdef REG_PARM_STACK_SPACE return fnargs;
reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl); }
#endif
#ifdef INIT_CUMULATIVE_INCOMING_ARGS /* A subroutine of assign_parms. Examine PARM and pull out type and mode
INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX); data for the parameter. Incorporate ABI specifics such as pass-by-
#else reference and type promotion. */
INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, fndecl, -1);
#endif
/* We haven't yet found an argument that we must push and pretend the static void
caller did. */ assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
current_function_pretend_args_size = 0; struct assign_parm_data_one *data)
{
tree nominal_type, passed_type;
enum machine_mode nominal_mode, passed_mode, promoted_mode;
for (parm = fnargs; parm; parm = TREE_CHAIN (parm)) memset (data, 0, sizeof (*data));
{
rtx entry_parm; /* Set LAST_NAMED if this is last named arg before last anonymous args. */
rtx stack_parm; if (current_function_stdarg)
enum machine_mode promoted_mode, passed_mode;
enum machine_mode nominal_mode, promoted_nominal_mode;
int unsignedp;
struct locate_and_pad_arg_data locate;
int passed_pointer = 0;
int did_conversion = 0;
tree passed_type = DECL_ARG_TYPE (parm);
tree nominal_type = TREE_TYPE (parm);
int last_named = 0, named_arg;
int in_regs;
int partial = 0;
int pretend_bytes = 0;
int loaded_in_reg = 0;
/* Set LAST_NAMED if this is last named arg before last
anonymous args. */
if (stdarg)
{ {
tree tem; tree tem;
for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem)) for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
if (DECL_NAME (tem)) if (DECL_NAME (tem))
break; break;
if (tem == 0) if (tem == 0)
last_named = 1; data->last_named = true;
} }
/* Set NAMED_ARG if this arg should be treated as a named arg. For /* Set NAMED_ARG if this arg should be treated as a named arg. For
most machines, if this is a varargs/stdarg function, then we treat most machines, if this is a varargs/stdarg function, then we treat
the last named arg as if it were anonymous too. */ the last named arg as if it were anonymous too. */
named_arg = (targetm.calls.strict_argument_naming (&args_so_far) if (targetm.calls.strict_argument_naming (&all->args_so_far))
? 1 : !last_named); data->named_arg = 1;
else
data->named_arg = !data->last_named;
nominal_type = TREE_TYPE (parm);
passed_type = DECL_ARG_TYPE (parm);
/* Look out for errors propagating this far. Also, if the parameter's
type is void then its value doesn't matter. */
if (TREE_TYPE (parm) == error_mark_node if (TREE_TYPE (parm) == error_mark_node
/* This can happen after weird syntax errors /* This can happen after weird syntax errors
or if an enum type is defined among the parms. */ or if an enum type is defined among the parms. */
|| TREE_CODE (parm) != PARM_DECL || TREE_CODE (parm) != PARM_DECL
|| passed_type == NULL) || passed_type == NULL
|| VOID_TYPE_P (nominal_type))
{ {
SET_DECL_RTL (parm, gen_rtx_MEM (BLKmode, const0_rtx)); nominal_type = passed_type = void_type_node;
DECL_INCOMING_RTL (parm) = DECL_RTL (parm); nominal_mode = passed_mode = promoted_mode = VOIDmode;
TREE_USED (parm) = 1; goto egress;
continue;
} }
/* Find mode of arg as it is passed, and mode of arg /* Find mode of arg as it is passed, and mode of arg as it should be
as it should be during execution of this function. */ during execution of this function. */
passed_mode = TYPE_MODE (passed_type); passed_mode = TYPE_MODE (passed_type);
nominal_mode = TYPE_MODE (nominal_type); nominal_mode = TYPE_MODE (nominal_type);
/* If the parm's mode is VOID, its value doesn't matter, /* If the parm is to be passed as a transparent union, use the type of
and avoid the usual things like emit_move_insn that could crash. */ the first field for the tests below. We have already verified that
if (nominal_mode == VOIDmode) the modes are the same. */
{
SET_DECL_RTL (parm, const0_rtx);
DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
continue;
}
/* If the parm is to be passed as a transparent union, use the
type of the first field for the tests below. We have already
verified that the modes are the same. */
if (DECL_TRANSPARENT_UNION (parm) if (DECL_TRANSPARENT_UNION (parm)
|| (TREE_CODE (passed_type) == UNION_TYPE || (TREE_CODE (passed_type) == UNION_TYPE
&& TYPE_TRANSPARENT_UNION (passed_type))) && TYPE_TRANSPARENT_UNION (passed_type)))
passed_type = TREE_TYPE (TYPE_FIELDS (passed_type)); passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
/* See if this arg was passed by invisible reference. It is if /* See if this arg was passed by invisible reference. It is if it is an
it is an object whose size depends on the contents of the object whose size depends on the contents of the object itself or if
object itself or if the machine requires these objects be passed the machine requires these objects be passed that way. */
that way. */
if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (passed_type)) if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (passed_type))
|| TREE_ADDRESSABLE (passed_type) || TREE_ADDRESSABLE (passed_type)
#ifdef FUNCTION_ARG_PASS_BY_REFERENCE || FUNCTION_ARG_PASS_BY_REFERENCE (all->args_so_far, passed_mode,
|| FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode, passed_type, data->named_arg))
passed_type, named_arg)
#endif
)
{ {
passed_type = nominal_type = build_pointer_type (passed_type); passed_type = nominal_type = build_pointer_type (passed_type);
passed_pointer = 1; data->passed_pointer = true;
passed_mode = nominal_mode = Pmode; passed_mode = nominal_mode = Pmode;
} }
/* See if the frontend wants to pass this by invisible reference. */ /* See if the frontend wants to pass this by invisible reference. */
...@@ -2207,106 +2259,124 @@ assign_parms (tree fndecl) ...@@ -2207,106 +2259,124 @@ assign_parms (tree fndecl)
&& TREE_TYPE (passed_type) == nominal_type) && TREE_TYPE (passed_type) == nominal_type)
{ {
nominal_type = passed_type; nominal_type = passed_type;
passed_pointer = 1; data->passed_pointer = 1;
passed_mode = nominal_mode = Pmode; passed_mode = nominal_mode = Pmode;
} }
/* Find mode as it is passed by the ABI. */
promoted_mode = passed_mode; promoted_mode = passed_mode;
if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
if (targetm.calls.promote_function_args (TREE_TYPE (fndecl)))
{ {
/* Compute the mode in which the arg is actually extended to. */ int unsignedp = TYPE_UNSIGNED (passed_type);
unsignedp = TYPE_UNSIGNED (passed_type);
promoted_mode = promote_mode (passed_type, promoted_mode, promoted_mode = promote_mode (passed_type, promoted_mode,
&unsignedp, 1); &unsignedp, 1);
} }
/* Let machine desc say which reg (if any) the parm arrives in. egress:
0 means it arrives on the stack. */ data->nominal_type = nominal_type;
#ifdef FUNCTION_INCOMING_ARG data->passed_type = passed_type;
entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode, data->nominal_mode = nominal_mode;
passed_type, named_arg); data->passed_mode = passed_mode;
#else data->promoted_mode = promoted_mode;
entry_parm = FUNCTION_ARG (args_so_far, promoted_mode, }
passed_type, named_arg);
#endif
if (entry_parm == 0) /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
promoted_mode = passed_mode;
/* If this is the last named parameter, do any required setup for static void
varargs or stdargs. We need to know about the case of this being an assign_parms_setup_varargs (struct assign_parm_data_all *all,
addressable type, in which case we skip the registers it struct assign_parm_data_one *data, bool no_rtl)
would have arrived in. {
int varargs_pretend_bytes = 0;
For stdargs, LAST_NAMED will be set for two parameters, the one that targetm.calls.setup_incoming_varargs (&all->args_so_far,
is actually the last named, and the dummy parameter. We only data->promoted_mode,
want to do this action once. data->passed_type,
&varargs_pretend_bytes, no_rtl);
Also, indicate when RTL generation is to be suppressed. */ /* If the back-end has requested extra stack space, record how much is
if (last_named && !varargs_setup) needed. Do not change pretend_args_size otherwise since it may be
{ nonzero from an earlier partial argument. */
int varargs_pretend_bytes = 0;
targetm.calls.setup_incoming_varargs (&args_so_far, promoted_mode,
passed_type,
&varargs_pretend_bytes, 0);
varargs_setup = 1;
/* If the back-end has requested extra stack space, record how
much is needed. Do not change pretend_args_size otherwise
since it may be nonzero from an earlier partial argument. */
if (varargs_pretend_bytes > 0) if (varargs_pretend_bytes > 0)
current_function_pretend_args_size = varargs_pretend_bytes; all->pretend_args_size = varargs_pretend_bytes;
}
/* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
the incoming location of the current parameter. */
static void
assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
struct assign_parm_data_one *data)
{
HOST_WIDE_INT pretend_bytes = 0;
rtx entry_parm;
bool in_regs;
if (data->promoted_mode == VOIDmode)
{
data->entry_parm = data->stack_parm = const0_rtx;
return;
} }
/* Determine parm's home in the stack, #ifdef FUNCTION_INCOMING_ARG
in case it arrives in the stack or we should pretend it did. entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
data->passed_type, data->named_arg);
#else
entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
data->passed_type, data->named_arg);
#endif
if (entry_parm == 0)
data->promoted_mode = data->passed_mode;
Compute the stack position and rtx where the argument arrives /* Determine parm's home in the stack, in case it arrives in the stack
and its size. or we should pretend it did. Compute the stack position and rtx where
the argument arrives and its size.
There is one complexity here: If this was a parameter that would There is one complexity here: If this was a parameter that would
have been passed in registers, but wasn't only because it is have been passed in registers, but wasn't only because it is
__builtin_va_alist, we want locate_and_pad_parm to treat it as if __builtin_va_alist, we want locate_and_pad_parm to treat it as if
it came in a register so that REG_PARM_STACK_SPACE isn't skipped. it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
In this case, we call FUNCTION_ARG with NAMED set to 1 instead of In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
0 as it was the previous time. */ as it was the previous time. */
in_regs = entry_parm != 0; in_regs = entry_parm != 0;
#ifdef STACK_PARMS_IN_REG_PARM_AREA #ifdef STACK_PARMS_IN_REG_PARM_AREA
in_regs = 1; in_regs = true;
#endif #endif
if (!in_regs && !named_arg) if (!in_regs && !data->named_arg)
{ {
int pretend_named = if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
targetm.calls.pretend_outgoing_varargs_named (&args_so_far);
if (pretend_named)
{ {
rtx tem;
#ifdef FUNCTION_INCOMING_ARG #ifdef FUNCTION_INCOMING_ARG
in_regs = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode, tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
passed_type, data->passed_type, true);
pretend_named) != 0;
#else #else
in_regs = FUNCTION_ARG (args_so_far, promoted_mode, tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
passed_type, data->passed_type, true);
pretend_named) != 0;
#endif #endif
in_regs = tem != NULL;
} }
} }
/* If this parameter was passed both in registers and in the stack, /* If this parameter was passed both in registers and in the stack, use
use the copy on the stack. */ the copy on the stack. */
if (MUST_PASS_IN_STACK (promoted_mode, passed_type)) if (MUST_PASS_IN_STACK (data->promoted_mode, data->passed_type))
entry_parm = 0; entry_parm = 0;
#ifdef FUNCTION_ARG_PARTIAL_NREGS #ifdef FUNCTION_ARG_PARTIAL_NREGS
if (entry_parm) if (entry_parm)
{ {
partial = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode, int partial;
passed_type, named_arg);
if (partial partial = FUNCTION_ARG_PARTIAL_NREGS (all->args_so_far,
/* The caller might already have allocated stack space data->promoted_mode,
for the register parameters. */ data->passed_type,
&& reg_parm_stack_space == 0) data->named_arg);
data->partial = partial;
/* The caller might already have allocated stack space for the
register parameters. */
if (partial != 0 && all->reg_parm_stack_space == 0)
{ {
/* Part of this argument is passed in registers and part /* Part of this argument is passed in registers and part
is passed on the stack. Ask the prologue code to extend is passed on the stack. Ask the prologue code to extend
...@@ -2316,67 +2386,105 @@ assign_parms (tree fndecl) ...@@ -2316,67 +2386,105 @@ assign_parms (tree fndecl)
CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
stack space that the prologue should allocate. stack space that the prologue should allocate.
Internally, gcc assumes that the argument pointer is Internally, gcc assumes that the argument pointer is aligned
aligned to STACK_BOUNDARY bits. This is used both for to STACK_BOUNDARY bits. This is used both for alignment
alignment optimizations (see init_emit) and to locate optimizations (see init_emit) and to locate arguments that are
arguments that are aligned to more than PARM_BOUNDARY aligned to more than PARM_BOUNDARY bits. We must preserve this
bits. We must preserve this invariant by rounding invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to a stack a stack boundary. */
boundary. */
/* We assume at most one partial arg, and it must be the first /* We assume at most one partial arg, and it must be the first
argument on the stack. */ argument on the stack. */
if (extra_pretend_bytes || current_function_pretend_args_size) if (all->extra_pretend_bytes || all->pretend_args_size)
abort (); abort ();
pretend_bytes = partial * UNITS_PER_WORD; pretend_bytes = partial * UNITS_PER_WORD;
current_function_pretend_args_size all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
= CEIL_ROUND (pretend_bytes, STACK_BYTES);
/* We want to align relative to the actual stack pointer, so /* We want to align relative to the actual stack pointer, so
don't include this in the stack size until later. */ don't include this in the stack size until later. */
extra_pretend_bytes = current_function_pretend_args_size; all->extra_pretend_bytes = all->pretend_args_size;
} }
} }
#endif #endif
memset (&locate, 0, sizeof (locate)); locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
locate_and_pad_parm (promoted_mode, passed_type, in_regs, entry_parm ? data->partial : 0, current_function_decl,
entry_parm ? partial : 0, fndecl, &all->stack_args_size, &data->locate);
&stack_args_size, &locate);
/* Adjust offsets to include the pretend args. */ /* Adjust offsets to include the pretend args. */
locate.slot_offset.constant += extra_pretend_bytes - pretend_bytes; pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
locate.offset.constant += extra_pretend_bytes - pretend_bytes; data->locate.slot_offset.constant += pretend_bytes;
data->locate.offset.constant += pretend_bytes;
{ data->entry_parm = entry_parm;
rtx offset_rtx; }
unsigned int align, boundary;
/* If we're passing this arg using a reg, make its stack home /* A subroutine of assign_parms. If there is actually space on the stack
the aligned stack slot. */ for this parm, count it in stack_args_size and return true. */
if (entry_parm)
offset_rtx = ARGS_SIZE_RTX (locate.slot_offset); static bool
assign_parm_is_stack_parm (struct assign_parm_data_all *all,
struct assign_parm_data_one *data)
{
/* Trivially true if we've no incomming register. */
if (data->entry_parm == NULL)
;
/* Also true if we're partially in registers and partially not,
since we've arranged to drop the entire argument on the stack. */
else if (data->partial != 0)
;
/* Also true if the target says that it's passed in both registers
and on the stack. */
else if (GET_CODE (data->entry_parm) == PARALLEL
&& XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
;
/* Also true if the target says that there's stack allocated for
all register parameters. */
else if (all->reg_parm_stack_space > 0)
;
/* Otherwise, no, this parameter has no ABI defined stack slot. */
else else
offset_rtx = ARGS_SIZE_RTX (locate.offset); return false;
all->stack_args_size.constant += data->locate.size.constant;
if (data->locate.size.var)
ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
if (offset_rtx == const0_rtx) return true;
stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer); }
/* A subroutine of assign_parms. Given that this parameter is allocated
stack space by the ABI, find it. */
static void
assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
{
rtx offset_rtx, stack_parm;
unsigned int align, boundary;
/* If we're passing this arg using a reg, make its stack home the
aligned stack slot. */
if (data->entry_parm)
offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
else else
stack_parm = gen_rtx_MEM (promoted_mode, offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
gen_rtx_PLUS (Pmode,
internal_arg_pointer, stack_parm = current_function_internal_arg_pointer;
offset_rtx)); if (offset_rtx != const0_rtx)
stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
set_mem_attributes (stack_parm, parm, 1); set_mem_attributes (stack_parm, parm, 1);
boundary = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type); boundary = FUNCTION_ARG_BOUNDARY (data->promoted_mode, data->passed_type);
align = 0; align = 0;
/* If we're padding upward, we know that the alignment of the slot /* If we're padding upward, we know that the alignment of the slot
is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
intentionally forcing upward padding. Otherwise we have to come intentionally forcing upward padding. Otherwise we have to come
up with a guess at the alignment based on OFFSET_RTX. */ up with a guess at the alignment based on OFFSET_RTX. */
if (locate.where_pad == upward || entry_parm) if (data->locate.where_pad == upward || data->entry_parm)
align = boundary; align = boundary;
else if (GET_CODE (offset_rtx) == CONST_INT) else if (GET_CODE (offset_rtx) == CONST_INT)
{ {
...@@ -2386,151 +2494,146 @@ assign_parms (tree fndecl) ...@@ -2386,151 +2494,146 @@ assign_parms (tree fndecl)
if (align > 0) if (align > 0)
set_mem_align (stack_parm, align); set_mem_align (stack_parm, align);
if (entry_parm) if (data->entry_parm)
set_reg_attrs_for_parm (entry_parm, stack_parm); set_reg_attrs_for_parm (data->entry_parm, stack_parm);
}
/* If this parm was passed part in regs and part in memory, data->stack_parm = stack_parm;
pretend it arrived entirely in memory }
by pushing the register-part onto the stack.
In the special case of a DImode or DFmode that is split, /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
we could put it together in a pseudoreg directly, always valid and contiguous. */
but for now that's not worth bothering with. */
if (partial) static void
assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
{
rtx entry_parm = data->entry_parm;
rtx stack_parm = data->stack_parm;
/* If this parm was passed part in regs and part in memory, pretend it
arrived entirely in memory by pushing the register-part onto the stack.
In the special case of a DImode or DFmode that is split, we could put
it together in a pseudoreg directly, but for now that's not worth
bothering with. */
if (data->partial != 0)
{ {
/* Handle calls that pass values in multiple non-contiguous /* Handle calls that pass values in multiple non-contiguous
locations. The Irix 6 ABI has examples of this. */ locations. The Irix 6 ABI has examples of this. */
if (GET_CODE (entry_parm) == PARALLEL) if (GET_CODE (entry_parm) == PARALLEL)
emit_group_store (validize_mem (stack_parm), entry_parm, emit_group_store (validize_mem (stack_parm), entry_parm,
TREE_TYPE (parm), data->passed_type,
int_size_in_bytes (TREE_TYPE (parm))); int_size_in_bytes (data->passed_type));
else else
move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm), move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
partial); data->partial);
entry_parm = stack_parm; entry_parm = stack_parm;
} }
/* If we didn't decide this parm came in a register, /* If we didn't decide this parm came in a register, by default it came
by default it came on the stack. */ on the stack. */
if (entry_parm == 0) else if (entry_parm == NULL)
entry_parm = stack_parm; entry_parm = stack_parm;
/* Record permanently how this parm was passed. */ /* When an argument is passed in multiple locations, we can't make use
set_decl_incoming_rtl (parm, entry_parm); of this information, but we can save some copying if the whole argument
is passed in a single register. */
/* If there is actually space on the stack for this parm, else if (GET_CODE (entry_parm) == PARALLEL
count it in stack_args_size; otherwise set stack_parm to 0 && data->nominal_mode != BLKmode
to indicate there is no preallocated stack slot for the parm. */ && data->passed_mode != BLKmode)
if (entry_parm == stack_parm
|| (GET_CODE (entry_parm) == PARALLEL
&& XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
#if defined (REG_PARM_STACK_SPACE)
/* On some machines, even if a parm value arrives in a register
there is still an (uninitialized) stack slot allocated
for it. */
|| REG_PARM_STACK_SPACE (fndecl) > 0
#endif
)
{
stack_args_size.constant += locate.size.constant;
if (locate.size.var)
ADD_PARM_SIZE (stack_args_size, locate.size.var);
}
else
/* No stack slot was pushed for this parm. */
stack_parm = 0;
/* Update info on where next arg arrives in registers. */
FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
passed_type, named_arg);
/* If we can't trust the parm stack slot to be aligned enough
for its ultimate type, don't use that slot after entry.
We'll make another stack slot, if we need one. */
if (STRICT_ALIGNMENT && stack_parm
&& GET_MODE_ALIGNMENT (nominal_mode) > MEM_ALIGN (stack_parm))
stack_parm = 0;
/* If parm was passed in memory, and we need to convert it on entry,
don't store it back in that same slot. */
if (entry_parm == stack_parm
&& nominal_mode != BLKmode && nominal_mode != passed_mode)
stack_parm = 0;
/* When an argument is passed in multiple locations, we can't
make use of this information, but we can save some copying if
the whole argument is passed in a single register. */
if (GET_CODE (entry_parm) == PARALLEL
&& nominal_mode != BLKmode && passed_mode != BLKmode)
{ {
int i, len = XVECLEN (entry_parm, 0); size_t i, len = XVECLEN (entry_parm, 0);
for (i = 0; i < len; i++) for (i = 0; i < len; i++)
if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
&& REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0)) && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
&& (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
== passed_mode) == data->passed_mode)
&& INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0) && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
{ {
entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0); entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
set_decl_incoming_rtl (parm, entry_parm);
break; break;
} }
} }
/* ENTRY_PARM is an RTX for the parameter as it arrives, data->entry_parm = entry_parm;
in the mode in which it arrives. }
STACK_PARM is an RTX for a stack slot where the parameter can live
during the function (in case we want to put it there). /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
STACK_PARM is 0 if no stack slot was pushed for it. always valid and properly aligned. */
static void
assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
{
rtx stack_parm = data->stack_parm;
/* If we can't trust the parm stack slot to be aligned enough for its
ultimate type, don't use that slot after entry. We'll make another
stack slot, if we need one. */
if (STRICT_ALIGNMENT && stack_parm
&& GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
stack_parm = NULL;
/* If parm was passed in memory, and we need to convert it on entry,
don't store it back in that same slot. */
else if (data->entry_parm == stack_parm
&& data->nominal_mode != BLKmode
&& data->nominal_mode != data->passed_mode)
stack_parm = NULL;
data->stack_parm = stack_parm;
}
/* A subroutine of assign_parms. Return true if the current parameter
should be stored as a BLKmode in the current frame. */
Now output code if necessary to convert ENTRY_PARM to static bool
the type in which this function declares it, assign_parm_setup_block_p (struct assign_parm_data_one *data)
and store that result in an appropriate place, {
which may be a pseudo reg, may be STACK_PARM, if (data->nominal_mode == BLKmode)
or may be a local stack slot if STACK_PARM is 0. return true;
if (GET_CODE (data->entry_parm) == PARALLEL)
return true;
#ifdef BLOCK_REG_PADDING
if (data->locate.where_pad == (BYTES_BIG_ENDIAN ? upward : downward)
&& GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD)
return true;
#endif
return false;
}
/* A subroutine of assign_parms. Arrange for the parameter to be
present and valid in DATA->STACK_RTL. */
Set DECL_RTL to that place. */ static void
assign_parm_setup_block (tree parm, struct assign_parm_data_one *data)
{
rtx entry_parm = data->entry_parm;
rtx stack_parm = data->stack_parm;
/* If we've a non-block object that's nevertheless passed in parts,
reconstitute it in register operations rather than on the stack. */
if (GET_CODE (entry_parm) == PARALLEL if (GET_CODE (entry_parm) == PARALLEL
&& nominal_mode != BLKmode && data->nominal_mode != BLKmode
&& XVECLEN (entry_parm, 0) > 1) && XVECLEN (entry_parm, 0) > 1
&& optimize)
{ {
/* Reconstitute objects the size of a register or larger using rtx parmreg = gen_reg_rtx (data->nominal_mode);
register operations instead of the stack. */
rtx parmreg = gen_reg_rtx (nominal_mode);
if (REG_P (parmreg)) emit_group_store (parmreg, entry_parm, data->nominal_type,
{ int_size_in_bytes (data->nominal_type));
emit_group_store (parmreg, entry_parm, TREE_TYPE (parm),
int_size_in_bytes (TREE_TYPE (parm)));
SET_DECL_RTL (parm, parmreg); SET_DECL_RTL (parm, parmreg);
loaded_in_reg = 1; return;
}
} }
if (nominal_mode == BLKmode /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
#ifdef BLOCK_REG_PADDING calls that pass values in multiple non-contiguous locations. */
|| (locate.where_pad == (BYTES_BIG_ENDIAN ? upward : downward) if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
&& GET_MODE_SIZE (promoted_mode) < UNITS_PER_WORD)
#endif
|| GET_CODE (entry_parm) == PARALLEL)
{ {
/* If a BLKmode arrives in registers, copy it to a stack slot. HOST_WIDE_INT size = int_size_in_bytes (data->passed_type);
Handle calls that pass values in multiple non-contiguous HOST_WIDE_INT size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
locations. The Irix 6 ABI has examples of this. */
if (REG_P (entry_parm)
|| (GET_CODE (entry_parm) == PARALLEL
&& (!loaded_in_reg || !optimize)))
{
int size = int_size_in_bytes (TREE_TYPE (parm));
int size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
rtx mem; rtx mem;
/* Note that we will be storing an integral number of words. /* Note that we will be storing an integral number of words.
...@@ -2545,6 +2648,7 @@ assign_parms (tree fndecl) ...@@ -2545,6 +2648,7 @@ assign_parms (tree fndecl)
if (stack_parm == 0) if (stack_parm == 0)
{ {
stack_parm = assign_stack_local (BLKmode, size_stored, 0); stack_parm = assign_stack_local (BLKmode, size_stored, 0);
data->stack_parm = stack_parm;
PUT_MODE (stack_parm, GET_MODE (entry_parm)); PUT_MODE (stack_parm, GET_MODE (entry_parm));
set_mem_attributes (stack_parm, parm, 1); set_mem_attributes (stack_parm, parm, 1);
} }
...@@ -2555,10 +2659,9 @@ assign_parms (tree fndecl) ...@@ -2555,10 +2659,9 @@ assign_parms (tree fndecl)
mem = validize_mem (stack_parm); mem = validize_mem (stack_parm);
/* Handle calls that pass values in multiple non-contiguous /* Handle values in multiple non-contiguous locations. */
locations. The Irix 6 ABI has examples of this. */
if (GET_CODE (entry_parm) == PARALLEL) if (GET_CODE (entry_parm) == PARALLEL)
emit_group_store (mem, entry_parm, TREE_TYPE (parm), size); emit_group_store (mem, entry_parm, data->passed_type, size);
else if (size == 0) else if (size == 0)
; ;
...@@ -2573,7 +2676,7 @@ assign_parms (tree fndecl) ...@@ -2573,7 +2676,7 @@ assign_parms (tree fndecl)
if (mode != BLKmode if (mode != BLKmode
#ifdef BLOCK_REG_PADDING #ifdef BLOCK_REG_PADDING
&& (size == UNITS_PER_WORD && (size == UNITS_PER_WORD
|| (BLOCK_REG_PADDING (mode, TREE_TYPE (parm), 1) || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
!= (BYTES_BIG_ENDIAN ? upward : downward))) != (BYTES_BIG_ENDIAN ? upward : downward)))
#endif #endif
) )
...@@ -2588,7 +2691,7 @@ assign_parms (tree fndecl) ...@@ -2588,7 +2691,7 @@ assign_parms (tree fndecl)
handle all cases (e.g. SIZE == 3). */ handle all cases (e.g. SIZE == 3). */
else if (size != UNITS_PER_WORD else if (size != UNITS_PER_WORD
#ifdef BLOCK_REG_PADDING #ifdef BLOCK_REG_PADDING
&& (BLOCK_REG_PADDING (mode, TREE_TYPE (parm), 1) && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
== downward) == downward)
#else #else
&& BYTES_BIG_ENDIAN && BYTES_BIG_ENDIAN
...@@ -2597,7 +2700,7 @@ assign_parms (tree fndecl) ...@@ -2597,7 +2700,7 @@ assign_parms (tree fndecl)
{ {
rtx tem, x; rtx tem, x;
int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT; int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm)); rtx reg = gen_rtx_REG (word_mode, REGNO (data->entry_parm));
x = expand_binop (word_mode, ashl_optab, reg, x = expand_binop (word_mode, ashl_optab, reg,
GEN_INT (by), 0, 1, OPTAB_WIDEN); GEN_INT (by), 0, 1, OPTAB_WIDEN);
...@@ -2605,42 +2708,45 @@ assign_parms (tree fndecl) ...@@ -2605,42 +2708,45 @@ assign_parms (tree fndecl)
emit_move_insn (tem, x); emit_move_insn (tem, x);
} }
else else
move_block_from_reg (REGNO (entry_parm), mem, move_block_from_reg (REGNO (data->entry_parm), mem,
size_stored / UNITS_PER_WORD); size_stored / UNITS_PER_WORD);
} }
else else
move_block_from_reg (REGNO (entry_parm), mem, move_block_from_reg (REGNO (data->entry_parm), mem,
size_stored / UNITS_PER_WORD); size_stored / UNITS_PER_WORD);
} }
/* If parm is already bound to register pair, don't change
this binding. */
if (! DECL_RTL_SET_P (parm))
SET_DECL_RTL (parm, stack_parm); SET_DECL_RTL (parm, stack_parm);
} }
else if (use_register_for_decl (parm)
/* Always assign pseudo to structure return or item passed /* A subroutine of assign_parms. Allocate a pseudo to hold the current
by invisible reference. */ parameter. Get it there. Perform all ABI specified conversions. */
|| passed_pointer || parm == function_result_decl)
{
/* Store the parm in a pseudoregister during the function, but we
may need to do it in a wider mode. */
static void
assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
struct assign_parm_data_one *data)
{
rtx parmreg; rtx parmreg;
enum machine_mode promoted_nominal_mode;
int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
bool did_conversion = false;
unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm)); /* Store the parm in a pseudoregister during the function, but we may
need to do it in a wider mode. */
promoted_nominal_mode promoted_nominal_mode
= promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0); = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 0);
parmreg = gen_reg_rtx (promoted_nominal_mode); parmreg = gen_reg_rtx (promoted_nominal_mode);
if (!DECL_ARTIFICIAL (parm))
mark_user_reg (parmreg); mark_user_reg (parmreg);
/* If this was an item that we received a pointer to, set DECL_RTL /* If this was an item that we received a pointer to,
appropriately. */ set DECL_RTL appropriately. */
if (passed_pointer) if (data->passed_pointer)
{ {
rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)), rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
parmreg);
set_mem_attributes (x, parm, 1); set_mem_attributes (x, parm, 1);
SET_DECL_RTL (parm, x); SET_DECL_RTL (parm, x);
} }
...@@ -2651,10 +2757,11 @@ assign_parms (tree fndecl) ...@@ -2651,10 +2757,11 @@ assign_parms (tree fndecl)
} }
/* Copy the value into the register. */ /* Copy the value into the register. */
if (nominal_mode != passed_mode if (data->nominal_mode != data->passed_mode
|| promoted_nominal_mode != promoted_mode) || promoted_nominal_mode != data->promoted_mode)
{ {
int save_tree_used; int save_tree_used;
/* ENTRY_PARM has been converted to PROMOTED_MODE, its /* ENTRY_PARM has been converted to PROMOTED_MODE, its
mode, by the caller. We now have to convert it to mode, by the caller. We now have to convert it to
NOMINAL_MODE, if different. However, PARMREG may be in NOMINAL_MODE, if different. However, PARMREG may be in
...@@ -2674,20 +2781,20 @@ assign_parms (tree fndecl) ...@@ -2674,20 +2781,20 @@ assign_parms (tree fndecl)
a pseudo reg here, and save the conversion until after all a pseudo reg here, and save the conversion until after all
parameters have been moved. */ parameters have been moved. */
rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm)); rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
emit_move_insn (tempreg, validize_mem (entry_parm)); emit_move_insn (tempreg, validize_mem (data->entry_parm));
push_to_sequence (conversion_insns); push_to_sequence (all->conversion_insns);
tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp); tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
if (GET_CODE (tempreg) == SUBREG if (GET_CODE (tempreg) == SUBREG
&& GET_MODE (tempreg) == nominal_mode && GET_MODE (tempreg) == data->nominal_mode
&& REG_P (SUBREG_REG (tempreg)) && REG_P (SUBREG_REG (tempreg))
&& nominal_mode == passed_mode && data->nominal_mode == data->passed_mode
&& GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (entry_parm) && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
&& GET_MODE_SIZE (GET_MODE (tempreg)) && GET_MODE_SIZE (GET_MODE (tempreg))
< GET_MODE_SIZE (GET_MODE (entry_parm))) < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
{ {
/* The argument is already sign/zero extended, so note it /* The argument is already sign/zero extended, so note it
into the subreg. */ into the subreg. */
...@@ -2697,49 +2804,53 @@ assign_parms (tree fndecl) ...@@ -2697,49 +2804,53 @@ assign_parms (tree fndecl)
/* TREE_USED gets set erroneously during expand_assignment. */ /* TREE_USED gets set erroneously during expand_assignment. */
save_tree_used = TREE_USED (parm); save_tree_used = TREE_USED (parm);
expand_assignment (parm, expand_assignment (parm, make_tree (data->nominal_type, tempreg), 0);
make_tree (nominal_type, tempreg), 0);
TREE_USED (parm) = save_tree_used; TREE_USED (parm) = save_tree_used;
conversion_insns = get_insns (); all->conversion_insns = get_insns ();
did_conversion = 1;
end_sequence (); end_sequence ();
did_conversion = true;
} }
else else
emit_move_insn (parmreg, validize_mem (entry_parm)); emit_move_insn (parmreg, validize_mem (data->entry_parm));
/* If we were passed a pointer but the actual value /* If we were passed a pointer but the actual value can safely live
can safely live in a register, put it in one. */ in a register, put it in one. */
if (passed_pointer if (data->passed_pointer
&& use_register_for_decl (parm) && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
/* If by-reference argument was promoted, demote it. */ /* If by-reference argument was promoted, demote it. */
&& TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))) && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
|| use_register_for_decl (parm)))
{ {
/* We can't use nominal_mode, because it will have been set to /* We can't use nominal_mode, because it will have been set to
Pmode above. We must use the actual mode of the parm. */ Pmode above. We must use the actual mode of the parm. */
parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm))); parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
mark_user_reg (parmreg); mark_user_reg (parmreg);
if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm))) if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
{ {
rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm))); rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm)); int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
push_to_sequence (conversion_insns);
push_to_sequence (all->conversion_insns);
emit_move_insn (tempreg, DECL_RTL (parm)); emit_move_insn (tempreg, DECL_RTL (parm));
SET_DECL_RTL (parm, tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
convert_to_mode (GET_MODE (parmreg), emit_move_insn (parmreg, tempreg);
tempreg, all->conversion_insns = get_insns();
unsigned_p));
emit_move_insn (parmreg, DECL_RTL (parm));
conversion_insns = get_insns();
did_conversion = 1;
end_sequence (); end_sequence ();
did_conversion = true;
} }
else else
emit_move_insn (parmreg, DECL_RTL (parm)); emit_move_insn (parmreg, DECL_RTL (parm));
SET_DECL_RTL (parm, parmreg); SET_DECL_RTL (parm, parmreg);
/* STACK_PARM is the pointer, not the parm, and PARMREG is /* STACK_PARM is the pointer, not the parm, and PARMREG is
now the parm. */ now the parm. */
stack_parm = 0; data->stack_parm = NULL;
} }
#ifdef FUNCTION_ARG_CALLEE_COPIES #ifdef FUNCTION_ARG_CALLEE_COPIES
/* If we are passed an arg by reference and it is our responsibility /* If we are passed an arg by reference and it is our responsibility
to make a copy, do it now. to make a copy, do it now.
...@@ -2749,11 +2860,11 @@ assign_parms (tree fndecl) ...@@ -2749,11 +2860,11 @@ assign_parms (tree fndecl)
/* ??? Later add code to handle the case that if the argument isn't /* ??? Later add code to handle the case that if the argument isn't
modified, don't do the copy. */ modified, don't do the copy. */
else if (passed_pointer else if (data->passed_pointer
&& FUNCTION_ARG_CALLEE_COPIES (args_so_far, && FUNCTION_ARG_CALLEE_COPIES (all->args_so_far,
TYPE_MODE (TREE_TYPE (passed_type)), TYPE_MODE (TREE_TYPE (passed_type)),
TREE_TYPE (passed_type), TREE_TYPE (passed_type),
named_arg) data->named_arg)
&& ! TREE_ADDRESSABLE (TREE_TYPE (passed_type))) && ! TREE_ADDRESSABLE (TREE_TYPE (passed_type)))
{ {
rtx copy; rtx copy;
...@@ -2762,15 +2873,16 @@ assign_parms (tree fndecl) ...@@ -2762,15 +2873,16 @@ assign_parms (tree fndecl)
/* This sequence may involve a library call perhaps clobbering /* This sequence may involve a library call perhaps clobbering
registers that haven't been copied to pseudos yet. */ registers that haven't been copied to pseudos yet. */
push_to_sequence (conversion_insns); push_to_sequence (all->conversion_insns);
if (!COMPLETE_TYPE_P (type) if (!COMPLETE_TYPE_P (type)
|| TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
{
/* This is a variable sized object. */ /* This is a variable sized object. */
copy = gen_rtx_MEM (BLKmode, copy = allocate_dynamic_stack_space (expr_size (parm), NULL_RTX,
allocate_dynamic_stack_space TYPE_ALIGN (type));
(expr_size (parm), NULL_RTX, copy = gen_rtx_MEM (BLKmode, copy);
TYPE_ALIGN (type))); }
else else
copy = assign_stack_temp (TYPE_MODE (type), copy = assign_stack_temp (TYPE_MODE (type),
int_size_in_bytes (type), 1); int_size_in_bytes (type), 1);
...@@ -2778,25 +2890,25 @@ assign_parms (tree fndecl) ...@@ -2778,25 +2890,25 @@ assign_parms (tree fndecl)
store_expr (parm, copy, 0); store_expr (parm, copy, 0);
emit_move_insn (parmreg, XEXP (copy, 0)); emit_move_insn (parmreg, XEXP (copy, 0));
conversion_insns = get_insns (); all->conversion_insns = get_insns ();
did_conversion = 1;
end_sequence (); end_sequence ();
did_conversion = true;
} }
#endif /* FUNCTION_ARG_CALLEE_COPIES */ #endif /* FUNCTION_ARG_CALLEE_COPIES */
/* Mark the register as eliminable if we did no conversion /* Mark the register as eliminable if we did no conversion and it was
and it was copied from memory at a fixed offset, copied from memory at a fixed offset, and the arg pointer was not
and the arg pointer was not copied to a pseudo-reg. copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
If the arg pointer is a pseudo reg or the offset formed offset formed an invalid address, such memory-equivalences as we
an invalid address, such memory-equivalences make here would screw up life analysis for it. */
as we make here would screw up life analysis for it. */ if (data->nominal_mode == data->passed_mode
if (nominal_mode == passed_mode && !did_conversion
&& ! did_conversion && data->stack_parm != 0
&& stack_parm != 0 && MEM_P (data->stack_parm)
&& MEM_P (stack_parm) && data->locate.offset.var == 0
&& locate.offset.var == 0
&& reg_mentioned_p (virtual_incoming_args_rtx, && reg_mentioned_p (virtual_incoming_args_rtx,
XEXP (stack_parm, 0))) XEXP (data->stack_parm, 0)))
{ {
rtx linsn = get_last_insn (); rtx linsn = get_last_insn ();
rtx sinsn, set; rtx sinsn, set;
...@@ -2808,8 +2920,8 @@ assign_parms (tree fndecl) ...@@ -2808,8 +2920,8 @@ assign_parms (tree fndecl)
= GET_MODE_INNER (GET_MODE (parmreg)); = GET_MODE_INNER (GET_MODE (parmreg));
int regnor = REGNO (gen_realpart (submode, parmreg)); int regnor = REGNO (gen_realpart (submode, parmreg));
int regnoi = REGNO (gen_imagpart (submode, parmreg)); int regnoi = REGNO (gen_imagpart (submode, parmreg));
rtx stackr = gen_realpart (submode, stack_parm); rtx stackr = gen_realpart (submode, data->stack_parm);
rtx stacki = gen_imagpart (submode, stack_parm); rtx stacki = gen_imagpart (submode, data->stack_parm);
/* Scan backwards for the set of the real and /* Scan backwards for the set of the real and
imaginary parts. */ imaginary parts. */
...@@ -2834,68 +2946,80 @@ assign_parms (tree fndecl) ...@@ -2834,68 +2946,80 @@ assign_parms (tree fndecl)
&& SET_DEST (set) == parmreg) && SET_DEST (set) == parmreg)
REG_NOTES (linsn) REG_NOTES (linsn)
= gen_rtx_EXPR_LIST (REG_EQUIV, = gen_rtx_EXPR_LIST (REG_EQUIV,
stack_parm, REG_NOTES (linsn)); data->stack_parm, REG_NOTES (linsn));
} }
/* For pointer data type, suggest pointer register. */ /* For pointer data type, suggest pointer register. */
if (POINTER_TYPE_P (TREE_TYPE (parm))) if (POINTER_TYPE_P (TREE_TYPE (parm)))
mark_reg_pointer (parmreg, mark_reg_pointer (parmreg,
TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm)))); TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
} }
else
{ /* A subroutine of assign_parms. Allocate stack space to hold the current
/* Value must be stored in the stack slot STACK_PARM parameter. Get it there. Perform all ABI specified conversions. */
during function execution. */
static void
assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
struct assign_parm_data_one *data)
{
/* Value must be stored in the stack slot STACK_PARM during function
execution. */
if (promoted_mode != nominal_mode) if (data->promoted_mode != data->nominal_mode)
{ {
/* Conversion is required. */ /* Conversion is required. */
rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm)); rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
emit_move_insn (tempreg, validize_mem (entry_parm)); emit_move_insn (tempreg, validize_mem (data->entry_parm));
push_to_sequence (conversion_insns); push_to_sequence (all->conversion_insns);
entry_parm = convert_to_mode (nominal_mode, tempreg, data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
TYPE_UNSIGNED (TREE_TYPE (parm))); TYPE_UNSIGNED (TREE_TYPE (parm)));
if (stack_parm)
if (data->stack_parm)
/* ??? This may need a big-endian conversion on sparc64. */ /* ??? This may need a big-endian conversion on sparc64. */
stack_parm = adjust_address (stack_parm, nominal_mode, 0); data->stack_parm
= adjust_address (data->stack_parm, data->nominal_mode, 0);
conversion_insns = get_insns (); all->conversion_insns = get_insns ();
did_conversion = 1;
end_sequence (); end_sequence ();
} }
if (entry_parm != stack_parm) if (data->entry_parm != data->stack_parm)
{ {
if (stack_parm == 0) if (data->stack_parm == 0)
{ {
stack_parm data->stack_parm
= assign_stack_local (GET_MODE (entry_parm), = assign_stack_local (GET_MODE (data->entry_parm),
GET_MODE_SIZE (GET_MODE (entry_parm)), GET_MODE_SIZE (GET_MODE (data->entry_parm)),
0); 0);
set_mem_attributes (stack_parm, parm, 1); set_mem_attributes (data->stack_parm, parm, 1);
} }
if (promoted_mode != nominal_mode) if (data->promoted_mode != data->nominal_mode)
{ {
push_to_sequence (conversion_insns); push_to_sequence (all->conversion_insns);
emit_move_insn (validize_mem (stack_parm), emit_move_insn (validize_mem (data->stack_parm),
validize_mem (entry_parm)); validize_mem (data->entry_parm));
conversion_insns = get_insns (); all->conversion_insns = get_insns ();
end_sequence (); end_sequence ();
} }
else else
emit_move_insn (validize_mem (stack_parm), emit_move_insn (validize_mem (data->stack_parm),
validize_mem (entry_parm)); validize_mem (data->entry_parm));
} }
SET_DECL_RTL (parm, stack_parm); SET_DECL_RTL (parm, data->stack_parm);
} }
}
/* A subroutine of assign_parms. If the ABI splits complex arguments, then
undo the frobbing that we did in assign_parms_augmented_arg_list. */
static void
assign_parms_unsplit_complex (tree orig_fnargs, tree fnargs)
{
tree parm;
if (targetm.calls.split_complex_arg && fnargs != orig_fnargs)
{
for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm)) for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
{ {
if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
...@@ -2932,26 +3056,111 @@ assign_parms (tree fndecl) ...@@ -2932,26 +3056,111 @@ assign_parms (tree fndecl)
/* Set MEM_EXPR to the original decl, i.e. to PARM, /* Set MEM_EXPR to the original decl, i.e. to PARM,
instead of the copy of decl, i.e. FNARGS. */ instead of the copy of decl, i.e. FNARGS. */
if (DECL_INCOMING_RTL (parm) if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
&& MEM_P (DECL_INCOMING_RTL (parm)))
set_mem_expr (DECL_INCOMING_RTL (parm), parm); set_mem_expr (DECL_INCOMING_RTL (parm), parm);
} }
fnargs = TREE_CHAIN (fnargs); fnargs = TREE_CHAIN (fnargs);
} }
}
/* Assign RTL expressions to the function's parameters. This may involve
copying them into registers and using those registers as the DECL_RTL. */
void
assign_parms (tree fndecl)
{
struct assign_parm_data_all all;
tree fnargs, parm;
rtx internal_arg_pointer;
int varargs_setup = 0;
/* If the reg that the virtual arg pointer will be translated into is
not a fixed reg or is the stack pointer, make a copy of the virtual
arg pointer, and address parms via the copy. The frame pointer is
considered fixed even though it is not marked as such.
The second time through, simply use ap to avoid generating rtx. */
if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
|| ! (fixed_regs[ARG_POINTER_REGNUM]
|| ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
else
internal_arg_pointer = virtual_incoming_args_rtx;
current_function_internal_arg_pointer = internal_arg_pointer;
assign_parms_initialize_all (&all);
fnargs = assign_parms_augmented_arg_list (&all);
for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
{
struct assign_parm_data_one data;
/* Extract the type of PARM; adjust it according to ABI. */
assign_parm_find_data_types (&all, parm, &data);
/* Early out for errors and void parameters. */
if (data.passed_mode == VOIDmode)
{
SET_DECL_RTL (parm, const0_rtx);
DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
continue;
}
/* Handle stdargs. LAST_NAMED is a slight mis-nomer; it's also true
for the unnamed dummy argument following the last named argument.
See ABI silliness wrt strict_argument_naming and NAMED_ARG. So
we only want to do this when we get to the actual last named
argument, which will be the first time LAST_NAMED gets set. */
if (data.last_named && !varargs_setup)
{
varargs_setup = true;
assign_parms_setup_varargs (&all, &data, false);
}
/* Find out where the parameter arrives in this function. */
assign_parm_find_entry_rtl (&all, &data);
/* Find out where stack space for this parameter might be. */
if (assign_parm_is_stack_parm (&all, &data))
{
assign_parm_find_stack_rtl (parm, &data);
assign_parm_adjust_entry_rtl (&data);
}
/* Record permanently how this parm was passed. */
set_decl_incoming_rtl (parm, data.entry_parm);
/* Update info on where next arg arrives in registers. */
FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
data.passed_type, data.named_arg);
assign_parm_adjust_stack_rtl (&data);
if (assign_parm_setup_block_p (&data))
assign_parm_setup_block (parm, &data);
else if (data.passed_pointer || use_register_for_decl (parm))
assign_parm_setup_reg (&all, parm, &data);
else
assign_parm_setup_stack (&all, parm, &data);
} }
if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
assign_parms_unsplit_complex (all.orig_fnargs, fnargs);
/* Output all parameter conversion instructions (possibly including calls) /* Output all parameter conversion instructions (possibly including calls)
now that all parameters have been copied out of hard registers. */ now that all parameters have been copied out of hard registers. */
emit_insn (conversion_insns); emit_insn (all.conversion_insns);
/* If we are receiving a struct value address as the first argument, set up /* If we are receiving a struct value address as the first argument, set up
the RTL for the function result. As this might require code to convert the RTL for the function result. As this might require code to convert
the transmitted address to Pmode, we do this here to ensure that possible the transmitted address to Pmode, we do this here to ensure that possible
preliminary conversions of the address have been emitted already. */ preliminary conversions of the address have been emitted already. */
if (function_result_decl) if (all.function_result_decl)
{ {
tree result = DECL_RESULT (fndecl); tree result = DECL_RESULT (current_function_decl);
rtx addr = DECL_RTL (function_result_decl); rtx addr = DECL_RTL (all.function_result_decl);
rtx x; rtx x;
addr = convert_memory_address (Pmode, addr); addr = convert_memory_address (Pmode, addr);
...@@ -2961,8 +3170,9 @@ assign_parms (tree fndecl) ...@@ -2961,8 +3170,9 @@ assign_parms (tree fndecl)
} }
/* We have aligned all the args, so add space for the pretend args. */ /* We have aligned all the args, so add space for the pretend args. */
stack_args_size.constant += extra_pretend_bytes; current_function_pretend_args_size = all.pretend_args_size;
current_function_args_size = stack_args_size.constant; all.stack_args_size.constant += all.extra_pretend_bytes;
current_function_args_size = all.stack_args_size.constant;
/* Adjust function incoming argument size for alignment and /* Adjust function incoming argument size for alignment and
minimum length. */ minimum length. */
...@@ -2978,12 +3188,12 @@ assign_parms (tree fndecl) ...@@ -2978,12 +3188,12 @@ assign_parms (tree fndecl)
#ifdef ARGS_GROW_DOWNWARD #ifdef ARGS_GROW_DOWNWARD
current_function_arg_offset_rtx current_function_arg_offset_rtx
= (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant) = (stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
: expand_expr (size_diffop (stack_args_size.var, : expand_expr (size_diffop (all.stack_args_size.var,
size_int (-stack_args_size.constant)), size_int (-all.stack_args_size.constant)),
NULL_RTX, VOIDmode, 0)); NULL_RTX, VOIDmode, 0));
#else #else
current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size); current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
#endif #endif
/* See how many bytes, if any, of its args a function should try to pop /* See how many bytes, if any, of its args a function should try to pop
...@@ -2995,7 +3205,7 @@ assign_parms (tree fndecl) ...@@ -2995,7 +3205,7 @@ assign_parms (tree fndecl)
/* For stdarg.h function, save info about /* For stdarg.h function, save info about
regs and stack space used by the named args. */ regs and stack space used by the named args. */
current_function_args_info = args_so_far; current_function_args_info = all.args_so_far;
/* Set the rtx used for the function return value. Put this in its /* Set the rtx used for the function return value. Put this in its
own variable so any optimizers that need this information don't have own variable so any optimizers that need this information don't have
...@@ -3036,60 +3246,6 @@ assign_parms (tree fndecl) ...@@ -3036,60 +3246,6 @@ assign_parms (tree fndecl)
} }
} }
/* If ARGS contains entries with complex types, split the entry into two
entries of the component type. Return a new list of substitutions are
needed, else the old list. */
static tree
split_complex_args (tree args)
{
tree p;
/* Before allocating memory, check for the common case of no complex. */
for (p = args; p; p = TREE_CHAIN (p))
{
tree type = TREE_TYPE (p);
if (TREE_CODE (type) == COMPLEX_TYPE
&& targetm.calls.split_complex_arg (type))
goto found;
}
return args;
found:
args = copy_list (args);
for (p = args; p; p = TREE_CHAIN (p))
{
tree type = TREE_TYPE (p);
if (TREE_CODE (type) == COMPLEX_TYPE
&& targetm.calls.split_complex_arg (type))
{
tree decl;
tree subtype = TREE_TYPE (type);
/* Rewrite the PARM_DECL's type with its component. */
TREE_TYPE (p) = subtype;
DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
DECL_MODE (p) = VOIDmode;
DECL_SIZE (p) = NULL;
DECL_SIZE_UNIT (p) = NULL;
layout_decl (p, 0);
/* Build a second synthetic decl. */
decl = build_decl (PARM_DECL, NULL_TREE, subtype);
DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
layout_decl (decl, 0);
/* Splice it in; skip the new decl. */
TREE_CHAIN (decl) = TREE_CHAIN (p);
TREE_CHAIN (p) = decl;
p = decl;
}
}
return args;
}
/* Indicate whether REGNO is an incoming argument to the current function /* Indicate whether REGNO is an incoming argument to the current function
that was promoted to a wider mode. If so, return the RTX for the that was promoted to a wider mode. If so, return the RTX for the
register (to get its mode). PMODE and PUNSIGNEDP are set to the mode register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment