Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
R
riscv-gcc-1
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
lvzhengyang
riscv-gcc-1
Commits
54dac99e
Commit
54dac99e
authored
Nov 05, 1991
by
Richard Kenner
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Initial revision
From-SVN: r56
parent
d14a15b6
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
1132 additions
and
0 deletions
+1132
-0
gcc/regclass.c
+1132
-0
No files found.
gcc/regclass.c
0 → 100644
View file @
54dac99e
/* Compute register class preferences for pseudo-registers.
Copyright (C) 1987-1991 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
/* This file contains two passes of the compiler: reg_scan and reg_class.
It also defines some tables of information about the hardware registers
and a function init_reg_sets to initialize the tables. */
#include "config.h"
#include "rtl.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "basic-block.h"
#include "regs.h"
#include "insn-config.h"
#include "recog.h"
#ifndef REGISTER_MOVE_COST
#define REGISTER_MOVE_COST(x, y) 2
#endif
#ifndef MEMORY_MOVE_COST
#define MEMORY_MOVE_COST(x) 2
#endif
/* Register tables used by many passes. */
/* Indexed by hard register number, contains 1 for registers
that are fixed use (stack pointer, pc, frame pointer, etc.).
These are the registers that cannot be used to allocate
a pseudo reg whose life does not cross calls. */
char
fixed_regs
[
FIRST_PSEUDO_REGISTER
];
/* Same info as a HARD_REG_SET. */
HARD_REG_SET
fixed_reg_set
;
/* Data for initializing the above. */
static
char
initial_fixed_regs
[]
=
FIXED_REGISTERS
;
/* Indexed by hard register number, contains 1 for registers
that are fixed use or are clobbered by function calls.
These are the registers that cannot be used to allocate
a pseudo reg whose life crosses calls. */
char
call_used_regs
[
FIRST_PSEUDO_REGISTER
];
/* Same info as a HARD_REG_SET. */
HARD_REG_SET
call_used_reg_set
;
/* Data for initializing the above. */
static
char
initial_call_used_regs
[]
=
CALL_USED_REGISTERS
;
/* Indexed by hard register number, contains 1 for registers that are
fixed use -- i.e. in fixed_regs -- or a function value return register
or STRUCT_VALUE_REGNUM or STATIC_CHAIN_REGNUM. These are the
registers that cannot hold quantities across calls even if we are
willing to save and restore them. */
char
call_fixed_regs
[
FIRST_PSEUDO_REGISTER
];
/* The same info as a HARD_REG_SET. */
HARD_REG_SET
call_fixed_reg_set
;
/* Number of non-fixed registers. */
int
n_non_fixed_regs
;
/* Indexed by hard register number, contains 1 for registers
that are being used for global register decls.
These must be exempt from ordinary flow analysis
and are also considered fixed. */
char
global_regs
[
FIRST_PSEUDO_REGISTER
];
/* Table of register numbers in the order in which to try to use them. */
#ifdef REG_ALLOC_ORDER
int
reg_alloc_order
[
FIRST_PSEUDO_REGISTER
]
=
REG_ALLOC_ORDER
;
#endif
/* For each reg class, a HARD_REG_SET saying which registers are in it. */
HARD_REG_SET
reg_class_contents
[]
=
REG_CLASS_CONTENTS
;
/* For each reg class, number of regs it contains. */
int
reg_class_size
[
N_REG_CLASSES
];
/* For each reg class, table listing all the containing classes. */
enum
reg_class
reg_class_superclasses
[
N_REG_CLASSES
][
N_REG_CLASSES
];
/* For each reg class, table listing all the classes contained in it. */
enum
reg_class
reg_class_subclasses
[
N_REG_CLASSES
][
N_REG_CLASSES
];
/* For each pair of reg classes,
a largest reg class contained in their union. */
enum
reg_class
reg_class_subunion
[
N_REG_CLASSES
][
N_REG_CLASSES
];
/* For each pair of reg classes,
the smallest reg class containing their union. */
enum
reg_class
reg_class_superunion
[
N_REG_CLASSES
][
N_REG_CLASSES
];
/* Array containing all of the register names */
char
*
reg_names
[]
=
REGISTER_NAMES
;
/* Indexed by n, gives number of times (REG n) is set or clobbered.
This information remains valid for the rest of the compilation
of the current function; it is used to control register allocation.
This information applies to both hard registers and pseudo registers,
unlike much of the information above. */
short
*
reg_n_sets
;
/* Function called only once to initialize the above data on reg usage.
Once this is done, various switches may override. */
void
init_reg_sets
()
{
register
int
i
,
j
;
bcopy
(
initial_fixed_regs
,
fixed_regs
,
sizeof
fixed_regs
);
bcopy
(
initial_call_used_regs
,
call_used_regs
,
sizeof
call_used_regs
);
bzero
(
global_regs
,
sizeof
global_regs
);
/* Compute number of hard regs in each class. */
bzero
(
reg_class_size
,
sizeof
reg_class_size
);
for
(
i
=
0
;
i
<
N_REG_CLASSES
;
i
++
)
for
(
j
=
0
;
j
<
FIRST_PSEUDO_REGISTER
;
j
++
)
if
(
TEST_HARD_REG_BIT
(
reg_class_contents
[
i
],
j
))
reg_class_size
[
i
]
++
;
/* Initialize the table of subunions.
reg_class_subunion[I][J] gets the largest-numbered reg-class
that is contained in the union of classes I and J. */
for
(
i
=
0
;
i
<
N_REG_CLASSES
;
i
++
)
{
for
(
j
=
0
;
j
<
N_REG_CLASSES
;
j
++
)
{
#ifdef HARD_REG_SET
register
/* Declare it register if it's a scalar. */
#endif
HARD_REG_SET
c
;
register
int
k
;
COPY_HARD_REG_SET
(
c
,
reg_class_contents
[
i
]);
IOR_HARD_REG_SET
(
c
,
reg_class_contents
[
j
]);
for
(
k
=
0
;
k
<
N_REG_CLASSES
;
k
++
)
{
GO_IF_HARD_REG_SUBSET
(
reg_class_contents
[
k
],
c
,
subclass1
);
continue
;
subclass1:
/* keep the largest subclass */
/* SPEE 900308 */
GO_IF_HARD_REG_SUBSET
(
reg_class_contents
[
k
],
reg_class_contents
[(
int
)
reg_class_subunion
[
i
][
j
]],
subclass2
);
reg_class_subunion
[
i
][
j
]
=
(
enum
reg_class
)
k
;
subclass2:
;
}
}
}
/* Initialize the table of superunions.
reg_class_superunion[I][J] gets the smallest-numbered reg-class
containing the union of classes I and J. */
for
(
i
=
0
;
i
<
N_REG_CLASSES
;
i
++
)
{
for
(
j
=
0
;
j
<
N_REG_CLASSES
;
j
++
)
{
#ifdef HARD_REG_SET
register
/* Declare it register if it's a scalar. */
#endif
HARD_REG_SET
c
;
register
int
k
;
COPY_HARD_REG_SET
(
c
,
reg_class_contents
[
i
]);
IOR_HARD_REG_SET
(
c
,
reg_class_contents
[
j
]);
for
(
k
=
0
;
k
<
N_REG_CLASSES
;
k
++
)
GO_IF_HARD_REG_SUBSET
(
c
,
reg_class_contents
[
k
],
superclass
);
superclass:
reg_class_superunion
[
i
][
j
]
=
(
enum
reg_class
)
k
;
}
}
/* Initialize the tables of subclasses and superclasses of each reg class.
First clear the whole table, then add the elements as they are found. */
for
(
i
=
0
;
i
<
N_REG_CLASSES
;
i
++
)
{
for
(
j
=
0
;
j
<
N_REG_CLASSES
;
j
++
)
{
reg_class_superclasses
[
i
][
j
]
=
LIM_REG_CLASSES
;
reg_class_subclasses
[
i
][
j
]
=
LIM_REG_CLASSES
;
}
}
for
(
i
=
0
;
i
<
N_REG_CLASSES
;
i
++
)
{
if
(
i
==
(
int
)
NO_REGS
)
continue
;
for
(
j
=
i
+
1
;
j
<
N_REG_CLASSES
;
j
++
)
{
enum
reg_class
*
p
;
GO_IF_HARD_REG_SUBSET
(
reg_class_contents
[
i
],
reg_class_contents
[
j
],
subclass
);
continue
;
subclass:
/* Reg class I is a subclass of J.
Add J to the table of superclasses of I. */
p
=
&
reg_class_superclasses
[
i
][
0
];
while
(
*
p
!=
LIM_REG_CLASSES
)
p
++
;
*
p
=
(
enum
reg_class
)
j
;
/* Add I to the table of superclasses of J. */
p
=
&
reg_class_subclasses
[
j
][
0
];
while
(
*
p
!=
LIM_REG_CLASSES
)
p
++
;
*
p
=
(
enum
reg_class
)
i
;
}
}
}
/* After switches have been processed, which perhaps alter
`fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
void
init_reg_sets_1
()
{
register
int
i
;
/* This macro allows the fixed or call-used registers
to depend on target flags. */
#ifdef CONDITIONAL_REGISTER_USAGE
CONDITIONAL_REGISTER_USAGE
;
#endif
for
(
i
=
0
;
i
<
FIRST_PSEUDO_REGISTER
;
i
++
)
if
(
global_regs
[
i
])
{
if
(
call_used_regs
[
i
]
&&
!
fixed_regs
[
i
])
warning
(
"call-clobbered register used for global register variable"
);
fixed_regs
[
i
]
=
1
;
/* Prevent saving/restoring of this reg. */
call_used_regs
[
i
]
=
1
;
}
/* Initialize "constant" tables. */
CLEAR_HARD_REG_SET
(
fixed_reg_set
);
CLEAR_HARD_REG_SET
(
call_used_reg_set
);
CLEAR_HARD_REG_SET
(
call_fixed_reg_set
);
bcopy
(
fixed_regs
,
call_fixed_regs
,
sizeof
call_fixed_regs
);
#ifdef STRUCT_VALUE_REGNUM
call_fixed_regs
[
STRUCT_VALUE_REGNUM
]
=
1
;
#endif
#ifdef STATIC_CHAIN_REGNUM
call_fixed_regs
[
STATIC_CHAIN_REGNUM
]
=
1
;
#endif
n_non_fixed_regs
=
0
;
for
(
i
=
0
;
i
<
FIRST_PSEUDO_REGISTER
;
i
++
)
{
if
(
FUNCTION_VALUE_REGNO_P
(
i
))
call_fixed_regs
[
i
]
=
1
;
if
(
fixed_regs
[
i
])
SET_HARD_REG_BIT
(
fixed_reg_set
,
i
);
else
n_non_fixed_regs
++
;
if
(
call_used_regs
[
i
])
SET_HARD_REG_BIT
(
call_used_reg_set
,
i
);
if
(
call_fixed_regs
[
i
])
SET_HARD_REG_BIT
(
call_fixed_reg_set
,
i
);
}
}
/* Specify the usage characteristics of the register named NAME.
It should be a fixed register if FIXED and a
call-used register if CALL_USED. */
void
fix_register
(
name
,
fixed
,
call_used
)
char
*
name
;
int
fixed
,
call_used
;
{
int
i
;
/* Decode the name and update the primary form of
the register info. */
for
(
i
=
0
;
i
<
FIRST_PSEUDO_REGISTER
;
i
++
)
if
(
!
strcmp
(
reg_names
[
i
],
name
))
{
fixed_regs
[
i
]
=
fixed
;
call_used_regs
[
i
]
=
call_used
;
break
;
}
if
(
i
==
FIRST_PSEUDO_REGISTER
)
{
warning
(
"unknown register name: %s"
,
name
);
return
;
}
}
/* Now the data and code for the `regclass' pass, which happens
just before local-alloc. */
/* savings[R].savings[CL] is twice the amount saved by putting register R
in class CL. This data is used within `regclass' and freed
when it is finished. */
struct
savings
{
short
savings
[
N_REG_CLASSES
];
short
memcost
;
short
nrefs
;
};
static
struct
savings
*
savings
;
/* (enum reg_class) prefclass[R] is the preferred class for pseudo number R.
This is available after `regclass' is run. */
static
char
*
prefclass
;
/* preferred_or_nothing[R] is nonzero if we should put pseudo number R
in memory if we can't get its perferred class.
This is available after `regclass' is run. */
static
char
*
preferred_or_nothing
;
/* Record the depth of loops that we are in, 1 for no loops. */
static
int
loop_depth
;
void
reg_class_record
();
void
record_address_regs
();
/* Return the reg_class in which pseudo reg number REGNO is best allocated.
This function is sometimes called before the info has been computed.
When that happens, just return GENERAL_REGS, which is innocuous. */
enum
reg_class
reg_preferred_class
(
regno
)
int
regno
;
{
if
(
prefclass
==
0
)
return
GENERAL_REGS
;
return
(
enum
reg_class
)
prefclass
[
regno
];
}
int
reg_preferred_or_nothing
(
regno
)
{
if
(
prefclass
==
0
)
return
0
;
return
preferred_or_nothing
[
regno
];
}
/* This prevents dump_flow_info from losing if called
before regclass is run. */
void
regclass_init
()
{
prefclass
=
0
;
}
/* This is a pass of the compiler that scans all instructions
and calculates the preferred class for each pseudo-register.
This information can be accessed later by calling `reg_preferred_class'.
This pass comes just before local register allocation. */
void
regclass
(
f
,
nregs
)
rtx
f
;
int
nregs
;
{
#ifdef REGISTER_CONSTRAINTS
register
rtx
insn
;
register
int
i
;
init_recog
();
/* Zero out our accumulation of the cost of each class for each reg. */
savings
=
(
struct
savings
*
)
alloca
(
nregs
*
sizeof
(
struct
savings
));
bzero
(
savings
,
nregs
*
sizeof
(
struct
savings
));
loop_depth
=
1
;
/* Scan the instructions and record each time it would
save code to put a certain register in a certain class. */
for
(
insn
=
f
;
insn
;
insn
=
NEXT_INSN
(
insn
))
{
if
(
GET_CODE
(
insn
)
==
NOTE
&&
NOTE_LINE_NUMBER
(
insn
)
==
NOTE_INSN_LOOP_BEG
)
loop_depth
++
;
else
if
(
GET_CODE
(
insn
)
==
NOTE
&&
NOTE_LINE_NUMBER
(
insn
)
==
NOTE_INSN_LOOP_END
)
loop_depth
--
;
else
if
((
GET_CODE
(
insn
)
==
INSN
&&
GET_CODE
(
PATTERN
(
insn
))
!=
USE
&&
GET_CODE
(
PATTERN
(
insn
))
!=
CLOBBER
&&
GET_CODE
(
PATTERN
(
insn
))
!=
ASM_INPUT
)
||
(
GET_CODE
(
insn
)
==
JUMP_INSN
&&
GET_CODE
(
PATTERN
(
insn
))
!=
ADDR_VEC
&&
GET_CODE
(
PATTERN
(
insn
))
!=
ADDR_DIFF_VEC
)
||
GET_CODE
(
insn
)
==
CALL_INSN
)
{
if
(
GET_CODE
(
insn
)
==
INSN
&&
asm_noperands
(
PATTERN
(
insn
))
>=
0
)
{
int
noperands
=
asm_noperands
(
PATTERN
(
insn
));
/* We don't use alloca because alloca would not free
any of the space until this function returns. */
rtx
*
operands
=
(
rtx
*
)
oballoc
(
noperands
*
sizeof
(
rtx
));
char
**
constraints
=
(
char
**
)
oballoc
(
noperands
*
sizeof
(
char
*
));
decode_asm_operands
(
PATTERN
(
insn
),
operands
,
0
,
constraints
,
0
);
for
(
i
=
noperands
-
1
;
i
>=
0
;
i
--
)
reg_class_record
(
operands
[
i
],
i
,
constraints
);
obfree
(
operands
);
}
else
{
int
insn_code_number
=
recog_memoized
(
insn
);
rtx
set
=
single_set
(
insn
);
insn_extract
(
insn
);
for
(
i
=
insn_n_operands
[
insn_code_number
]
-
1
;
i
>=
0
;
i
--
)
reg_class_record
(
recog_operand
[
i
],
i
,
insn_operand_constraint
[
insn_code_number
]);
/* If this insn loads a parameter from its stack slot,
then it represents a savings, rather than a cost,
if the parameter is stored in memory. Record this fact. */
if
(
set
!=
0
&&
GET_CODE
(
SET_DEST
(
set
))
==
REG
&&
GET_CODE
(
SET_SRC
(
set
))
==
MEM
)
{
rtx
note
=
find_reg_note
(
insn
,
REG_EQUIV
,
0
);
if
(
note
!=
0
&&
GET_CODE
(
XEXP
(
note
,
0
))
==
MEM
)
savings
[
REGNO
(
SET_DEST
(
set
))].
memcost
-=
(
MEMORY_MOVE_COST
(
GET_MODE
(
SET_DEST
(
set
)))
*
loop_depth
);
}
/* Improve handling of two-address insns such as
(set X (ashift CONST Y)) where CONST must be made to match X.
Change it into two insns: (set X CONST) (set X (ashift X Y)).
If we left this for reloading, it would probably get three
insns because X and Y might go in the same place.
This prevents X and Y from receiving the same hard reg.
We can only do this if the modes of operands 0 and 1 (which
might not be the same) are tieable. */
if
(
optimize
&&
insn_n_operands
[
insn_code_number
]
>=
3
&&
insn_operand_constraint
[
insn_code_number
][
1
][
0
]
==
'0'
&&
insn_operand_constraint
[
insn_code_number
][
1
][
1
]
==
0
&&
CONSTANT_P
(
recog_operand
[
1
])
&&
!
rtx_equal_p
(
recog_operand
[
0
],
recog_operand
[
1
])
&&
!
rtx_equal_p
(
recog_operand
[
0
],
recog_operand
[
2
])
&&
GET_CODE
(
recog_operand
[
0
])
==
REG
&&
MODES_TIEABLE_P
(
GET_MODE
(
recog_operand
[
0
]),
insn_operand_mode
[
insn_code_number
][
1
]))
{
rtx
previnsn
=
prev_real_insn
(
insn
);
rtx
dest
=
gen_lowpart
(
insn_operand_mode
[
insn_code_number
][
1
],
recog_operand
[
0
]);
rtx
newinsn
=
emit_insn_before
(
gen_move_insn
(
dest
,
recog_operand
[
1
]),
insn
);
/* If this insn was the start of a basic block,
include the new insn in that block. */
if
(
previnsn
==
0
||
GET_CODE
(
previnsn
)
==
JUMP_INSN
)
{
int
b
;
for
(
b
=
0
;
b
<
n_basic_blocks
;
b
++
)
if
(
insn
==
basic_block_head
[
b
])
basic_block_head
[
b
]
=
newinsn
;
}
/* This makes one more setting of new insns's destination. */
reg_n_sets
[
REGNO
(
recog_operand
[
0
])]
++
;
*
recog_operand_loc
[
1
]
=
recog_operand
[
0
];
for
(
i
=
insn_n_dups
[
insn_code_number
]
-
1
;
i
>=
0
;
i
--
)
if
(
recog_dup_num
[
i
]
==
1
)
*
recog_dup_loc
[
i
]
=
recog_operand
[
0
];
}
}
}
}
/* Now for each register look at how desirable each class is
and find which class is preferred. Store that in `prefclass[REGNO]'. */
prefclass
=
(
char
*
)
oballoc
(
nregs
);
preferred_or_nothing
=
(
char
*
)
oballoc
(
nregs
);
for
(
i
=
FIRST_PSEUDO_REGISTER
;
i
<
nregs
;
i
++
)
{
register
int
best_savings
=
0
;
enum
reg_class
best
=
ALL_REGS
;
/* This is an enum reg_class, but we call it an int
to save lots of casts. */
register
int
class
;
register
struct
savings
*
p
=
&
savings
[
i
];
for
(
class
=
(
int
)
ALL_REGS
-
1
;
class
>
0
;
class
--
)
{
if
(
p
->
savings
[
class
]
>
best_savings
)
{
best_savings
=
p
->
savings
[
class
];
best
=
(
enum
reg_class
)
class
;
}
else
if
(
p
->
savings
[
class
]
==
best_savings
)
{
best
=
reg_class_subunion
[(
int
)
best
][
class
];
}
}
#if 0
/* Note that best_savings is twice number of places something
is saved. */
if ((best_savings - p->savings[(int) GENERAL_REGS]) * 5 < reg_n_refs[i])
prefclass[i] = (int) GENERAL_REGS;
else
prefclass[i] = (int) best;
#else
/* We cast to (int) because (char) hits bugs in some compilers. */
prefclass
[
i
]
=
(
int
)
best
;
#endif
/* reg_n_refs + p->memcost measures the cost of putting in memory.
If a GENERAL_REG is no better, don't even try for one.
Since savings and memcost are 2 * number of refs,
this effectively counts each memory operand not needing reloading
as costing 1/2 of a reload insn. */
if
(
reg_n_refs
!=
0
)
preferred_or_nothing
[
i
]
=
((
best_savings
-
p
->
savings
[(
int
)
GENERAL_REGS
])
>=
p
->
nrefs
+
p
->
memcost
);
}
#endif
/* REGISTER_CONSTRAINTS */
}
#ifdef REGISTER_CONSTRAINTS
/* Scan an operand OP for register class preferences.
OPNO is the operand number, and CONSTRAINTS is the constraint
vector for the insn.
Record the preferred register classes from the constraint for OP
if OP is a register. If OP is a memory reference, record suitable
preferences for registers used in the address. */
void
reg_class_record
(
op
,
opno
,
constraints
)
rtx
op
;
int
opno
;
char
**
constraints
;
{
char
*
constraint
=
constraints
[
opno
];
register
char
*
p
;
register
enum
reg_class
class
=
NO_REGS
;
char
*
next
=
0
;
int
memok
=
0
;
int
double_cost
=
0
;
if
(
op
==
0
)
return
;
while
(
1
)
{
if
(
GET_CODE
(
op
)
==
SUBREG
)
op
=
SUBREG_REG
(
op
);
else
break
;
}
/* Memory reference: scan the address. */
if
(
GET_CODE
(
op
)
==
MEM
)
record_address_regs
(
XEXP
(
op
,
0
),
2
,
0
);
if
(
GET_CODE
(
op
)
!=
REG
)
{
/* If the constraint says the operand is supposed to BE an address,
scan it as one. */
if
(
constraint
!=
0
&&
constraint
[
0
]
==
'p'
)
record_address_regs
(
op
,
2
,
0
);
return
;
}
/* Operand is a register: examine the constraint for specified classes. */
for
(
p
=
constraint
;
*
p
||
next
;
p
++
)
{
enum
reg_class
new_class
=
NO_REGS
;
if
(
*
p
==
0
)
{
p
=
next
;
next
=
0
;
}
switch
(
*
p
)
{
case
'='
:
case
'?'
:
case
'#'
:
case
'&'
:
case
'!'
:
case
'%'
:
case
'E'
:
case
'F'
:
case
'G'
:
case
'H'
:
case
'i'
:
case
'n'
:
case
's'
:
case
'p'
:
case
','
:
case
'I'
:
case
'J'
:
case
'K'
:
case
'L'
:
case
'M'
:
case
'N'
:
case
'O'
:
case
'P'
:
#ifdef EXTRA_CONSTRAINT
case
'Q'
:
case
'R'
:
case
'S'
:
case
'T'
:
case
'U'
:
#endif
case
'V'
:
case
'X'
:
break
;
case
'+'
:
/* An input-output operand is twice as costly if it loses. */
double_cost
=
1
;
break
;
case
'm'
:
case
'o'
:
memok
=
1
;
break
;
/* * means ignore following letter
when choosing register preferences. */
case
'*'
:
p
++
;
break
;
case
'g'
:
case
'r'
:
new_class
=
GENERAL_REGS
;
break
;
case
'0'
:
case
'1'
:
case
'2'
:
case
'3'
:
case
'4'
:
/* If constraint says "match another operand",
use that operand's constraint to choose preferences. */
next
=
constraints
[
*
p
-
'0'
];
break
;
default
:
new_class
=
REG_CLASS_FROM_LETTER
(
*
p
);
break
;
}
/* If this object can fit into the class requested, compute the subunion
of the requested class and classes found so far. */
if
(
CLASS_MAX_NREGS
(
new_class
,
GET_MODE
(
op
))
<=
reg_class_size
[(
int
)
new_class
])
class
=
reg_class_subunion
[(
int
)
class
][(
int
)
new_class
];
}
{
register
int
i
;
register
struct
savings
*
pp
;
register
enum
reg_class
class1
;
int
cost
=
2
*
(
1
+
double_cost
)
*
loop_depth
;
pp
=
&
savings
[
REGNO
(
op
)];
/* Increment the savings for this reg
for each class contained in the one the constraint asks for. */
if
(
class
!=
NO_REGS
&&
class
!=
ALL_REGS
)
{
int
extracost
;
pp
->
savings
[(
int
)
class
]
+=
cost
;
for
(
i
=
0
;
;
i
++
)
{
class1
=
reg_class_subclasses
[(
int
)
class
][
i
];
if
(
class1
==
LIM_REG_CLASSES
)
break
;
pp
->
savings
[(
int
)
class1
]
+=
cost
;
}
/* If it's slow to move data between this class and GENERAL_REGS,
record that fact. */
extracost
=
(
REGISTER_MOVE_COST
(
class
,
GENERAL_REGS
)
-
2
)
*
loop_depth
;
if
(
extracost
>
0
)
{
/* Check that this class and GENERAL_REGS don't overlap.
REGISTER_MOVE_COST is meaningless if there is overlap. */
HARD_REG_SET
temp
;
COMPL_HARD_REG_SET
(
temp
,
reg_class_contents
[(
int
)
class
]);
GO_IF_HARD_REG_SUBSET
(
reg_class_contents
[(
int
)
GENERAL_REGS
],
temp
,
label1
);
/* Overlap. */
goto
label2
;
label1
:
/* No overlap. */
/* Charge this extra cost to GENERAL_REGS
and all its subclasses (none of which overlap this class). */
extracost
=
extracost
*
cost
/
(
2
*
loop_depth
);
pp
->
savings
[(
int
)
GENERAL_REGS
]
-=
extracost
;
for
(
i
=
0
;
;
i
++
)
{
class1
=
reg_class_subclasses
[(
int
)
GENERAL_REGS
][
i
];
if
(
class1
==
LIM_REG_CLASSES
)
break
;
pp
->
savings
[(
int
)
class1
]
-=
extracost
;
}
label2
:
;
}
}
if
(
!
memok
)
pp
->
memcost
+=
(
MEMORY_MOVE_COST
(
GET_MODE
(
op
))
*
(
1
+
double_cost
)
-
1
)
*
loop_depth
;
pp
->
nrefs
+=
loop_depth
;
}
}
/* Record the pseudo registers we must reload into hard registers
in a subexpression of a memory address, X.
BCOST is the cost if X is a register and it fails to be in BASE_REG_CLASS.
ICOST is the cost if it fails to be in INDEX_REG_CLASS. */
void
record_address_regs
(
x
,
bcost
,
icost
)
rtx
x
;
int
bcost
,
icost
;
{
register
enum
rtx_code
code
=
GET_CODE
(
x
);
switch
(
code
)
{
case
CONST_INT
:
case
CONST
:
case
CC0
:
case
PC
:
case
SYMBOL_REF
:
case
LABEL_REF
:
return
;
case
PLUS
:
/* When we have an address that is a sum,
we must determine whether registers are "base" or "index" regs.
If there is a sum of two registers, we must choose one to be
the "base". Luckily, we can use the REGNO_POINTER_FLAG
to make a good choice most of the time. */
{
rtx
arg0
=
XEXP
(
x
,
0
);
rtx
arg1
=
XEXP
(
x
,
1
);
register
enum
rtx_code
code0
=
GET_CODE
(
arg0
);
register
enum
rtx_code
code1
=
GET_CODE
(
arg1
);
int
icost0
=
0
;
int
icost1
=
0
;
int
suppress1
=
0
;
int
suppress0
=
0
;
/* Look inside subregs. */
while
(
code0
==
SUBREG
)
arg0
=
SUBREG_REG
(
arg0
),
code0
=
GET_CODE
(
arg0
);
while
(
code1
==
SUBREG
)
arg1
=
SUBREG_REG
(
arg1
),
code1
=
GET_CODE
(
arg1
);
if
(
code0
==
MULT
||
code1
==
MEM
)
icost0
=
2
;
else
if
(
code1
==
MULT
||
code0
==
MEM
)
icost1
=
2
;
else
if
(
code0
==
CONST_INT
)
suppress0
=
1
;
else
if
(
code1
==
CONST_INT
)
suppress1
=
1
;
else
if
(
code0
==
REG
&&
code1
==
REG
)
{
if
(
REGNO_POINTER_FLAG
(
REGNO
(
arg0
)))
icost1
=
2
;
else
if
(
REGNO_POINTER_FLAG
(
REGNO
(
arg1
)))
icost0
=
2
;
else
icost0
=
icost1
=
1
;
}
else
if
(
code0
==
REG
)
{
if
(
code1
==
PLUS
&&
!
REGNO_POINTER_FLAG
(
REGNO
(
arg0
)))
icost0
=
2
;
else
REGNO_POINTER_FLAG
(
REGNO
(
arg0
))
=
1
;
}
else
if
(
code1
==
REG
)
{
if
(
code0
==
PLUS
&&
!
REGNO_POINTER_FLAG
(
REGNO
(
arg1
)))
icost1
=
2
;
else
REGNO_POINTER_FLAG
(
REGNO
(
arg1
))
=
1
;
}
/* ICOST0 determines whether we are treating operand 0
as a base register or as an index register.
SUPPRESS0 nonzero means it isn't a register at all.
ICOST1 and SUPPRESS1 are likewise for operand 1. */
if
(
!
suppress0
)
record_address_regs
(
arg0
,
2
-
icost0
,
icost0
);
if
(
!
suppress1
)
record_address_regs
(
arg1
,
2
-
icost1
,
icost1
);
}
break
;
case
POST_INC
:
case
PRE_INC
:
case
POST_DEC
:
case
PRE_DEC
:
/* Double the importance of a pseudo register that is incremented
or decremented, since it would take two extra insns
if it ends up in the wrong place. */
record_address_regs
(
XEXP
(
x
,
0
),
2
*
bcost
,
2
*
icost
);
break
;
case
REG
:
{
register
struct
savings
*
pp
;
register
enum
reg_class
class
,
class1
;
pp
=
&
savings
[
REGNO
(
x
)];
pp
->
nrefs
+=
loop_depth
;
/* We have an address (or part of one) that is just one register. */
/* Record BCOST worth of savings for classes contained
in BASE_REG_CLASS. */
class
=
BASE_REG_CLASS
;
if
(
class
!=
NO_REGS
&&
class
!=
ALL_REGS
)
{
register
int
i
;
pp
->
savings
[(
int
)
class
]
+=
bcost
*
loop_depth
;
for
(
i
=
0
;
;
i
++
)
{
class1
=
reg_class_subclasses
[(
int
)
class
][
i
];
if
(
class1
==
LIM_REG_CLASSES
)
break
;
pp
->
savings
[(
int
)
class1
]
+=
bcost
*
loop_depth
;
}
}
/* Record ICOST worth of savings for classes contained
in INDEX_REG_CLASS. */
class
=
INDEX_REG_CLASS
;
if
(
icost
!=
0
&&
class
!=
NO_REGS
&&
class
!=
ALL_REGS
)
{
register
int
i
;
pp
->
savings
[(
int
)
class
]
+=
icost
*
loop_depth
;
for
(
i
=
0
;
;
i
++
)
{
class1
=
reg_class_subclasses
[(
int
)
class
][
i
];
if
(
class1
==
LIM_REG_CLASSES
)
break
;
pp
->
savings
[(
int
)
class1
]
+=
icost
*
loop_depth
;
}
}
}
break
;
default
:
{
register
char
*
fmt
=
GET_RTX_FORMAT
(
code
);
register
int
i
;
for
(
i
=
GET_RTX_LENGTH
(
code
)
-
1
;
i
>=
0
;
i
--
)
if
(
fmt
[
i
]
==
'e'
)
record_address_regs
(
XEXP
(
x
,
i
),
bcost
,
icost
);
}
}
}
#endif
/* REGISTER_CONSTRAINTS */
/* This is the `regscan' pass of the compiler, run just before cse
and again just before loop.
It finds the first and last use of each pseudo-register
and records them in the vectors regno_first_uid, regno_last_uid
and counts the number of sets in the vector reg_n_sets.
REPEAT is nonzero the second time this is called. */
/* Indexed by pseudo register number, gives uid of first insn using the reg
(as of the time reg_scan is called). */
short
*
regno_first_uid
;
/* Indexed by pseudo register number, gives uid of last insn using the reg
(as of the time reg_scan is called). */
short
*
regno_last_uid
;
/* Record the number of registers we used when we allocated the above two
tables. If we are called again with more than this, we must re-allocate
the tables. */
static
int
highest_regno_in_uid_map
;
/* Maximum number of parallel sets and clobbers in any insn in this fn.
Always at least 3, since the combiner could put that many togetherm
and we want this to remain correct for all the remaining passes. */
int
max_parallel
;
void
reg_scan_mark_refs
();
void
reg_scan
(
f
,
nregs
,
repeat
)
rtx
f
;
int
nregs
;
int
repeat
;
{
register
rtx
insn
;
if
(
!
repeat
||
nregs
>
highest_regno_in_uid_map
)
{
/* Leave some spare space in case more regs are allocated. */
highest_regno_in_uid_map
=
nregs
+
nregs
/
20
;
regno_first_uid
=
(
short
*
)
oballoc
(
highest_regno_in_uid_map
*
sizeof
(
short
));
regno_last_uid
=
(
short
*
)
oballoc
(
highest_regno_in_uid_map
*
sizeof
(
short
));
reg_n_sets
=
(
short
*
)
oballoc
(
highest_regno_in_uid_map
*
sizeof
(
short
));
}
bzero
(
regno_first_uid
,
highest_regno_in_uid_map
*
sizeof
(
short
));
bzero
(
regno_last_uid
,
highest_regno_in_uid_map
*
sizeof
(
short
));
bzero
(
reg_n_sets
,
highest_regno_in_uid_map
*
sizeof
(
short
));
max_parallel
=
3
;
for
(
insn
=
f
;
insn
;
insn
=
NEXT_INSN
(
insn
))
if
(
GET_CODE
(
insn
)
==
INSN
||
GET_CODE
(
insn
)
==
CALL_INSN
||
GET_CODE
(
insn
)
==
JUMP_INSN
)
{
if
(
GET_CODE
(
PATTERN
(
insn
))
==
PARALLEL
&&
XVECLEN
(
PATTERN
(
insn
),
0
)
>
max_parallel
)
max_parallel
=
XVECLEN
(
PATTERN
(
insn
),
0
);
reg_scan_mark_refs
(
PATTERN
(
insn
),
INSN_UID
(
insn
));
}
}
void
reg_scan_mark_refs
(
x
,
uid
)
rtx
x
;
int
uid
;
{
register
enum
rtx_code
code
=
GET_CODE
(
x
);
register
rtx
dest
;
switch
(
code
)
{
case
CONST_INT
:
case
CONST
:
case
CONST_DOUBLE
:
case
CC0
:
case
PC
:
case
SYMBOL_REF
:
case
LABEL_REF
:
case
ADDR_VEC
:
case
ADDR_DIFF_VEC
:
return
;
case
REG
:
{
register
int
regno
=
REGNO
(
x
);
regno_last_uid
[
regno
]
=
uid
;
if
(
regno_first_uid
[
regno
]
==
0
)
regno_first_uid
[
regno
]
=
uid
;
}
break
;
case
SET
:
/* Count a set of the destination if it is a register. */
for
(
dest
=
SET_DEST
(
x
);
GET_CODE
(
dest
)
==
SUBREG
||
GET_CODE
(
dest
)
==
STRICT_LOW_PART
||
GET_CODE
(
dest
)
==
ZERO_EXTEND
;
dest
=
XEXP
(
dest
,
0
))
;
if
(
GET_CODE
(
dest
)
==
REG
)
reg_n_sets
[
REGNO
(
dest
)]
++
;
/* ... fall through ... */
default
:
{
register
char
*
fmt
=
GET_RTX_FORMAT
(
code
);
register
int
i
;
for
(
i
=
GET_RTX_LENGTH
(
code
)
-
1
;
i
>=
0
;
i
--
)
{
if
(
fmt
[
i
]
==
'e'
)
reg_scan_mark_refs
(
XEXP
(
x
,
i
),
uid
);
else
if
(
fmt
[
i
]
==
'E'
&&
XVEC
(
x
,
i
)
!=
0
)
{
register
int
j
;
for
(
j
=
XVECLEN
(
x
,
i
)
-
1
;
j
>=
0
;
j
--
)
reg_scan_mark_refs
(
XVECEXP
(
x
,
i
,
j
),
uid
);
}
}
}
}
}
/* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
is also in C2. */
int
reg_class_subset_p
(
c1
,
c2
)
register
enum
reg_class
c1
;
register
enum
reg_class
c2
;
{
if
(
c1
==
c2
)
return
1
;
if
(
c2
==
ALL_REGS
)
win
:
return
1
;
GO_IF_HARD_REG_SUBSET
(
reg_class_contents
[(
int
)
c1
],
reg_class_contents
[(
int
)
c2
],
win
);
return
0
;
}
/* Return nonzero if there is a register that is in both C1 and C2. */
int
reg_classes_intersect_p
(
c1
,
c2
)
register
enum
reg_class
c1
;
register
enum
reg_class
c2
;
{
#ifdef HARD_REG_SET
register
#endif
HARD_REG_SET
c
;
if
(
c1
==
c2
)
return
1
;
if
(
c1
==
ALL_REGS
||
c2
==
ALL_REGS
)
return
1
;
COPY_HARD_REG_SET
(
c
,
reg_class_contents
[(
int
)
c1
]);
AND_HARD_REG_SET
(
c
,
reg_class_contents
[(
int
)
c2
]);
GO_IF_HARD_REG_SUBSET
(
c
,
reg_class_contents
[(
int
)
NO_REGS
],
lose
);
return
1
;
lose
:
return
0
;
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment