Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
R
riscv-gcc-1
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
lvzhengyang
riscv-gcc-1
Commits
585021dc
Commit
585021dc
authored
Aug 29, 1991
by
Charles Hannum
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
entered into RCS
From-SVN: r36
parent
573ade84
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
863 additions
and
0 deletions
+863
-0
gcc/config/pyr/pyr.c
+863
-0
No files found.
gcc/config/pyr/pyr.c
0 → 100644
View file @
585021dc
/* Subroutines for insn-output.c for Pyramid 90x, 9000, and MIServer Series.
Copyright (C) 1989, 1991 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
/* Some output-actions in pyr.md need these. */
#include <stdio.h>
#include "config.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "output.h"
#include "insn-attr.h"
#include "tree.h"
/*
* Do FUNCTION_ARG.
* This cannot be defined as a macro on pyramids, because Pyramid Technology's
* C compiler dies on (several equivalent definitions of) this macro.
* The only way around this cc bug was to make this a function.
* While it would be possible to use a macro version for gcc, it seems
* more reliable to have a single version of the code.
*/
void
*
pyr_function_arg
(
cum
,
mode
,
type
,
named
)
CUMULATIVE_ARGS
cum
;
enum
machine_mode
mode
;
tree
type
;
{
return
(
void
*
)(
FUNCTION_ARG_HELPER
(
cum
,
mode
,
type
,
named
));
}
/* Do the hard part of PARAM_SAFE_FOR_REG_P.
* This cannot be defined as a macro on pyramids, because Pyramid Technology's
* C compiler dies on (several equivalent definitions of) this macro.
* The only way around this cc bug was to make this a function.
*/
int
inner_param_safe_helper
(
type
)
tree
type
;
{
return
(
INNER_PARAM_SAFE_HELPER
(
type
));
}
/* Return 1 if OP is a non-indexed operand of mode MODE.
This is either a register reference, a memory reference,
or a constant. In the case of a memory reference, the address
is checked to make sure it isn't indexed.
Register and memory references must have mode MODE in order to be valid,
but some constants have no machine mode and are valid for any mode.
If MODE is VOIDmode, OP is checked for validity for whatever mode
it has.
The main use of this function is as a predicate in match_operand
expressions in the machine description.
It is useful to compare this with general_operand(). They should
be identical except for one line.
This function seems necessary because of the non-orthogonality of
Pyramid insns.
For any 2-operand insn, and any combination of operand modes,
if indexing is valid for the isn's second operand, it is invalid
for the first operand to be indexed. */
extern
int
volatile_ok
;
int
nonindexed_operand
(
op
,
mode
)
register
rtx
op
;
enum
machine_mode
mode
;
{
register
RTX_CODE
code
=
GET_CODE
(
op
);
int
mode_altering_drug
=
0
;
if
(
mode
==
VOIDmode
)
mode
=
GET_MODE
(
op
);
/* Don't accept CONST_INT or anything similar
if the caller wants something floating. */
if
(
GET_MODE
(
op
)
==
VOIDmode
&&
mode
!=
VOIDmode
&&
GET_MODE_CLASS
(
mode
)
!=
MODE_INT
)
return
0
;
if
(
CONSTANT_P
(
op
))
return
((
GET_MODE
(
op
)
==
VOIDmode
||
GET_MODE
(
op
)
==
mode
)
&&
LEGITIMATE_CONSTANT_P
(
op
));
/* Except for certain constants with VOIDmode, already checked for,
OP's mode must match MODE if MODE specifies a mode. */
if
(
GET_MODE
(
op
)
!=
mode
)
return
0
;
while
(
code
==
SUBREG
)
{
op
=
SUBREG_REG
(
op
);
code
=
GET_CODE
(
op
);
#if 0
/* No longer needed, since (SUBREG (MEM...))
will load the MEM into a reload reg in the MEM's own mode. */
mode_altering_drug = 1;
#endif
}
if
(
code
==
REG
)
return
1
;
if
(
code
==
CONST_DOUBLE
)
return
LEGITIMATE_CONSTANT_P
(
op
);
if
(
code
==
MEM
)
{
register
rtx
y
=
XEXP
(
op
,
0
);
if
(
!
volatile_ok
&&
MEM_VOLATILE_P
(
op
))
return
0
;
GO_IF_NONINDEXED_ADDRESS
(
y
,
win
);
}
return
0
;
win
:
if
(
mode_altering_drug
)
return
!
mode_dependent_address_p
(
XEXP
(
op
,
0
));
return
1
;
}
/* Return non-zero if the rtx OP has an immediate component. An
immediate component or additive term equal to zero is rejected
due to assembler problems. */
int
has_direct_base
(
op
)
rtx
op
;
{
if
((
CONSTANT_ADDRESS_P
(
op
)
&&
op
!=
const0_rtx
)
||
(
GET_CODE
(
op
)
==
PLUS
&&
((
CONSTANT_ADDRESS_P
(
XEXP
(
op
,
1
))
&&
XEXP
(
op
,
1
)
!=
const0_rtx
)
||
(
CONSTANT_ADDRESS_P
(
XEXP
(
op
,
0
))
&&
XEXP
(
op
,
0
)
!=
const0_rtx
))))
return
1
;
return
0
;
}
/* Return zero if the rtx OP has a (scaled) index. */
int
has_index
(
op
)
rtx
op
;
{
if
(
GET_CODE
(
op
)
==
PLUS
&&
(
GET_CODE
(
XEXP
(
op
,
0
))
==
MULT
||
(
GET_CODE
(
XEXP
(
op
,
1
))
==
MULT
)))
return
1
;
else
return
0
;
}
int
swap_operands
;
/* weird_memory_memory -- return 1 if OP1 and OP2 can be compared (or
exchanged with xchw) with one instruction. If the operands need to
be swapped, set the global variable SWAP_OPERANDS. This function
silently assumes that both OP0 and OP1 are valid memory references.
*/
int
weird_memory_memory
(
op0
,
op1
)
rtx
op0
,
op1
;
{
RTX_CODE
code0
,
code1
;
op0
=
XEXP
(
op0
,
0
);
op1
=
XEXP
(
op1
,
0
);
code0
=
GET_CODE
(
op0
);
code1
=
GET_CODE
(
op1
);
swap_operands
=
0
;
if
(
code1
==
REG
||
code1
==
SUBREG
)
{
return
1
;
}
if
(
code0
==
REG
||
code0
==
SUBREG
)
{
swap_operands
=
1
;
return
1
;
}
if
(
has_direct_base
(
op0
)
&&
has_direct_base
(
op1
))
{
if
(
has_index
(
op1
))
{
if
(
has_index
(
op0
))
return
0
;
swap_operands
=
1
;
}
return
1
;
}
return
0
;
}
int
signed_comparison
(
x
,
mode
)
rtx
x
;
enum
machine_mode
mode
;
{
return
!
TRULY_UNSIGNED_COMPARE_P
(
GET_CODE
(
x
));
}
extern
rtx
force_reg
();
rtx
test_op0
,
test_op1
;
enum
machine_mode
test_mode
;
/* Sign-extend or zero-extend constant X from FROM_MODE to TO_MODE. */
rtx
extend_const
(
x
,
extop
,
from_mode
,
to_mode
)
rtx
x
;
RTX_CODE
extop
;
enum
machine_mode
from_mode
,
to_mode
;
{
int
val
;
int
negative
;
if
(
from_mode
==
to_mode
)
return
x
;
if
(
GET_CODE
(
x
)
!=
CONST_INT
)
abort
();
val
=
INTVAL
(
x
);
negative
=
val
&
(
1
<<
(
GET_MODE_BITSIZE
(
from_mode
)
-
1
));
if
(
GET_MODE_BITSIZE
(
from_mode
)
==
HOST_BITS_PER_INT
)
abort
();
if
(
negative
&&
extop
==
SIGN_EXTEND
)
val
=
val
|
((
-
1
)
<<
(
GET_MODE_BITSIZE
(
from_mode
)));
else
val
=
val
&
~
((
-
1
)
<<
(
GET_MODE_BITSIZE
(
from_mode
)));
if
(
GET_MODE_BITSIZE
(
to_mode
)
==
HOST_BITS_PER_INT
)
return
gen_rtx
(
CONST_INT
,
VOIDmode
,
val
);
return
gen_rtx
(
CONST_INT
,
VOIDmode
,
val
&
~
((
-
1
)
<<
(
GET_MODE_BITSIZE
(
to_mode
))));
}
rtx
ensure_extended
(
op
,
extop
,
from_mode
)
rtx
op
;
RTX_CODE
extop
;
enum
machine_mode
from_mode
;
{
if
(
GET_CODE
(
op
)
==
CONST_INT
)
return
extend_const
(
op
,
extop
,
from_mode
,
SImode
);
else
return
force_reg
(
SImode
,
gen_rtx
(
extop
,
SImode
,
op
));
}
/* Emit rtl for a branch, as well as any delayed (integer) compare insns.
The compare insn to perform is determined by the global variables
test_op0 and test_op1. */
void
extend_and_branch
(
extop
)
RTX_CODE
extop
;
{
rtx
op0
,
op1
;
RTX_CODE
code0
,
code1
;
op0
=
test_op0
,
op1
=
test_op1
;
if
(
op0
==
0
)
return
;
code0
=
GET_CODE
(
op0
);
if
(
op1
!=
0
)
code1
=
GET_CODE
(
op1
);
test_op0
=
test_op1
=
0
;
if
(
op1
==
0
)
{
op0
=
ensure_extended
(
op0
,
extop
,
test_mode
);
emit_insn
(
gen_rtx
(
SET
,
VOIDmode
,
cc0_rtx
,
op0
));
}
else
{
if
(
CONSTANT_P
(
op0
)
&&
CONSTANT_P
(
op1
))
{
op0
=
ensure_extended
(
op0
,
extop
,
test_mode
);
op1
=
ensure_extended
(
op1
,
extop
,
test_mode
);
}
else
if
(
extop
==
ZERO_EXTEND
&&
test_mode
==
HImode
)
{
/* Pyramids have no unsigned "cmphi" instructions. We need to
zero extend unsigned halfwords into temporary registers. */
op0
=
ensure_extended
(
op0
,
extop
,
test_mode
);
op1
=
ensure_extended
(
op1
,
extop
,
test_mode
);
}
else
if
(
CONSTANT_P
(
op0
))
{
op0
=
ensure_extended
(
op0
,
extop
,
test_mode
);
op1
=
ensure_extended
(
op1
,
extop
,
test_mode
);
}
else
if
(
CONSTANT_P
(
op1
))
{
op1
=
ensure_extended
(
op1
,
extop
,
test_mode
);
op0
=
ensure_extended
(
op0
,
extop
,
test_mode
);
}
else
if
((
code0
==
REG
||
code0
==
SUBREG
)
&&
(
code1
==
REG
||
code1
==
SUBREG
))
{
/* I could do this case without extension, by using the virtual
register address (but that would lose for global regs). */
op0
=
ensure_extended
(
op0
,
extop
,
test_mode
);
op1
=
ensure_extended
(
op1
,
extop
,
test_mode
);
}
else
if
(
code0
==
MEM
&&
code1
==
MEM
)
{
/* Load into a reg if the address combination can't be handled
directly. */
if
(
!
weird_memory_memory
(
op0
,
op1
))
op0
=
force_reg
(
test_mode
,
op0
);
}
emit_insn
(
gen_rtx
(
SET
,
VOIDmode
,
cc0_rtx
,
gen_rtx
(
COMPARE
,
VOIDmode
,
op0
,
op1
)));
}
}
/* Return non-zero if the two single-word moves with operands[0]
and operands[1] for the first single-word move, and operands[2]
and operands[3] for the second single-word move, is possible to
combine to a double word move.
The criterion is whether the operands are in consecutive memory cells,
registers, etc. */
int
movdi_possible
(
operands
)
rtx
operands
[];
{
int
cnst_diff0
,
cnst_diff1
;
RTX_CODE
code0
=
GET_CODE
(
operands
[
0
]);
RTX_CODE
code1
=
GET_CODE
(
operands
[
1
]);
/* Don't dare to combine (possibly overlapping) memory -> memory moves. */
/* It would be possible to detect the cases where we dare, by using
constant_diff (operands[0], operands[1])!!! */
if
(
code0
==
MEM
&&
code1
==
MEM
)
return
0
;
cnst_diff0
=
consecutive_operands
(
operands
[
0
],
operands
[
2
]);
if
(
cnst_diff0
==
0
)
return
0
;
cnst_diff1
=
consecutive_operands
(
operands
[
1
],
operands
[
3
]);
if
(
cnst_diff1
==
0
)
return
0
;
if
(
cnst_diff0
&
cnst_diff1
)
{
/* The source and destination operands are consecutive. */
/* If the first move writes into the source of the second move,
we cannot combine. */
if
((
code0
==
REG
&&
reg_overlap_mentioned_p
(
operands
[
0
],
operands
[
3
]))
||
(
code0
==
SUBREG
&&
subreg_overlap_mentioned_p
(
operands
[
0
],
operands
[
3
])))
return
0
;
if
(
cnst_diff0
&
1
)
/* operands[0],[1] has higher addresses than operands[2],[3]. */
swap_operands
=
0
;
else
/* operands[0],[1] has lower addresses than operands[2],[3]. */
swap_operands
=
1
;
return
1
;
}
return
0
;
}
/* Like reg_overlap_mentioned_p, but accepts a subreg rtx instead
of a reg. */
int
subreg_overlap_mentioned_p
(
subreg
,
x
)
rtx
subreg
,
x
;
{
rtx
reg
=
SUBREG_REG
(
subreg
);
int
regno
=
REGNO
(
reg
)
+
SUBREG_WORD
(
subreg
);
int
endregno
=
regno
+
HARD_REGNO_NREGS
(
regno
,
GET_MODE
(
subreg
));
return
refers_to_regno_p
(
regno
,
endregno
,
x
,
0
);
}
/* Return 1 if OP0 is a consecutive operand to OP1, 2 if OP1 is a
consecutive operand to OP0.
This function is used to determine if addresses are consecutive,
and therefore possible to combine to fewer instructions. */
int
consecutive_operands
(
op0
,
op1
)
rtx
op0
,
op1
;
{
RTX_CODE
code0
,
code1
;
int
cnst_diff
;
int
regno_off0
,
regno_off1
;
code0
=
GET_CODE
(
op0
);
code1
=
GET_CODE
(
op1
);
regno_off0
=
0
;
if
(
code0
==
SUBREG
)
{
if
(
GET_MODE_SIZE
(
GET_MODE
(
SUBREG_REG
(
op0
)))
<=
UNITS_PER_WORD
)
return
0
;
regno_off0
=
SUBREG_WORD
(
op0
);
op0
=
SUBREG_REG
(
op0
);
code0
=
REG
;
}
regno_off1
=
0
;
if
(
code1
==
SUBREG
)
{
if
(
GET_MODE_SIZE
(
GET_MODE
(
SUBREG_REG
(
op1
)))
<=
UNITS_PER_WORD
)
return
0
;
regno_off1
=
SUBREG_WORD
(
op1
);
op1
=
SUBREG_REG
(
op1
);
code1
=
REG
;
}
if
(
code0
!=
code1
)
return
0
;
switch
(
code0
)
{
case
CONST_INT
:
/* Cannot permit any symbolic constants, even if the consecutive
operand is 0, since a movl really performs sign extension. */
if
(
code1
!=
CONST_INT
)
return
0
;
if
((
INTVAL
(
op0
)
==
0
&&
INTVAL
(
op1
)
==
0
)
||
(
INTVAL
(
op0
)
==
-
1
&&
INTVAL
(
op1
)
==
-
1
))
return
3
;
if
((
INTVAL
(
op0
)
==
0
&&
INTVAL
(
op1
)
>
0
)
||
(
INTVAL
(
op0
)
==
-
1
&&
INTVAL
(
op1
)
<
0
))
return
2
;
if
((
INTVAL
(
op1
)
==
0
&&
INTVAL
(
op0
)
>
0
)
||
(
INTVAL
(
op1
)
==
-
1
&&
INTVAL
(
op0
)
<
0
))
return
1
;
break
;
case
REG
:
regno_off0
=
REGNO
(
op0
)
+
regno_off0
;
regno_off1
=
REGNO
(
op1
)
+
regno_off1
;
cnst_diff
=
regno_off0
-
regno_off1
;
if
(
cnst_diff
==
1
)
{
/* movl with the highest numbered parameter (local) register as
source or destination, doesn't wrap to the lowest numbered local
(temporary) register. */
if
(
regno_off0
%
16
!=
0
)
return
1
;
else
return
0
;
}
else
if
(
cnst_diff
==
-
1
)
{
if
(
regno_off1
%
16
!=
0
)
return
2
;
else
return
0
;
}
break
;
case
MEM
:
op0
=
XEXP
(
op0
,
0
);
op1
=
XEXP
(
op1
,
0
);
if
(
GET_CODE
(
op0
)
==
CONST
)
op0
=
XEXP
(
op0
,
0
);
if
(
GET_CODE
(
op1
)
==
CONST
)
op1
=
XEXP
(
op1
,
0
);
cnst_diff
=
constant_diff
(
op0
,
op1
);
if
(
cnst_diff
)
{
if
(
cnst_diff
==
4
)
return
1
;
else
if
(
cnst_diff
==
-
4
)
return
2
;
}
break
;
}
return
0
;
}
/* Return the constant difference of the rtx expressions OP0 and OP1,
or 0 if they don't have a constant difference.
This function is used to determine if addresses are consecutive,
and therefore possible to combine to fewer instructions. */
int
constant_diff
(
op0
,
op1
)
rtx
op0
,
op1
;
{
RTX_CODE
code0
,
code1
;
int
cnst_diff
;
code0
=
GET_CODE
(
op0
);
code1
=
GET_CODE
(
op1
);
if
(
code0
!=
code1
)
{
if
(
code0
==
PLUS
)
{
if
(
GET_CODE
(
XEXP
(
op0
,
1
))
==
CONST_INT
&&
rtx_equal_p
(
op1
,
XEXP
(
op0
,
0
)))
return
INTVAL
(
XEXP
(
op0
,
1
));
}
else
if
(
code1
==
PLUS
)
{
if
(
GET_CODE
(
XEXP
(
op1
,
1
))
==
CONST_INT
&&
rtx_equal_p
(
op0
,
XEXP
(
op1
,
0
)))
return
-
INTVAL
(
XEXP
(
op1
,
1
));
}
return
0
;
}
if
(
code0
==
CONST_INT
)
return
INTVAL
(
op0
)
-
INTVAL
(
op1
);
if
(
code0
==
PLUS
)
{
cnst_diff
=
constant_diff
(
XEXP
(
op0
,
0
),
XEXP
(
op1
,
0
));
if
(
cnst_diff
)
return
(
rtx_equal_p
(
XEXP
(
op0
,
1
),
XEXP
(
op1
,
1
)))
?
cnst_diff
:
0
;
cnst_diff
=
constant_diff
(
XEXP
(
op0
,
1
),
XEXP
(
op1
,
1
));
if
(
cnst_diff
)
return
(
rtx_equal_p
(
XEXP
(
op0
,
0
),
XEXP
(
op1
,
0
)))
?
cnst_diff
:
0
;
}
return
0
;
}
int
already_sign_extended
(
insn
,
from_mode
,
op
)
rtx
insn
;
enum
machine_mode
from_mode
;
rtx
op
;
{
rtx
xinsn
,
xdest
,
xsrc
;
for
(;;)
{
insn
=
PREV_INSN
(
insn
);
if
(
insn
==
0
)
return
0
;
if
(
GET_CODE
(
insn
)
==
NOTE
||
GET_CODE
(
insn
)
==
JUMP_INSN
)
continue
;
if
(
GET_CODE
(
insn
)
==
CALL_INSN
&&
!
call_used_regs
[
REGNO
(
op
)])
continue
;
if
(
GET_CODE
(
insn
)
!=
INSN
)
return
0
;
xinsn
=
PATTERN
(
insn
);
if
(
GET_CODE
(
xinsn
)
!=
SET
)
return
0
;
xdest
=
SET_DEST
(
xinsn
);
xsrc
=
SET_SRC
(
xinsn
);
if
(
GET_CODE
(
xdest
)
==
SUBREG
)
abort
();
if
(
!
REG_P
(
xdest
))
continue
;
if
(
REGNO
(
op
)
==
REGNO
(
xdest
)
&&
((
GET_CODE
(
xsrc
)
==
SIGN_EXTEND
&&
GET_MODE
(
XEXP
(
xsrc
,
0
))
==
from_mode
)
||
(
GET_CODE
(
xsrc
)
==
MEM
&&
GET_MODE
(
xsrc
)
==
from_mode
)))
return
1
;
/* The register is modified by another operation. */
if
(
reg_overlap_mentioned_p
(
xdest
,
op
))
return
0
;
}
}
char
*
output_move_double
(
operands
)
rtx
*
operands
;
{
if
(
GET_CODE
(
operands
[
1
])
==
CONST_DOUBLE
)
{
if
(
GET_MODE_CLASS
(
GET_MODE
(
operands
[
1
]))
==
MODE_INT
)
{
/* In an integer, the low-order word is in CONST_DOUBLE_LOW. */
rtx
const_op
=
operands
[
1
];
if
((
CONST_DOUBLE_HIGH
(
const_op
)
==
0
&&
CONST_DOUBLE_LOW
(
const_op
)
>=
0
)
||
(
CONST_DOUBLE_HIGH
(
const_op
)
==
-
1
&&
CONST_DOUBLE_LOW
(
const_op
)
<
0
))
{
operands
[
1
]
=
gen_rtx
(
CONST_INT
,
VOIDmode
,
CONST_DOUBLE_LOW
(
const_op
));
return
"movl %1,%0"
;
}
operands
[
1
]
=
gen_rtx
(
CONST_INT
,
VOIDmode
,
CONST_DOUBLE_HIGH
(
const_op
));
output_asm_insn
(
"movw %1,%0"
,
operands
);
operands
[
0
]
=
gen_rtx
(
REG
,
SImode
,
REGNO
(
operands
[
0
])
+
1
);
operands
[
1
]
=
gen_rtx
(
CONST_INT
,
VOIDmode
,
CONST_DOUBLE_LOW
(
const_op
));
return
"movw %1,%0"
;
}
else
{
/* In a real, the low-address word is in CONST_DOUBLE_LOW. */
rtx
const_op
=
operands
[
1
];
if
((
CONST_DOUBLE_LOW
(
const_op
)
==
0
&&
CONST_DOUBLE_HIGH
(
const_op
)
>=
0
)
||
(
CONST_DOUBLE_LOW
(
const_op
)
==
-
1
&&
CONST_DOUBLE_HIGH
(
const_op
)
<
0
))
{
operands
[
1
]
=
gen_rtx
(
CONST_INT
,
VOIDmode
,
CONST_DOUBLE_HIGH
(
const_op
));
return
"movl %1,%0"
;
}
operands
[
1
]
=
gen_rtx
(
CONST_INT
,
VOIDmode
,
CONST_DOUBLE_LOW
(
const_op
));
output_asm_insn
(
"movw %1,%0"
,
operands
);
operands
[
0
]
=
gen_rtx
(
REG
,
SImode
,
REGNO
(
operands
[
0
])
+
1
);
operands
[
1
]
=
gen_rtx
(
CONST_INT
,
VOIDmode
,
CONST_DOUBLE_HIGH
(
const_op
));
return
"movw %1,%0"
;
}
}
return
"movl %1,%0"
;
}
/* Output a shift insns, after having reduced integer arguments to
avoid as warnings. */
char
*
output_shift
(
pattern
,
op2
,
mod
)
char
*
pattern
;
rtx
op2
;
int
mod
;
{
if
(
GET_CODE
(
op2
)
==
CONST_INT
)
{
int
cnt
=
INTVAL
(
op2
)
%
mod
;
if
(
cnt
==
0
)
{
cc_status
=
cc_prev_status
;
return
""
;
}
op2
=
gen_rtx
(
CONST_INT
,
VOIDmode
,
cnt
);
}
return
pattern
;
}
/* Return non-zero if the code of this rtx pattern is a relop. */
int
relop
(
op
,
mode
)
rtx
op
;
enum
machine_mode
mode
;
{
switch
(
GET_CODE
(
op
))
{
case
EQ
:
case
NE
:
case
LT
:
case
LE
:
case
GE
:
case
GT
:
case
LTU
:
case
LEU
:
case
GEU
:
case
GTU
:
return
1
;
}
return
0
;
}
void
notice_update_cc
(
EXP
,
INSN
)
rtx
EXP
,
INSN
;
{
switch
(
GET_CODE
(
EXP
))
{
case
SET
:
switch
(
GET_CODE
(
SET_DEST
(
EXP
)))
{
case
CC0
:
cc_status
.
mdep
=
0
;
cc_status
.
flags
=
0
;
cc_status
.
value1
=
0
;
cc_status
.
value2
=
SET_SRC
(
EXP
);
break
;
case
PC
:
break
;
case
REG
:
switch
(
GET_CODE
(
SET_SRC
(
EXP
)))
{
case
CALL
:
goto
call
;
case
MEM
:
if
(
GET_MODE
(
SET_SRC
(
EXP
))
==
QImode
||
GET_MODE
(
SET_SRC
(
EXP
))
==
HImode
)
{
cc_status
.
mdep
=
0
;
cc_status
.
flags
=
CC_NO_OVERFLOW
;
cc_status
.
value1
=
SET_DEST
(
EXP
);
cc_status
.
value2
=
SET_SRC
(
EXP
);
break
;
}
/* else: Fall through. */
case
CONST_INT
:
case
SYMBOL_REF
:
case
LABEL_REF
:
case
CONST
:
case
CONST_DOUBLE
:
case
REG
:
if
(
cc_status
.
value1
&&
reg_overlap_mentioned_p
(
SET_DEST
(
EXP
),
cc_status
.
value1
))
cc_status
.
value1
=
0
;
if
(
cc_status
.
value2
&&
reg_overlap_mentioned_p
(
SET_DEST
(
EXP
),
cc_status
.
value2
))
cc_status
.
value2
=
0
;
break
;
case
UDIV
:
case
UMOD
:
cc_status
.
mdep
=
CC_VALID_FOR_UNSIGNED
;
cc_status
.
flags
=
CC_NO_OVERFLOW
;
cc_status
.
value1
=
SET_DEST
(
EXP
);
cc_status
.
value2
=
SET_SRC
(
EXP
);
break
;
default
:
cc_status
.
mdep
=
0
;
cc_status
.
flags
=
CC_NO_OVERFLOW
;
cc_status
.
value1
=
SET_DEST
(
EXP
);
cc_status
.
value2
=
SET_SRC
(
EXP
);
break
;
}
break
;
case
MEM
:
switch
(
GET_CODE
(
SET_SRC
(
EXP
)))
{
case
REG
:
if
(
GET_MODE
(
SET_SRC
(
EXP
))
==
QImode
||
GET_MODE
(
SET_SRC
(
EXP
))
==
HImode
)
{
cc_status
.
flags
=
CC_NO_OVERFLOW
;
cc_status
.
value1
=
SET_DEST
(
EXP
);
cc_status
.
value2
=
SET_SRC
(
EXP
);
cc_status
.
mdep
=
0
;
break
;
}
/* else: Fall through. */
case
CONST_INT
:
case
SYMBOL_REF
:
case
LABEL_REF
:
case
CONST
:
case
CONST_DOUBLE
:
case
MEM
:
/* Need to forget cc_status about memory positions each
time a memory store is made, even if the memory store
insns in question doesn't modify the condition codes. */
if
(
cc_status
.
value1
&&
GET_CODE
(
cc_status
.
value1
)
==
MEM
)
cc_status
.
value1
=
0
;
if
(
cc_status
.
value2
&&
GET_CODE
(
cc_status
.
value2
)
==
MEM
)
cc_status
.
value2
=
0
;
break
;
case
SIGN_EXTEND
:
case
FLOAT_EXTEND
:
case
FLOAT_TRUNCATE
:
case
FLOAT
:
case
FIX
:
cc_status
.
flags
=
CC_NO_OVERFLOW
;
cc_status
.
value1
=
SET_DEST
(
EXP
);
cc_status
.
value2
=
SET_SRC
(
EXP
);
cc_status
.
mdep
=
0
;
break
;
default
:
abort
();
}
break
;
default
:
abort
();
}
break
;
case
CALL
:
call
:
CC_STATUS_INIT
;
break
;
/* Do calls preserve the condition codes? (At least forget
cc_status expressions if they refer to registers
not preserved across calls. Also forget expressions
about memory contents.) */
if
(
cc_status
.
value1
&&
(
refers_to_regno_p
(
PYR_TREG
(
0
),
PYR_TREG
(
15
),
cc_status
.
value1
,
0
)
||
GET_CODE
(
cc_status
.
value1
)
==
MEM
))
cc_status
.
value1
=
0
;
if
(
cc_status
.
value2
&&
(
refers_to_regno_p
(
PYR_TREG
(
0
),
PYR_TREG
(
15
),
cc_status
.
value2
,
0
)
||
GET_CODE
(
cc_status
.
value2
)
==
MEM
))
cc_status
.
value2
=
0
;
break
;
default
:
CC_STATUS_INIT
;
}
}
void
forget_cc_if_dependent
(
op
)
rtx
op
;
{
cc_status
=
cc_prev_status
;
if
(
cc_status
.
value1
&&
reg_overlap_mentioned_p
(
op
,
cc_status
.
value1
))
cc_status
.
value1
=
0
;
if
(
cc_status
.
value2
&&
reg_overlap_mentioned_p
(
op
,
cc_status
.
value2
))
cc_status
.
value2
=
0
;
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment