Commit 5bec9717 by Arnaud Charlet

[multiple changes]

2010-06-22  Matthew Heaney  <heaney@adacore.com>

	* a-convec.adb, a-coinve.adb: Removed 64-bit types Int and UInt.

2010-06-22  Paul Hilfinger  <hilfinger@adacore.com>

	* s-rannum.adb (Random_Float_Template): Replace with unbiased version
	that is able to produce all representable floating-point numbers in the
	unit interval. Remove template parameter Shift_Right, no longer used.
	* gnat_rm.texi: Document the period of the pseudo-random number
	generator under the description of its algorithm.
	* gcc-interface/Make-lang.in: Update dependencies.

From-SVN: r161202
parent 5087048c
2010-06-22 Matthew Heaney <heaney@adacore.com>
* a-convec.adb, a-coinve.adb: Removed 64-bit types Int and UInt.
2010-06-22 Paul Hilfinger <hilfinger@adacore.com>
* s-rannum.adb (Random_Float_Template): Replace with unbiased version
that is able to produce all representable floating-point numbers in the
unit interval. Remove template parameter Shift_Right, no longer used.
* gnat_rm.texi: Document the period of the pseudo-random number
generator under the description of its algorithm.
* gcc-interface/Make-lang.in: Update dependencies.
2010-06-22 Thomas Quinot <quinot@adacore.com> 2010-06-22 Thomas Quinot <quinot@adacore.com>
* exp_aggr.adb (Rewrite_Discriminant): Fix predicate used to identify * exp_aggr.adb (Rewrite_Discriminant): Fix predicate used to identify
......
...@@ -6,7 +6,7 @@ ...@@ -6,7 +6,7 @@
-- -- -- --
-- B o d y -- -- B o d y --
-- -- -- --
-- Copyright (C) 2004-2009, Free Software Foundation, Inc. -- -- Copyright (C) 2004-2010, Free Software Foundation, Inc. --
-- -- -- --
-- GNAT is free software; you can redistribute it and/or modify it under -- -- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- -- -- terms of the GNU General Public License as published by the Free Soft- --
...@@ -33,9 +33,6 @@ with System; use type System.Address; ...@@ -33,9 +33,6 @@ with System; use type System.Address;
package body Ada.Containers.Indefinite_Vectors is package body Ada.Containers.Indefinite_Vectors is
type Int is range System.Min_Int .. System.Max_Int;
type UInt is mod System.Max_Binary_Modulus;
procedure Free is procedure Free is
new Ada.Unchecked_Deallocation (Elements_Type, Elements_Access); new Ada.Unchecked_Deallocation (Elements_Type, Elements_Access);
...@@ -49,8 +46,20 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -49,8 +46,20 @@ package body Ada.Containers.Indefinite_Vectors is
function "&" (Left, Right : Vector) return Vector is function "&" (Left, Right : Vector) return Vector is
LN : constant Count_Type := Length (Left); LN : constant Count_Type := Length (Left);
RN : constant Count_Type := Length (Right); RN : constant Count_Type := Length (Right);
N : Count_Type'Base; -- length of result
J : Count_Type'Base; -- for computing intermediate values
Last : Index_Type'Base; -- Last index of result
begin begin
-- We decide that the capacity of the result is the sum of the lengths
-- of the vector parameters. We could decide to make it larger, but we
-- have no basis for knowing how much larger, so we just allocate the
-- minimum amount of storage.
-- Here we handle the easy cases first, when one of the vector
-- parameters is empty. (We say "easy" because there's nothing to
-- compute, that can potentially overflow.)
if LN = 0 then if LN = 0 then
if RN = 0 then if RN = 0 then
return Empty_Vector; return Empty_Vector;
...@@ -64,6 +73,11 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -64,6 +73,11 @@ package body Ada.Containers.Indefinite_Vectors is
new Elements_Type (Right.Last); new Elements_Type (Right.Last);
begin begin
-- Elements of an indefinite vector are allocated, so we cannot
-- use simple slice assignment to give a value to our result.
-- Hence we must walk the array of the Right vector, and copy
-- each source element individually.
for I in Elements.EA'Range loop for I in Elements.EA'Range loop
begin begin
if RE (I) /= null then if RE (I) /= null then
...@@ -95,6 +109,11 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -95,6 +109,11 @@ package body Ada.Containers.Indefinite_Vectors is
new Elements_Type (Left.Last); new Elements_Type (Left.Last);
begin begin
-- Elements of an indefinite vector are allocated, so we cannot
-- use simple slice assignment to give a value to our result.
-- Hence we must walk the array of the Left vector, and copy
-- each source element individually.
for I in Elements.EA'Range loop for I in Elements.EA'Range loop
begin begin
if LE (I) /= null then if LE (I) /= null then
...@@ -116,65 +135,93 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -116,65 +135,93 @@ package body Ada.Containers.Indefinite_Vectors is
end; end;
end if; end if;
declare -- Neither of the vector parameters is empty, so we must compute the
N : constant Int'Base := Int (LN) + Int (RN); -- length of the result vector and its last index. (This is the harder
J : Int'Base; -- case, because our computations must avoid overflow.)
begin -- There are two constraints we need to satisfy. The first constraint is
-- There are two constraints we need to satisfy. The first constraint -- that a container cannot have more than Count_Type'Last elements, so
-- is that a container cannot have more than Count_Type'Last -- we must check the sum of the combined lengths. Note that we cannot
-- elements, so we must check the sum of the combined lengths. (It -- simply add the lengths, because of the possibilty of overflow.
-- would be rare for vectors to have such a large number of elements,
-- so we would normally expect this first check to succeed.) The
-- second constraint is that the new Last index value cannot exceed
-- Index_Type'Last.
if N > Count_Type'Pos (Count_Type'Last) then if LN > Count_Type'Last - RN then
raise Constraint_Error with "new length is out of range"; raise Constraint_Error with "new length is out of range";
end if; end if;
-- We now check whether the new length would create a Last index -- It is now safe compute the length of the new vector.
-- value greater than Index_Type'Last. This calculation requires
-- care, because overflow can occur when Index_Type'First is near the
-- end of the range of Int.
if Index_Type'First <= 0 then N := LN + RN;
-- The second constraint is that the new Last index value cannot
-- exceed Index_Type'Last. We use the wider of Index_Type'Base and
-- Count_Type'Base as the type for intermediate values.
-- Compute the potential Last index value in the normal way, using if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
-- Int as the type in which to perform intermediate
-- calculations. Int is a 64-bit type, and Count_Type is a 32-bit
-- type, so no overflow can occur.
J := Int (Index_Type'First - 1) + N; -- We perform a two-part test. First we determine whether the
-- computed Last value lies in the base range of the type, and then
-- determine whether it lies in the range of the index (sub)type.
if J > Int (Index_Type'Last) then -- Last must satisfy this relation:
-- First + Length - 1 <= Last
-- We regroup terms:
-- First - 1 <= Last - Length
-- Which can rewrite as:
-- No_Index <= Last - Length
if Index_Type'Base'Last - Index_Type'Base (N) < No_Index then
raise Constraint_Error with "new length is out of range"; raise Constraint_Error with "new length is out of range";
end if; end if;
-- We now know that the computed value of Last is within the base
-- range of the type, so it is safe to compute its value:
Last := No_Index + Index_Type'Base (N);
-- Finally we test whether the value is within the range of the
-- generic actual index subtype:
if Last > Index_Type'Last then
raise Constraint_Error with "new length is out of range";
end if;
elsif Index_Type'First <= 0 then
-- Here we can compute Last directly, in the normal way. We know that
-- No_Index is less than 0, so there is no danger of overflow when
-- adding the (positive) value of length.
J := Count_Type'Base (No_Index) + N; -- Last
if J > Count_Type'Base (Index_Type'Last) then
raise Constraint_Error with "new length is out of range";
end if;
-- We know that the computed value (having type Count_Type) of Last
-- is within the range of the generic actual index subtype, so it is
-- safe to convert to Index_Type:
Last := Index_Type'Base (J);
else else
-- If Index_Type'First is within N of Int'Last, then overflow -- Here Index_Type'First (and Index_Type'Last) is positive, so we
-- would occur if we simply computed Last directly. So instead of -- must test the length indirectly (by working backwards from the
-- computing Last, and then determining whether its value is -- largest possible value of Last), in order to prevent overflow.
-- greater than Index_Type'Last (as we do above), we work
-- backwards by computing the potential First index value, and
-- then checking whether that value is less than Index_Type'First.
J := Int (Index_Type'Last) - N + 1; J := Count_Type'Base (Index_Type'Last) - N; -- No_Index
if J < Int (Index_Type'First) then if J < Count_Type'Base (No_Index) then
raise Constraint_Error with "new length is out of range"; raise Constraint_Error with "new length is out of range";
end if; end if;
-- We have determined that Length would not create a Last index -- We have determined that the result length would not create a Last
-- value outside of the range of Index_Type, so we can now safely -- index value outside of the range of Index_Type, so we can now
-- compute its value. -- safely compute its value.
J := Int (Index_Type'First - 1) + N; Last := Index_Type'Base (Count_Type'Base (No_Index) + N);
end if; end if;
declare declare
Last : constant Index_Type := Index_Type (J);
LE : Elements_Array renames LE : Elements_Array renames
Left.Elements.EA (Index_Type'First .. Left.Last); Left.Elements.EA (Index_Type'First .. Left.Last);
...@@ -186,6 +233,11 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -186,6 +233,11 @@ package body Ada.Containers.Indefinite_Vectors is
I : Index_Type'Base := No_Index; I : Index_Type'Base := No_Index;
begin begin
-- Elements of an indefinite vector are allocated, so we cannot use
-- simple slice assignment to give a value to our result. Hence we
-- must walk the array of each vector parameter, and copy each source
-- element individually.
for LI in LE'Range loop for LI in LE'Range loop
I := I + 1; I := I + 1;
...@@ -226,11 +278,18 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -226,11 +278,18 @@ package body Ada.Containers.Indefinite_Vectors is
return (Controlled with Elements, Last, 0, 0); return (Controlled with Elements, Last, 0, 0);
end; end;
end;
end "&"; end "&";
function "&" (Left : Vector; Right : Element_Type) return Vector is function "&" (Left : Vector; Right : Element_Type) return Vector is
begin begin
-- We decide that the capacity of the result is the sum of the lengths
-- of the parameters. We could decide to make it larger, but we have no
-- basis for knowing how much larger, so we just allocate the minimum
-- amount of storage.
-- Here we handle the easy case first, when the vector parameter (Left)
-- is empty.
if Left.Is_Empty then if Left.Is_Empty then
declare declare
Elements : Elements_Access := new Elements_Type (Index_Type'First); Elements : Elements_Access := new Elements_Type (Index_Type'First);
...@@ -248,8 +307,10 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -248,8 +307,10 @@ package body Ada.Containers.Indefinite_Vectors is
end; end;
end if; end if;
-- We must satisfy two constraints: the new length cannot exceed -- The vector parameter is not empty, so we must compute the length of
-- Count_Type'Last, and the new Last index cannot exceed -- the result vector and its last index, but in such a way that overflow
-- is avoided. We must satisfy two constraints: the new length cannot
-- exceed Count_Type'Last, and the new Last index cannot exceed
-- Index_Type'Last. -- Index_Type'Last.
if Left.Length = Count_Type'Last then if Left.Length = Count_Type'Last then
...@@ -306,6 +367,14 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -306,6 +367,14 @@ package body Ada.Containers.Indefinite_Vectors is
function "&" (Left : Element_Type; Right : Vector) return Vector is function "&" (Left : Element_Type; Right : Vector) return Vector is
begin begin
-- We decide that the capacity of the result is the sum of the lengths
-- of the parameters. We could decide to make it larger, but we have no
-- basis for knowing how much larger, so we just allocate the minimum
-- amount of storage.
-- Here we handle the easy case first, when the vector parameter (Right)
-- is empty.
if Right.Is_Empty then if Right.Is_Empty then
declare declare
Elements : Elements_Access := new Elements_Type (Index_Type'First); Elements : Elements_Access := new Elements_Type (Index_Type'First);
...@@ -323,8 +392,10 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -323,8 +392,10 @@ package body Ada.Containers.Indefinite_Vectors is
end; end;
end if; end if;
-- We must satisfy two constraints: the new length cannot exceed -- The vector parameter is not empty, so we must compute the length of
-- Count_Type'Last, and the new Last index cannot exceed -- the result vector and its last index, but in such a way that overflow
-- is avoided. We must satisfy two constraints: the new length cannot
-- exceed Count_Type'Last, and the new Last index cannot exceed
-- Index_Type'Last. -- Index_Type'Last.
if Right.Length = Count_Type'Last then if Right.Length = Count_Type'Last then
...@@ -380,6 +451,17 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -380,6 +451,17 @@ package body Ada.Containers.Indefinite_Vectors is
function "&" (Left, Right : Element_Type) return Vector is function "&" (Left, Right : Element_Type) return Vector is
begin begin
-- We decide that the capacity of the result is the sum of the lengths
-- of the parameters. We could decide to make it larger, but we have no
-- basis for knowing how much larger, so we just allocate the minimum
-- amount of storage.
-- We must compute the length of the result vector and its last index,
-- but in such a way that overflow is avoided. We must satisfy two
-- constraints: the new length cannot exceed Count_Type'Last (here, we
-- know that that condition is satisfied), and the new Last index cannot
-- exceed Index_Type'Last.
if Index_Type'First >= Index_Type'Last then if Index_Type'First >= Index_Type'Last then
raise Constraint_Error with "new length is out of range"; raise Constraint_Error with "new length is out of range";
end if; end if;
...@@ -572,76 +654,178 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -572,76 +654,178 @@ package body Ada.Containers.Indefinite_Vectors is
Index : Extended_Index; Index : Extended_Index;
Count : Count_Type := 1) Count : Count_Type := 1)
is is
begin Old_Last : constant Index_Type'Base := Container.Last;
New_Last : Index_Type'Base;
Count2 : Count_Type'Base; -- count of items from Index to Old_Last
J : Index_Type'Base; -- first index of items that slide down
begin
-- Delete removes items from the vector, the number of which is the
-- minimum of the specified Count and the items (if any) that exist from
-- Index to Container.Last. There are no constraints on the specified
-- value of Count (it can be larger than what's available at this
-- position in the vector, for example), but there are constraints on
-- the allowed values of the Index.
-- As a precondition on the generic actual Index_Type, the base type
-- must include Index_Type'Pred (Index_Type'First); this is the value
-- that Container.Last assumes when the vector is empty. However, we do
-- not allow that as the value for Index when specifying which items
-- should be deleted, so we must manually check. (That the user is
-- allowed to specify the value at all here is a consequence of the
-- declaration of the Extended_Index subtype, which includes the values
-- in the base range that immediately precede and immediately follow the
-- values in the Index_Type.)
if Index < Index_Type'First then if Index < Index_Type'First then
raise Constraint_Error with "Index is out of range (too small)"; raise Constraint_Error with "Index is out of range (too small)";
end if; end if;
if Index > Container.Last then -- We do allow a value greater than Container.Last to be specified as
if Index > Container.Last + 1 then -- the Index, but only if it's immediately greater. This allows the
-- corner case of deleting no items from the back end of the vector to
-- be treated as a no-op. (It is assumed that specifying an index value
-- greater than Last + 1 indicates some deeper flaw in the caller's
-- algorithm, so that case is treated as a proper error.)
if Index > Old_Last then
if Index > Old_Last + 1 then
raise Constraint_Error with "Index is out of range (too large)"; raise Constraint_Error with "Index is out of range (too large)";
end if; end if;
return; return;
end if; end if;
-- Here and elsewhere we treat deleting 0 items from the container as a
-- no-op, even when the container is busy, so we simply return.
if Count = 0 then if Count = 0 then
return; return;
end if; end if;
-- The internal elements array isn't guaranteed to exist unless we have
-- elements, so we handle that case here in order to avoid having to
-- check it later. (Note that an empty vector can never be busy, so
-- there's no semantic harm in returning early.)
if Container.Is_Empty then
return;
end if;
-- The tampering bits exist to prevent an item from being deleted (or
-- otherwise harmfully manipulated) while it is being visited. Query,
-- Update, and Iterate increment the busy count on entry, and decrement
-- the count on exit. Delete checks the count to determine whether it is
-- being called while the associated callback procedure is executing.
if Container.Busy > 0 then if Container.Busy > 0 then
raise Program_Error with raise Program_Error with
"attempt to tamper with elements (vector is busy)"; "attempt to tamper with elements (vector is busy)";
end if; end if;
declare -- We first calculate what's available for deletion starting at
Index_As_Int : constant Int := Int (Index); -- Index. Here and elsewhere we use the wider of Index_Type'Base and
Old_Last_As_Int : constant Int := Int (Container.Last); -- Count_Type'Base as the type for intermediate values. (See function
-- Length for more information.)
Count1 : constant Int'Base := Int (Count); if Count_Type'Base'Last >= Index_Type'Pos (Index_Type'Base'Last) then
Count2 : constant Int'Base := Old_Last_As_Int - Index_As_Int + 1; Count2 := Count_Type'Base (Old_Last) - Count_Type'Base (Index) + 1;
N : constant Int'Base := Int'Min (Count1, Count2);
J_As_Int : constant Int'Base := Index_As_Int + N; else
E : Elements_Array renames Container.Elements.EA; Count2 := Count_Type'Base (Old_Last - Index + 1);
end if;
-- If the number of elements requested (Count) for deletion is equal to
-- (or greater than) the number of elements available (Count2) for
-- deletion beginning at Index, then everything from Index to
-- Container.Last is deleted (this is equivalent to Delete_Last).
if Count >= Count2 then
-- Elements in an indefinite vector are allocated, so we must iterate
-- over the loop and deallocate elements one-at-a-time. We work from
-- back to front, deleting the last element during each pass, in
-- order to gracefully handle deallocation failures.
declare
EA : Elements_Array renames Container.Elements.EA;
begin begin
if J_As_Int > Old_Last_As_Int then
while Container.Last >= Index loop while Container.Last >= Index loop
declare declare
K : constant Index_Type := Container.Last; K : constant Index_Type := Container.Last;
X : Element_Access := E (K); X : Element_Access := EA (K);
begin begin
E (K) := null; -- We first isolate the element we're deleting, removing it
-- from the vector before we attempt to deallocate it, in
-- case the deallocation fails.
EA (K) := null;
Container.Last := K - 1; Container.Last := K - 1;
-- Container invariants have been restored, so it is now
-- safe to attempt to deallocate the element.
Free (X); Free (X);
end; end;
end loop; end loop;
end;
return;
end if;
-- There are some elements that aren't being deleted (the requested
-- count was less than the available count), so we must slide them down
-- to Index. We first calculate the index values of the respective array
-- slices, using the wider of Index_Type'Base and Count_Type'Base as the
-- type for intermediate calculations. For the elements that slide down,
-- index value New_Last is the last index value of their new home, and
-- index value J is the first index of their old home.
if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
New_Last := Old_Last - Index_Type'Base (Count);
J := Index + Index_Type'Base (Count);
else else
declare New_Last := Index_Type'Base (Count_Type'Base (Old_Last) - Count);
J : constant Index_Type := Index_Type (J_As_Int); J := Index_Type'Base (Count_Type'Base (Index) + Count);
end if;
-- The internal elements array isn't guaranteed to exist unless we have
-- elements, but we have that guarantee here because we know we have
-- elements to slide. The array index values for each slice have
-- already been determined, so what remains to be done is to first
-- deallocate the elements that are being deleted, and then slide down
-- to Index the elements that aren't being deleted.
New_Last_As_Int : constant Int'Base := Old_Last_As_Int - N; declare
New_Last : constant Index_Type := EA : Elements_Array renames Container.Elements.EA;
Index_Type (New_Last_As_Int);
begin begin
-- Before we can slide down the elements that aren't being deleted,
-- we need to deallocate the elements that are being deleted.
for K in Index .. J - 1 loop for K in Index .. J - 1 loop
declare declare
X : Element_Access := E (K); X : Element_Access := EA (K);
begin begin
E (K) := null; -- First we remove the element we're about to deallocate from
-- the vector, in case the deallocation fails, in order to
-- preserve representation invariants.
EA (K) := null;
-- The element has been removed from the vector, so it is now
-- safe to attempt to deallocate it.
Free (X); Free (X);
end; end;
end loop; end loop;
E (Index .. New_Last) := E (J .. Container.Last); EA (Index .. New_Last) := EA (J .. Old_Last);
Container.Last := New_Last; Container.Last := New_Last;
end; end;
end if;
end;
end Delete; end Delete;
procedure Delete procedure Delete
...@@ -698,32 +882,64 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -698,32 +882,64 @@ package body Ada.Containers.Indefinite_Vectors is
(Container : in out Vector; (Container : in out Vector;
Count : Count_Type := 1) Count : Count_Type := 1)
is is
N : constant Count_Type := Length (Container);
begin begin
if Count = 0 -- It is not permitted to delete items while the container is busy (for
or else N = 0 -- example, we're in the middle of a passive iteration). However, we
then -- always treat deleting 0 items as a no-op, even when we're busy, so we
-- simply return without checking.
if Count = 0 then
return;
end if;
-- We cannot simply subsume the empty case into the loop below (the loop
-- would iterate 0 times), because we rename the internal array object
-- (which is allocated), but an empty vector isn't guaranteed to have
-- actually allocated an array. (Note that an empty vector can never be
-- busy, so there's no semantic harm in returning early here.)
if Container.Is_Empty then
return; return;
end if; end if;
-- The tampering bits exist to prevent an item from being deleted (or
-- otherwise harmfully manipulated) while it is being visited. Query,
-- Update, and Iterate increment the busy count on entry, and decrement
-- the count on exit. Delete_Last checks the count to determine whether
-- it is being called while the associated callback procedure is
-- executing.
if Container.Busy > 0 then if Container.Busy > 0 then
raise Program_Error with raise Program_Error with
"attempt to tamper with elements (vector is busy)"; "attempt to tamper with elements (vector is busy)";
end if; end if;
-- Elements in an indefinite vector are allocated, so we must iterate
-- over the loop and deallocate elements one-at-a-time. We work from
-- back to front, deleting the last element during each pass, in order
-- to gracefully handle deallocation failures.
declare declare
E : Elements_Array renames Container.Elements.EA; E : Elements_Array renames Container.Elements.EA;
begin begin
for Indx in 1 .. Count_Type'Min (Count, N) loop for Indx in 1 .. Count_Type'Min (Count, Container.Length) loop
declare declare
J : constant Index_Type := Container.Last; J : constant Index_Type := Container.Last;
X : Element_Access := E (J); X : Element_Access := E (J);
begin begin
-- Note that we first isolate the element we're deleting,
-- removing it from the vector, before we actually deallocate
-- it, in order to preserve representation invariants even if
-- the deallocation fails.
E (J) := null; E (J) := null;
Container.Last := J - 1; Container.Last := J - 1;
-- Container invariants have been restored, so it is now safe
-- to deallocate the element.
Free (X); Free (X);
end; end;
end loop; end loop;
...@@ -1073,22 +1289,42 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -1073,22 +1289,42 @@ package body Ada.Containers.Indefinite_Vectors is
New_Item : Element_Type; New_Item : Element_Type;
Count : Count_Type := 1) Count : Count_Type := 1)
is is
N : constant Int := Int (Count); Old_Length : constant Count_Type := Container.Length;
Max_Length : Count_Type'Base; -- determined from range of Index_Type
New_Length : Count_Type'Base; -- sum of current length and Count
New_Last : Index_Type'Base; -- last index of vector after insertion
First : constant Int := Int (Index_Type'First); Index : Index_Type'Base; -- scratch for intermediate values
New_Last_As_Int : Int'Base; J : Count_Type'Base; -- scratch
New_Last : Index_Type;
New_Length : UInt;
Max_Length : constant UInt := UInt (Count_Type'Last);
Dst : Elements_Access; New_Capacity : Count_Type'Base; -- length of new, expanded array
Dst_Last : Index_Type'Base; -- last index of new, expanded array
Dst : Elements_Access; -- new, expanded internal array
begin begin
-- As a precondition on the generic actual Index_Type, the base type
-- must include Index_Type'Pred (Index_Type'First); this is the value
-- that Container.Last assumes when the vector is empty. However, we do
-- not allow that as the value for Index when specifying where the new
-- items should be inserted, so we must manually check. (That the user
-- is allowed to specify the value at all here is a consequence of the
-- declaration of the Extended_Index subtype, which includes the values
-- in the base range that immediately precede and immediately follow the
-- values in the Index_Type.)
if Before < Index_Type'First then if Before < Index_Type'First then
raise Constraint_Error with raise Constraint_Error with
"Before index is out of range (too small)"; "Before index is out of range (too small)";
end if; end if;
-- We do allow a value greater than Container.Last to be specified as
-- the Index, but only if it's immediately greater. This allows for the
-- case of appending items to the back end of the vector. (It is assumed
-- that specifying an index value greater than Last + 1 indicates some
-- deeper flaw in the caller's algorithm, so that case is treated as a
-- proper error.)
if Before > Container.Last if Before > Container.Last
and then Before > Container.Last + 1 and then Before > Container.Last + 1
then then
...@@ -1096,69 +1332,214 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -1096,69 +1332,214 @@ package body Ada.Containers.Indefinite_Vectors is
"Before index is out of range (too large)"; "Before index is out of range (too large)";
end if; end if;
-- We treat inserting 0 items into the container as a no-op, even when
-- the container is busy, so we simply return.
if Count = 0 then if Count = 0 then
return; return;
end if; end if;
declare -- There are two constraints we need to satisfy. The first constraint is
Old_Last_As_Int : constant Int := Int (Container.Last); -- that a container cannot have more than Count_Type'Last elements, so
-- we must check the sum of the current length and the insertion
-- count. Note that we cannot simply add these values, because of the
-- possibilty of overflow.
begin if Old_Length > Count_Type'Last - Count then
if Old_Last_As_Int > Int'Last - N then raise Constraint_Error with "Count is out of range";
raise Constraint_Error with "new length is out of range";
end if; end if;
New_Last_As_Int := Old_Last_As_Int + N; -- It is now safe compute the length of the new vector, without fear of
-- overflow.
if New_Last_As_Int > Int (Index_Type'Last) then New_Length := Old_Length + Count;
raise Constraint_Error with "new length is out of range";
-- The second constraint is that the new Last index value cannot exceed
-- Index_Type'Last. In each branch below, we calculate the maximum
-- length (computed from the range of values in Index_Type), and then
-- compare the new length to the maximum length. If the new length is
-- acceptable, then we compute the new last index from that.
if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
-- We have to handle the case when there might be more values in the
-- range of Index_Type than in the range of Count_Type.
if Index_Type'First <= 0 then
-- We know that No_Index (the same as Index_Type'First - 1) is
-- less than 0, so it is safe to compute the following sum without
-- fear of overflow.
Index := No_Index + Index_Type'Base (Count_Type'Last);
if Index <= Index_Type'Last then
-- We have determined that range of Index_Type has at least as
-- many values as in Count_Type, so Count_Type'Last is the
-- maximum number of items that are allowed.
Max_Length := Count_Type'Last;
else
-- The range of Index_Type has fewer values than in Count_Type,
-- so the maximum number of items is computed from the range of
-- the Index_Type.
Max_Length := Count_Type'Base (Index_Type'Last - No_Index);
end if;
else
-- No_Index is equal or greater than 0, so we can safely compute
-- the difference without fear of overflow (which we would have to
-- worry about if No_Index were less than 0, but that case is
-- handled above).
Max_Length := Count_Type'Base (Index_Type'Last - No_Index);
end if; end if;
New_Length := UInt (New_Last_As_Int - First + 1); elsif Index_Type'First <= 0 then
-- We know that No_Index (the same as Index_Type'First - 1) is less
-- than 0, so it is safe to compute the following sum without fear of
-- overflow.
J := Count_Type'Base (No_Index) + Count_Type'Last;
if J <= Count_Type'Base (Index_Type'Last) then
-- We have determined that range of Index_Type has at least as
-- many values as in Count_Type, so Count_Type'Last is the maximum
-- number of items that are allowed.
Max_Length := Count_Type'Last;
else
-- The range of Index_Type has fewer values than Count_Type does,
-- so the maximum number of items is computed from the range of
-- the Index_Type.
Max_Length :=
Count_Type'Base (Index_Type'Last) - Count_Type'Base (No_Index);
end if;
else
-- No_Index is equal or greater than 0, so we can safely compute the
-- difference without fear of overflow (which we would have to worry
-- about if No_Index were less than 0, but that case is handled
-- above).
Max_Length :=
Count_Type'Base (Index_Type'Last) - Count_Type'Base (No_Index);
end if;
-- We have just computed the maximum length (number of items). We must
-- now compare the requested length to the maximum length, as we do not
-- allow a vector expand beyond the maximum (because that would create
-- an internal array with a last index value greater than
-- Index_Type'Last, with no way to index those elements).
if New_Length > Max_Length then if New_Length > Max_Length then
raise Constraint_Error with "new length is out of range"; raise Constraint_Error with "Count is out of range";
end if; end if;
New_Last := Index_Type (New_Last_As_Int); -- New_Last is the last index value of the items in the container after
end; -- insertion. Use the wider of Index_Type'Base and Count_Type'Base to
-- compute its value from the New_Length.
if Container.Busy > 0 then if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
raise Program_Error with New_Last := No_Index + Index_Type'Base (New_Length);
"attempt to tamper with elements (vector is busy)";
else
New_Last := Index_Type'Base (Count_Type'Base (No_Index) + New_Length);
end if; end if;
if Container.Elements = null then if Container.Elements = null then
pragma Assert (Container.Last = No_Index);
-- This is the simplest case, with which we must always begin: we're
-- inserting items into an empty vector that hasn't allocated an
-- internal array yet. Note that we don't need to check the busy bit
-- here, because an empty container cannot be busy.
-- In an indefinite vector, elements are allocated individually, and
-- stored as access values on the internal array (the length of which
-- represents the vector "capacity"), which is separately allocated.
Container.Elements := new Elements_Type (New_Last); Container.Elements := new Elements_Type (New_Last);
Container.Last := No_Index;
for J in Container.Elements.EA'Range loop -- The element backbone has been successfully allocated, so now we
Container.Elements.EA (J) := new Element_Type'(New_Item); -- allocate the elements.
Container.Last := J;
for Idx in Container.Elements.EA'Range loop
-- In order to preserve container invariants, we always attempt
-- the element allocation first, before setting the Last index
-- value, in case the allocation fails (either because there is no
-- storage available, or because element initialization fails).
Container.Elements.EA (Idx) := new Element_Type'(New_Item);
-- The allocation of the element succeeded, so it is now safe to
-- update the Last index, restoring container invariants.
Container.Last := Idx;
end loop; end loop;
return; return;
end if; end if;
if New_Last <= Container.Elements.Last then -- The tampering bits exist to prevent an item from being harmfully
-- manipulated while it is being visited. Query, Update, and Iterate
-- increment the busy count on entry, and decrement the count on
-- exit. Insert checks the count to determine whether it is being called
-- while the associated callback procedure is executing.
if Container.Busy > 0 then
raise Program_Error with
"attempt to tamper with elements (vector is busy)";
end if;
if New_Length <= Container.Elements.EA'Length then
-- In this case, we're inserting elements into a vector that has
-- already allocated an internal array, and the existing array has
-- enough unused storage for the new items.
declare declare
E : Elements_Array renames Container.Elements.EA; E : Elements_Array renames Container.Elements.EA;
K : Index_Type'Base;
begin begin
if Before <= Container.Last then if Before > Container.Last then
declare -- The new items are being appended to the vector, so no
Index_As_Int : constant Int'Base := -- sliding of existing elements is required.
Index_Type'Pos (Before) + N;
Index : constant Index_Type := Index_Type (Index_As_Int); for Idx in Before .. New_Last loop
-- In order to preserve container invariants, we always
-- attempt the element allocation first, before setting the
-- Last index value, in case the allocation fails (either
-- because there is no storage available, or because element
-- initialization fails).
J : Index_Type'Base; E (Idx) := new Element_Type'(New_Item);
begin -- The allocation of the element succeeded, so it is now
-- The new items are being inserted in the middle of the -- safe to update the Last index, restoring container
-- array, in the range [Before, Index). Copy the existing -- invariants.
-- elements to the end of the array, to make room for the
-- new items. Container.Last := Idx;
end loop;
else
-- The new items are being inserted before some existing
-- elements, so we must slide the existing elements up to their
-- new home. We use the wider of Index_Type'Base and
-- Count_Type'Base as the type for intermediate index values.
if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
Index := Before + Index_Type'Base (Count);
else
Index := Index_Type'Base (Count_Type'Base (Before) + Count);
end if;
-- The new items are being inserted in the middle of the array,
-- in the range [Before, Index). Copy the existing elements to
-- the end of the array, to make room for the new items.
E (Index .. New_Last) := E (Before .. Container.Last); E (Index .. New_Last) := E (Before .. Container.Last);
Container.Last := New_Last; Container.Last := New_Last;
...@@ -1167,126 +1548,155 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -1167,126 +1548,155 @@ package body Ada.Containers.Indefinite_Vectors is
-- array, to make room for the new items in the middle of -- array, to make room for the new items in the middle of
-- the array. Now we actually allocate the new items. -- the array. Now we actually allocate the new items.
-- Note: initialize J outside loop to make it clear that -- Note: initialize K outside loop to make it clear that
-- J always has a value if the exception handler triggers. -- K always has a value if the exception handler triggers.
J := Before; K := Before;
begin begin
while J < Index loop while K < Index loop
E (J) := new Element_Type'(New_Item); E (K) := new Element_Type'(New_Item);
J := J + 1; K := K + 1;
end loop; end loop;
exception exception
when others => when others =>
-- Values in the range [Before, J) were successfully -- Values in the range [Before, K) were successfully
-- allocated, but values in the range [J, Index) are -- allocated, but values in the range [K, Index) are
-- stale (these array positions contain copies of the -- stale (these array positions contain copies of the
-- old items, that did not get assigned a new item, -- old items, that did not get assigned a new item,
-- because the allocation failed). We must finish what -- because the allocation failed). We must finish what
-- we started by clearing out all of the stale values, -- we started by clearing out all of the stale values,
-- leaving a "hole" in the middle of the array. -- leaving a "hole" in the middle of the array.
E (J .. Index - 1) := (others => null); E (K .. Index - 1) := (others => null);
raise; raise;
end; end;
end;
else
for J in Before .. New_Last loop
E (J) := new Element_Type'(New_Item);
Container.Last := J;
end loop;
end if; end if;
end; end;
return; return;
end if; end if;
-- There follows LOTS of code completely devoid of comments ??? -- In this case, we're inserting elements into a vector that has already
-- This is not our general style ??? -- allocated an internal array, but the existing array does not have
-- enough storage, so we must allocate a new, longer array. In order to
declare -- guarantee that the amortized insertion cost is O(1), we always
C, CC : UInt; -- allocate an array whose length is some power-of-two factor of the
-- current array length. (The new array cannot have a length less than
-- the New_Length of the container, but its last index value cannot be
-- greater than Index_Type'Last.)
begin New_Capacity := Count_Type'Max (1, Container.Elements.EA'Length);
C := UInt'Max (1, Container.Elements.EA'Length); -- ??? while New_Capacity < New_Length loop
while C < New_Length loop if New_Capacity > Count_Type'Last / 2 then
if C > UInt'Last / 2 then New_Capacity := Count_Type'Last;
C := UInt'Last;
exit; exit;
end if; end if;
C := 2 * C; New_Capacity := 2 * New_Capacity;
end loop; end loop;
if C > Max_Length then if New_Capacity > Max_Length then
C := Max_Length; -- We have reached the limit of capacity, so no further expansion
end if; -- will occur. (This is not a problem, as there is never a need to
-- have more capacity than the maximum container length.)
if Index_Type'First <= 0 New_Capacity := Max_Length;
and then Index_Type'Last >= 0
then
CC := UInt (Index_Type'Last) + UInt (-Index_Type'First) + 1;
else
CC := UInt (Int (Index_Type'Last) - First + 1);
end if; end if;
if C > CC then -- We have computed the length of the new internal array (and this is
C := CC; -- what "vector capacity" means), so use that to compute its last index.
if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
Dst_Last := No_Index + Index_Type'Base (New_Capacity);
else
Dst_Last :=
Index_Type'Base (Count_Type'Base (No_Index) + New_Capacity);
end if; end if;
declare -- Now we allocate the new, longer internal array. If the allocation
Dst_Last : constant Index_Type := -- fails, we have not changed any container state, so no side-effect
Index_Type (First + UInt'Pos (C) - Int'(1)); -- will occur as a result of propagating the exception.
begin
Dst := new Elements_Type (Dst_Last); Dst := new Elements_Type (Dst_Last);
end;
end;
if Before <= Container.Last then -- We have our new internal array. All that needs to be done now is to
declare -- copy the existing items (if any) from the old array (the "source"
Index_As_Int : constant Int'Base := -- array) to the new array (the "destination" array), and then
Index_Type'Pos (Before) + N; -- deallocate the old array.
Index : constant Index_Type := Index_Type (Index_As_Int);
declare
Src : Elements_Access := Container.Elements; Src : Elements_Access := Container.Elements;
begin begin
Dst.EA (Index_Type'First .. Before - 1) := Dst.EA (Index_Type'First .. Before - 1) :=
Src.EA (Index_Type'First .. Before - 1); Src.EA (Index_Type'First .. Before - 1);
Dst.EA (Index .. New_Last) := Src.EA (Before .. Container.Last); if Before > Container.Last then
-- The new items are being appended to the vector, so no
-- sliding of existing elements is required.
-- We have copied the elements from to the old, source array to
-- the new, destination array, so we can now deallocate the old
-- array.
Container.Elements := Dst; Container.Elements := Dst;
Container.Last := New_Last;
Free (Src); Free (Src);
for J in Before .. Index - 1 loop -- Now we append the new items.
Dst.EA (J) := new Element_Type'(New_Item);
for Idx in Before .. New_Last loop
-- In order to preserve container invariants, we always
-- attempt the element allocation first, before setting the
-- Last index value, in case the allocation fails (either
-- because there is no storage available, or because element
-- initialization fails).
Dst.EA (Idx) := new Element_Type'(New_Item);
-- The allocation of the element succeeded, so it is now safe
-- to update the Last index, restoring container invariants.
Container.Last := Idx;
end loop; end loop;
end;
else else
declare -- The new items are being inserted before some existing elements,
Src : Elements_Access := Container.Elements; -- so we must slide the existing elements up to their new home.
begin if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
Dst.EA (Index_Type'First .. Container.Last) := Index := Before + Index_Type'Base (Count);
Src.EA (Index_Type'First .. Container.Last);
else
Index := Index_Type'Base (Count_Type'Base (Before) + Count);
end if;
Dst.EA (Index .. New_Last) := Src.EA (Before .. Container.Last);
-- We have copied the elements from to the old, source array to
-- the new, destination array, so we can now deallocate the old
-- array.
Container.Elements := Dst; Container.Elements := Dst;
Container.Last := New_Last;
Free (Src); Free (Src);
for J in Before .. New_Last loop -- The new array has a range in the middle containing null access
Dst.EA (J) := new Element_Type'(New_Item); -- values. We now fill in that partion of the array with the new
Container.Last := J; -- items.
for Idx in Before .. Index - 1 loop
-- Note that container invariants have already been satisfied
-- (in particular, the Last index value of the vector has
-- already been updated), so if this allocation fails we simply
-- let it propagate.
Dst.EA (Idx) := new Element_Type'(New_Item);
end loop; end loop;
end;
end if; end if;
end;
end Insert; end Insert;
procedure Insert procedure Insert
...@@ -1295,39 +1705,27 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -1295,39 +1705,27 @@ package body Ada.Containers.Indefinite_Vectors is
New_Item : Vector) New_Item : Vector)
is is
N : constant Count_Type := Length (New_Item); N : constant Count_Type := Length (New_Item);
J : Index_Type'Base;
begin begin
if Before < Index_Type'First then -- Use Insert_Space to create the "hole" (the destination slice) into
raise Constraint_Error with -- which we copy the source items.
"Before index is out of range (too small)";
end if;
if Before > Container.Last Insert_Space (Container, Before, Count => N);
and then Before > Container.Last + 1
then
raise Constraint_Error with
"Before index is out of range (too large)";
end if;
if N = 0 then if N = 0 then
-- There's nothing else to do here (vetting of parameters was
-- performed already in Insert_Space), so we simply return.
return; return;
end if; end if;
Insert_Space (Container, Before, Count => N);
declare
Dst_Last_As_Int : constant Int'Base :=
Int'Base (Before) + Int'Base (N) - 1;
Dst_Last : constant Index_Type := Index_Type (Dst_Last_As_Int);
Dst : Elements_Array renames
Container.Elements.EA (Before .. Dst_Last);
Dst_Index : Index_Type'Base := Before - 1;
begin
if Container'Address /= New_Item'Address then if Container'Address /= New_Item'Address then
-- This is the simple case. New_Item denotes an object different
-- from Container, so there's nothing special we need to do to copy
-- the source items to their destination, because all of the source
-- items are contiguous.
declare declare
subtype Src_Index_Subtype is Index_Type'Base range subtype Src_Index_Subtype is Index_Type'Base range
Index_Type'First .. New_Item.Last; Index_Type'First .. New_Item.Last;
...@@ -1335,7 +1733,12 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -1335,7 +1733,12 @@ package body Ada.Containers.Indefinite_Vectors is
Src : Elements_Array renames Src : Elements_Array renames
New_Item.Elements.EA (Src_Index_Subtype); New_Item.Elements.EA (Src_Index_Subtype);
Dst : Elements_Array renames Container.Elements.EA;
Dst_Index : Index_Type'Base;
begin begin
Dst_Index := Before - 1;
for Src_Index in Src'Range loop for Src_Index in Src'Range loop
Dst_Index := Dst_Index + 1; Dst_Index := Dst_Index + 1;
...@@ -1348,14 +1751,34 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -1348,14 +1751,34 @@ package body Ada.Containers.Indefinite_Vectors is
return; return;
end if; end if;
-- New_Item denotes the same object as Container, so an insertion has
-- potentially split the source items. The first source slice is
-- [Index_Type'First, Before), and the second source slice is
-- [J, Container.Last], where index value J is the first index of the
-- second slice. (J gets computed below, but only after we have
-- determined that the second source slice is non-empty.) The
-- destination slice is always the range [Before, J). We perform the
-- copy in two steps, using each of the two slices of the source items.
declare declare
L : constant Index_Type'Base := Before - 1;
subtype Src_Index_Subtype is Index_Type'Base range subtype Src_Index_Subtype is Index_Type'Base range
Index_Type'First .. Before - 1; Index_Type'First .. L;
Src : Elements_Array renames Src : Elements_Array renames
Container.Elements.EA (Src_Index_Subtype); Container.Elements.EA (Src_Index_Subtype);
Dst : Elements_Array renames Container.Elements.EA;
Dst_Index : Index_Type'Base;
begin begin
-- We first copy the source items that precede the space we
-- inserted. (If Before equals Index_Type'First, then this first
-- source slice will be empty, which is harmless.)
Dst_Index := Before - 1;
for Src_Index in Src'Range loop for Src_Index in Src'Range loop
Dst_Index := Dst_Index + 1; Dst_Index := Dst_Index + 1;
...@@ -1363,29 +1786,67 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -1363,29 +1786,67 @@ package body Ada.Containers.Indefinite_Vectors is
Dst (Dst_Index) := new Element_Type'(Src (Src_Index).all); Dst (Dst_Index) := new Element_Type'(Src (Src_Index).all);
end if; end if;
end loop; end loop;
end;
if Dst_Last = Container.Last then if Src'Length = N then
-- The new items were effectively appended to the container, so we
-- have already copied all of the items that need to be copied.
-- We return early here, even though the source slice below is
-- empty (so the assignment would be harmless), because we want to
-- avoid computing J, which will overflow if J is greater than
-- Index_Type'Base'Last.
return; return;
end if; end if;
end;
-- Index value J is the first index of the second source slice. (It is
-- also 1 greater than the last index of the destination slice.) Note
-- that we want to avoid computing J, if J is greater than
-- Index_Type'Base'Last, in order to avoid overflow. We prevent that by
-- returning early above, immediately after copying the first slice of
-- the source, and determining that this second slice of the source is
-- empty.
if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
J := Before + Index_Type'Base (N);
else
J := Index_Type'Base (Count_Type'Base (Before) + N);
end if;
declare declare
subtype Src_Index_Subtype is Index_Type'Base range subtype Src_Index_Subtype is Index_Type'Base range
Dst_Last + 1 .. Container.Last; J .. Container.Last;
Src : Elements_Array renames Src : Elements_Array renames
Container.Elements.EA (Src_Index_Subtype); Container.Elements.EA (Src_Index_Subtype);
Dst : Elements_Array renames Container.Elements.EA;
Dst_Index : Index_Type'Base;
begin begin
for Src_Index in Src'Range loop -- We next copy the source items that follow the space we
Dst_Index := Dst_Index + 1; -- inserted. Index value Dst_Index is the first index of that portion
-- of the destination that receives this slice of the source. (For
-- the reasons given above, this slice is guaranteed to be
-- non-empty.)
if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
Dst_Index := J - Index_Type'Base (Src'Length);
else
Dst_Index := Index_Type'Base (Count_Type'Base (J) - Src'Length);
end if;
for Src_Index in Src'Range loop
if Src (Src_Index) /= null then if Src (Src_Index) /= null then
Dst (Dst_Index) := new Element_Type'(Src (Src_Index).all); Dst (Dst_Index) := new Element_Type'(Src (Src_Index).all);
end if; end if;
Dst_Index := Dst_Index + 1;
end loop; end loop;
end; end;
end;
end Insert; end Insert;
procedure Insert procedure Insert
...@@ -1561,22 +2022,42 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -1561,22 +2022,42 @@ package body Ada.Containers.Indefinite_Vectors is
Before : Extended_Index; Before : Extended_Index;
Count : Count_Type := 1) Count : Count_Type := 1)
is is
N : constant Int := Int (Count); Old_Length : constant Count_Type := Container.Length;
Max_Length : Count_Type'Base; -- determined from range of Index_Type
New_Length : Count_Type'Base; -- sum of current length and Count
New_Last : Index_Type'Base; -- last index of vector after insertion
First : constant Int := Int (Index_Type'First); Index : Index_Type'Base; -- scratch for intermediate values
New_Last_As_Int : Int'Base; J : Count_Type'Base; -- scratch
New_Last : Index_Type;
New_Length : UInt;
Max_Length : constant UInt := UInt (Count_Type'Last);
Dst : Elements_Access; New_Capacity : Count_Type'Base; -- length of new, expanded array
Dst_Last : Index_Type'Base; -- last index of new, expanded array
Dst : Elements_Access; -- new, expanded internal array
begin begin
-- As a precondition on the generic actual Index_Type, the base type
-- must include Index_Type'Pred (Index_Type'First); this is the value
-- that Container.Last assumes when the vector is empty. However, we do
-- not allow that as the value for Index when specifying where the new
-- items should be inserted, so we must manually check. (That the user
-- is allowed to specify the value at all here is a consequence of the
-- declaration of the Extended_Index subtype, which includes the values
-- in the base range that immediately precede and immediately follow the
-- values in the Index_Type.)
if Before < Index_Type'First then if Before < Index_Type'First then
raise Constraint_Error with raise Constraint_Error with
"Before index is out of range (too small)"; "Before index is out of range (too small)";
end if; end if;
-- We do allow a value greater than Container.Last to be specified as
-- the Index, but only if it's immediately greater. This allows for the
-- case of appending items to the back end of the vector. (It is assumed
-- that specifying an index value greater than Last + 1 indicates some
-- deeper flaw in the caller's algorithm, so that case is treated as a
-- proper error.)
if Before > Container.Last if Before > Container.Last
and then Before > Container.Last + 1 and then Before > Container.Last + 1
then then
...@@ -1584,60 +2065,178 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -1584,60 +2065,178 @@ package body Ada.Containers.Indefinite_Vectors is
"Before index is out of range (too large)"; "Before index is out of range (too large)";
end if; end if;
-- We treat inserting 0 items into the container as a no-op, even when
-- the container is busy, so we simply return.
if Count = 0 then if Count = 0 then
return; return;
end if; end if;
declare -- There are two constraints we need to satisfy. The first constraint is
Old_Last_As_Int : constant Int := Int (Container.Last); -- that a container cannot have more than Count_Type'Last elements, so
-- we must check the sum of the current length and the insertion
-- count. Note that we cannot simply add these values, because of the
-- possibilty of overflow.
begin if Old_Length > Count_Type'Last - Count then
if Old_Last_As_Int > Int'Last - N then raise Constraint_Error with "Count is out of range";
raise Constraint_Error with "new length is out of range";
end if; end if;
New_Last_As_Int := Old_Last_As_Int + N; -- It is now safe compute the length of the new vector, without fear of
-- overflow.
if New_Last_As_Int > Int (Index_Type'Last) then New_Length := Old_Length + Count;
raise Constraint_Error with "new length is out of range";
-- The second constraint is that the new Last index value cannot exceed
-- Index_Type'Last. In each branch below, we calculate the maximum
-- length (computed from the range of values in Index_Type), and then
-- compare the new length to the maximum length. If the new length is
-- acceptable, then we compute the new last index from that.
if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
-- We have to handle the case when there might be more values in the
-- range of Index_Type than in the range of Count_Type.
if Index_Type'First <= 0 then
-- We know that No_Index (the same as Index_Type'First - 1) is
-- less than 0, so it is safe to compute the following sum without
-- fear of overflow.
Index := No_Index + Index_Type'Base (Count_Type'Last);
if Index <= Index_Type'Last then
-- We have determined that range of Index_Type has at least as
-- many values as in Count_Type, so Count_Type'Last is the
-- maximum number of items that are allowed.
Max_Length := Count_Type'Last;
else
-- The range of Index_Type has fewer values than in Count_Type,
-- so the maximum number of items is computed from the range of
-- the Index_Type.
Max_Length := Count_Type'Base (Index_Type'Last - No_Index);
end if; end if;
New_Length := UInt (New_Last_As_Int - First + 1); else
-- No_Index is equal or greater than 0, so we can safely compute
-- the difference without fear of overflow (which we would have to
-- worry about if No_Index were less than 0, but that case is
-- handled above).
Max_Length := Count_Type'Base (Index_Type'Last - No_Index);
end if;
elsif Index_Type'First <= 0 then
-- We know that No_Index (the same as Index_Type'First - 1) is less
-- than 0, so it is safe to compute the following sum without fear of
-- overflow.
J := Count_Type'Base (No_Index) + Count_Type'Last;
if J <= Count_Type'Base (Index_Type'Last) then
-- We have determined that range of Index_Type has at least as
-- many values as in Count_Type, so Count_Type'Last is the maximum
-- number of items that are allowed.
Max_Length := Count_Type'Last;
else
-- The range of Index_Type has fewer values than Count_Type does,
-- so the maximum number of items is computed from the range of
-- the Index_Type.
Max_Length :=
Count_Type'Base (Index_Type'Last) - Count_Type'Base (No_Index);
end if;
else
-- No_Index is equal or greater than 0, so we can safely compute the
-- difference without fear of overflow (which we would have to worry
-- about if No_Index were less than 0, but that case is handled
-- above).
Max_Length :=
Count_Type'Base (Index_Type'Last) - Count_Type'Base (No_Index);
end if;
-- We have just computed the maximum length (number of items). We must
-- now compare the requested length to the maximum length, as we do not
-- allow a vector expand beyond the maximum (because that would create
-- an internal array with a last index value greater than
-- Index_Type'Last, with no way to index those elements).
if New_Length > Max_Length then if New_Length > Max_Length then
raise Constraint_Error with "new length is out of range"; raise Constraint_Error with "Count is out of range";
end if; end if;
New_Last := Index_Type (New_Last_As_Int); -- New_Last is the last index value of the items in the container after
end; -- insertion. Use the wider of Index_Type'Base and Count_Type'Base to
-- compute its value from the New_Length.
if Container.Busy > 0 then if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
raise Program_Error with New_Last := No_Index + Index_Type'Base (New_Length);
"attempt to tamper with elements (vector is busy)";
else
New_Last := Index_Type'Base (Count_Type'Base (No_Index) + New_Length);
end if; end if;
if Container.Elements = null then if Container.Elements = null then
pragma Assert (Container.Last = No_Index);
-- This is the simplest case, with which we must always begin: we're
-- inserting items into an empty vector that hasn't allocated an
-- internal array yet. Note that we don't need to check the busy bit
-- here, because an empty container cannot be busy.
-- In an indefinite vector, elements are allocated individually, and
-- stored as access values on the internal array (the length of which
-- represents the vector "capacity"), which is separately
-- allocated. We have no elements here (because we're inserting
-- "space"), so all we need to do is allocate the backbone.
Container.Elements := new Elements_Type (New_Last); Container.Elements := new Elements_Type (New_Last);
Container.Last := New_Last; Container.Last := New_Last;
return; return;
end if; end if;
if New_Last <= Container.Elements.Last then -- The tampering bits exist to prevent an item from being harmfully
-- manipulated while it is being visited. Query, Update, and Iterate
-- increment the busy count on entry, and decrement the count on
-- exit. Insert checks the count to determine whether it is being called
-- while the associated callback procedure is executing.
if Container.Busy > 0 then
raise Program_Error with
"attempt to tamper with elements (vector is busy)";
end if;
if New_Length <= Container.Elements.EA'Length then
-- In this case, we're inserting elements into a vector that has
-- already allocated an internal array, and the existing array has
-- enough unused storage for the new items.
declare declare
E : Elements_Array renames Container.Elements.EA; E : Elements_Array renames Container.Elements.EA;
begin begin
if Before <= Container.Last then if Before <= Container.Last then
declare -- The new space is being inserted before some existing
Index_As_Int : constant Int'Base := -- elements, so we must slide the existing elements up to their
Index_Type'Pos (Before) + N; -- new home. We use the wider of Index_Type'Base and
-- Count_Type'Base as the type for intermediate index values.
Index : constant Index_Type := Index_Type (Index_As_Int); if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
Index := Before + Index_Type'Base (Count);
else
Index := Index_Type'Base (Count_Type'Base (Before) + Count);
end if;
begin
E (Index .. New_Last) := E (Before .. Container.Last); E (Index .. New_Last) := E (Before .. Container.Last);
E (Before .. Index - 1) := (others => null); E (Before .. Index - 1) := (others => null);
end;
end if; end if;
end; end;
...@@ -1645,68 +2244,80 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -1645,68 +2244,80 @@ package body Ada.Containers.Indefinite_Vectors is
return; return;
end if; end if;
declare -- In this case, we're inserting elements into a vector that has already
C, CC : UInt; -- allocated an internal array, but the existing array does not have
-- enough storage, so we must allocate a new, longer array. In order to
-- guarantee that the amortized insertion cost is O(1), we always
-- allocate an array whose length is some power-of-two factor of the
-- current array length. (The new array cannot have a length less than
-- the New_Length of the container, but its last index value cannot be
-- greater than Index_Type'Last.)
begin New_Capacity := Count_Type'Max (1, Container.Elements.EA'Length);
C := UInt'Max (1, Container.Elements.EA'Length); -- ??? while New_Capacity < New_Length loop
while C < New_Length loop if New_Capacity > Count_Type'Last / 2 then
if C > UInt'Last / 2 then New_Capacity := Count_Type'Last;
C := UInt'Last;
exit; exit;
end if; end if;
C := 2 * C; New_Capacity := 2 * New_Capacity;
end loop; end loop;
if C > Max_Length then if New_Capacity > Max_Length then
C := Max_Length; -- We have reached the limit of capacity, so no further expansion
end if; -- will occur. (This is not a problem, as there is never a need to
-- have more capacity than the maximum container length.)
if Index_Type'First <= 0 New_Capacity := Max_Length;
and then Index_Type'Last >= 0
then
CC := UInt (Index_Type'Last) + UInt (-Index_Type'First) + 1;
else
CC := UInt (Int (Index_Type'Last) - First + 1);
end if; end if;
if C > CC then -- We have computed the length of the new internal array (and this is
C := CC; -- what "vector capacity" means), so use that to compute its last index.
if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
Dst_Last := No_Index + Index_Type'Base (New_Capacity);
else
Dst_Last :=
Index_Type'Base (Count_Type'Base (No_Index) + New_Capacity);
end if; end if;
declare -- Now we allocate the new, longer internal array. If the allocation
Dst_Last : constant Index_Type := -- fails, we have not changed any container state, so no side-effect
Index_Type (First + UInt'Pos (C) - 1); -- will occur as a result of propagating the exception.
begin
Dst := new Elements_Type (Dst_Last); Dst := new Elements_Type (Dst_Last);
end;
end;
declare -- We have our new internal array. All that needs to be done now is to
Src : Elements_Access := Container.Elements; -- copy the existing items (if any) from the old array (the "source"
-- array) to the new array (the "destination" array), and then
-- deallocate the old array.
begin
if Before <= Container.Last then
declare declare
Index_As_Int : constant Int'Base := Src : Elements_Access := Container.Elements;
Index_Type'Pos (Before) + N;
Index : constant Index_Type := Index_Type (Index_As_Int);
begin begin
Dst.EA (Index_Type'First .. Before - 1) := Dst.EA (Index_Type'First .. Before - 1) :=
Src.EA (Index_Type'First .. Before - 1); Src.EA (Index_Type'First .. Before - 1);
Dst.EA (Index .. New_Last) := Src.EA (Before .. Container.Last); if Before <= Container.Last then
end; -- The new items are being inserted before some existing elements,
-- so we must slide the existing elements up to their new home.
if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
Index := Before + Index_Type'Base (Count);
else else
Dst.EA (Index_Type'First .. Container.Last) := Index := Index_Type'Base (Count_Type'Base (Before) + Count);
Src.EA (Index_Type'First .. Container.Last); end if;
Dst.EA (Index .. New_Last) := Src.EA (Before .. Container.Last);
end if; end if;
-- We have copied the elements from to the old, source array to the
-- new, destination array, so we can now restore invariants, and
-- deallocate the old array.
Container.Elements := Dst; Container.Elements := Dst;
Container.Last := New_Last; Container.Last := New_Last;
Free (Src); Free (Src);
...@@ -1808,7 +2419,7 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -1808,7 +2419,7 @@ package body Ada.Containers.Indefinite_Vectors is
return (Container'Unchecked_Access, Container.Last); return (Container'Unchecked_Access, Container.Last);
end Last; end Last;
------------------ -----------------
-- Last_Element -- -- Last_Element --
------------------ ------------------
...@@ -1845,12 +2456,33 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -1845,12 +2456,33 @@ package body Ada.Containers.Indefinite_Vectors is
------------ ------------
function Length (Container : Vector) return Count_Type is function Length (Container : Vector) return Count_Type is
L : constant Int := Int (Container.Last); L : constant Index_Type'Base := Container.Last;
F : constant Int := Int (Index_Type'First); F : constant Index_Type := Index_Type'First;
N : constant Int'Base := L - F + 1;
begin
begin -- The base range of the index type (Index_Type'Base) might not include
return Count_Type (N); -- all values for length (Count_Type). Contrariwise, the index type
-- might include values outside the range of length. Hence we use
-- whatever type is wider for intermediate values when calculating
-- length. Note that no matter what the index type is, the maximum
-- length to which a vector is allowed to grow is always the minimum
-- of Count_Type'Last and (IT'Last - IT'First + 1).
-- For example, an Index_Type with range -127 .. 127 is only guaranteed
-- to have a base range of -128 .. 127, but the corresponding vector
-- would have lengths in the range 0 .. 255. In this case we would need
-- to use Count_Type'Base for intermediate values.
-- Another case would be the index range -2**63 + 1 .. -2**63 + 10. The
-- vector would have a maximum length of 10, but the index values lie
-- outside the range of Count_Type (which is only 32 bits). In this
-- case we would need to use Index_Type'Base for intermediate values.
if Count_Type'Base'Last >= Index_Type'Pos (Index_Type'Base'Last) then
return Count_Type'Base (L) - Count_Type'Base (F) + 1;
else
return Count_Type (L - F + 1);
end if;
end Length; end Length;
---------- ----------
...@@ -2131,17 +2763,53 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -2131,17 +2763,53 @@ package body Ada.Containers.Indefinite_Vectors is
is is
N : constant Count_Type := Length (Container); N : constant Count_Type := Length (Container);
Index : Count_Type'Base;
Last : Index_Type'Base;
begin begin
-- Reserve_Capacity can be used to either expand the storage available
-- for elements (this would be its typical use, in anticipation of
-- future insertion), or to trim back storage. In the latter case,
-- storage can only be trimmed back to the limit of the container
-- length. Note that Reserve_Capacity neither deletes (active) elements
-- nor inserts elements; it only affects container capacity, never
-- container length.
if Capacity = 0 then if Capacity = 0 then
-- This is a request to trim back storage, to the minimum amount
-- possible given the current state of the container.
if N = 0 then if N = 0 then
-- The container is empty, so in this unique case we can
-- deallocate the entire internal array. Note that an empty
-- container can never be busy, so there's no need to check the
-- tampering bits.
declare declare
X : Elements_Access := Container.Elements; X : Elements_Access := Container.Elements;
begin begin
-- First we remove the internal array from the container, to
-- handle the case when the deallocation raises an exception
-- (although that's unlikely, since this is simply an array of
-- access values, all of which are null).
Container.Elements := null; Container.Elements := null;
-- Container invariants have been restored, so it is now safe
-- to attempt to deallocate the internal array.
Free (X); Free (X);
end; end;
elsif N < Container.Elements.EA'Length then elsif N < Container.Elements.EA'Length then
-- The container is not empty, and the current length is less than
-- the current capacity, so there's storage available to trim. In
-- this case, we allocate a new internal array having a length
-- that exactly matches the number of items in the
-- container. (Reserve_Capacity does not delete active elements,
-- so this is the best we can do with respect to minimizing
-- storage).
if Container.Busy > 0 then if Container.Busy > 0 then
raise Program_Error with raise Program_Error with
"attempt to tamper with elements (vector is busy)"; "attempt to tamper with elements (vector is busy)";
...@@ -2157,7 +2825,19 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -2157,7 +2825,19 @@ package body Ada.Containers.Indefinite_Vectors is
X : Elements_Access := Container.Elements; X : Elements_Access := Container.Elements;
begin begin
-- Although we have isolated the old internal array that we're
-- going to deallocate, we don't deallocate it until we have
-- successfully allocated a new one. If there is an exception
-- during allocation (because there is not enough storage), we
-- let it propagate without causing any side-effect.
Container.Elements := new Elements_Type'(Container.Last, Src); Container.Elements := new Elements_Type'(Container.Last, Src);
-- We have succesfully allocated a new internal array (with a
-- smaller length than the old one, and containing a copy of
-- just the active elements in the container), so we can
-- deallocate the old array.
Free (X); Free (X);
end; end;
end if; end if;
...@@ -2165,29 +2845,102 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -2165,29 +2845,102 @@ package body Ada.Containers.Indefinite_Vectors is
return; return;
end if; end if;
if Container.Elements = null then -- Reserve_Capacity can be used to expand the storage available for
declare -- elements, but we do not let the capacity grow beyond the number of
Last_As_Int : constant Int'Base := -- values in Index_Type'Range. (Were it otherwise, there would be no way
Int (Index_Type'First) + Int (Capacity) - 1; -- to refer to the elements with index values greater than
-- Index_Type'Last, so that storage would be wasted.) Here we compute
-- the Last index value of the new internal array, in a way that avoids
-- any possibility of overflow.
begin if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
if Last_As_Int > Index_Type'Pos (Index_Type'Last) then -- We perform a two-part test. First we determine whether the
raise Constraint_Error with "new length is out of range"; -- computed Last value lies in the base range of the type, and then
-- determine whether it lies in the range of the index (sub)type.
-- Last must satisfy this relation:
-- First + Length - 1 <= Last
-- We regroup terms:
-- First - 1 <= Last - Length
-- Which can rewrite as:
-- No_Index <= Last - Length
if Index_Type'Base'Last - Index_Type'Base (Capacity) < No_Index then
raise Constraint_Error with "Capacity is out of range";
end if; end if;
declare -- We now know that the computed value of Last is within the base
Last : constant Index_Type := Index_Type (Last_As_Int); -- range of the type, so it is safe to compute its value:
begin Last := No_Index + Index_Type'Base (Capacity);
Container.Elements := new Elements_Type (Last);
end; -- Finally we test whether the value is within the range of the
end; -- generic actual index subtype:
if Last > Index_Type'Last then
raise Constraint_Error with "Capacity is out of range";
end if;
elsif Index_Type'First <= 0 then
-- Here we can compute Last directly, in the normal way. We know that
-- No_Index is less than 0, so there is no danger of overflow when
-- adding the (positive) value of Capacity.
Index := Count_Type'Base (No_Index) + Capacity; -- Last
if Index > Count_Type'Base (Index_Type'Last) then
raise Constraint_Error with "Capacity is out of range";
end if;
-- We know that the computed value (having type Count_Type) of Last
-- is within the range of the generic actual index subtype, so it is
-- safe to convert to Index_Type:
Last := Index_Type'Base (Index);
else
-- Here Index_Type'First (and Index_Type'Last) is positive, so we
-- must test the length indirectly (by working backwards from the
-- largest possible value of Last), in order to prevent overflow.
Index := Count_Type'Base (Index_Type'Last) - Capacity; -- No_Index
if Index < Count_Type'Base (No_Index) then
raise Constraint_Error with "Capacity is out of range";
end if;
-- We have determined that the value of Capacity would not create a
-- Last index value outside of the range of Index_Type, so we can now
-- safely compute its value.
Last := Index_Type'Base (Count_Type'Base (No_Index) + Capacity);
end if;
-- The requested capacity is non-zero, but we don't know yet whether
-- this is a request for expansion or contraction of storage.
if Container.Elements = null then
-- The container is empty (it doesn't even have an internal array),
-- so this represents a request to allocate storage having the given
-- capacity.
Container.Elements := new Elements_Type (Last);
return; return;
end if; end if;
if Capacity <= N then if Capacity <= N then
-- This is a request to trim back storage, but only to the limit of
-- what's already in the container. (Reserve_Capacity never deletes
-- active elements, it only reclaims excess storage.)
if N < Container.Elements.EA'Length then if N < Container.Elements.EA'Length then
-- The container is not empty (because the requested capacity is
-- positive, and less than or equal to the container length), and
-- the current length is less than the current capacity, so
-- there's storage available to trim. In this case, we allocate a
-- new internal array having a length that exactly matches the
-- number of items in the container.
if Container.Busy > 0 then if Container.Busy > 0 then
raise Program_Error with raise Program_Error with
"attempt to tamper with elements (vector is busy)"; "attempt to tamper with elements (vector is busy)";
...@@ -2203,7 +2956,19 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -2203,7 +2956,19 @@ package body Ada.Containers.Indefinite_Vectors is
X : Elements_Access := Container.Elements; X : Elements_Access := Container.Elements;
begin begin
-- Although we have isolated the old internal array that we're
-- going to deallocate, we don't deallocate it until we have
-- successfully allocated a new one. If there is an exception
-- during allocation (because there is not enough storage), we
-- let it propagate without causing any side-effect.
Container.Elements := new Elements_Type'(Container.Last, Src); Container.Elements := new Elements_Type'(Container.Last, Src);
-- We have succesfully allocated a new internal array (with a
-- smaller length than the old one, and containing a copy of
-- just the active elements in the container), so it is now
-- safe to deallocate the old array.
Free (X); Free (X);
end; end;
end if; end if;
...@@ -2211,48 +2976,58 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -2211,48 +2976,58 @@ package body Ada.Containers.Indefinite_Vectors is
return; return;
end if; end if;
-- The requested capacity is larger than the container length (the
-- number of active elements). Whether this represents a request for
-- expansion or contraction of the current capacity depends on what the
-- current capacity is.
if Capacity = Container.Elements.EA'Length then if Capacity = Container.Elements.EA'Length then
-- The requested capacity matches the existing capacity, so there's
-- nothing to do here. We treat this case as a no-op, and simply
-- return without checking the busy bit.
return; return;
end if; end if;
-- There is a change in the capacity of a non-empty container, so a new
-- internal array will be allocated. (The length of the new internal
-- array could be less or greater than the old internal array. We know
-- only that the length of the new internal array is greater than the
-- number of active elements in the container.) We must check whether
-- the container is busy before doing anything else.
if Container.Busy > 0 then if Container.Busy > 0 then
raise Program_Error with raise Program_Error with
"attempt to tamper with elements (vector is busy)"; "attempt to tamper with elements (vector is busy)";
end if; end if;
declare -- We now allocate a new internal array, having a length different from
Last_As_Int : constant Int'Base := -- its current value.
Int (Index_Type'First) + Int (Capacity) - 1;
begin
if Last_As_Int > Index_Type'Pos (Index_Type'Last) then
raise Constraint_Error with "new length is out of range";
end if;
declare declare
Last : constant Index_Type := Index_Type (Last_As_Int);
X : Elements_Access := Container.Elements; X : Elements_Access := Container.Elements;
subtype Index_Subtype is Index_Type'Base range subtype Index_Subtype is Index_Type'Base range
Index_Type'First .. Container.Last; Index_Type'First .. Container.Last;
begin begin
-- We now allocate a new internal array, having a length different
-- from its current value.
Container.Elements := new Elements_Type (Last); Container.Elements := new Elements_Type (Last);
declare -- We have successfully allocated the new internal array, so now we
Src : Elements_Array renames -- move the existing elements from the existing the old internal
X.EA (Index_Subtype); -- array onto the new one. Note that we're just copying access
-- values, to this should not raise any exceptions.
Tgt : Elements_Array renames Container.Elements.EA (Index_Subtype) := X.EA (Index_Subtype);
Container.Elements.EA (Index_Subtype);
begin -- We have moved the elements from the old interal array, so now we
Tgt := Src; -- can deallocate it.
end;
Free (X); Free (X);
end; end;
end;
end Reserve_Capacity; end Reserve_Capacity;
---------------------- ----------------------
...@@ -2388,45 +3163,25 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -2388,45 +3163,25 @@ package body Ada.Containers.Indefinite_Vectors is
(Container : in out Vector; (Container : in out Vector;
Length : Count_Type) Length : Count_Type)
is is
N : constant Count_Type := Indefinite_Vectors.Length (Container); Count : constant Count_Type'Base := Container.Length - Length;
begin begin
if Length = N then -- Set_Length allows the user to set the length explicitly, instead of
return; -- implicitly as a side-effect of deletion or insertion. If the
end if; -- requested length is less than the current length, this is equivalent
-- to deleting items from the back end of the vector. If the requested
if Container.Busy > 0 then -- length is greater than the current length, then this is equivalent to
raise Program_Error with -- inserting "space" (nonce items) at the end.
"attempt to tamper with elements (vector is busy)";
end if;
if Length < N then if Count >= 0 then
for Index in 1 .. N - Length loop Container.Delete_Last (Count);
declare
J : constant Index_Type := Container.Last;
X : Element_Access := Container.Elements.EA (J);
begin elsif Container.Last >= Index_Type'Last then
Container.Elements.EA (J) := null; raise Constraint_Error with "vector is already at its maximum length";
Container.Last := J - 1;
Free (X);
end;
end loop;
return;
end if;
if Length > Capacity (Container) then else
Reserve_Capacity (Container, Capacity => Length); Container.Insert_Space (Container.Last + 1, -Count);
end if; end if;
declare
Last_As_Int : constant Int'Base :=
Int (Index_Type'First) + Int (Length) - 1;
begin
Container.Last := Index_Type (Last_As_Int);
end;
end Set_Length; end Set_Length;
---------- ----------
...@@ -2529,8 +3284,8 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -2529,8 +3284,8 @@ package body Ada.Containers.Indefinite_Vectors is
--------------- ---------------
function To_Vector (Length : Count_Type) return Vector is function To_Vector (Length : Count_Type) return Vector is
Index : Int'Base; Index : Count_Type'Base;
Last : Index_Type; Last : Index_Type'Base;
Elements : Elements_Access; Elements : Elements_Access;
begin begin
...@@ -2539,45 +3294,75 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -2539,45 +3294,75 @@ package body Ada.Containers.Indefinite_Vectors is
end if; end if;
-- We create a vector object with a capacity that matches the specified -- We create a vector object with a capacity that matches the specified
-- Length. We do not allow the vector capacity (the length of the -- Length, but we do not allow the vector capacity (the length of the
-- internal array) to exceed the number of values in Index_Type'Range -- internal array) to exceed the number of values in Index_Type'Range
-- (otherwise, there would be no way to refer to those components via an -- (otherwise, there would be no way to refer to those components via an
-- index), so we must check whether the specified Length would create a -- index). We must therefore check whether the specified Length would
-- Last index value greater than Index_Type'Last. This calculation -- create a Last index value greater than Index_Type'Last.
-- requires care, because overflow can occur when Index_Type'First is
-- near the end of the range of Int. if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
-- We perform a two-part test. First we determine whether the
-- computed Last value lies in the base range of the type, and then
-- determine whether it lies in the range of the index (sub)type.
-- Last must satisfy this relation:
-- First + Length - 1 <= Last
-- We regroup terms:
-- First - 1 <= Last - Length
-- Which can rewrite as:
-- No_Index <= Last - Length
if Index_Type'Base'Last - Index_Type'Base (Length) < No_Index then
raise Constraint_Error with "Length is out of range";
end if;
if Index_Type'First <= 0 then -- We now know that the computed value of Last is within the base
-- Compute the potential Last index value in the normal way, using -- range of the type, so it is safe to compute its value:
-- Int as the type in which to perform intermediate calculations. Int
-- is a 64-bit type, and Count_Type is a 32-bit type, so no overflow
-- can occur.
Index := Int (Index_Type'First - 1) + Int (Length);
if Index > Int (Index_Type'Last) then Last := No_Index + Index_Type'Base (Length);
-- Finally we test whether the value is within the range of the
-- generic actual index subtype:
if Last > Index_Type'Last then
raise Constraint_Error with "Length is out of range";
end if;
elsif Index_Type'First <= 0 then
-- Here we can compute Last directly, in the normal way. We know that
-- No_Index is less than 0, so there is no danger of overflow when
-- adding the (positive) value of Length.
Index := Count_Type'Base (No_Index) + Length; -- Last
if Index > Count_Type'Base (Index_Type'Last) then
raise Constraint_Error with "Length is out of range"; raise Constraint_Error with "Length is out of range";
end if; end if;
-- We know that the computed value (having type Count_Type) of Last
-- is within the range of the generic actual index subtype, so it is
-- safe to convert to Index_Type:
Last := Index_Type'Base (Index);
else else
-- If Index_Type'First is within Length of Int'Last, then overflow -- Here Index_Type'First (and Index_Type'Last) is positive, so we
-- would occur if we simply computed Last directly. So instead of -- must test the length indirectly (by working backwards from the
-- computing Last, and then determining whether its value is greater -- largest possible value of Last), in order to prevent overflow.
-- than Index_Type'Last, we work backwards by computing the potential
-- First index value, and then checking whether that value is less Index := Count_Type'Base (Index_Type'Last) - Length; -- No_Index
-- than Index_Type'First.
Index := Int (Index_Type'Last) - Int (Length) + 1; if Index < Count_Type'Base (No_Index) then
if Index < Int (Index_Type'First) then
raise Constraint_Error with "Length is out of range"; raise Constraint_Error with "Length is out of range";
end if; end if;
-- We have determined that Length would not create a Last index value -- We have determined that the value of Length would not create a
-- outside of the range of Index_Type, so we can now safely compute -- Last index value outside of the range of Index_Type, so we can now
-- its value. -- safely compute its value.
Index := Int (Index_Type'First - 1) + Int (Length);
Last := Index_Type'Base (Count_Type'Base (No_Index) + Length);
end if; end if;
Last := Index_Type (Index);
Elements := new Elements_Type (Last); Elements := new Elements_Type (Last);
return Vector'(Controlled with Elements, Last, 0, 0); return Vector'(Controlled with Elements, Last, 0, 0);
...@@ -2587,8 +3372,8 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -2587,8 +3372,8 @@ package body Ada.Containers.Indefinite_Vectors is
(New_Item : Element_Type; (New_Item : Element_Type;
Length : Count_Type) return Vector Length : Count_Type) return Vector
is is
Index : Int'Base; Index : Count_Type'Base;
Last : Index_Type; Last : Index_Type'Base;
Elements : Elements_Access; Elements : Elements_Access;
begin begin
...@@ -2597,51 +3382,81 @@ package body Ada.Containers.Indefinite_Vectors is ...@@ -2597,51 +3382,81 @@ package body Ada.Containers.Indefinite_Vectors is
end if; end if;
-- We create a vector object with a capacity that matches the specified -- We create a vector object with a capacity that matches the specified
-- Length. We do not allow the vector capacity (the length of the -- Length, but we do not allow the vector capacity (the length of the
-- internal array) to exceed the number of values in Index_Type'Range -- internal array) to exceed the number of values in Index_Type'Range
-- (otherwise, there would be no way to refer to those components via an -- (otherwise, there would be no way to refer to those components via an
-- index), so we must check whether the specified Length would create a -- index). We must therefore check whether the specified Length would
-- Last index value greater than Index_Type'Last. This calculation -- create a Last index value greater than Index_Type'Last.
-- requires care, because overflow can occur when Index_Type'First is
-- near the end of the range of Int. if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
-- We perform a two-part test. First we determine whether the
-- computed Last value lies in the base range of the type, and then
-- determine whether it lies in the range of the index (sub)type.
-- Last must satisfy this relation:
-- First + Length - 1 <= Last
-- We regroup terms:
-- First - 1 <= Last - Length
-- Which can rewrite as:
-- No_Index <= Last - Length
if Index_Type'Base'Last - Index_Type'Base (Length) < No_Index then
raise Constraint_Error with "Length is out of range";
end if;
if Index_Type'First <= 0 then -- We now know that the computed value of Last is within the base
-- Compute the potential Last index value in the normal way, using -- range of the type, so it is safe to compute its value:
-- Int as the type in which to perform intermediate calculations. Int
-- is a 64-bit type, and Count_Type is a 32-bit type, so no overflow Last := No_Index + Index_Type'Base (Length);
-- can occur.
Index := Int (Index_Type'First - 1) + Int (Length); -- Finally we test whether the value is within the range of the
-- generic actual index subtype:
if Last > Index_Type'Last then
raise Constraint_Error with "Length is out of range";
end if;
if Index > Int (Index_Type'Last) then elsif Index_Type'First <= 0 then
-- Here we can compute Last directly, in the normal way. We know that
-- No_Index is less than 0, so there is no danger of overflow when
-- adding the (positive) value of Length.
Index := Count_Type'Base (No_Index) + Length; -- Last
if Index > Count_Type'Base (Index_Type'Last) then
raise Constraint_Error with "Length is out of range"; raise Constraint_Error with "Length is out of range";
end if; end if;
-- We know that the computed value (having type Count_Type) of Last
-- is within the range of the generic actual index subtype, so it is
-- safe to convert to Index_Type:
Last := Index_Type'Base (Index);
else else
-- If Index_Type'First is within Length of Int'Last, then overflow -- Here Index_Type'First (and Index_Type'Last) is positive, so we
-- would occur if we simply computed Last directly. So instead of -- must test the length indirectly (by working backwards from the
-- computing Last, and then determining whether its value is greater -- largest possible value of Last), in order to prevent overflow.
-- than Index_Type'Last, we work backwards by computing the potential
-- First index value, and then checking whether that value is less Index := Count_Type'Base (Index_Type'Last) - Length; -- No_Index
-- than Index_Type'First.
Index := Int (Index_Type'Last) - Int (Length) + 1; if Index < Count_Type'Base (No_Index) then
if Index < Int (Index_Type'First) then
raise Constraint_Error with "Length is out of range"; raise Constraint_Error with "Length is out of range";
end if; end if;
-- We have determined that Length would not create a Last index value -- We have determined that the value of Length would not create a
-- outside of the range of Index_Type, so we can now safely compute -- Last index value outside of the range of Index_Type, so we can now
-- its value. -- safely compute its value.
Index := Int (Index_Type'First - 1) + Int (Length);
Last := Index_Type'Base (Count_Type'Base (No_Index) + Length);
end if; end if;
Last := Index_Type (Index);
Elements := new Elements_Type (Last); Elements := new Elements_Type (Last);
-- We use Last as the index of the loop used to populate the internal -- We use Last as the index of the loop used to populate the internal
-- array with items. In general, we prefer to initialize the loop index -- array with items. In general, we prefer to initialize the loop index
-- immediately prior to entering the loop. However, Last is also used in -- immediately prior to entering the loop. However, Last is also used in
-- the exception handler (it reclaims elements that have been allocated, -- the exception handler (to reclaim elements that have been allocated,
-- before propagating the exception), and the initialization of Last -- before propagating the exception), and the initialization of Last
-- after entering the block containing the handler confuses some static -- after entering the block containing the handler confuses some static
-- analysis tools, with respect to whether Last has been properly -- analysis tools, with respect to whether Last has been properly
......
...@@ -6,7 +6,7 @@ ...@@ -6,7 +6,7 @@
-- -- -- --
-- B o d y -- -- B o d y --
-- -- -- --
-- Copyright (C) 2004-2009, Free Software Foundation, Inc. -- -- Copyright (C) 2004-2010, Free Software Foundation, Inc. --
-- -- -- --
-- GNAT is free software; you can redistribute it and/or modify it under -- -- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- -- -- terms of the GNU General Public License as published by the Free Soft- --
...@@ -34,9 +34,6 @@ with System; use type System.Address; ...@@ -34,9 +34,6 @@ with System; use type System.Address;
package body Ada.Containers.Vectors is package body Ada.Containers.Vectors is
type Int is range System.Min_Int .. System.Max_Int;
type UInt is mod System.Max_Binary_Modulus;
procedure Free is procedure Free is
new Ada.Unchecked_Deallocation (Elements_Type, Elements_Access); new Ada.Unchecked_Deallocation (Elements_Type, Elements_Access);
...@@ -47,8 +44,20 @@ package body Ada.Containers.Vectors is ...@@ -47,8 +44,20 @@ package body Ada.Containers.Vectors is
function "&" (Left, Right : Vector) return Vector is function "&" (Left, Right : Vector) return Vector is
LN : constant Count_Type := Length (Left); LN : constant Count_Type := Length (Left);
RN : constant Count_Type := Length (Right); RN : constant Count_Type := Length (Right);
N : Count_Type'Base; -- length of result
J : Count_Type'Base; -- for computing intermediate index values
Last : Index_Type'Base; -- Last index of result
begin begin
-- We decide that the capacity of the result is the sum of the lengths
-- of the vector parameters. We could decide to make it larger, but we
-- have no basis for knowing how much larger, so we just allocate the
-- minimum amount of storage.
-- Here we handle the easy cases first, when one of the vector
-- parameters is empty. (We say "easy" because there's nothing to
-- compute, that can potentially overflow.)
if LN = 0 then if LN = 0 then
if RN = 0 then if RN = 0 then
return Empty_Vector; return Empty_Vector;
...@@ -80,65 +89,92 @@ package body Ada.Containers.Vectors is ...@@ -80,65 +89,92 @@ package body Ada.Containers.Vectors is
end if; end if;
declare -- Neither of the vector parameters is empty, so must compute the length
N : constant Int'Base := Int (LN) + Int (RN); -- of the result vector and its last index. (This is the harder case,
J : Int'Base; -- because our computations must avoid overflow.)
begin -- There are two constraints we need to satisfy. The first constraint is
-- There are two constraints we need to satisfy. The first constraint -- that a container cannot have more than Count_Type'Last elements, so
-- is that a container cannot have more than Count_Type'Last -- we must check the sum of the combined lengths. Note that we cannot
-- elements, so we must check the sum of the combined lengths. (It -- simply add the lengths, because of the possibilty of overflow.
-- would be rare for vectors to have such a large number of elements,
-- so we would normally expect this first check to succeed.) The
-- second constraint is that the new Last index value cannot exceed
-- Index_Type'Last.
if N > Count_Type'Pos (Count_Type'Last) then if LN > Count_Type'Last - RN then
raise Constraint_Error with "new length is out of range"; raise Constraint_Error with "new length is out of range";
end if; end if;
-- We now check whether the new length would create a Last index -- It is now safe compute the length of the new vector, without fear of
-- value greater than Index_Type'Last. This calculation requires -- overflow.
-- care, because overflow can occur when Index_Type'First is near the
-- end of the range of Int.
if Index_Type'First <= 0 then N := LN + RN;
-- Compute the potential Last index value in the normal way, using -- The second constraint is that the new Last index value cannot
-- Int as the type in which to perform intermediate -- exceed Index_Type'Last. We use the wider of Index_Type'Base and
-- calculations. Int is a 64-bit type, and Count_Type is a 32-bit -- Count_Type'Base as the type for intermediate values.
-- type, so no overflow can occur.
J := Int (Index_Type'First - 1) + N; if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
-- We perform a two-part test. First we determine whether the
-- computed Last value lies in the base range of the type, and then
-- determine whether it lies in the range of the index (sub)type.
if J > Int (Index_Type'Last) then -- Last must satisfy this relation:
-- First + Length - 1 <= Last
-- We regroup terms:
-- First - 1 <= Last - Length
-- Which can rewrite as:
-- No_Index <= Last - Length
if Index_Type'Base'Last - Index_Type'Base (N) < No_Index then
raise Constraint_Error with "new length is out of range"; raise Constraint_Error with "new length is out of range";
end if; end if;
-- We now know that the computed value of Last is within the base
-- range of the type, so it is safe to compute its value:
Last := No_Index + Index_Type'Base (N);
-- Finally we test whether the value is within the range of the
-- generic actual index subtype:
if Last > Index_Type'Last then
raise Constraint_Error with "new length is out of range";
end if;
elsif Index_Type'First <= 0 then
-- Here we can compute Last directly, in the normal way. We know that
-- No_Index is less than 0, so there is no danger of overflow when
-- adding the (positive) value of length.
J := Count_Type'Base (No_Index) + N; -- Last
if J > Count_Type'Base (Index_Type'Last) then
raise Constraint_Error with "new length is out of range";
end if;
-- We know that the computed value (having type Count_Type) of Last
-- is within the range of the generic actual index subtype, so it is
-- safe to convert to Index_Type:
Last := Index_Type'Base (J);
else else
-- If Index_Type'First is within N of Int'Last, then overflow -- Here Index_Type'First (and Index_Type'Last) is positive, so we
-- would occur if we simply computed Last directly. So instead of -- must test the length indirectly (by working backwards from the
-- computing Last, and then determining whether its value is -- largest possible value of Last), in order to prevent overflow.
-- greater than Index_Type'Last (as we do above), we work
-- backwards by computing the potential First index value, and
-- then checking whether that value is less than Index_Type'First.
J := Int (Index_Type'Last) - N + 1; J := Count_Type'Base (Index_Type'Last) - N; -- No_Index
if J < Int (Index_Type'First) then if J < Count_Type'Base (No_Index) then
raise Constraint_Error with "new length is out of range"; raise Constraint_Error with "new length is out of range";
end if; end if;
-- We have determined that Length would not create a Last index -- We have determined that the result length would not create a Last
-- value outside of the range of Index_Type, so we can now safely -- index value outside of the range of Index_Type, so we can now
-- compute its value. -- safely compute its value.
J := Int (Index_Type'First - 1) + N; Last := Index_Type'Base (Count_Type'Base (No_Index) + N);
end if; end if;
declare declare
Last : constant Index_Type := Index_Type (J);
LE : Elements_Array renames LE : Elements_Array renames
Left.Elements.EA (Index_Type'First .. Left.Last); Left.Elements.EA (Index_Type'First .. Left.Last);
...@@ -151,11 +187,18 @@ package body Ada.Containers.Vectors is ...@@ -151,11 +187,18 @@ package body Ada.Containers.Vectors is
begin begin
return (Controlled with Elements, Last, 0, 0); return (Controlled with Elements, Last, 0, 0);
end; end;
end;
end "&"; end "&";
function "&" (Left : Vector; Right : Element_Type) return Vector is function "&" (Left : Vector; Right : Element_Type) return Vector is
begin begin
-- We decide that the capacity of the result is the sum of the lengths
-- of the parameters. We could decide to make it larger, but we have no
-- basis for knowing how much larger, so we just allocate the minimum
-- amount of storage.
-- Here we handle the easy case first, when the vector parameter (Left)
-- is empty.
if Left.Is_Empty then if Left.Is_Empty then
declare declare
Elements : constant Elements_Access := Elements : constant Elements_Access :=
...@@ -168,8 +211,10 @@ package body Ada.Containers.Vectors is ...@@ -168,8 +211,10 @@ package body Ada.Containers.Vectors is
end; end;
end if; end if;
-- We must satisfy two constraints: the new length cannot exceed -- The vector parameter is not empty, so we must compute the length of
-- Count_Type'Last, and the new Last index cannot exceed -- the result vector and its last index, but in such a way that overflow
-- is avoided. We must satisfy two constraints: the new length cannot
-- exceed Count_Type'Last, and the new Last index cannot exceed
-- Index_Type'Last. -- Index_Type'Last.
if Left.Length = Count_Type'Last then if Left.Length = Count_Type'Last then
...@@ -198,6 +243,14 @@ package body Ada.Containers.Vectors is ...@@ -198,6 +243,14 @@ package body Ada.Containers.Vectors is
function "&" (Left : Element_Type; Right : Vector) return Vector is function "&" (Left : Element_Type; Right : Vector) return Vector is
begin begin
-- We decide that the capacity of the result is the sum of the lengths
-- of the parameters. We could decide to make it larger, but we have no
-- basis for knowing how much larger, so we just allocate the minimum
-- amount of storage.
-- Here we handle the easy case first, when the vector parameter (Right)
-- is empty.
if Right.Is_Empty then if Right.Is_Empty then
declare declare
Elements : constant Elements_Access := Elements : constant Elements_Access :=
...@@ -210,8 +263,10 @@ package body Ada.Containers.Vectors is ...@@ -210,8 +263,10 @@ package body Ada.Containers.Vectors is
end; end;
end if; end if;
-- We must satisfy two constraints: the new length cannot exceed -- The vector parameter is not empty, so we must compute the length of
-- Count_Type'Last, and the new Last index cannot exceed -- the result vector and its last index, but in such a way that overflow
-- is avoided. We must satisfy two constraints: the new length cannot
-- exceed Count_Type'Last, and the new Last index cannot exceed
-- Index_Type'Last. -- Index_Type'Last.
if Right.Length = Count_Type'Last then if Right.Length = Count_Type'Last then
...@@ -240,6 +295,17 @@ package body Ada.Containers.Vectors is ...@@ -240,6 +295,17 @@ package body Ada.Containers.Vectors is
function "&" (Left, Right : Element_Type) return Vector is function "&" (Left, Right : Element_Type) return Vector is
begin begin
-- We decide that the capacity of the result is the sum of the lengths
-- of the parameters. We could decide to make it larger, but we have no
-- basis for knowing how much larger, so we just allocate the minimum
-- amount of storage.
-- We must compute the length of the result vector and its last index,
-- but in such a way that overflow is avoided. We must satisfy two
-- constraints: the new length cannot exceed Count_Type'Last (here, we
-- know that that condition is satisfied), and the new Last index cannot
-- exceed Index_Type'Last.
if Index_Type'First >= Index_Type'Last then if Index_Type'First >= Index_Type'Last then
raise Constraint_Error with "new length is out of range"; raise Constraint_Error with "new length is out of range";
end if; end if;
...@@ -401,57 +467,118 @@ package body Ada.Containers.Vectors is ...@@ -401,57 +467,118 @@ package body Ada.Containers.Vectors is
Index : Extended_Index; Index : Extended_Index;
Count : Count_Type := 1) Count : Count_Type := 1)
is is
begin Old_Last : constant Index_Type'Base := Container.Last;
New_Last : Index_Type'Base;
Count2 : Count_Type'Base; -- count of items from Index to Old_Last
J : Index_Type'Base; -- first index of items that slide down
begin
-- Delete removes items from the vector, the number of which is the
-- minimum of the specified Count and the items (if any) that exist from
-- Index to Container.Last. There are no constraints on the specified
-- value of Count (it can be larger than what's available at this
-- position in the vector, for example), but there are constraints on
-- the allowed values of the Index.
-- As a precondition on the generic actual Index_Type, the base type
-- must include Index_Type'Pred (Index_Type'First); this is the value
-- that Container.Last assumes when the vector is empty. However, we do
-- not allow that as the value for Index when specifying which items
-- should be deleted, so we must manually check. (That the user is
-- allowed to specify the value at all here is a consequence of the
-- declaration of the Extended_Index subtype, which includes the values
-- in the base range that immediately precede and immediately follow the
-- values in the Index_Type.)
if Index < Index_Type'First then if Index < Index_Type'First then
raise Constraint_Error with "Index is out of range (too small)"; raise Constraint_Error with "Index is out of range (too small)";
end if; end if;
if Index > Container.Last then -- We do allow a value greater than Container.Last to be specified as
if Index > Container.Last + 1 then -- the Index, but only if it's immediately greater. This allows the
-- corner case of deleting no items from the back end of the vector to
-- be treated as a no-op. (It is assumed that specifying an index value
-- greater than Last + 1 indicates some deeper flaw in the caller's
-- algorithm, so that case is treated as a proper error.)
if Index > Old_Last then
if Index > Old_Last + 1 then
raise Constraint_Error with "Index is out of range (too large)"; raise Constraint_Error with "Index is out of range (too large)";
end if; end if;
return; return;
end if; end if;
-- Here and elsewhere we treat deleting 0 items from the container as a
-- no-op, even when the container is busy, so we simply return.
if Count = 0 then if Count = 0 then
return; return;
end if; end if;
-- The tampering bits exist to prevent an item from being deleted (or
-- otherwise harmfully manipulated) while it is being visited. Query,
-- Update, and Iterate increment the busy count on entry, and decrement
-- the count on exit. Delete checks the count to determine whether it is
-- being called while the associated callback procedure is executing.
if Container.Busy > 0 then if Container.Busy > 0 then
raise Program_Error with raise Program_Error with
"attempt to tamper with elements (vector is busy)"; "attempt to tamper with elements (vector is busy)";
end if; end if;
declare -- We first calculate what's available for deletion starting at
I_As_Int : constant Int := Int (Index); -- Index. Here and elsewhere we use the wider of Index_Type'Base and
Old_Last_As_Int : constant Int := Index_Type'Pos (Container.Last); -- Count_Type'Base as the type for intermediate values. (See function
-- Length for more information.)
Count1 : constant Int'Base := Count_Type'Pos (Count); if Count_Type'Base'Last >= Index_Type'Pos (Index_Type'Base'Last) then
Count2 : constant Int'Base := Old_Last_As_Int - I_As_Int + 1; Count2 := Count_Type'Base (Old_Last) - Count_Type'Base (Index) + 1;
N : constant Int'Base := Int'Min (Count1, Count2);
J_As_Int : constant Int'Base := I_As_Int + N; else
Count2 := Count_Type'Base (Old_Last - Index + 1);
end if;
begin -- If more elements are requested (Count) for deletion than are
if J_As_Int > Old_Last_As_Int then -- available (Count2) for deletion beginning at Index, then everything
-- from Index is deleted. There are no elements to slide down, and so
-- all we need to do is set the value of Container.Last.
if Count >= Count2 then
Container.Last := Index - 1; Container.Last := Index - 1;
return;
end if;
-- There are some elements aren't being deleted (the requested count was
-- less than the available count), so we must slide them down to
-- Index. We first calculate the index values of the respective array
-- slices, using the wider of Index_Type'Base and Count_Type'Base as the
-- type for intermediate calculations. For the elements that slide down,
-- index value New_Last is the last index value of their new home, and
-- index value J is the first index of their old home.
if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
New_Last := Old_Last - Index_Type'Base (Count);
J := Index + Index_Type'Base (Count);
else else
New_Last := Index_Type'Base (Count_Type'Base (Old_Last) - Count);
J := Index_Type'Base (Count_Type'Base (Index) + Count);
end if;
-- The internal elements array isn't guaranteed to exist unless we have
-- elements, but we have that guarantee here because we know we have
-- elements to slide. The array index values for each slice have
-- already been determined, so we just slide down to Index the elements
-- that weren't deleted.
declare declare
J : constant Index_Type := Index_Type (J_As_Int);
EA : Elements_Array renames Container.Elements.EA; EA : Elements_Array renames Container.Elements.EA;
New_Last_As_Int : constant Int'Base := Old_Last_As_Int - N;
New_Last : constant Index_Type :=
Index_Type (New_Last_As_Int);
begin begin
EA (Index .. New_Last) := EA (J .. Container.Last); EA (Index .. New_Last) := EA (J .. Old_Last);
Container.Last := New_Last; Container.Last := New_Last;
end; end;
end if;
end;
end Delete; end Delete;
procedure Delete procedure Delete
...@@ -507,24 +634,47 @@ package body Ada.Containers.Vectors is ...@@ -507,24 +634,47 @@ package body Ada.Containers.Vectors is
(Container : in out Vector; (Container : in out Vector;
Count : Count_Type := 1) Count : Count_Type := 1)
is is
Index : Int'Base;
begin begin
-- It is not permitted to delete items while the container is busy (for
-- example, we're in the middle of a passive iteration). However, we
-- always treat deleting 0 items as a no-op, even when we're busy, so we
-- simply return without checking.
if Count = 0 then if Count = 0 then
return; return;
end if; end if;
-- The tampering bits exist to prevent an item from being deleted (or
-- otherwise harmfully manipulated) while it is being visited. Query,
-- Update, and Iterate increment the busy count on entry, and decrement
-- the count on exit. Delete_Last checks the count to determine whether
-- it is being called while the associated callback procedure is
-- executing.
if Container.Busy > 0 then if Container.Busy > 0 then
raise Program_Error with raise Program_Error with
"attempt to tamper with elements (vector is busy)"; "attempt to tamper with elements (vector is busy)";
end if; end if;
-- There is no restriction on how large Count can be when deleting
-- items. If it is equal or greater than the current length, then this
-- is equivalent to clearing the vector. (In particular, there's no need
-- for us to actually calculate the new value for Last.)
-- If the requested count is less than the current length, then we must
-- calculate the new value for Last. For the type we use the widest of
-- Index_Type'Base and Count_Type'Base for the intermediate values of
-- our calculation. (See the comments in Length for more information.)
if Count >= Container.Length then if Count >= Container.Length then
Container.Last := No_Index; Container.Last := No_Index;
elsif Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
Container.Last := Container.Last - Index_Type'Base (Count);
else else
Index := Int (Container.Last) - Int (Count); Container.Last :=
Container.Last := Index_Type (Index); Index_Type'Base (Count_Type'Base (Container.Last) - Count);
end if; end if;
end Delete_Last; end Delete_Last;
...@@ -804,22 +954,42 @@ package body Ada.Containers.Vectors is ...@@ -804,22 +954,42 @@ package body Ada.Containers.Vectors is
New_Item : Element_Type; New_Item : Element_Type;
Count : Count_Type := 1) Count : Count_Type := 1)
is is
N : constant Int := Count_Type'Pos (Count); Old_Length : constant Count_Type := Container.Length;
Max_Length : Count_Type'Base; -- determined from range of Index_Type
New_Length : Count_Type'Base; -- sum of current length and Count
New_Last : Index_Type'Base; -- last index of vector after insertion
First : constant Int := Int (Index_Type'First); Index : Index_Type'Base; -- scratch for intermediate values
New_Last_As_Int : Int'Base; J : Count_Type'Base; -- scratch
New_Last : Index_Type;
New_Length : UInt;
Max_Length : constant UInt := UInt (Count_Type'Last);
Dst : Elements_Access; New_Capacity : Count_Type'Base; -- length of new, expanded array
Dst_Last : Index_Type'Base; -- last index of new, expanded array
Dst : Elements_Access; -- new, expanded internal array
begin begin
-- As a precondition on the generic actual Index_Type, the base type
-- must include Index_Type'Pred (Index_Type'First); this is the value
-- that Container.Last assumes when the vector is empty. However, we do
-- not allow that as the value for Index when specifying where the new
-- items should be inserted, so we must manually check. (That the user
-- is allowed to specify the value at all here is a consequence of the
-- declaration of the Extended_Index subtype, which includes the values
-- in the base range that immediately precede and immediately follow the
-- values in the Index_Type.)
if Before < Index_Type'First then if Before < Index_Type'First then
raise Constraint_Error with raise Constraint_Error with
"Before index is out of range (too small)"; "Before index is out of range (too small)";
end if; end if;
-- We do allow a value greater than Container.Last to be specified as
-- the Index, but only if it's immediately greater. This allows for the
-- case of appending items to the back end of the vector. (It is assumed
-- that specifying an index value greater than Last + 1 indicates some
-- deeper flaw in the caller's algorithm, so that case is treated as a
-- proper error.)
if Before > Container.Last if Before > Container.Last
and then Before > Container.Last + 1 and then Before > Container.Last + 1
then then
...@@ -827,67 +997,192 @@ package body Ada.Containers.Vectors is ...@@ -827,67 +997,192 @@ package body Ada.Containers.Vectors is
"Before index is out of range (too large)"; "Before index is out of range (too large)";
end if; end if;
-- We treat inserting 0 items into the container as a no-op, even when
-- the container is busy, so we simply return.
if Count = 0 then if Count = 0 then
return; return;
end if; end if;
declare -- There are two constraints we need to satisfy. The first constraint is
Old_Last_As_Int : constant Int := Int (Container.Last); -- that a container cannot have more than Count_Type'Last elements, so
-- we must check the sum of the current length and the insertion
-- count. Note that we cannot simply add these values, because of the
-- possibilty of overflow.
begin if Old_Length > Count_Type'Last - Count then
if Old_Last_As_Int > Int'Last - N then raise Constraint_Error with "Count is out of range";
raise Constraint_Error with "new length is out of range";
end if; end if;
New_Last_As_Int := Old_Last_As_Int + N; -- It is now safe compute the length of the new vector, without fear of
-- overflow.
if New_Last_As_Int > Int (Index_Type'Last) then New_Length := Old_Length + Count;
raise Constraint_Error with "new length is out of range";
-- The second constraint is that the new Last index value cannot exceed
-- Index_Type'Last. In each branch below, we calculate the maximum
-- length (computed from the range of values in Index_Type), and then
-- compare the new length to the maximum length. If the new length is
-- acceptable, then we compute the new last index from that.
if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
-- We have to handle the case when there might be more values in the
-- range of Index_Type than in the range of Count_Type.
if Index_Type'First <= 0 then
-- We know that No_Index (the same as Index_Type'First - 1) is
-- less than 0, so it is safe to compute the following sum without
-- fear of overflow.
Index := No_Index + Index_Type'Base (Count_Type'Last);
if Index <= Index_Type'Last then
-- We have determined that range of Index_Type has at least as
-- many values as in Count_Type, so Count_Type'Last is the
-- maximum number of items that are allowed.
Max_Length := Count_Type'Last;
else
-- The range of Index_Type has fewer values than in Count_Type,
-- so the maximum number of items is computed from the range of
-- the Index_Type.
Max_Length := Count_Type'Base (Index_Type'Last - No_Index);
end if; end if;
New_Length := UInt (New_Last_As_Int - First + Int'(1)); else
-- No_Index is equal or greater than 0, so we can safely compute
-- the difference without fear of overflow (which we would have to
-- worry about if No_Index were less than 0, but that case is
-- handled above).
Max_Length := Count_Type'Base (Index_Type'Last - No_Index);
end if;
elsif Index_Type'First <= 0 then
-- We know that No_Index (the same as Index_Type'First - 1) is less
-- than 0, so it is safe to compute the following sum without fear of
-- overflow.
J := Count_Type'Base (No_Index) + Count_Type'Last;
if J <= Count_Type'Base (Index_Type'Last) then
-- We have determined that range of Index_Type has at least as
-- many values as in Count_Type, so Count_Type'Last is the maximum
-- number of items that are allowed.
Max_Length := Count_Type'Last;
else
-- The range of Index_Type has fewer values than Count_Type does,
-- so the maximum number of items is computed from the range of
-- the Index_Type.
Max_Length :=
Count_Type'Base (Index_Type'Last) - Count_Type'Base (No_Index);
end if;
else
-- No_Index is equal or greater than 0, so we can safely compute the
-- difference without fear of overflow (which we would have to worry
-- about if No_Index were less than 0, but that case is handled
-- above).
Max_Length :=
Count_Type'Base (Index_Type'Last) - Count_Type'Base (No_Index);
end if;
-- We have just computed the maximum length (number of items). We must
-- now compare the requested length to the maximum length, as we do not
-- allow a vector expand beyond the maximum (because that would create
-- an internal array with a last index value greater than
-- Index_Type'Last, with no way to index those elements).
if New_Length > Max_Length then if New_Length > Max_Length then
raise Constraint_Error with "new length is out of range"; raise Constraint_Error with "Count is out of range";
end if; end if;
New_Last := Index_Type (New_Last_As_Int); -- New_Last is the last index value of the items in the container after
end; -- insertion. Use the wider of Index_Type'Base and Count_Type'Base to
-- compute its value from the New_Length.
if Container.Busy > 0 then if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
raise Program_Error with New_Last := No_Index + Index_Type'Base (New_Length);
"attempt to tamper with elements (vector is busy)";
else
New_Last := Index_Type'Base (Count_Type'Base (No_Index) + New_Length);
end if; end if;
if Container.Elements = null then if Container.Elements = null then
pragma Assert (Container.Last = No_Index);
-- This is the simplest case, with which we must always begin: we're
-- inserting items into an empty vector that hasn't allocated an
-- internal array yet. Note that we don't need to check the busy bit
-- here, because an empty container cannot be busy.
-- In order to preserve container invariants, we allocate the new
-- internal array first, before setting the Last index value, in case
-- the allocation fails (which can happen either because there is no
-- storage available, or because element initialization fails).
Container.Elements := new Elements_Type' Container.Elements := new Elements_Type'
(Last => New_Last, (Last => New_Last,
EA => (others => New_Item)); EA => (others => New_Item));
-- The allocation of the new, internal array succeeded, so it is now
-- safe to update the Last index, restoring container invariants.
Container.Last := New_Last; Container.Last := New_Last;
return; return;
end if; end if;
if New_Last <= Container.Elements.Last then -- The tampering bits exist to prevent an item from being harmfully
-- manipulated while it is being visited. Query, Update, and Iterate
-- increment the busy count on entry, and decrement the count on
-- exit. Insert checks the count to determine whether it is being called
-- while the associated callback procedure is executing.
if Container.Busy > 0 then
raise Program_Error with
"attempt to tamper with elements (vector is busy)";
end if;
-- An internal array has already been allocated, so we must determine
-- whether there is enough unused storage for the new items.
if New_Length <= Container.Elements.EA'Length then
-- In this case, we're inserting elements into a vector that has
-- already allocated an internal array, and the existing array has
-- enough unused storage for the new items.
declare declare
EA : Elements_Array renames Container.Elements.EA; EA : Elements_Array renames Container.Elements.EA;
begin begin
if Before <= Container.Last then if Before > Container.Last then
declare -- The new items are being appended to the vector, so no
Index_As_Int : constant Int'Base := -- sliding of existing elements is required.
Index_Type'Pos (Before) + N;
Index : constant Index_Type := Index_Type (Index_As_Int); EA (Before .. New_Last) := (others => New_Item);
begin else
EA (Index .. New_Last) := EA (Before .. Container.Last); -- The new items are being inserted before some existing
-- elements, so we must slide the existing elements up to their
-- new home. We use the wider of Index_Type'Base and
-- Count_Type'Base as the type for intermediate index values.
EA (Before .. Index_Type'Pred (Index)) := if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
(others => New_Item); Index := Before + Index_Type'Base (Count);
end;
else else
EA (Before .. New_Last) := (others => New_Item); Index := Index_Type'Base (Count_Type'Base (Before) + Count);
end if;
EA (Index .. New_Last) := EA (Before .. Container.Last);
EA (Before .. Index - 1) := (others => New_Item);
end if; end if;
end; end;
...@@ -895,67 +1190,79 @@ package body Ada.Containers.Vectors is ...@@ -895,67 +1190,79 @@ package body Ada.Containers.Vectors is
return; return;
end if; end if;
declare -- In this case, we're inserting elements into a vector that has already
C, CC : UInt; -- allocated an internal array, but the existing array does not have
-- enough storage, so we must allocate a new, longer array. In order to
-- guarantee that the amortized insertion cost is O(1), we always
-- allocate an array whose length is some power-of-two factor of the
-- current array length. (The new array cannot have a length less than
-- the New_Length of the container, but its last index value cannot be
-- greater than Index_Type'Last.)
begin New_Capacity := Count_Type'Max (1, Container.Elements.EA'Length);
C := UInt'Max (1, Container.Elements.EA'Length); -- ??? while New_Capacity < New_Length loop
while C < New_Length loop if New_Capacity > Count_Type'Last / 2 then
if C > UInt'Last / 2 then New_Capacity := Count_Type'Last;
C := UInt'Last;
exit; exit;
end if; end if;
C := 2 * C; New_Capacity := 2 * New_Capacity;
end loop; end loop;
if C > Max_Length then if New_Capacity > Max_Length then
C := Max_Length; -- We have reached the limit of capacity, so no further expansion
-- will occur. (This is not a problem, as there is never a need to
-- have more capacity than the maximum container length.)
New_Capacity := Max_Length;
end if; end if;
if Index_Type'First <= 0 -- We have computed the length of the new internal array (and this is
and then Index_Type'Last >= 0 -- what "vector capacity" means), so use that to compute its last index.
then
CC := UInt (Index_Type'Last) + UInt (-Index_Type'First) + 1; if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
Dst_Last := No_Index + Index_Type'Base (New_Capacity);
else else
CC := UInt (Int (Index_Type'Last) - First + 1); Dst_Last :=
Index_Type'Base (Count_Type'Base (No_Index) + New_Capacity);
end if; end if;
if C > CC then -- Now we allocate the new, longer internal array. If the allocation
C := CC; -- fails, we have not changed any container state, so no side-effect
end if; -- will occur as a result of propagating the exception.
declare
Dst_Last : constant Index_Type :=
Index_Type (First + UInt'Pos (C) - 1);
begin
Dst := new Elements_Type (Dst_Last); Dst := new Elements_Type (Dst_Last);
end;
end; -- We have our new internal array. All that needs to be done now is to
-- copy the existing items (if any) from the old array (the "source"
-- array, object SA below) to the new array (the "destination" array,
-- object DA below), and then deallocate the old array.
declare declare
SA : Elements_Array renames Container.Elements.EA; SA : Elements_Array renames Container.Elements.EA; -- source
DA : Elements_Array renames Dst.EA; DA : Elements_Array renames Dst.EA; -- destination
begin begin
DA (Index_Type'First .. Index_Type'Pred (Before)) := DA (Index_Type'First .. Before - 1) :=
SA (Index_Type'First .. Index_Type'Pred (Before)); SA (Index_Type'First .. Before - 1);
if Before <= Container.Last then if Before > Container.Last then
declare DA (Before .. New_Last) := (others => New_Item);
Index_As_Int : constant Int'Base :=
Index_Type'Pos (Before) + N;
Index : constant Index_Type := Index_Type (Index_As_Int); else
-- The new items are being inserted before some existing elements,
-- so we must slide the existing elements up to their new home.
begin if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
DA (Before .. Index_Type'Pred (Index)) := (others => New_Item); Index := Before + Index_Type'Base (Count);
DA (Index .. New_Last) := SA (Before .. Container.Last);
end;
else else
DA (Before .. New_Last) := (others => New_Item); Index := Index_Type'Base (Count_Type'Base (Before) + Count);
end if;
DA (Before .. Index - 1) := (others => New_Item);
DA (Index .. New_Last) := SA (Before .. Container.Last);
end if; end if;
exception exception
when others => when others =>
...@@ -963,11 +1270,23 @@ package body Ada.Containers.Vectors is ...@@ -963,11 +1270,23 @@ package body Ada.Containers.Vectors is
raise; raise;
end; end;
-- We have successfully copied the items onto the new array, so the
-- final thing to do is deallocate the old array.
declare declare
X : Elements_Access := Container.Elements; X : Elements_Access := Container.Elements;
begin begin
-- We first isolate the old internal array, removing it from the
-- container and replacing it with the new internal array, before we
-- deallocate the old array (which can fail if finalization of
-- elements propagates an exception).
Container.Elements := Dst; Container.Elements := Dst;
Container.Last := New_Last; Container.Last := New_Last;
-- The container invariants have been restored, so it is now safe to
-- attempt to deallocate the old array.
Free (X); Free (X);
end; end;
end Insert; end Insert;
...@@ -978,83 +1297,118 @@ package body Ada.Containers.Vectors is ...@@ -978,83 +1297,118 @@ package body Ada.Containers.Vectors is
New_Item : Vector) New_Item : Vector)
is is
N : constant Count_Type := Length (New_Item); N : constant Count_Type := Length (New_Item);
J : Index_Type'Base;
begin begin
if Before < Index_Type'First then -- Use Insert_Space to create the "hole" (the destination slice) into
raise Constraint_Error with -- which we copy the source items.
"Before index is out of range (too small)";
end if;
if Before > Container.Last Insert_Space (Container, Before, Count => N);
and then Before > Container.Last + 1
then
raise Constraint_Error with
"Before index is out of range (too large)";
end if;
if N = 0 then if N = 0 then
-- There's nothing else to do here (vetting of parameters was
-- performed already in Insert_Space), so we simply return.
return; return;
end if; end if;
Insert_Space (Container, Before, Count => N); -- We calculate the last index value of the destination slice using the
-- wider of Index_Type'Base and count_Type'Base.
declare if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
Dst_Last_As_Int : constant Int'Base := J := (Before - 1) + Index_Type'Base (N);
Int'Base (Before) + Int'Base (N) - 1;
Dst_Last : constant Index_Type := Index_Type (Dst_Last_As_Int); else
J := Index_Type'Base (Count_Type'Base (Before - 1) + N);
end if;
begin
if Container'Address /= New_Item'Address then if Container'Address /= New_Item'Address then
Container.Elements.EA (Before .. Dst_Last) := -- This is the simple case. New_Item denotes an object different
-- from Container, so there's nothing special we need to do to copy
-- the source items to their destination, because all of the source
-- items are contiguous.
Container.Elements.EA (Before .. J) :=
New_Item.Elements.EA (Index_Type'First .. New_Item.Last); New_Item.Elements.EA (Index_Type'First .. New_Item.Last);
return; return;
end if; end if;
-- New_Item denotes the same object as Container, so an insertion has
-- potentially split the source items. The destination is always the
-- range [Before, J], but the source is [Index_Type'First, Before) and
-- (J, Container.Last]. We perform the copy in two steps, using each of
-- the two slices of the source items.
declare declare
L : constant Index_Type'Base := Before - 1;
subtype Src_Index_Subtype is Index_Type'Base range subtype Src_Index_Subtype is Index_Type'Base range
Index_Type'First .. Before - 1; Index_Type'First .. L;
Src : Elements_Array renames Src : Elements_Array renames
Container.Elements.EA (Src_Index_Subtype); Container.Elements.EA (Src_Index_Subtype);
Index_As_Int : constant Int'Base := K : Index_Type'Base;
Int (Before) + Src'Length - 1;
Index : constant Index_Type'Base := begin
Index_Type'Base (Index_As_Int); -- We first copy the source items that precede the space we
-- inserted. Index value K is the last index of that portion
-- destination that receives this slice of the source. (If Before
-- equals Index_Type'First, then this first source slice will be
-- empty, which is harmless.)
Dst : Elements_Array renames if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
Container.Elements.EA (Before .. Index); K := L + Index_Type'Base (Src'Length);
begin else
Dst := Src; K := Index_Type'Base (Count_Type'Base (L) + Src'Length);
end; end if;
Container.Elements.EA (Before .. K) := Src;
if Src'Length = N then
-- The new items were effectively appended to the container, so we
-- have already copied all of the items that need to be copied.
-- We return early here, even though the source slice below is
-- empty (so the assignment would be harmless), because we want to
-- avoid computing J + 1, which will overflow if J equals
-- Index_Type'Base'Last.
if Dst_Last = Container.Last then
return; return;
end if; end if;
end;
declare declare
-- Note that we want to avoid computing J + 1 here, in case J equals
-- Index_Type'Base'Last. We prevent that by returning early above,
-- immediately after copying the first slice of the source, and
-- determining that this second slice of the source is empty.
F : constant Index_Type'Base := J + 1;
subtype Src_Index_Subtype is Index_Type'Base range subtype Src_Index_Subtype is Index_Type'Base range
Dst_Last + 1 .. Container.Last; F .. Container.Last;
Src : Elements_Array renames Src : Elements_Array renames
Container.Elements.EA (Src_Index_Subtype); Container.Elements.EA (Src_Index_Subtype);
Index_As_Int : constant Int'Base := K : Index_Type'Base;
Dst_Last_As_Int - Src'Length + 1;
Index : constant Index_Type := begin
Index_Type (Index_As_Int); -- We next copy the source items that follow the space we
-- inserted. Index value K is the first index of that portion of the
-- destination that receives this slice of the source. (For the
-- reasons given above, this slice is guaranteed to be non-empty.)
Dst : Elements_Array renames if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
Container.Elements.EA (Index .. Dst_Last); K := F - Index_Type'Base (Src'Length);
begin else
Dst := Src; K := Index_Type'Base (Count_Type'Base (F) - Src'Length);
end; end if;
Container.Elements.EA (K .. J) := Src;
end; end;
end Insert; end Insert;
...@@ -1256,22 +1610,42 @@ package body Ada.Containers.Vectors is ...@@ -1256,22 +1610,42 @@ package body Ada.Containers.Vectors is
Before : Extended_Index; Before : Extended_Index;
Count : Count_Type := 1) Count : Count_Type := 1)
is is
N : constant Int := Count_Type'Pos (Count); Old_Length : constant Count_Type := Container.Length;
Max_Length : Count_Type'Base; -- determined from range of Index_Type
New_Length : Count_Type'Base; -- sum of current length and Count
New_Last : Index_Type'Base; -- last index of vector after insertion
First : constant Int := Int (Index_Type'First); Index : Index_Type'Base; -- scratch for intermediate values
New_Last_As_Int : Int'Base; J : Count_Type'Base; -- scratch
New_Last : Index_Type;
New_Length : UInt;
Max_Length : constant UInt := UInt (Count_Type'Last);
Dst : Elements_Access; New_Capacity : Count_Type'Base; -- length of new, expanded array
Dst_Last : Index_Type'Base; -- last index of new, expanded array
Dst : Elements_Access; -- new, expanded internal array
begin begin
-- As a precondition on the generic actual Index_Type, the base type
-- must include Index_Type'Pred (Index_Type'First); this is the value
-- that Container.Last assumes when the vector is empty. However, we do
-- not allow that as the value for Index when specifying where the new
-- items should be inserted, so we must manually check. (That the user
-- is allowed to specify the value at all here is a consequence of the
-- declaration of the Extended_Index subtype, which includes the values
-- in the base range that immediately precede and immediately follow the
-- values in the Index_Type.)
if Before < Index_Type'First then if Before < Index_Type'First then
raise Constraint_Error with raise Constraint_Error with
"Before index is out of range (too small)"; "Before index is out of range (too small)";
end if; end if;
-- We do allow a value greater than Container.Last to be specified as
-- the Index, but only if it's immediately greater. This allows for the
-- case of appending items to the back end of the vector. (It is assumed
-- that specifying an index value greater than Last + 1 indicates some
-- deeper flaw in the caller's algorithm, so that case is treated as a
-- proper error.)
if Before > Container.Last if Before > Container.Last
and then Before > Container.Last + 1 and then Before > Container.Last + 1
then then
...@@ -1279,58 +1653,184 @@ package body Ada.Containers.Vectors is ...@@ -1279,58 +1653,184 @@ package body Ada.Containers.Vectors is
"Before index is out of range (too large)"; "Before index is out of range (too large)";
end if; end if;
-- We treat inserting 0 items into the container as a no-op, even when
-- the container is busy, so we simply return.
if Count = 0 then if Count = 0 then
return; return;
end if; end if;
declare -- There are two constraints we need to satisfy. The first constraint is
Old_Last_As_Int : constant Int := Int (Container.Last); -- that a container cannot have more than Count_Type'Last elements, so
-- we must check the sum of the current length and the insertion
-- count. Note that we cannot simply add these values, because of the
-- possibilty of overflow.
begin if Old_Length > Count_Type'Last - Count then
if Old_Last_As_Int > Int'Last - N then raise Constraint_Error with "Count is out of range";
raise Constraint_Error with "new length is out of range";
end if; end if;
New_Last_As_Int := Old_Last_As_Int + N; -- It is now safe compute the length of the new vector, without fear of
-- overflow.
if New_Last_As_Int > Int (Index_Type'Last) then New_Length := Old_Length + Count;
raise Constraint_Error with "new length is out of range";
-- The second constraint is that the new Last index value cannot exceed
-- Index_Type'Last. In each branch below, we calculate the maximum
-- length (computed from the range of values in Index_Type), and then
-- compare the new length to the maximum length. If the new length is
-- acceptable, then we compute the new last index from that.
if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
-- We have to handle the case when there might be more values in the
-- range of Index_Type than in the range of Count_Type.
if Index_Type'First <= 0 then
-- We know that No_Index (the same as Index_Type'First - 1) is
-- less than 0, so it is safe to compute the following sum without
-- fear of overflow.
Index := No_Index + Index_Type'Base (Count_Type'Last);
if Index <= Index_Type'Last then
-- We have determined that range of Index_Type has at least as
-- many values as in Count_Type, so Count_Type'Last is the
-- maximum number of items that are allowed.
Max_Length := Count_Type'Last;
else
-- The range of Index_Type has fewer values than in Count_Type,
-- so the maximum number of items is computed from the range of
-- the Index_Type.
Max_Length := Count_Type'Base (Index_Type'Last - No_Index);
end if;
else
-- No_Index is equal or greater than 0, so we can safely compute
-- the difference without fear of overflow (which we would have to
-- worry about if No_Index were less than 0, but that case is
-- handled above).
Max_Length := Count_Type'Base (Index_Type'Last - No_Index);
end if; end if;
New_Length := UInt (New_Last_As_Int - First + Int'(1)); elsif Index_Type'First <= 0 then
-- We know that No_Index (the same as Index_Type'First - 1) is less
-- than 0, so it is safe to compute the following sum without fear of
-- overflow.
J := Count_Type'Base (No_Index) + Count_Type'Last;
if J <= Count_Type'Base (Index_Type'Last) then
-- We have determined that range of Index_Type has at least as
-- many values as in Count_Type, so Count_Type'Last is the maximum
-- number of items that are allowed.
Max_Length := Count_Type'Last;
else
-- The range of Index_Type has fewer values than Count_Type does,
-- so the maximum number of items is computed from the range of
-- the Index_Type.
Max_Length :=
Count_Type'Base (Index_Type'Last) - Count_Type'Base (No_Index);
end if;
else
-- No_Index is equal or greater than 0, so we can safely compute the
-- difference without fear of overflow (which we would have to worry
-- about if No_Index were less than 0, but that case is handled
-- above).
Max_Length :=
Count_Type'Base (Index_Type'Last) - Count_Type'Base (No_Index);
end if;
-- We have just computed the maximum length (number of items). We must
-- now compare the requested length to the maximum length, as we do not
-- allow a vector expand beyond the maximum (because that would create
-- an internal array with a last index value greater than
-- Index_Type'Last, with no way to index those elements).
if New_Length > Max_Length then if New_Length > Max_Length then
raise Constraint_Error with "new length is out of range"; raise Constraint_Error with "Count is out of range";
end if; end if;
New_Last := Index_Type (New_Last_As_Int); -- New_Last is the last index value of the items in the container after
end; -- insertion. Use the wider of Index_Type'Base and Count_Type'Base to
-- compute its value from the New_Length.
if Container.Busy > 0 then if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
raise Program_Error with New_Last := No_Index + Index_Type'Base (New_Length);
"attempt to tamper with elements (vector is busy)";
else
New_Last := Index_Type'Base (Count_Type'Base (No_Index) + New_Length);
end if; end if;
if Container.Elements = null then if Container.Elements = null then
pragma Assert (Container.Last = No_Index);
-- This is the simplest case, with which we must always begin: we're
-- inserting items into an empty vector that hasn't allocated an
-- internal array yet. Note that we don't need to check the busy bit
-- here, because an empty container cannot be busy.
-- In order to preserve container invariants, we allocate the new
-- internal array first, before setting the Last index value, in case
-- the allocation fails (which can happen either because there is no
-- storage available, or because default-valued element
-- initialization fails).
Container.Elements := new Elements_Type (New_Last); Container.Elements := new Elements_Type (New_Last);
-- The allocation of the new, internal array succeeded, so it is now
-- safe to update the Last index, restoring container invariants.
Container.Last := New_Last; Container.Last := New_Last;
return; return;
end if; end if;
-- The tampering bits exist to prevent an item from being harmfully
-- manipulated while it is being visited. Query, Update, and Iterate
-- increment the busy count on entry, and decrement the count on
-- exit. Insert checks the count to determine whether it is being called
-- while the associated callback procedure is executing.
if Container.Busy > 0 then
raise Program_Error with
"attempt to tamper with elements (vector is busy)";
end if;
-- An internal array has already been allocated, so we must determine
-- whether there is enough unused storage for the new items.
if New_Last <= Container.Elements.Last then if New_Last <= Container.Elements.Last then
-- In this case, we're inserting space into a vector that has already
-- allocated an internal array, and the existing array has enough
-- unused storage for the new items.
declare declare
EA : Elements_Array renames Container.Elements.EA; EA : Elements_Array renames Container.Elements.EA;
begin begin
if Before <= Container.Last then if Before <= Container.Last then
declare -- The space is being inserted before some existing elements,
Index_As_Int : constant Int'Base := -- so we must slide the existing elements up to their new
Index_Type'Pos (Before) + N; -- home. We use the wider of Index_Type'Base and
-- Count_Type'Base as the type for intermediate index values.
Index : constant Index_Type := Index_Type (Index_As_Int); if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
Index := Before + Index_Type'Base (Count);
else
Index := Index_Type'Base (Count_Type'Base (Before) + Count);
end if;
begin
EA (Index .. New_Last) := EA (Before .. Container.Last); EA (Index .. New_Last) := EA (Before .. Container.Last);
end;
end if; end if;
end; end;
...@@ -1338,63 +1838,75 @@ package body Ada.Containers.Vectors is ...@@ -1338,63 +1838,75 @@ package body Ada.Containers.Vectors is
return; return;
end if; end if;
declare -- In this case, we're inserting space into a vector that has already
C, CC : UInt; -- allocated an internal array, but the existing array does not have
-- enough storage, so we must allocate a new, longer array. In order to
-- guarantee that the amortized insertion cost is O(1), we always
-- allocate an array whose length is some power-of-two factor of the
-- current array length. (The new array cannot have a length less than
-- the New_Length of the container, but its last index value cannot be
-- greater than Index_Type'Last.)
begin New_Capacity := Count_Type'Max (1, Container.Elements.EA'Length);
C := UInt'Max (1, Container.Elements.EA'Length); -- ??? while New_Capacity < New_Length loop
while C < New_Length loop if New_Capacity > Count_Type'Last / 2 then
if C > UInt'Last / 2 then New_Capacity := Count_Type'Last;
C := UInt'Last;
exit; exit;
end if; end if;
C := 2 * C; New_Capacity := 2 * New_Capacity;
end loop; end loop;
if C > Max_Length then if New_Capacity > Max_Length then
C := Max_Length; -- We have reached the limit of capacity, so no further expansion
end if; -- will occur. (This is not a problem, as there is never a need to
-- have more capacity than the maximum container length.)
if Index_Type'First <= 0 New_Capacity := Max_Length;
and then Index_Type'Last >= 0
then
CC := UInt (Index_Type'Last) + UInt (-Index_Type'First) + 1;
else
CC := UInt (Int (Index_Type'Last) - First + 1);
end if; end if;
if C > CC then -- We have computed the length of the new internal array (and this is
C := CC; -- what "vector capacity" means), so use that to compute its last index.
if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
Dst_Last := No_Index + Index_Type'Base (New_Capacity);
else
Dst_Last :=
Index_Type'Base (Count_Type'Base (No_Index) + New_Capacity);
end if; end if;
declare -- Now we allocate the new, longer internal array. If the allocation
Dst_Last : constant Index_Type := -- fails, we have not changed any container state, so no side-effect
Index_Type (First + UInt'Pos (C) - 1); -- will occur as a result of propagating the exception.
begin
Dst := new Elements_Type (Dst_Last); Dst := new Elements_Type (Dst_Last);
end;
end; -- We have our new internal array. All that needs to be done now is to
-- copy the existing items (if any) from the old array (the "source"
-- array, object SA below) to the new array (the "destination" array,
-- object DA below), and then deallocate the old array.
declare declare
SA : Elements_Array renames Container.Elements.EA; SA : Elements_Array renames Container.Elements.EA; -- source
DA : Elements_Array renames Dst.EA; DA : Elements_Array renames Dst.EA; -- destination
begin begin
DA (Index_Type'First .. Index_Type'Pred (Before)) := DA (Index_Type'First .. Before - 1) :=
SA (Index_Type'First .. Index_Type'Pred (Before)); SA (Index_Type'First .. Before - 1);
if Before <= Container.Last then if Before <= Container.Last then
declare -- The space is being inserted before some existing elements, so
Index_As_Int : constant Int'Base := -- we must slide the existing elements up to their new home.
Index_Type'Pos (Before) + N;
Index : constant Index_Type := Index_Type (Index_As_Int); if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
Index := Before + Index_Type'Base (Count);
else
Index := Index_Type'Base (Count_Type'Base (Before) + Count);
end if;
begin
DA (Index .. New_Last) := SA (Before .. Container.Last); DA (Index .. New_Last) := SA (Before .. Container.Last);
end;
end if; end if;
exception exception
when others => when others =>
...@@ -1402,11 +1914,24 @@ package body Ada.Containers.Vectors is ...@@ -1402,11 +1914,24 @@ package body Ada.Containers.Vectors is
raise; raise;
end; end;
-- We have successfully copied the items onto the new array, so the
-- final thing to do is restore invariants, and deallocate the old
-- array.
declare declare
X : Elements_Access := Container.Elements; X : Elements_Access := Container.Elements;
begin begin
-- We first isolate the old internal array, removing it from the
-- container and replacing it with the new internal array, before we
-- deallocate the old array (which can fail if finalization of
-- elements propagates an exception).
Container.Elements := Dst; Container.Elements := Dst;
Container.Last := New_Last; Container.Last := New_Last;
-- The container invariants have been restored, so it is now safe to
-- attempt to deallocate the old array.
Free (X); Free (X);
end; end;
end Insert_Space; end Insert_Space;
...@@ -1533,12 +2058,33 @@ package body Ada.Containers.Vectors is ...@@ -1533,12 +2058,33 @@ package body Ada.Containers.Vectors is
------------ ------------
function Length (Container : Vector) return Count_Type is function Length (Container : Vector) return Count_Type is
L : constant Int := Int (Container.Last); L : constant Index_Type'Base := Container.Last;
F : constant Int := Int (Index_Type'First); F : constant Index_Type := Index_Type'First;
N : constant Int'Base := L - F + 1;
begin
begin -- The base range of the index type (Index_Type'Base) might not include
return Count_Type (N); -- all values for length (Count_Type). Contrariwise, the index type
-- might include values outside the range of length. Hence we use
-- whatever type is wider for intermediate values when calculating
-- length. Note that no matter what the index type is, the maximum
-- length to which a vector is allowed to grow is always the minimum
-- of Count_Type'Last and (IT'Last - IT'First + 1).
-- For example, an Index_Type with range -127 .. 127 is only guaranteed
-- to have a base range of -128 .. 127, but the corresponding vector
-- would have lengths in the range 0 .. 255. In this case we would need
-- to use Count_Type'Base for intermediate values.
-- Another case would be the index range -2**63 + 1 .. -2**63 + 10. The
-- vector would have a maximum length of 10, but the index values lie
-- outside the range of Count_Type (which is only 32 bits). In this
-- case we would need to use Index_Type'Base for intermediate values.
if Count_Type'Base'Last >= Index_Type'Pos (Index_Type'Base'Last) then
return Count_Type'Base (L) - Count_Type'Base (F) + 1;
else
return Count_Type (L - F + 1);
end if;
end Length; end Length;
---------- ----------
...@@ -1799,17 +2345,51 @@ package body Ada.Containers.Vectors is ...@@ -1799,17 +2345,51 @@ package body Ada.Containers.Vectors is
is is
N : constant Count_Type := Length (Container); N : constant Count_Type := Length (Container);
Index : Count_Type'Base;
Last : Index_Type'Base;
begin begin
-- Reserve_Capacity can be used to either expand the storage available
-- for elements (this would be its typical use, in anticipation of
-- future insertion), or to trim back storage. In the latter case,
-- storage can only be trimmed back to the limit of the container
-- length. Note that Reserve_Capacity neither deletes (active) elements
-- nor inserts elements; it only affects container capacity, never
-- container length.
if Capacity = 0 then if Capacity = 0 then
-- This is a request to trim back storage, to the minimum amount
-- possible given the current state of the container.
if N = 0 then if N = 0 then
-- The container is empty, so in this unique case we can
-- deallocate the entire internal array. Note that an empty
-- container can never be busy, so there's no need to check the
-- tampering bits.
declare declare
X : Elements_Access := Container.Elements; X : Elements_Access := Container.Elements;
begin begin
-- First we remove the internal array from the container, to
-- handle the case when the deallocation raises an exception.
Container.Elements := null; Container.Elements := null;
-- Container invariants have been restored, so it is now safe
-- to attempt to deallocate the internal array.
Free (X); Free (X);
end; end;
elsif N < Container.Elements.EA'Length then elsif N < Container.Elements.EA'Length then
-- The container is not empty, and the current length is less than
-- the current capacity, so there's storage available to trim. In
-- this case, we allocate a new internal array having a length
-- that exactly matches the number of items in the
-- container. (Reserve_Capacity does not delete active elements,
-- so this is the best we can do with respect to minimizing
-- storage).
if Container.Busy > 0 then if Container.Busy > 0 then
raise Program_Error with raise Program_Error with
"attempt to tamper with elements (vector is busy)"; "attempt to tamper with elements (vector is busy)";
...@@ -1825,7 +2405,23 @@ package body Ada.Containers.Vectors is ...@@ -1825,7 +2405,23 @@ package body Ada.Containers.Vectors is
X : Elements_Access := Container.Elements; X : Elements_Access := Container.Elements;
begin begin
-- Although we have isolated the old internal array that we're
-- going to deallocate, we don't deallocate it until we have
-- successfully allocated a new one. If there is an exception
-- during allocation (either because there is not enough
-- storage, or because initialization of the elements fails),
-- we let it propagate without causing any side-effect.
Container.Elements := new Elements_Type'(Container.Last, Src); Container.Elements := new Elements_Type'(Container.Last, Src);
-- We have succesfully allocated a new internal array (with a
-- smaller length than the old one, and containing a copy of
-- just the active elements in the container), so it is now
-- safe to attempt to deallocate the old array. The old array
-- has been isolated, and container invariants have been
-- restored, so if the deallocation fails (because finalization
-- of the elements fails), we simply let it propagate.
Free (X); Free (X);
end; end;
end if; end if;
...@@ -1833,29 +2429,102 @@ package body Ada.Containers.Vectors is ...@@ -1833,29 +2429,102 @@ package body Ada.Containers.Vectors is
return; return;
end if; end if;
if Container.Elements = null then -- Reserve_Capacity can be used to expand the storage available for
declare -- elements, but we do not let the capacity grow beyond the number of
Last_As_Int : constant Int'Base := -- values in Index_Type'Range. (Were it otherwise, there would be no way
Int (Index_Type'First) + Int (Capacity) - 1; -- to refer to the elements with an index value greater than
-- Index_Type'Last, so that storage would be wasted.) Here we compute
-- the Last index value of the new internal array, in a way that avoids
-- any possibility of overflow.
begin if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
if Last_As_Int > Index_Type'Pos (Index_Type'Last) then -- We perform a two-part test. First we determine whether the
raise Constraint_Error with "new length is out of range"; -- computed Last value lies in the base range of the type, and then
-- determine whether it lies in the range of the index (sub)type.
-- Last must satisfy this relation:
-- First + Length - 1 <= Last
-- We regroup terms:
-- First - 1 <= Last - Length
-- Which can rewrite as:
-- No_Index <= Last - Length
if Index_Type'Base'Last - Index_Type'Base (Capacity) < No_Index then
raise Constraint_Error with "Capacity is out of range";
end if; end if;
declare -- We now know that the computed value of Last is within the base
Last : constant Index_Type := Index_Type (Last_As_Int); -- range of the type, so it is safe to compute its value:
begin Last := No_Index + Index_Type'Base (Capacity);
Container.Elements := new Elements_Type (Last);
end; -- Finally we test whether the value is within the range of the
end; -- generic actual index subtype:
if Last > Index_Type'Last then
raise Constraint_Error with "Capacity is out of range";
end if;
elsif Index_Type'First <= 0 then
-- Here we can compute Last directly, in the normal way. We know that
-- No_Index is less than 0, so there is no danger of overflow when
-- adding the (positive) value of Capacity.
Index := Count_Type'Base (No_Index) + Capacity; -- Last
if Index > Count_Type'Base (Index_Type'Last) then
raise Constraint_Error with "Capacity is out of range";
end if;
-- We know that the computed value (having type Count_Type) of Last
-- is within the range of the generic actual index subtype, so it is
-- safe to convert to Index_Type:
Last := Index_Type'Base (Index);
else
-- Here Index_Type'First (and Index_Type'Last) is positive, so we
-- must test the length indirectly (by working backwards from the
-- largest possible value of Last), in order to prevent overflow.
Index := Count_Type'Base (Index_Type'Last) - Capacity; -- No_Index
if Index < Count_Type'Base (No_Index) then
raise Constraint_Error with "Capacity is out of range";
end if;
-- We have determined that the value of Capacity would not create a
-- Last index value outside of the range of Index_Type, so we can now
-- safely compute its value.
Last := Index_Type'Base (Count_Type'Base (No_Index) + Capacity);
end if;
-- The requested capacity is non-zero, but we don't know yet whether
-- this is a request for expansion or contraction of storage.
if Container.Elements = null then
-- The container is empty (it doesn't even have an internal array),
-- so this represents a request to allocate (expand) storage having
-- the given capacity.
Container.Elements := new Elements_Type (Last);
return; return;
end if; end if;
if Capacity <= N then if Capacity <= N then
-- This is a request to trim back storage, but only to the limit of
-- what's already in the container. (Reserve_Capacity never deletes
-- active elements, it only reclaims excess storage.)
if N < Container.Elements.EA'Length then if N < Container.Elements.EA'Length then
-- The container is not empty (because the requested capacity is
-- positive, and less than or equal to the container length), and
-- the current length is less than the current capacity, so
-- there's storage available to trim. In this case, we allocate a
-- new internal array having a length that exactly matches the
-- number of items in the container.
if Container.Busy > 0 then if Container.Busy > 0 then
raise Program_Error with raise Program_Error with
"attempt to tamper with elements (vector is busy)"; "attempt to tamper with elements (vector is busy)";
...@@ -1871,39 +2540,66 @@ package body Ada.Containers.Vectors is ...@@ -1871,39 +2540,66 @@ package body Ada.Containers.Vectors is
X : Elements_Access := Container.Elements; X : Elements_Access := Container.Elements;
begin begin
-- Although we have isolated the old internal array that we're
-- going to deallocate, we don't deallocate it until we have
-- successfully allocated a new one. If there is an exception
-- during allocation (either because there is not enough
-- storage, or because initialization of the elements fails),
-- we let it propagate without causing any side-effect.
Container.Elements := new Elements_Type'(Container.Last, Src); Container.Elements := new Elements_Type'(Container.Last, Src);
-- We have succesfully allocated a new internal array (with a
-- smaller length than the old one, and containing a copy of
-- just the active elements in the container), so it is now
-- safe to attempt to deallocate the old array. The old array
-- has been isolated, and container invariants have been
-- restored, so if the deallocation fails (because finalization
-- of the elements fails), we simply let it propagate.
Free (X); Free (X);
end; end;
end if; end if;
return; return;
end if; end if;
-- The requested capacity is larger than the container length (the
-- number of active elements). Whether this represents a request for
-- expansion or contraction of the current capacity depends on what the
-- current capacity is.
if Capacity = Container.Elements.EA'Length then if Capacity = Container.Elements.EA'Length then
-- The requested capacity matches the existing capacity, so there's
-- nothing to do here. We treat this case as a no-op, and simply
-- return without checking the busy bit.
return; return;
end if; end if;
-- There is a change in the capacity of a non-empty container, so a new
-- internal array will be allocated. (The length of the new internal
-- array could be less or greater than the old internal array. We know
-- only that the length of the new internal array is greater than the
-- number of active elements in the container.) We must check whether
-- the container is busy before doing anything else.
if Container.Busy > 0 then if Container.Busy > 0 then
raise Program_Error with raise Program_Error with
"attempt to tamper with elements (vector is busy)"; "attempt to tamper with elements (vector is busy)";
end if; end if;
declare -- We now allocate a new internal array, having a length different from
Last_As_Int : constant Int'Base := -- its current value.
Int (Index_Type'First) + Int (Capacity) - 1;
begin
if Last_As_Int > Index_Type'Pos (Index_Type'Last) then
raise Constraint_Error with "new length is out of range";
end if;
declare declare
Last : constant Index_Type := Index_Type (Last_As_Int);
E : Elements_Access := new Elements_Type (Last); E : Elements_Access := new Elements_Type (Last);
begin begin
-- We have successfully allocated the new internal array. We first
-- attempt to copy the existing elements from the old internal array
-- ("src" elements) onto the new internal array ("tgt" elements).
declare declare
subtype Index_Subtype is Index_Type'Base range subtype Index_Subtype is Index_Type'Base range
Index_Type'First .. Container.Last; Index_Type'First .. Container.Last;
...@@ -1922,14 +2618,23 @@ package body Ada.Containers.Vectors is ...@@ -1922,14 +2618,23 @@ package body Ada.Containers.Vectors is
raise; raise;
end; end;
-- We have successfully copied the existing elements onto the new
-- internal array, so now we can attempt to deallocate the old one.
declare declare
X : Elements_Access := Container.Elements; X : Elements_Access := Container.Elements;
begin begin
-- First we isolate the old internal array, and replace it in the
-- container with the new internal array.
Container.Elements := E; Container.Elements := E;
-- Container invariants have been restored, so it is now safe to
-- attempt to deallocate the old internal array.
Free (X); Free (X);
end; end;
end; end;
end;
end Reserve_Capacity; end Reserve_Capacity;
---------------------- ----------------------
...@@ -2055,26 +2760,25 @@ package body Ada.Containers.Vectors is ...@@ -2055,26 +2760,25 @@ package body Ada.Containers.Vectors is
---------------- ----------------
procedure Set_Length (Container : in out Vector; Length : Count_Type) is procedure Set_Length (Container : in out Vector; Length : Count_Type) is
Count : constant Count_Type'Base := Container.Length - Length;
begin begin
if Length = Vectors.Length (Container) then -- Set_Length allows the user to set the length explicitly, instead of
return; -- implicitly as a side-effect of deletion or insertion. If the
end if; -- requested length is less then the current length, this is equivalent
-- to deleting items from the back end of the vector. If the requested
-- length is greater than the current length, then this is equivalent to
-- inserting "space" (nonce items) at the end.
if Container.Busy > 0 then if Count >= 0 then
raise Program_Error with Container.Delete_Last (Count);
"attempt to tamper with elements (vector is busy)";
end if;
if Length > Capacity (Container) then elsif Container.Last >= Index_Type'Last then
Reserve_Capacity (Container, Capacity => Length); raise Constraint_Error with "vector is already at its maximum length";
end if;
declare else
Last_As_Int : constant Int'Base := Container.Insert_Space (Container.Last + 1, -Count);
Int (Index_Type'First) + Int (Length) - 1; end if;
begin
Container.Last := Index_Type'Base (Last_As_Int);
end;
end Set_Length; end Set_Length;
---------- ----------
...@@ -2167,8 +2871,8 @@ package body Ada.Containers.Vectors is ...@@ -2167,8 +2871,8 @@ package body Ada.Containers.Vectors is
--------------- ---------------
function To_Vector (Length : Count_Type) return Vector is function To_Vector (Length : Count_Type) return Vector is
Index : Int'Base; Index : Count_Type'Base;
Last : Index_Type; Last : Index_Type'Base;
Elements : Elements_Access; Elements : Elements_Access;
begin begin
...@@ -2181,41 +2885,71 @@ package body Ada.Containers.Vectors is ...@@ -2181,41 +2885,71 @@ package body Ada.Containers.Vectors is
-- internal array) to exceed the number of values in Index_Type'Range -- internal array) to exceed the number of values in Index_Type'Range
-- (otherwise, there would be no way to refer to those components via an -- (otherwise, there would be no way to refer to those components via an
-- index). We must therefore check whether the specified Length would -- index). We must therefore check whether the specified Length would
-- create a Last index value greater than Index_Type'Last. This -- create a Last index value greater than Index_Type'Last.
-- calculation requires care, because overflow can occur when
-- Index_Type'First is near the end of the range of Int.
if Index_Type'First <= 0 then if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
-- Compute the potential Last index value in the normal way, using -- We perform a two-part test. First we determine whether the
-- Int as the type in which to perform intermediate calculations. Int -- computed Last value lies in the base range of the type, and then
-- is a 64-bit type, and Count_Type is a 32-bit type, so no overflow -- determine whether it lies in the range of the index (sub)type.
-- can occur.
Index := Int (Index_Type'First - 1) + Int (Length); -- Last must satisfy this relation:
-- First + Length - 1 <= Last
-- We regroup terms:
-- First - 1 <= Last - Length
-- Which can rewrite as:
-- No_Index <= Last - Length
if Index_Type'Base'Last - Index_Type'Base (Length) < No_Index then
raise Constraint_Error with "Length is out of range";
end if;
-- We now know that the computed value of Last is within the base
-- range of the type, so it is safe to compute its value:
Last := No_Index + Index_Type'Base (Length);
-- Finally we test whether the value is within the range of the
-- generic actual index subtype:
if Last > Index_Type'Last then
raise Constraint_Error with "Length is out of range";
end if;
elsif Index_Type'First <= 0 then
-- Here we can compute Last directly, in the normal way. We know that
-- No_Index is less than 0, so there is no danger of overflow when
-- adding the (positive) value of Length.
Index := Count_Type'Base (No_Index) + Length; -- Last
if Index > Int (Index_Type'Last) then if Index > Count_Type'Base (Index_Type'Last) then
raise Constraint_Error with "Length is out of range"; raise Constraint_Error with "Length is out of range";
end if; end if;
-- We know that the computed value (having type Count_Type) of Last
-- is within the range of the generic actual index subtype, so it is
-- safe to convert to Index_Type:
Last := Index_Type'Base (Index);
else else
-- If Index_Type'First is within Length of Int'Last, then overflow -- Here Index_Type'First (and Index_Type'Last) is positive, so we
-- would occur if we simply computed Last directly. So instead of -- must test the length indirectly (by working backwards from the
-- computing Last, and then determining whether its value is greater -- largest possible value of Last), in order to prevent overflow.
-- than Index_Type'Last, we work backwards by computing the potential
-- First index value, and then checking whether that value is less Index := Count_Type'Base (Index_Type'Last) - Length; -- No_Index
-- than Index_Type'First.
Index := Int (Index_Type'Last) - Int (Length) + 1; if Index < Count_Type'Base (No_Index) then
if Index < Int (Index_Type'First) then
raise Constraint_Error with "Length is out of range"; raise Constraint_Error with "Length is out of range";
end if; end if;
-- We have determined that Length would not create a Last index value -- We have determined that the value of Length would not create a
-- outside of the range of Index_Type, so we can now safely compute -- Last index value outside of the range of Index_Type, so we can now
-- its value. -- safely compute its value.
Index := Int (Index_Type'First - 1) + Int (Length);
Last := Index_Type'Base (Count_Type'Base (No_Index) + Length);
end if; end if;
Last := Index_Type (Index);
Elements := new Elements_Type (Last); Elements := new Elements_Type (Last);
return Vector'(Controlled with Elements, Last, 0, 0); return Vector'(Controlled with Elements, Last, 0, 0);
...@@ -2225,8 +2959,8 @@ package body Ada.Containers.Vectors is ...@@ -2225,8 +2959,8 @@ package body Ada.Containers.Vectors is
(New_Item : Element_Type; (New_Item : Element_Type;
Length : Count_Type) return Vector Length : Count_Type) return Vector
is is
Index : Int'Base; Index : Count_Type'Base;
Last : Index_Type; Last : Index_Type'Base;
Elements : Elements_Access; Elements : Elements_Access;
begin begin
...@@ -2239,41 +2973,71 @@ package body Ada.Containers.Vectors is ...@@ -2239,41 +2973,71 @@ package body Ada.Containers.Vectors is
-- internal array) to exceed the number of values in Index_Type'Range -- internal array) to exceed the number of values in Index_Type'Range
-- (otherwise, there would be no way to refer to those components via an -- (otherwise, there would be no way to refer to those components via an
-- index). We must therefore check whether the specified Length would -- index). We must therefore check whether the specified Length would
-- create a Last index value greater than Index_Type'Last. This -- create a Last index value greater than Index_Type'Last.
-- calculation requires care, because overflow can occur when
-- Index_Type'First is near the end of the range of Int.
if Index_Type'First <= 0 then if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
-- Compute the potential Last index value in the normal way, using -- We perform a two-part test. First we determine whether the
-- Int as the type in which to perform intermediate calculations. Int -- computed Last value lies in the base range of the type, and then
-- is a 64-bit type, and Count_Type is a 32-bit type, so no overflow -- determine whether it lies in the range of the index (sub)type.
-- can occur.
Index := Int (Index_Type'First - 1) + Int (Length); -- Last must satisfy this relation:
-- First + Length - 1 <= Last
-- We regroup terms:
-- First - 1 <= Last - Length
-- Which can rewrite as:
-- No_Index <= Last - Length
if Index_Type'Base'Last - Index_Type'Base (Length) < No_Index then
raise Constraint_Error with "Length is out of range";
end if;
-- We now know that the computed value of Last is within the base
-- range of the type, so it is safe to compute its value:
if Index > Int (Index_Type'Last) then Last := No_Index + Index_Type'Base (Length);
-- Finally we test whether the value is within the range of the
-- generic actual index subtype:
if Last > Index_Type'Last then
raise Constraint_Error with "Length is out of range";
end if;
elsif Index_Type'First <= 0 then
-- Here we can compute Last directly, in the normal way. We know that
-- No_Index is less than 0, so there is no danger of overflow when
-- adding the (positive) value of Length.
Index := Count_Type'Base (No_Index) + Length; -- same value as V.Last
if Index > Count_Type'Base (Index_Type'Last) then
raise Constraint_Error with "Length is out of range"; raise Constraint_Error with "Length is out of range";
end if; end if;
-- We know that the computed value (having type Count_Type) of Last
-- is within the range of the generic actual index subtype, so it is
-- safe to convert to Index_Type:
Last := Index_Type'Base (Index);
else else
-- If Index_Type'First is within Length of Int'Last, then overflow -- Here Index_Type'First (and Index_Type'Last) is positive, so we
-- would occur if we simply computed Last directly. So instead of -- must test the length indirectly (by working backwards from the
-- computing Last, and then determining whether its value is greater -- largest possible value of Last), in order to prevent overflow.
-- than Index_Type'Last, we work backwards by computing the potential
-- First index value, and then checking whether that value is less Index := Count_Type'Base (Index_Type'Last) - Length; -- No_Index
-- than Index_Type'First.
Index := Int (Index_Type'Last) - Int (Length) + 1; if Index < Count_Type'Base (No_Index) then
if Index < Int (Index_Type'First) then
raise Constraint_Error with "Length is out of range"; raise Constraint_Error with "Length is out of range";
end if; end if;
-- We have determined that Length would not create a Last index value -- We have determined that the value of Length would not create a
-- outside of the range of Index_Type, so we can now safely compute -- Last index value outside of the range of Index_Type, so we can now
-- its value. -- safely compute its value.
Index := Int (Index_Type'First - 1) + Int (Length);
Last := Index_Type'Base (Count_Type'Base (No_Index) + Length);
end if; end if;
Last := Index_Type (Index);
Elements := new Elements_Type'(Last, EA => (others => New_Item)); Elements := new Elements_Type'(Last, EA => (others => New_Item));
return Vector'(Controlled with Elements, Last, 0, 0); return Vector'(Controlled with Elements, Last, 0, 0);
......
...@@ -1574,7 +1574,8 @@ ada/einfo.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \ ...@@ -1574,7 +1574,8 @@ ada/einfo.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \
ada/s-memory.ads ada/s-os_lib.ads ada/s-parame.ads ada/s-stalib.ads \ ada/s-memory.ads ada/s-os_lib.ads ada/s-parame.ads ada/s-stalib.ads \
ada/s-string.ads ada/s-traent.ads ada/s-unstyp.ads ada/s-wchcon.ads \ ada/s-string.ads ada/s-traent.ads ada/s-unstyp.ads ada/s-wchcon.ads \
ada/table.ads ada/table.adb ada/tree_io.ads ada/types.ads ada/uintp.ads \ ada/table.ads ada/table.adb ada/tree_io.ads ada/types.ads ada/uintp.ads \
ada/uintp.adb ada/unchconv.ads ada/unchdeal.ads ada/urealp.ads ada/uintp.adb ada/unchconv.ads ada/unchdeal.ads ada/urealp.ads \
ada/urealp.adb
ada/elists.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \ ada/elists.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \
ada/a-uncdea.ads ada/alloc.ads ada/debug.ads ada/elists.ads \ ada/a-uncdea.ads ada/alloc.ads ada/debug.ads ada/elists.ads \
...@@ -1735,29 +1736,20 @@ ada/exp_attr.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \ ...@@ -1735,29 +1736,20 @@ ada/exp_attr.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \
ada/exp_cg.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \ ada/exp_cg.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \
ada/a-uncdea.ads ada/alloc.ads ada/atree.ads ada/atree.adb \ ada/a-uncdea.ads ada/alloc.ads ada/atree.ads ada/atree.adb \
ada/casing.ads ada/checks.ads ada/csets.ads ada/debug.ads ada/einfo.ads \ ada/casing.ads ada/debug.ads ada/einfo.ads ada/einfo.adb ada/elists.ads \
ada/einfo.adb ada/elists.ads ada/elists.adb ada/err_vars.ads \ ada/elists.adb ada/exp_cg.ads ada/exp_cg.adb ada/exp_dbug.ads \
ada/errout.ads ada/erroutc.ads ada/exp_cg.ads ada/exp_cg.adb \ ada/exp_disp.ads ada/exp_tss.ads ada/gnat.ads ada/g-htable.ads \
ada/exp_ch11.ads ada/exp_dbug.ads ada/exp_disp.ads ada/exp_tss.ads \ ada/hostparm.ads ada/lib.ads ada/namet.ads ada/nlists.ads \
ada/exp_util.ads ada/fname.ads ada/freeze.ads ada/get_targ.ads \ ada/nlists.adb ada/nmake.ads ada/opt.ads ada/output.ads ada/sem_aux.ads \
ada/gnat.ads ada/g-htable.ads ada/hostparm.ads ada/interfac.ads \ ada/sem_aux.adb ada/sem_disp.ads ada/sem_type.ads ada/sem_util.ads \
ada/lib.ads ada/lib-xref.ads ada/namet.ads ada/namet.adb ada/nlists.ads \ ada/sinfo.ads ada/sinfo.adb ada/sinput.ads ada/snames.ads ada/stand.ads \
ada/nlists.adb ada/nmake.ads ada/opt.ads ada/output.ads ada/rident.ads \ ada/system.ads ada/s-exctab.ads ada/s-htable.ads ada/s-imenne.ads \
ada/rtsfind.ads ada/scans.ads ada/scn.ads ada/scng.ads ada/scng.adb \ ada/s-memory.ads ada/s-os_lib.ads ada/s-parame.ads ada/s-secsta.ads \
ada/sem.ads ada/sem_attr.ads ada/sem_aux.ads ada/sem_ch8.ads \ ada/s-soflin.ads ada/s-stache.ads ada/s-stalib.ads ada/s-stoele.ads \
ada/sem_disp.ads ada/sem_eval.ads ada/sem_res.ads ada/sem_scil.ads \ ada/s-stoele.adb ada/s-string.ads ada/s-traent.ads ada/s-unstyp.ads \
ada/sem_type.ads ada/sem_util.ads ada/sem_util.adb ada/sinfo.ads \ ada/s-wchcon.ads ada/table.ads ada/table.adb ada/tree_io.ads \
ada/sinfo.adb ada/sinput.ads ada/snames.ads ada/stand.ads \ ada/types.ads ada/uintp.ads ada/uintp.adb ada/unchconv.ads \
ada/stringt.ads ada/style.ads ada/styleg.ads ada/styleg.adb \ ada/unchdeal.ads ada/urealp.ads
ada/stylesw.ads ada/system.ads ada/s-crc32.ads ada/s-exctab.ads \
ada/s-htable.ads ada/s-imenne.ads ada/s-memory.ads ada/s-os_lib.ads \
ada/s-parame.ads ada/s-rident.ads ada/s-secsta.ads ada/s-soflin.ads \
ada/s-stache.ads ada/s-stalib.ads ada/s-stoele.ads ada/s-stoele.adb \
ada/s-string.ads ada/s-traent.ads ada/s-unstyp.ads ada/s-utf_32.ads \
ada/s-wchcon.ads ada/table.ads ada/table.adb ada/targparm.ads \
ada/tbuild.ads ada/tree_io.ads ada/ttypes.ads ada/types.ads \
ada/uintp.ads ada/uintp.adb ada/uname.ads ada/unchconv.ads \
ada/unchdeal.ads ada/urealp.ads ada/widechar.ads
ada/exp_ch11.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \ ada/exp_ch11.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \
ada/a-uncdea.ads ada/alloc.ads ada/atree.ads ada/atree.adb \ ada/a-uncdea.ads ada/alloc.ads ada/atree.ads ada/atree.adb \
...@@ -1833,8 +1825,8 @@ ada/exp_ch2.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \ ...@@ -1833,8 +1825,8 @@ ada/exp_ch2.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \
ada/exp_ch3.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \ ada/exp_ch3.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \
ada/a-uncdea.ads ada/alloc.ads ada/atree.ads ada/atree.adb \ ada/a-uncdea.ads ada/alloc.ads ada/atree.ads ada/atree.adb \
ada/casing.ads ada/checks.ads ada/checks.adb ada/csets.ads \ ada/casing.ads ada/checks.ads ada/checks.adb ada/debug.ads \
ada/debug.ads ada/einfo.ads ada/einfo.adb ada/elists.ads ada/elists.adb \ ada/einfo.ads ada/einfo.adb ada/elists.ads ada/elists.adb \
ada/err_vars.ads ada/errout.ads ada/erroutc.ads ada/eval_fat.ads \ ada/err_vars.ads ada/errout.ads ada/erroutc.ads ada/eval_fat.ads \
ada/exp_aggr.ads ada/exp_atag.ads ada/exp_ch11.ads ada/exp_ch2.ads \ ada/exp_aggr.ads ada/exp_atag.ads ada/exp_ch11.ads ada/exp_ch2.ads \
ada/exp_ch3.ads ada/exp_ch3.adb ada/exp_ch4.ads ada/exp_ch6.ads \ ada/exp_ch3.ads ada/exp_ch3.adb ada/exp_ch4.ads ada/exp_ch6.ads \
...@@ -1842,27 +1834,24 @@ ada/exp_ch3.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \ ...@@ -1842,27 +1834,24 @@ ada/exp_ch3.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \
ada/exp_pakd.ads ada/exp_smem.ads ada/exp_strm.ads ada/exp_tss.ads \ ada/exp_pakd.ads ada/exp_smem.ads ada/exp_strm.ads ada/exp_tss.ads \
ada/exp_tss.adb ada/exp_util.ads ada/exp_util.adb ada/fname.ads \ ada/exp_tss.adb ada/exp_util.ads ada/exp_util.adb ada/fname.ads \
ada/fname-uf.ads ada/freeze.ads ada/get_targ.ads ada/gnat.ads \ ada/fname-uf.ads ada/freeze.ads ada/get_targ.ads ada/gnat.ads \
ada/g-htable.ads ada/hostparm.ads ada/inline.ads ada/interfac.ads \ ada/g-htable.ads ada/hostparm.ads ada/inline.ads ada/itypes.ads \
ada/itypes.ads ada/lib.ads ada/lib-xref.ads ada/namet.ads ada/namet.adb \ ada/lib.ads ada/namet.ads ada/nlists.ads ada/nlists.adb ada/nmake.ads \
ada/nlists.ads ada/nlists.adb ada/nmake.ads ada/nmake.adb ada/opt.ads \ ada/nmake.adb ada/opt.ads ada/output.ads ada/restrict.ads \
ada/output.ads ada/restrict.ads ada/restrict.adb ada/rident.ads \ ada/restrict.adb ada/rident.ads ada/rtsfind.ads ada/sem.ads \
ada/rtsfind.ads ada/scans.ads ada/scn.ads ada/scng.ads ada/scng.adb \ ada/sem_attr.ads ada/sem_aux.ads ada/sem_aux.adb ada/sem_cat.ads \
ada/sem.ads ada/sem_attr.ads ada/sem_aux.ads ada/sem_cat.ads \
ada/sem_ch3.ads ada/sem_ch6.ads ada/sem_ch8.ads ada/sem_disp.ads \ ada/sem_ch3.ads ada/sem_ch6.ads ada/sem_ch8.ads ada/sem_disp.ads \
ada/sem_eval.ads ada/sem_mech.ads ada/sem_res.ads ada/sem_scil.ads \ ada/sem_eval.ads ada/sem_mech.ads ada/sem_res.ads ada/sem_scil.ads \
ada/sem_type.ads ada/sem_util.ads ada/sem_util.adb ada/sem_warn.ads \ ada/sem_type.ads ada/sem_util.ads ada/sem_warn.ads ada/sinfo.ads \
ada/sinfo.ads ada/sinfo.adb ada/sinput.ads ada/snames.ads \ ada/sinfo.adb ada/sinput.ads ada/snames.ads ada/sprint.ads \
ada/sprint.ads ada/stand.ads ada/stringt.ads ada/style.ads \ ada/stand.ads ada/stringt.ads ada/system.ads ada/s-exctab.ads \
ada/styleg.ads ada/styleg.adb ada/stylesw.ads ada/system.ads \ ada/s-htable.ads ada/s-imenne.ads ada/s-memory.ads ada/s-os_lib.ads \
ada/s-crc32.ads ada/s-exctab.ads ada/s-htable.ads ada/s-imenne.ads \ ada/s-parame.ads ada/s-rident.ads ada/s-soflin.ads ada/s-stache.ads \
ada/s-memory.ads ada/s-os_lib.ads ada/s-parame.ads ada/s-rident.ads \ ada/s-stalib.ads ada/s-stoele.ads ada/s-stoele.adb ada/s-string.ads \
ada/s-secsta.ads ada/s-soflin.ads ada/s-stache.ads ada/s-stalib.ads \ ada/s-traent.ads ada/s-unstyp.ads ada/s-wchcon.ads ada/table.ads \
ada/s-stoele.ads ada/s-stoele.adb ada/s-string.ads ada/s-traent.ads \
ada/s-unstyp.ads ada/s-utf_32.ads ada/s-wchcon.ads ada/table.ads \
ada/table.adb ada/targparm.ads ada/tbuild.ads ada/tbuild.adb \ ada/table.adb ada/targparm.ads ada/tbuild.ads ada/tbuild.adb \
ada/tree_io.ads ada/ttypes.ads ada/types.ads ada/uintp.ads \ ada/tree_io.ads ada/ttypes.ads ada/types.ads ada/uintp.ads \
ada/uintp.adb ada/uname.ads ada/unchconv.ads ada/unchdeal.ads \ ada/uintp.adb ada/uname.ads ada/unchconv.ads ada/unchdeal.ads \
ada/urealp.ads ada/validsw.ads ada/widechar.ads ada/urealp.ads ada/validsw.ads
ada/exp_ch4.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \ ada/exp_ch4.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \
ada/a-uncdea.ads ada/alloc.ads ada/atree.ads ada/atree.adb \ ada/a-uncdea.ads ada/alloc.ads ada/atree.ads ada/atree.adb \
...@@ -1949,21 +1938,21 @@ ada/exp_ch6.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \ ...@@ -1949,21 +1938,21 @@ ada/exp_ch6.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \
ada/nmake.adb ada/opt.ads ada/output.ads ada/restrict.ads \ ada/nmake.adb ada/opt.ads ada/output.ads ada/restrict.ads \
ada/restrict.adb ada/rident.ads ada/rtsfind.ads ada/rtsfind.adb \ ada/restrict.adb ada/rident.ads ada/rtsfind.ads ada/rtsfind.adb \
ada/scans.ads ada/scn.ads ada/scng.ads ada/scng.adb ada/sem.ads \ ada/scans.ads ada/scn.ads ada/scng.ads ada/scng.adb ada/sem.ads \
ada/sem_attr.ads ada/sem_aux.ads ada/sem_ch12.ads ada/sem_ch13.ads \ ada/sem_attr.ads ada/sem_aux.ads ada/sem_aux.adb ada/sem_ch12.ads \
ada/sem_ch3.ads ada/sem_ch6.ads ada/sem_ch7.ads ada/sem_ch8.ads \ ada/sem_ch13.ads ada/sem_ch3.ads ada/sem_ch6.ads ada/sem_ch7.ads \
ada/sem_disp.ads ada/sem_dist.ads ada/sem_eval.ads ada/sem_mech.ads \ ada/sem_ch8.ads ada/sem_disp.ads ada/sem_dist.ads ada/sem_eval.ads \
ada/sem_res.ads ada/sem_scil.ads ada/sem_type.ads ada/sem_util.ads \ ada/sem_mech.ads ada/sem_res.ads ada/sem_scil.ads ada/sem_type.ads \
ada/sem_util.adb ada/sem_warn.ads ada/sinfo.ads ada/sinfo.adb \ ada/sem_util.ads ada/sem_util.adb ada/sem_warn.ads ada/sinfo.ads \
ada/sinput.ads ada/snames.ads ada/sprint.ads ada/stand.ads \ ada/sinfo.adb ada/sinput.ads ada/snames.ads ada/sprint.ads \
ada/stringt.ads ada/style.ads ada/styleg.ads ada/styleg.adb \ ada/stand.ads ada/stringt.ads ada/style.ads ada/styleg.ads \
ada/stylesw.ads ada/system.ads ada/s-crc32.ads ada/s-exctab.ads \ ada/styleg.adb ada/stylesw.ads ada/system.ads ada/s-crc32.ads \
ada/s-htable.ads ada/s-imenne.ads ada/s-memory.ads ada/s-os_lib.ads \ ada/s-exctab.ads ada/s-htable.ads ada/s-imenne.ads ada/s-memory.ads \
ada/s-parame.ads ada/s-rident.ads ada/s-secsta.ads ada/s-soflin.ads \ ada/s-os_lib.ads ada/s-parame.ads ada/s-rident.ads ada/s-secsta.ads \
ada/s-stache.ads ada/s-stalib.ads ada/s-stoele.ads ada/s-stoele.adb \ ada/s-soflin.ads ada/s-stache.ads ada/s-stalib.ads ada/s-stoele.ads \
ada/s-string.ads ada/s-traent.ads ada/s-unstyp.ads ada/s-utf_32.ads \ ada/s-stoele.adb ada/s-string.ads ada/s-traent.ads ada/s-unstyp.ads \
ada/s-wchcon.ads ada/table.ads ada/table.adb ada/targparm.ads \ ada/s-utf_32.ads ada/s-wchcon.ads ada/table.ads ada/table.adb \
ada/tbuild.ads ada/tbuild.adb ada/tree_io.ads ada/ttypes.ads \ ada/targparm.ads ada/tbuild.ads ada/tbuild.adb ada/tree_io.ads \
ada/types.ads ada/uintp.ads ada/uintp.adb ada/uname.ads \ ada/ttypes.ads ada/types.ads ada/uintp.ads ada/uintp.adb ada/uname.ads \
ada/unchconv.ads ada/unchdeal.ads ada/urealp.ads ada/validsw.ads \ ada/unchconv.ads ada/unchdeal.ads ada/urealp.ads ada/validsw.ads \
ada/widechar.ads ada/widechar.ads
...@@ -2030,21 +2019,21 @@ ada/exp_ch9.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \ ...@@ -2030,21 +2019,21 @@ ada/exp_ch9.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \
ada/nmake.adb ada/opt.ads ada/output.ads ada/restrict.ads \ ada/nmake.adb ada/opt.ads ada/output.ads ada/restrict.ads \
ada/restrict.adb ada/rident.ads ada/rtsfind.ads ada/scans.ads \ ada/restrict.adb ada/rident.ads ada/rtsfind.ads ada/scans.ads \
ada/scn.ads ada/scng.ads ada/scng.adb ada/sem.ads ada/sem_attr.ads \ ada/scn.ads ada/scng.ads ada/scng.adb ada/sem.ads ada/sem_attr.ads \
ada/sem_aux.ads ada/sem_ch11.ads ada/sem_ch6.ads ada/sem_ch8.ads \ ada/sem_aux.ads ada/sem_aux.adb ada/sem_ch11.ads ada/sem_ch6.ads \
ada/sem_disp.ads ada/sem_elab.ads ada/sem_eval.ads ada/sem_res.ads \ ada/sem_ch8.ads ada/sem_disp.ads ada/sem_elab.ads ada/sem_eval.ads \
ada/sem_scil.ads ada/sem_type.ads ada/sem_util.ads ada/sem_util.adb \ ada/sem_res.ads ada/sem_scil.ads ada/sem_type.ads ada/sem_util.ads \
ada/sinfo.ads ada/sinfo.adb ada/sinput.ads ada/snames.ads ada/stand.ads \ ada/sem_util.adb ada/sinfo.ads ada/sinfo.adb ada/sinput.ads \
ada/stringt.ads ada/style.ads ada/styleg.ads ada/styleg.adb \ ada/snames.ads ada/stand.ads ada/stringt.ads ada/style.ads \
ada/stylesw.ads ada/system.ads ada/s-crc32.ads ada/s-exctab.ads \ ada/styleg.ads ada/styleg.adb ada/stylesw.ads ada/system.ads \
ada/s-htable.ads ada/s-imenne.ads ada/s-memory.ads ada/s-os_lib.ads \ ada/s-crc32.ads ada/s-exctab.ads ada/s-htable.ads ada/s-imenne.ads \
ada/s-parame.ads ada/s-rident.ads ada/s-secsta.ads ada/s-soflin.ads \ ada/s-memory.ads ada/s-os_lib.ads ada/s-parame.ads ada/s-rident.ads \
ada/s-stache.ads ada/s-stalib.ads ada/s-stoele.ads ada/s-stoele.adb \ ada/s-secsta.ads ada/s-soflin.ads ada/s-stache.ads ada/s-stalib.ads \
ada/s-string.ads ada/s-traent.ads ada/s-unstyp.ads ada/s-utf_32.ads \ ada/s-stoele.ads ada/s-stoele.adb ada/s-string.ads ada/s-traent.ads \
ada/s-wchcon.ads ada/table.ads ada/table.adb ada/targparm.ads \ ada/s-unstyp.ads ada/s-utf_32.ads ada/s-wchcon.ads ada/table.ads \
ada/tbuild.ads ada/tbuild.adb ada/tree_io.ads ada/ttypes.ads \ ada/table.adb ada/targparm.ads ada/tbuild.ads ada/tbuild.adb \
ada/types.ads ada/uintp.ads ada/uintp.adb ada/uname.ads \ ada/tree_io.ads ada/ttypes.ads ada/types.ads ada/uintp.ads \
ada/unchconv.ads ada/unchdeal.ads ada/urealp.ads ada/validsw.ads \ ada/uintp.adb ada/uname.ads ada/unchconv.ads ada/unchdeal.ads \
ada/widechar.ads ada/urealp.ads ada/validsw.ads ada/widechar.ads
ada/exp_code.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \ ada/exp_code.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \
ada/a-uncdea.ads ada/alloc.ads ada/atree.ads ada/atree.adb \ ada/a-uncdea.ads ada/alloc.ads ada/atree.ads ada/atree.adb \
...@@ -2108,10 +2097,10 @@ ada/exp_disp.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \ ...@@ -2108,10 +2097,10 @@ ada/exp_disp.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \
ada/nmake.adb ada/opt.ads ada/output.ads ada/restrict.ads \ ada/nmake.adb ada/opt.ads ada/output.ads ada/restrict.ads \
ada/restrict.adb ada/rident.ads ada/rtsfind.ads ada/scans.ads \ ada/restrict.adb ada/rident.ads ada/rtsfind.ads ada/scans.ads \
ada/scn.ads ada/scng.ads ada/scng.adb ada/sem.ads ada/sem_attr.ads \ ada/scn.ads ada/scng.ads ada/scng.adb ada/sem.ads ada/sem_attr.ads \
ada/sem_aux.ads ada/sem_ch6.ads ada/sem_ch7.ads ada/sem_ch8.ads \ ada/sem_aux.ads ada/sem_aux.adb ada/sem_ch6.ads ada/sem_ch7.ads \
ada/sem_disp.ads ada/sem_eval.ads ada/sem_res.ads ada/sem_scil.ads \ ada/sem_ch8.ads ada/sem_disp.ads ada/sem_eval.ads ada/sem_res.ads \
ada/sem_type.ads ada/sem_util.ads ada/sem_util.adb ada/sinfo.ads \ ada/sem_scil.ads ada/sem_type.ads ada/sem_util.ads ada/sem_util.adb \
ada/sinfo.adb ada/sinput.ads ada/snames.ads ada/stand.ads \ ada/sinfo.ads ada/sinfo.adb ada/sinput.ads ada/snames.ads ada/stand.ads \
ada/stringt.ads ada/stringt.adb ada/style.ads ada/styleg.ads \ ada/stringt.ads ada/stringt.adb ada/style.ads ada/styleg.ads \
ada/styleg.adb ada/stylesw.ads ada/system.ads ada/s-carun8.ads \ ada/styleg.adb ada/stylesw.ads ada/system.ads ada/s-carun8.ads \
ada/s-crc32.ads ada/s-exctab.ads ada/s-htable.ads ada/s-imenne.ads \ ada/s-crc32.ads ada/s-exctab.ads ada/s-htable.ads ada/s-imenne.ads \
...@@ -2126,33 +2115,26 @@ ada/exp_disp.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \ ...@@ -2126,33 +2115,26 @@ ada/exp_disp.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \
ada/exp_dist.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \ ada/exp_dist.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \
ada/a-uncdea.ads ada/alloc.ads ada/atree.ads ada/atree.adb \ ada/a-uncdea.ads ada/alloc.ads ada/atree.ads ada/atree.adb \
ada/casing.ads ada/checks.ads ada/csets.ads ada/debug.ads ada/einfo.ads \ ada/casing.ads ada/debug.ads ada/einfo.ads ada/einfo.adb ada/elists.ads \
ada/einfo.adb ada/elists.ads ada/elists.adb ada/err_vars.ads \ ada/elists.adb ada/exp_atag.ads ada/exp_disp.ads ada/exp_dist.ads \
ada/errout.ads ada/erroutc.ads ada/exp_atag.ads ada/exp_ch11.ads \ ada/exp_dist.adb ada/exp_strm.ads ada/exp_tss.ads ada/exp_util.ads \
ada/exp_disp.ads ada/exp_dist.ads ada/exp_dist.adb ada/exp_strm.ads \ ada/fname.ads ada/get_targ.ads ada/gnat.ads ada/g-hesorg.ads \
ada/exp_tss.ads ada/exp_util.ads ada/fname.ads ada/freeze.ads \ ada/g-htable.ads ada/hostparm.ads ada/lib.ads ada/lib.adb \
ada/get_targ.ads ada/gnat.ads ada/g-hesorg.ads ada/g-htable.ads \ ada/lib-list.adb ada/lib-sort.adb ada/namet.ads ada/nlists.ads \
ada/hostparm.ads ada/interfac.ads ada/lib.ads ada/lib.adb \ ada/nlists.adb ada/nmake.ads ada/nmake.adb ada/opt.ads ada/output.ads \
ada/lib-list.adb ada/lib-sort.adb ada/lib-xref.ads ada/namet.ads \ ada/restrict.ads ada/rident.ads ada/rtsfind.ads ada/sem.ads \
ada/namet.adb ada/nlists.ads ada/nlists.adb ada/nmake.ads ada/nmake.adb \ ada/sem_aux.ads ada/sem_aux.adb ada/sem_cat.ads ada/sem_ch3.ads \
ada/opt.ads ada/output.ads ada/restrict.ads ada/rident.ads \ ada/sem_ch8.ads ada/sem_dist.ads ada/sem_eval.ads ada/sem_util.ads \
ada/rtsfind.ads ada/scans.ads ada/scn.ads ada/scng.ads ada/scng.adb \ ada/sinfo.ads ada/sinfo.adb ada/sinput.ads ada/snames.ads ada/stand.ads \
ada/sem.ads ada/sem_attr.ads ada/sem_aux.ads ada/sem_cat.ads \ ada/stringt.ads ada/stringt.adb ada/system.ads ada/s-exctab.ads \
ada/sem_ch3.ads ada/sem_ch8.ads ada/sem_disp.ads ada/sem_dist.ads \
ada/sem_eval.ads ada/sem_res.ads ada/sem_scil.ads ada/sem_type.ads \
ada/sem_util.ads ada/sem_util.adb ada/sinfo.ads ada/sinfo.adb \
ada/sinput.ads ada/snames.ads ada/stand.ads ada/stringt.ads \
ada/stringt.adb ada/style.ads ada/styleg.ads ada/styleg.adb \
ada/stylesw.ads ada/system.ads ada/s-crc32.ads ada/s-exctab.ads \
ada/s-htable.ads ada/s-htable.adb ada/s-imenne.ads ada/s-memory.ads \ ada/s-htable.ads ada/s-htable.adb ada/s-imenne.ads ada/s-memory.ads \
ada/s-os_lib.ads ada/s-parame.ads ada/s-rident.ads ada/s-secsta.ads \ ada/s-os_lib.ads ada/s-parame.ads ada/s-rident.ads ada/s-secsta.ads \
ada/s-soflin.ads ada/s-stache.ads ada/s-stalib.ads ada/s-stoele.ads \ ada/s-soflin.ads ada/s-stache.ads ada/s-stalib.ads ada/s-stoele.ads \
ada/s-stoele.adb ada/s-strhas.ads ada/s-string.ads ada/s-traent.ads \ ada/s-stoele.adb ada/s-strhas.ads ada/s-string.ads ada/s-traent.ads \
ada/s-unstyp.ads ada/s-utf_32.ads ada/s-wchcon.ads ada/table.ads \ ada/s-unstyp.ads ada/s-wchcon.ads ada/table.ads ada/table.adb \
ada/table.adb ada/targparm.ads ada/tbuild.ads ada/tbuild.adb \ ada/tbuild.ads ada/tbuild.adb ada/tree_io.ads ada/ttypes.ads \
ada/tree_io.ads ada/ttypes.ads ada/types.ads ada/uintp.ads \ ada/types.ads ada/uintp.ads ada/uintp.adb ada/uname.ads \
ada/uintp.adb ada/uname.ads ada/unchconv.ads ada/unchdeal.ads \ ada/unchconv.ads ada/unchdeal.ads ada/urealp.ads
ada/urealp.ads ada/widechar.ads
ada/exp_fixd.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \ ada/exp_fixd.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \
ada/a-uncdea.ads ada/alloc.ads ada/atree.ads ada/atree.adb \ ada/a-uncdea.ads ada/alloc.ads ada/atree.ads ada/atree.adb \
...@@ -2203,7 +2185,7 @@ ada/exp_imgv.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \ ...@@ -2203,7 +2185,7 @@ ada/exp_imgv.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \
ada/s-unstyp.ads ada/s-wchcon.ads ada/table.ads ada/table.adb \ ada/s-unstyp.ads ada/s-wchcon.ads ada/table.ads ada/table.adb \
ada/tbuild.ads ada/tbuild.adb ada/tree_io.ads ada/ttypes.ads \ ada/tbuild.ads ada/tbuild.adb ada/tree_io.ads ada/ttypes.ads \
ada/types.ads ada/uintp.ads ada/uintp.adb ada/uname.ads \ ada/types.ads ada/uintp.ads ada/uintp.adb ada/uname.ads \
ada/unchconv.ads ada/unchdeal.ads ada/urealp.ads ada/unchconv.ads ada/unchdeal.ads ada/urealp.ads ada/urealp.adb
ada/exp_intr.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \ ada/exp_intr.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \
ada/a-uncdea.ads ada/alloc.ads ada/atree.ads ada/atree.adb \ ada/a-uncdea.ads ada/alloc.ads ada/atree.ads ada/atree.adb \
...@@ -2767,31 +2749,23 @@ ada/lib-writ.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \ ...@@ -2767,31 +2749,23 @@ ada/lib-writ.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \
ada/lib-xref.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \ ada/lib-xref.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \
ada/a-uncdea.ads ada/alloc.ads ada/atree.ads ada/atree.adb \ ada/a-uncdea.ads ada/alloc.ads ada/atree.ads ada/atree.adb \
ada/casing.ads ada/checks.ads ada/csets.ads ada/debug.ads ada/einfo.ads \ ada/casing.ads ada/csets.ads ada/debug.ads ada/einfo.ads ada/einfo.adb \
ada/einfo.adb ada/elists.ads ada/elists.adb ada/err_vars.ads \ ada/elists.ads ada/elists.adb ada/err_vars.ads ada/errout.ads \
ada/errout.ads ada/erroutc.ads ada/exp_ch11.ads ada/exp_disp.ads \ ada/erroutc.ads ada/gnat.ads ada/g-hesorg.ads ada/g-hesorg.adb \
ada/exp_tss.ads ada/exp_util.ads ada/fname.ads ada/freeze.ads \ ada/g-htable.ads ada/hostparm.ads ada/lib.ads ada/lib-util.ads \
ada/get_targ.ads ada/gnat.ads ada/g-hesorg.ads ada/g-hesorg.adb \ ada/lib-util.adb ada/lib-xref.ads ada/lib-xref.adb ada/namet.ads \
ada/g-htable.ads ada/hostparm.ads ada/interfac.ads ada/lib.ads \ ada/nlists.ads ada/nlists.adb ada/nmake.ads ada/opt.ads ada/osint.ads \
ada/lib-util.ads ada/lib-util.adb ada/lib-xref.ads ada/lib-xref.adb \ ada/osint-c.ads ada/output.ads ada/restrict.ads ada/rident.ads \
ada/namet.ads ada/namet.adb ada/nlists.ads ada/nlists.adb ada/nmake.ads \ ada/sem.ads ada/sem_aux.ads ada/sem_aux.adb ada/sem_prag.ads \
ada/opt.ads ada/osint.ads ada/osint-c.ads ada/output.ads \ ada/sem_util.ads ada/sem_warn.ads ada/sinfo.ads ada/sinfo.adb \
ada/restrict.ads ada/rident.ads ada/rtsfind.ads ada/scans.ads \ ada/sinput.ads ada/sinput.adb ada/snames.ads ada/stand.ads \
ada/scn.ads ada/scng.ads ada/scng.adb ada/sem.ads ada/sem_attr.ads \ ada/stringt.ads ada/system.ads ada/s-exctab.ads ada/s-htable.ads \
ada/sem_aux.ads ada/sem_ch8.ads ada/sem_disp.ads ada/sem_eval.ads \ ada/s-imenne.ads ada/s-memory.ads ada/s-os_lib.ads ada/s-parame.ads \
ada/sem_prag.ads ada/sem_res.ads ada/sem_scil.ads ada/sem_type.ads \ ada/s-rident.ads ada/s-stalib.ads ada/s-stoele.ads ada/s-stoele.adb \
ada/sem_util.ads ada/sem_util.adb ada/sem_warn.ads ada/sinfo.ads \ ada/s-string.ads ada/s-traent.ads ada/s-unstyp.ads ada/s-wchcon.ads \
ada/sinfo.adb ada/sinput.ads ada/sinput.adb ada/snames.ads \ ada/table.ads ada/table.adb ada/tree_io.ads ada/types.ads ada/uintp.ads \
ada/stand.ads ada/stringt.ads ada/style.ads ada/styleg.ads \ ada/uintp.adb ada/unchconv.ads ada/unchdeal.ads ada/urealp.ads \
ada/styleg.adb ada/stylesw.ads ada/system.ads ada/s-crc32.ads \ ada/widechar.ads
ada/s-exctab.ads ada/s-htable.ads ada/s-imenne.ads ada/s-memory.ads \
ada/s-os_lib.ads ada/s-parame.ads ada/s-rident.ads ada/s-secsta.ads \
ada/s-soflin.ads ada/s-stache.ads ada/s-stalib.ads ada/s-stoele.ads \
ada/s-stoele.adb ada/s-string.ads ada/s-traent.ads ada/s-unstyp.ads \
ada/s-utf_32.ads ada/s-wchcon.ads ada/table.ads ada/table.adb \
ada/targparm.ads ada/tbuild.ads ada/tree_io.ads ada/ttypes.ads \
ada/types.ads ada/uintp.ads ada/uintp.adb ada/uname.ads \
ada/unchconv.ads ada/unchdeal.ads ada/urealp.ads ada/widechar.ads
ada/lib.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads ada/a-uncdea.ads \ ada/lib.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads ada/a-uncdea.ads \
ada/alloc.ads ada/atree.ads ada/atree.adb ada/casing.ads ada/debug.ads \ ada/alloc.ads ada/atree.ads ada/atree.adb ada/casing.ads ada/debug.ads \
...@@ -3328,26 +3302,26 @@ ada/sem_attr.o : ada/ada.ads ada/a-charac.ads ada/a-chlat1.ads \ ...@@ -3328,26 +3302,26 @@ ada/sem_attr.o : ada/ada.ads ada/a-charac.ads ada/a-chlat1.ads \
ada/nmake.adb ada/opt.ads ada/output.ads ada/restrict.ads \ ada/nmake.adb ada/opt.ads ada/output.ads ada/restrict.ads \
ada/rident.ads ada/rtsfind.ads ada/scans.ads ada/scn.ads ada/scng.ads \ ada/rident.ads ada/rtsfind.ads ada/scans.ads ada/scn.ads ada/scng.ads \
ada/scng.adb ada/sdefault.ads ada/sem.ads ada/sem_aggr.ads \ ada/scng.adb ada/sdefault.ads ada/sem.ads ada/sem_aggr.ads \
ada/sem_attr.ads ada/sem_attr.adb ada/sem_aux.ads ada/sem_cat.ads \ ada/sem_attr.ads ada/sem_attr.adb ada/sem_aux.ads ada/sem_aux.adb \
ada/sem_ch10.ads ada/sem_ch13.ads ada/sem_ch3.ads ada/sem_ch4.ads \ ada/sem_cat.ads ada/sem_ch10.ads ada/sem_ch13.ads ada/sem_ch3.ads \
ada/sem_ch6.ads ada/sem_ch8.ads ada/sem_disp.ads ada/sem_dist.ads \ ada/sem_ch4.ads ada/sem_ch6.ads ada/sem_ch8.ads ada/sem_disp.ads \
ada/sem_elab.ads ada/sem_elim.ads ada/sem_eval.ads ada/sem_eval.adb \ ada/sem_dist.ads ada/sem_elab.ads ada/sem_elim.ads ada/sem_eval.ads \
ada/sem_intr.ads ada/sem_res.ads ada/sem_res.adb ada/sem_scil.ads \ ada/sem_eval.adb ada/sem_intr.ads ada/sem_res.ads ada/sem_res.adb \
ada/sem_type.ads ada/sem_util.ads ada/sem_util.adb ada/sem_warn.ads \ ada/sem_scil.ads ada/sem_type.ads ada/sem_util.ads ada/sem_util.adb \
ada/sinfo.ads ada/sinfo.adb ada/sinput.ads ada/sinput.adb \ ada/sem_warn.ads ada/sinfo.ads ada/sinfo.adb ada/sinput.ads \
ada/snames.ads ada/snames.adb ada/sprint.ads ada/stand.ads \ ada/sinput.adb ada/snames.ads ada/snames.adb ada/sprint.ads \
ada/stringt.ads ada/stringt.adb ada/style.ads ada/styleg.ads \ ada/stand.ads ada/stringt.ads ada/stringt.adb ada/style.ads \
ada/styleg.adb ada/stylesw.ads ada/system.ads ada/s-carun8.ads \ ada/styleg.ads ada/styleg.adb ada/stylesw.ads ada/system.ads \
ada/s-crc32.ads ada/s-exctab.ads ada/s-exctab.adb ada/s-htable.ads \ ada/s-carun8.ads ada/s-crc32.ads ada/s-exctab.ads ada/s-exctab.adb \
ada/s-imenne.ads ada/s-memory.ads ada/s-os_lib.ads ada/s-parame.ads \ ada/s-htable.ads ada/s-imenne.ads ada/s-memory.ads ada/s-os_lib.ads \
ada/s-rident.ads ada/s-secsta.ads ada/s-soflin.ads ada/s-stache.ads \ ada/s-parame.ads ada/s-rident.ads ada/s-secsta.ads ada/s-soflin.ads \
ada/s-stalib.ads ada/s-stoele.ads ada/s-stoele.adb ada/s-string.ads \ ada/s-stache.ads ada/s-stalib.ads ada/s-stoele.ads ada/s-stoele.adb \
ada/s-traent.ads ada/s-unstyp.ads ada/s-utf_32.ads ada/s-wchcon.ads \ ada/s-string.ads ada/s-traent.ads ada/s-unstyp.ads ada/s-utf_32.ads \
ada/table.ads ada/table.adb ada/targparm.ads ada/tbuild.ads \ ada/s-wchcon.ads ada/table.ads ada/table.adb ada/targparm.ads \
ada/tbuild.adb ada/tree_io.ads ada/ttypef.ads ada/ttypes.ads \ ada/tbuild.ads ada/tbuild.adb ada/tree_io.ads ada/ttypef.ads \
ada/types.ads ada/types.adb ada/uintp.ads ada/uintp.adb ada/uname.ads \ ada/ttypes.ads ada/types.ads ada/types.adb ada/uintp.ads ada/uintp.adb \
ada/unchconv.ads ada/unchdeal.ads ada/urealp.ads ada/urealp.adb \ ada/uname.ads ada/unchconv.ads ada/unchdeal.ads ada/urealp.ads \
ada/validsw.ads ada/widechar.ads ada/urealp.adb ada/validsw.ads ada/widechar.ads
ada/sem_aux.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \ ada/sem_aux.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \
ada/a-uncdea.ads ada/alloc.ads ada/atree.ads ada/atree.adb \ ada/a-uncdea.ads ada/alloc.ads ada/atree.ads ada/atree.adb \
...@@ -3546,23 +3520,23 @@ ada/sem_ch3.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \ ...@@ -3546,23 +3520,23 @@ ada/sem_ch3.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \
ada/nlists.ads ada/nlists.adb ada/nmake.ads ada/nmake.adb ada/opt.ads \ ada/nlists.ads ada/nlists.adb ada/nmake.ads ada/nmake.adb ada/opt.ads \
ada/output.ads ada/restrict.ads ada/rident.ads ada/rtsfind.ads \ ada/output.ads ada/restrict.ads ada/rident.ads ada/rtsfind.ads \
ada/scans.ads ada/scn.ads ada/scng.ads ada/scng.adb ada/sem.ads \ ada/scans.ads ada/scn.ads ada/scng.ads ada/scng.adb ada/sem.ads \
ada/sem_attr.ads ada/sem_aux.ads ada/sem_case.ads ada/sem_case.adb \ ada/sem_attr.ads ada/sem_aux.ads ada/sem_aux.adb ada/sem_case.ads \
ada/sem_cat.ads ada/sem_cat.adb ada/sem_ch13.ads ada/sem_ch3.ads \ ada/sem_case.adb ada/sem_cat.ads ada/sem_cat.adb ada/sem_ch13.ads \
ada/sem_ch3.adb ada/sem_ch6.ads ada/sem_ch7.ads ada/sem_ch8.ads \ ada/sem_ch3.ads ada/sem_ch3.adb ada/sem_ch6.ads ada/sem_ch7.ads \
ada/sem_disp.ads ada/sem_dist.ads ada/sem_elim.ads ada/sem_eval.ads \ ada/sem_ch8.ads ada/sem_disp.ads ada/sem_dist.ads ada/sem_elim.ads \
ada/sem_eval.adb ada/sem_mech.ads ada/sem_res.ads ada/sem_scil.ads \ ada/sem_eval.ads ada/sem_eval.adb ada/sem_mech.ads ada/sem_res.ads \
ada/sem_smem.ads ada/sem_type.ads ada/sem_util.ads ada/sem_util.adb \ ada/sem_scil.ads ada/sem_smem.ads ada/sem_type.ads ada/sem_util.ads \
ada/sem_warn.ads ada/sinfo.ads ada/sinfo.adb ada/sinput.ads \ ada/sem_util.adb ada/sem_warn.ads ada/sinfo.ads ada/sinfo.adb \
ada/snames.ads ada/sprint.ads ada/stand.ads ada/stringt.ads \ ada/sinput.ads ada/snames.ads ada/sprint.ads ada/stand.ads \
ada/stringt.adb ada/style.ads ada/styleg.ads ada/styleg.adb \ ada/stringt.ads ada/stringt.adb ada/style.ads ada/styleg.ads \
ada/stylesw.ads ada/system.ads ada/s-crc32.ads ada/s-exctab.ads \ ada/styleg.adb ada/stylesw.ads ada/system.ads ada/s-crc32.ads \
ada/s-htable.ads ada/s-imenne.ads ada/s-memory.ads ada/s-os_lib.ads \ ada/s-exctab.ads ada/s-htable.ads ada/s-imenne.ads ada/s-memory.ads \
ada/s-parame.ads ada/s-rident.ads ada/s-secsta.ads ada/s-soflin.ads \ ada/s-os_lib.ads ada/s-parame.ads ada/s-rident.ads ada/s-secsta.ads \
ada/s-stache.ads ada/s-stalib.ads ada/s-stoele.ads ada/s-stoele.adb \ ada/s-soflin.ads ada/s-stache.ads ada/s-stalib.ads ada/s-stoele.ads \
ada/s-string.ads ada/s-traent.ads ada/s-unstyp.ads ada/s-utf_32.ads \ ada/s-stoele.adb ada/s-string.ads ada/s-traent.ads ada/s-unstyp.ads \
ada/s-wchcon.ads ada/table.ads ada/table.adb ada/targparm.ads \ ada/s-utf_32.ads ada/s-wchcon.ads ada/table.ads ada/table.adb \
ada/tbuild.ads ada/tbuild.adb ada/tree_io.ads ada/ttypes.ads \ ada/targparm.ads ada/tbuild.ads ada/tbuild.adb ada/tree_io.ads \
ada/types.ads ada/uintp.ads ada/uintp.adb ada/uname.ads \ ada/ttypes.ads ada/types.ads ada/uintp.ads ada/uintp.adb ada/uname.ads \
ada/unchconv.ads ada/unchdeal.ads ada/urealp.ads ada/urealp.adb \ ada/unchconv.ads ada/unchdeal.ads ada/urealp.ads ada/urealp.adb \
ada/validsw.ads ada/widechar.ads ada/validsw.ads ada/widechar.ads
...@@ -3647,25 +3621,25 @@ ada/sem_ch6.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \ ...@@ -3647,25 +3621,25 @@ ada/sem_ch6.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \
ada/nlists.ads ada/nlists.adb ada/nmake.ads ada/nmake.adb ada/opt.ads \ ada/nlists.ads ada/nlists.adb ada/nmake.ads ada/nmake.adb ada/opt.ads \
ada/output.ads ada/restrict.ads ada/restrict.adb ada/rident.ads \ ada/output.ads ada/restrict.ads ada/restrict.adb ada/rident.ads \
ada/rtsfind.ads ada/scans.ads ada/scn.ads ada/scng.ads ada/scng.adb \ ada/rtsfind.ads ada/scans.ads ada/scn.ads ada/scng.ads ada/scng.adb \
ada/sem.ads ada/sem_attr.ads ada/sem_aux.ads ada/sem_cat.ads \ ada/sem.ads ada/sem_attr.ads ada/sem_aux.ads ada/sem_aux.adb \
ada/sem_ch10.ads ada/sem_ch12.ads ada/sem_ch3.ads ada/sem_ch4.ads \ ada/sem_cat.ads ada/sem_ch10.ads ada/sem_ch12.ads ada/sem_ch3.ads \
ada/sem_ch5.ads ada/sem_ch6.ads ada/sem_ch6.adb ada/sem_ch8.ads \ ada/sem_ch4.ads ada/sem_ch5.ads ada/sem_ch6.ads ada/sem_ch6.adb \
ada/sem_disp.ads ada/sem_dist.ads ada/sem_elim.ads ada/sem_eval.ads \ ada/sem_ch8.ads ada/sem_disp.ads ada/sem_dist.ads ada/sem_elim.ads \
ada/sem_mech.ads ada/sem_prag.ads ada/sem_res.ads ada/sem_scil.ads \ ada/sem_eval.ads ada/sem_mech.ads ada/sem_prag.ads ada/sem_res.ads \
ada/sem_type.ads ada/sem_util.ads ada/sem_util.adb ada/sem_warn.ads \ ada/sem_scil.ads ada/sem_type.ads ada/sem_util.ads ada/sem_util.adb \
ada/sinfo.ads ada/sinfo.adb ada/sinfo-cn.ads ada/sinput.ads \ ada/sem_warn.ads ada/sinfo.ads ada/sinfo.adb ada/sinfo-cn.ads \
ada/sinput.adb ada/snames.ads ada/snames.adb ada/stand.ads \ ada/sinput.ads ada/sinput.adb ada/snames.ads ada/snames.adb \
ada/stringt.ads ada/stringt.adb ada/style.ads ada/styleg.ads \ ada/stand.ads ada/stringt.ads ada/stringt.adb ada/style.ads \
ada/styleg.adb ada/stylesw.ads ada/system.ads ada/s-carun8.ads \ ada/styleg.ads ada/styleg.adb ada/stylesw.ads ada/system.ads \
ada/s-crc32.ads ada/s-exctab.ads ada/s-htable.ads ada/s-imenne.ads \ ada/s-carun8.ads ada/s-crc32.ads ada/s-exctab.ads ada/s-htable.ads \
ada/s-memory.ads ada/s-os_lib.ads ada/s-parame.ads ada/s-rident.ads \ ada/s-imenne.ads ada/s-memory.ads ada/s-os_lib.ads ada/s-parame.ads \
ada/s-secsta.ads ada/s-soflin.ads ada/s-stache.ads ada/s-stalib.ads \ ada/s-rident.ads ada/s-secsta.ads ada/s-soflin.ads ada/s-stache.ads \
ada/s-stoele.ads ada/s-stoele.adb ada/s-string.ads ada/s-traent.ads \ ada/s-stalib.ads ada/s-stoele.ads ada/s-stoele.adb ada/s-string.ads \
ada/s-unstyp.ads ada/s-utf_32.ads ada/s-wchcon.ads ada/table.ads \ ada/s-traent.ads ada/s-unstyp.ads ada/s-utf_32.ads ada/s-wchcon.ads \
ada/table.adb ada/targparm.ads ada/tbuild.ads ada/tbuild.adb \ ada/table.ads ada/table.adb ada/targparm.ads ada/tbuild.ads \
ada/tree_io.ads ada/ttypes.ads ada/types.ads ada/uintp.ads \ ada/tbuild.adb ada/tree_io.ads ada/ttypes.ads ada/types.ads \
ada/uintp.adb ada/uname.ads ada/unchconv.ads ada/unchdeal.ads \ ada/uintp.ads ada/uintp.adb ada/uname.ads ada/unchconv.ads \
ada/urealp.ads ada/validsw.ads ada/widechar.ads ada/unchdeal.ads ada/urealp.ads ada/validsw.ads ada/widechar.ads
ada/sem_ch7.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \ ada/sem_ch7.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \
ada/a-uncdea.ads ada/alloc.ads ada/atree.ads ada/atree.adb \ ada/a-uncdea.ads ada/alloc.ads ada/atree.ads ada/atree.adb \
...@@ -3778,11 +3752,11 @@ ada/sem_disp.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \ ...@@ -3778,11 +3752,11 @@ ada/sem_disp.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \
ada/nlists.ads ada/nlists.adb ada/nmake.ads ada/nmake.adb ada/opt.ads \ ada/nlists.ads ada/nlists.adb ada/nmake.ads ada/nmake.adb ada/opt.ads \
ada/output.ads ada/restrict.ads ada/restrict.adb ada/rident.ads \ ada/output.ads ada/restrict.ads ada/restrict.adb ada/rident.ads \
ada/rtsfind.ads ada/scans.ads ada/scn.ads ada/scng.ads ada/scng.adb \ ada/rtsfind.ads ada/scans.ads ada/scn.ads ada/scng.ads ada/scng.adb \
ada/sem.ads ada/sem_attr.ads ada/sem_aux.ads ada/sem_ch3.ads \ ada/sem.ads ada/sem_attr.ads ada/sem_aux.ads ada/sem_aux.adb \
ada/sem_ch6.ads ada/sem_ch7.ads ada/sem_ch8.ads ada/sem_disp.ads \ ada/sem_ch3.ads ada/sem_ch6.ads ada/sem_ch7.ads ada/sem_ch8.ads \
ada/sem_disp.adb ada/sem_eval.ads ada/sem_res.ads ada/sem_scil.ads \ ada/sem_disp.ads ada/sem_disp.adb ada/sem_eval.ads ada/sem_res.ads \
ada/sem_type.ads ada/sem_util.ads ada/sem_util.adb ada/sinfo.ads \ ada/sem_scil.ads ada/sem_type.ads ada/sem_util.ads ada/sem_util.adb \
ada/sinfo.adb ada/sinput.ads ada/snames.ads ada/stand.ads \ ada/sinfo.ads ada/sinfo.adb ada/sinput.ads ada/snames.ads ada/stand.ads \
ada/stringt.ads ada/style.ads ada/styleg.ads ada/styleg.adb \ ada/stringt.ads ada/style.ads ada/styleg.ads ada/styleg.adb \
ada/stylesw.ads ada/system.ads ada/s-crc32.ads ada/s-exctab.ads \ ada/stylesw.ads ada/system.ads ada/s-crc32.ads ada/s-exctab.ads \
ada/s-htable.ads ada/s-imenne.ads ada/s-memory.ads ada/s-os_lib.ads \ ada/s-htable.ads ada/s-imenne.ads ada/s-memory.ads ada/s-os_lib.ads \
...@@ -3843,29 +3817,19 @@ ada/sem_elab.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \ ...@@ -3843,29 +3817,19 @@ ada/sem_elab.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \
ada/sem_elim.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \ ada/sem_elim.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \
ada/a-uncdea.ads ada/alloc.ads ada/atree.ads ada/atree.adb \ ada/a-uncdea.ads ada/alloc.ads ada/atree.ads ada/atree.adb \
ada/casing.ads ada/checks.ads ada/csets.ads ada/debug.ads ada/einfo.ads \ ada/casing.ads ada/debug.ads ada/einfo.ads ada/einfo.adb \
ada/einfo.adb ada/elists.ads ada/err_vars.ads ada/errout.ads \ ada/err_vars.ads ada/errout.ads ada/erroutc.ads ada/fname.ads \
ada/erroutc.ads ada/exp_ch11.ads ada/exp_disp.ads ada/exp_tss.ads \
ada/exp_util.ads ada/fname.ads ada/freeze.ads ada/get_targ.ads \
ada/gnat.ads ada/g-hesorg.ads ada/g-htable.ads ada/hostparm.ads \ ada/gnat.ads ada/g-hesorg.ads ada/g-htable.ads ada/hostparm.ads \
ada/interfac.ads ada/lib.ads ada/lib.adb ada/lib-list.adb \ ada/lib.ads ada/lib.adb ada/lib-list.adb ada/lib-sort.adb ada/namet.ads \
ada/lib-sort.adb ada/lib-xref.ads ada/namet.ads ada/namet.adb \
ada/nlists.ads ada/nlists.adb ada/nmake.ads ada/opt.ads ada/output.ads \ ada/nlists.ads ada/nlists.adb ada/nmake.ads ada/opt.ads ada/output.ads \
ada/rident.ads ada/rtsfind.ads ada/scans.ads ada/scn.ads ada/scng.ads \ ada/sem.ads ada/sem_aux.ads ada/sem_aux.adb ada/sem_elim.ads \
ada/scng.adb ada/sem.ads ada/sem_attr.ads ada/sem_aux.ads \ ada/sem_elim.adb ada/sem_prag.ads ada/sem_util.ads ada/sinfo.ads \
ada/sem_ch8.ads ada/sem_disp.ads ada/sem_elim.ads ada/sem_elim.adb \
ada/sem_eval.ads ada/sem_prag.ads ada/sem_res.ads ada/sem_scil.ads \
ada/sem_type.ads ada/sem_util.ads ada/sem_util.adb ada/sinfo.ads \
ada/sinfo.adb ada/sinput.ads ada/sinput.adb ada/snames.ads \ ada/sinfo.adb ada/sinput.ads ada/sinput.adb ada/snames.ads \
ada/stand.ads ada/stringt.ads ada/style.ads ada/styleg.ads \ ada/stand.ads ada/stringt.ads ada/system.ads ada/s-exctab.ads \
ada/styleg.adb ada/stylesw.ads ada/system.ads ada/s-crc32.ads \ ada/s-htable.ads ada/s-htable.adb ada/s-imenne.ads ada/s-memory.ads \
ada/s-exctab.ads ada/s-htable.ads ada/s-htable.adb ada/s-imenne.ads \ ada/s-os_lib.ads ada/s-parame.ads ada/s-stalib.ads ada/s-strhas.ads \
ada/s-memory.ads ada/s-os_lib.ads ada/s-parame.ads ada/s-rident.ads \ ada/s-string.ads ada/s-traent.ads ada/s-unstyp.ads ada/s-wchcon.ads \
ada/s-secsta.ads ada/s-soflin.ads ada/s-stache.ads ada/s-stalib.ads \ ada/table.ads ada/table.adb ada/tree_io.ads ada/types.ads ada/uintp.ads \
ada/s-stoele.ads ada/s-stoele.adb ada/s-strhas.ads ada/s-string.ads \
ada/s-traent.ads ada/s-unstyp.ads ada/s-utf_32.ads ada/s-wchcon.ads \
ada/table.ads ada/table.adb ada/targparm.ads ada/tbuild.ads \
ada/tree_io.ads ada/ttypes.ads ada/types.ads ada/uintp.ads \
ada/uintp.adb ada/uname.ads ada/unchconv.ads ada/unchdeal.ads \ ada/uintp.adb ada/uname.ads ada/unchconv.ads ada/unchdeal.ads \
ada/urealp.ads ada/widechar.ads ada/urealp.ads ada/widechar.ads
...@@ -3882,23 +3846,24 @@ ada/sem_eval.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \ ...@@ -3882,23 +3846,24 @@ ada/sem_eval.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \
ada/nlists.adb ada/nmake.ads ada/nmake.adb ada/opt.ads ada/output.ads \ ada/nlists.adb ada/nmake.ads ada/nmake.adb ada/opt.ads ada/output.ads \
ada/restrict.ads ada/rident.ads ada/rtsfind.ads ada/scans.ads \ ada/restrict.ads ada/rident.ads ada/rtsfind.ads ada/scans.ads \
ada/scn.ads ada/scng.ads ada/scng.adb ada/sem.ads ada/sem_aggr.ads \ ada/scn.ads ada/scng.ads ada/scng.adb ada/sem.ads ada/sem_aggr.ads \
ada/sem_attr.ads ada/sem_aux.ads ada/sem_cat.ads ada/sem_ch13.ads \ ada/sem_attr.ads ada/sem_aux.ads ada/sem_aux.adb ada/sem_cat.ads \
ada/sem_ch4.ads ada/sem_ch6.ads ada/sem_ch8.ads ada/sem_disp.ads \ ada/sem_ch13.ads ada/sem_ch4.ads ada/sem_ch6.ads ada/sem_ch8.ads \
ada/sem_dist.ads ada/sem_elab.ads ada/sem_elim.ads ada/sem_eval.ads \ ada/sem_disp.ads ada/sem_dist.ads ada/sem_elab.ads ada/sem_elim.ads \
ada/sem_eval.adb ada/sem_intr.ads ada/sem_res.ads ada/sem_res.adb \ ada/sem_eval.ads ada/sem_eval.adb ada/sem_intr.ads ada/sem_res.ads \
ada/sem_scil.ads ada/sem_type.ads ada/sem_util.ads ada/sem_util.adb \ ada/sem_res.adb ada/sem_scil.ads ada/sem_type.ads ada/sem_util.ads \
ada/sem_warn.ads ada/sinfo.ads ada/sinfo.adb ada/sinput.ads \ ada/sem_util.adb ada/sem_warn.ads ada/sinfo.ads ada/sinfo.adb \
ada/snames.ads ada/stand.ads ada/stringt.ads ada/stringt.adb \ ada/sinput.ads ada/snames.ads ada/stand.ads ada/stringt.ads \
ada/style.ads ada/styleg.ads ada/styleg.adb ada/stylesw.ads \ ada/stringt.adb ada/style.ads ada/styleg.ads ada/styleg.adb \
ada/system.ads ada/s-crc32.ads ada/s-exctab.ads ada/s-htable.ads \ ada/stylesw.ads ada/system.ads ada/s-crc32.ads ada/s-exctab.ads \
ada/s-imenne.ads ada/s-memory.ads ada/s-os_lib.ads ada/s-parame.ads \ ada/s-htable.ads ada/s-imenne.ads ada/s-memory.ads ada/s-os_lib.ads \
ada/s-rident.ads ada/s-secsta.ads ada/s-soflin.ads ada/s-stache.ads \ ada/s-parame.ads ada/s-rident.ads ada/s-secsta.ads ada/s-soflin.ads \
ada/s-stalib.ads ada/s-stoele.ads ada/s-stoele.adb ada/s-string.ads \ ada/s-stache.ads ada/s-stalib.ads ada/s-stoele.ads ada/s-stoele.adb \
ada/s-traent.ads ada/s-unstyp.ads ada/s-utf_32.ads ada/s-wchcon.ads \ ada/s-string.ads ada/s-traent.ads ada/s-unstyp.ads ada/s-utf_32.ads \
ada/table.ads ada/table.adb ada/targparm.ads ada/tbuild.ads \ ada/s-wchcon.ads ada/table.ads ada/table.adb ada/targparm.ads \
ada/tbuild.adb ada/tree_io.ads ada/ttypes.ads ada/types.ads \ ada/tbuild.ads ada/tbuild.adb ada/tree_io.ads ada/ttypes.ads \
ada/uintp.ads ada/uintp.adb ada/uname.ads ada/unchconv.ads \ ada/types.ads ada/uintp.ads ada/uintp.adb ada/uname.ads \
ada/unchdeal.ads ada/urealp.ads ada/urealp.adb ada/widechar.ads ada/unchconv.ads ada/unchdeal.ads ada/urealp.ads ada/urealp.adb \
ada/widechar.ads
ada/sem_intr.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \ ada/sem_intr.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \
ada/a-uncdea.ads ada/alloc.ads ada/atree.ads ada/atree.adb \ ada/a-uncdea.ads ada/alloc.ads ada/atree.ads ada/atree.adb \
...@@ -3949,25 +3914,25 @@ ada/sem_prag.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \ ...@@ -3949,25 +3914,25 @@ ada/sem_prag.o : ada/ada.ads ada/a-except.ads ada/a-unccon.ads \
ada/nmake.adb ada/opt.ads ada/output.ads ada/par_sco.ads \ ada/nmake.adb ada/opt.ads ada/output.ads ada/par_sco.ads \
ada/restrict.ads ada/restrict.adb ada/rident.ads ada/rtsfind.ads \ ada/restrict.ads ada/restrict.adb ada/rident.ads ada/rtsfind.ads \
ada/scans.ads ada/scn.ads ada/scng.ads ada/scng.adb ada/sem.ads \ ada/scans.ads ada/scn.ads ada/scng.ads ada/scng.adb ada/sem.ads \
ada/sem_aggr.ads ada/sem_attr.ads ada/sem_aux.ads ada/sem_cat.ads \ ada/sem_aggr.ads ada/sem_attr.ads ada/sem_aux.ads ada/sem_aux.adb \
ada/sem_ch12.ads ada/sem_ch13.ads ada/sem_ch3.ads ada/sem_ch4.ads \ ada/sem_cat.ads ada/sem_ch12.ads ada/sem_ch13.ads ada/sem_ch3.ads \
ada/sem_ch6.ads ada/sem_ch8.ads ada/sem_disp.ads ada/sem_dist.ads \ ada/sem_ch4.ads ada/sem_ch6.ads ada/sem_ch8.ads ada/sem_disp.ads \
ada/sem_elab.ads ada/sem_elim.ads ada/sem_eval.ads ada/sem_eval.adb \ ada/sem_dist.ads ada/sem_elab.ads ada/sem_elim.ads ada/sem_eval.ads \
ada/sem_intr.ads ada/sem_mech.ads ada/sem_prag.ads ada/sem_prag.adb \ ada/sem_eval.adb ada/sem_intr.ads ada/sem_mech.ads ada/sem_prag.ads \
ada/sem_res.ads ada/sem_res.adb ada/sem_scil.ads ada/sem_type.ads \ ada/sem_prag.adb ada/sem_res.ads ada/sem_res.adb ada/sem_scil.ads \
ada/sem_util.ads ada/sem_util.adb ada/sem_vfpt.ads ada/sem_warn.ads \ ada/sem_type.ads ada/sem_util.ads ada/sem_util.adb ada/sem_vfpt.ads \
ada/sinfo.ads ada/sinfo.adb ada/sinfo-cn.ads ada/sinput.ads \ ada/sem_warn.ads ada/sinfo.ads ada/sinfo.adb ada/sinfo-cn.ads \
ada/sinput.adb ada/snames.ads ada/snames.adb ada/stand.ads \ ada/sinput.ads ada/sinput.adb ada/snames.ads ada/snames.adb \
ada/stringt.ads ada/stringt.adb ada/style.ads ada/styleg.ads \ ada/stand.ads ada/stringt.ads ada/stringt.adb ada/style.ads \
ada/styleg.adb ada/stylesw.ads ada/system.ads ada/s-carun8.ads \ ada/styleg.ads ada/styleg.adb ada/stylesw.ads ada/system.ads \
ada/s-crc32.ads ada/s-exctab.ads ada/s-exctab.adb ada/s-htable.ads \ ada/s-carun8.ads ada/s-crc32.ads ada/s-exctab.ads ada/s-exctab.adb \
ada/s-imenne.ads ada/s-memory.ads ada/s-os_lib.ads ada/s-parame.ads \ ada/s-htable.ads ada/s-imenne.ads ada/s-memory.ads ada/s-os_lib.ads \
ada/s-rident.ads ada/s-secsta.ads ada/s-soflin.ads ada/s-stache.ads \ ada/s-parame.ads ada/s-rident.ads ada/s-secsta.ads ada/s-soflin.ads \
ada/s-stalib.ads ada/s-stoele.ads ada/s-stoele.adb ada/s-string.ads \ ada/s-stache.ads ada/s-stalib.ads ada/s-stoele.ads ada/s-stoele.adb \
ada/s-traent.ads ada/s-unstyp.ads ada/s-utf_32.ads ada/s-wchcon.ads \ ada/s-string.ads ada/s-traent.ads ada/s-unstyp.ads ada/s-utf_32.ads \
ada/table.ads ada/table.adb ada/targparm.ads ada/tbuild.ads \ ada/s-wchcon.ads ada/table.ads ada/table.adb ada/targparm.ads \
ada/tbuild.adb ada/tree_io.ads ada/ttypes.ads ada/types.ads \ ada/tbuild.ads ada/tbuild.adb ada/tree_io.ads ada/ttypes.ads \
ada/types.adb ada/uintp.ads ada/uintp.adb ada/uname.ads \ ada/types.ads ada/types.adb ada/uintp.ads ada/uintp.adb ada/uname.ads \
ada/unchconv.ads ada/unchdeal.ads ada/urealp.ads ada/urealp.adb \ ada/unchconv.ads ada/unchdeal.ads ada/urealp.ads ada/urealp.adb \
ada/validsw.ads ada/widechar.ads ada/validsw.ads ada/widechar.ads
......
...@@ -8869,7 +8869,8 @@ A.5.2(32). ...@@ -8869,7 +8869,8 @@ A.5.2(32).
@end cartouche @end cartouche
@noindent @noindent
The algorithm is the Mersenne Twister, as documented in the source file The algorithm is the Mersenne Twister, as documented in the source file
@file{s-rannum.adb}. @file{s-rannum.adb}. This version of the algorithm has a period of
2**19937-1.
@sp 1 @sp 1
@cartouche @cartouche
......
...@@ -191,17 +191,21 @@ package body System.Random_Numbers is ...@@ -191,17 +191,21 @@ package body System.Random_Numbers is
generic generic
type Unsigned is mod <>; type Unsigned is mod <>;
type Real is digits <>; type Real is digits <>;
with function Shift_Right (Value : Unsigned; Amount : Natural)
return Unsigned is <>;
with function Random (G : Generator) return Unsigned is <>; with function Random (G : Generator) return Unsigned is <>;
function Random_Float_Template (Gen : Generator) return Real; function Random_Float_Template (Gen : Generator) return Real;
pragma Inline (Random_Float_Template); pragma Inline (Random_Float_Template);
-- Template for a random-number generator implementation that delivers -- Template for a random-number generator implementation that delivers
-- values of type Real in the half-open range [0 .. 1), using values from -- values of type Real in the range [0 .. 1], using values from Gen,
-- Gen, assuming that Unsigned is large enough to hold the bits of -- assuming that Unsigned is large enough to hold the bits of a mantissa
-- a mantissa for type Real. -- for type Real.
function Random_Float_Template (Gen : Generator) return Real is function Random_Float_Template (Gen : Generator) return Real is
pragma Compile_Time_Error
(Unsigned'Last <= 2**(Real'Machine_Mantissa - 1),
"insufficiently large modular type used to hold mantissa");
begin
-- This code generates random floating-point numbers from unsigned -- This code generates random floating-point numbers from unsigned
-- integers. Assuming that Real'Machine_Radix = 2, it can deliver all -- integers. Assuming that Real'Machine_Radix = 2, it can deliver all
-- machine values of type Real (as implied by Real'Machine_Mantissa and -- machine values of type Real (as implied by Real'Machine_Mantissa and
...@@ -210,69 +214,118 @@ package body System.Random_Numbers is ...@@ -210,69 +214,118 @@ package body System.Random_Numbers is
-- integer>) / (<max random integer>+1). To do so, we first extract an -- integer>) / (<max random integer>+1). To do so, we first extract an
-- (M-1)-bit significand (where M is Real'Machine_Mantissa), and then -- (M-1)-bit significand (where M is Real'Machine_Mantissa), and then
-- decide on a normalized exponent by repeated coin flips, decrementing -- decide on a normalized exponent by repeated coin flips, decrementing
-- from 0 as long as we flip heads (1 bits). This yields the proper -- from 0 as long as we flip heads (1 bits). This process yields the
-- geometric distribution for the exponent: in a uniformly distributed -- proper geometric distribution for the exponent: in a uniformly
-- set of floating-point numbers, 1/2 of them will be in [0.5, 1), 1/4 -- distributed set of floating-point numbers, 1/2 of them will be in
-- will be in [0.25, 0.5), and so forth. If the process reaches -- (0.5, 1], 1/4 will be in (0.25, 0.5], and so forth. It makes a
-- Machine_Emin (an extremely rare event), it uses the selected mantissa -- further adjustment at binade boundaries (see comments below) to give
-- bits as an unnormalized fraction with Machine_Emin as exponent. -- the effect of selecting a uniformly distributed real deviate in
-- Otherwise, it adds a leading bit to the selected mantissa bits (thus -- [0..1] and then rounding to the nearest representable floating-point
-- giving a normalized fraction) and adjusts by the chosen exponent. The -- number. The algorithm attempts to be stingy with random integers. In
-- algorithm attempts to be stingy with random integers. In the worst -- the worst case, it can consume roughly -Real'Machine_Emin/32 32-bit
-- case, it can consume roughly -Real'Machine_Emin/32 32-bit integers, -- integers, but this case occurs with probability around
-- but this case occurs with probability 2**Machine_Emin, and the -- 2**Machine_Emin, and the expected number of calls to integer-valued
-- expected number of calls to integer-valued Random is 1. -- Random is 1. For another discussion of the issues addressed by this
-- process, see Allen Downey's unpublished paper at
-- http://allendowney.com/research/rand/downey07randfloat.pdf.
begin
if Real'Machine_Radix /= 2 then if Real'Machine_Radix /= 2 then
declare return Real'Machine
Val : constant Real :=
Real'Machine
(Real (Unsigned'(Random (Gen))) * 2.0**(-Unsigned'Size)); (Real (Unsigned'(Random (Gen))) * 2.0**(-Unsigned'Size));
begin
if Val < 1.0 then
return Real'Base (Val);
else
return Real'Pred (1.0);
end if;
end;
else else
declare declare
Mant_Bits : constant Integer := Real'Machine_Mantissa - 1; type Bit_Count is range 0 .. 4;
Mant_Mask : constant Unsigned := 2**Mant_Bits - 1;
Adjust32 : constant Integer := Real'Size - Unsigned_32'Size; subtype T is Real'Base;
Leftover : constant Integer :=
Unsigned'Size - Real'Machine_Mantissa + 1; Trailing_Ones : constant array (Unsigned_32 range 0 .. 15)
V : constant Unsigned := Random (Gen); of Bit_Count
Mant : constant Unsigned := V and Mant_Mask; := (2#00000# => 0, 2#00001# => 1, 2#00010# => 0, 2#00011# => 2,
Rand_Bits : Unsigned_32; 2#00100# => 0, 2#00101# => 1, 2#00110# => 0, 2#00111# => 3,
Exp : Integer; 2#01000# => 0, 2#01001# => 1, 2#01010# => 0, 2#01011# => 2,
Bits_Left : Integer; 2#01100# => 0, 2#01101# => 1, 2#01110# => 0, 2#01111# => 4);
Result : Real;
Pow_Tab : constant array (Bit_Count range 0 .. 3) of Real
:= (0 => 2.0**(0 - T'Machine_Mantissa),
1 => 2.0**(-1 - T'Machine_Mantissa),
2 => 2.0**(-2 - T'Machine_Mantissa),
3 => 2.0**(-3 - T'Machine_Mantissa));
Extra_Bits : constant Natural :=
(Unsigned'Size - T'Machine_Mantissa + 1);
-- Random bits left over after selecting mantissa
Mantissa : Unsigned;
X : Real; -- Scaled mantissa
R : Unsigned_32; -- Supply of random bits
R_Bits : Natural; -- Number of bits left in R
K : Bit_Count; -- Next decrement to exponent
begin begin
Rand_Bits := Unsigned_32 (Shift_Right (V, Adjust32));
Exp := 0; Mantissa := Random (Gen) / 2**Extra_Bits;
Bits_Left := Leftover; R := Unsigned_32 (Mantissa mod 2**Extra_Bits);
Result := Real (Mant + 2**Mant_Bits) * 2.0**(-Mant_Bits - 1); R_Bits := Extra_Bits;
while Rand_Bits >= 2**31 loop X := Real (2**(T'Machine_Mantissa - 1) + Mantissa); -- Exact
if Exp = Real'Machine_Emin then
return Real (Mant) * 2.0**Real'Machine_Emin; if Extra_Bits < 4 and then R < 2**Extra_Bits - 1 then
-- We got lucky and got a zero in our few extra bits
K := Trailing_Ones (R);
else
Find_Zero : loop
-- R has R_Bits unprocessed random bits, a multiple of 4.
-- X needs to be halved for each trailing one bit. The
-- process stops as soon as a 0 bit is found. If R_Bits
-- becomes zero, reload R.
-- Process 4 bits at a time for speed: the two iterations
-- on average with three tests each was still too slow,
-- probably because the branches are not predictable.
-- This loop now will only execute once 94% of the cases,
-- doing more bits at a time will not help.
while R_Bits >= 4 loop
K := Trailing_Ones (R mod 16);
exit Find_Zero when K < 4; -- Exits 94% of the time
R_Bits := R_Bits - 4;
X := X / 16.0;
R := R / 16;
end loop;
-- Do not allow us to loop endlessly even in the (very
-- unlikely) case that Random (Gen) keeps yielding all ones.
exit Find_Zero when X = 0.0;
R := Random (Gen);
R_Bits := 32;
end loop Find_Zero;
end if; end if;
Result := Result * 0.5; -- K has the count of trailing ones not reflected yet in X.
Exp := Exp - 1; -- The following multiplication takes care of that, as well
Rand_Bits := 2 * Rand_Bits; -- as the correction to move the radix point to the left of
Bits_Left := Bits_Left - 1; -- the mantissa. Doing it at the end avoids repeated rounding
-- errors in the exceedingly unlikely case of ever having
-- a subnormal result.
X := X * Pow_Tab (K);
if Bits_Left = 0 then -- The smallest value in each binade is rounded to by 0.75 of
Bits_Left := 32; -- the span of real numbers as its next larger neighbor, and
Rand_Bits := Random (Gen); -- 1.0 is rounded to by half of the span of real numbers as its
-- next smaller neighbor. To account for this, when we encounter
-- the smallest number in a binade, we substitute the smallest
-- value in the next larger binade with probability 1/2.
if Mantissa = 0 and then Unsigned_32'(Random (Gen)) mod 2 = 0 then
X := 2.0 * X;
end if; end if;
end loop;
return Result; return X;
end; end;
end if; end if;
end Random_Float_Template; end Random_Float_Template;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment