Commit 5302cd02 by Ian Lance Taylor

runtime, reflect: rewrite Go to FFI type conversion in Go

    
    As we move toward the Go 1.7 garbage collector, it's essential that all
    allocation of values that can contain Go pointers be done using the
    correct type descriptor.  That is simplest if we do all such allocation
    in Go code.  This rewrites the code that converts from a Go type to a
    libffi CIF into Go.
    
    Reviewed-on: https://go-review.googlesource.com/33353

From-SVN: r242578
parent f97db488
d9189ebc139ff739af956094626ccc5eb92c3091
bc5ad6d10092d6238495357468ee093f7caf39f9
The first line of this file holds the git revision number of the last
merge done from the gofrontend repository.
......@@ -1052,6 +1052,14 @@ runtime_internal_atomic_lo_check_GOCFLAGS = -fgo-compiling-runtime
runtime_internal_sys_lo_GOCFLAGS = -fgo-compiling-runtime
runtime_internal_sys_lo_check_GOCFLAGS = -fgo-compiling-runtime
# If libffi is supported (the normal case) use the ffi build tag for
# the runtime package.
if USE_LIBFFI
matchargs_runtime = --tag=libffi
else
matchargs_runtime =
endif
# At least for now, we need -static-libgo for this test, because
# otherwise we can't get the line numbers.
# Also use -fno-inline to get better results from the memory profiler.
......
......@@ -1154,6 +1154,11 @@ runtime_internal_atomic_lo_GOCFLAGS = -fgo-compiling-runtime
runtime_internal_atomic_lo_check_GOCFLAGS = -fgo-compiling-runtime
runtime_internal_sys_lo_GOCFLAGS = -fgo-compiling-runtime
runtime_internal_sys_lo_check_GOCFLAGS = -fgo-compiling-runtime
@USE_LIBFFI_FALSE@matchargs_runtime =
# If libffi is supported (the normal case) use the ffi build tag for
# the runtime package.
@USE_LIBFFI_TRUE@matchargs_runtime = --tag=libffi
# At least for now, we need -static-libgo for this test, because
# otherwise we can't get the line numbers.
......
......@@ -665,6 +665,8 @@ LIBGO_IS_DARWIN_FALSE
LIBGO_IS_DARWIN_TRUE
go_include
LIBATOMIC
USE_LIBFFI_FALSE
USE_LIBFFI_TRUE
LIBFFIINCS
LIBFFI
nover_glibgo_toolexeclibdir
......@@ -11098,7 +11100,7 @@ else
lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2
lt_status=$lt_dlunknown
cat > conftest.$ac_ext <<_LT_EOF
#line 11101 "configure"
#line 11106 "configure"
#include "confdefs.h"
#if HAVE_DLFCN_H
......@@ -13466,6 +13468,14 @@ $as_echo "#define USE_LIBFFI 1" >>confdefs.h
fi
if test "$with_liffi" != "no"; then
USE_LIBFFI_TRUE=
USE_LIBFFI_FALSE='#'
else
USE_LIBFFI_TRUE='#'
USE_LIBFFI_FALSE=
fi
# See if the user wants to configure without libatomic. This is useful if we are
# on an architecture for which libgo does not need an atomic support library and
......@@ -15596,6 +15606,10 @@ if test -z "${MAINTAINER_MODE_TRUE}" && test -z "${MAINTAINER_MODE_FALSE}"; then
as_fn_error "conditional \"MAINTAINER_MODE\" was never defined.
Usually this means the macro was only invoked conditionally." "$LINENO" 5
fi
if test -z "${USE_LIBFFI_TRUE}" && test -z "${USE_LIBFFI_FALSE}"; then
as_fn_error "conditional \"USE_LIBFFI\" was never defined.
Usually this means the macro was only invoked conditionally." "$LINENO" 5
fi
if test -z "${LIBGO_IS_DARWIN_TRUE}" && test -z "${LIBGO_IS_DARWIN_FALSE}"; then
as_fn_error "conditional \"LIBGO_IS_DARWIN\" was never defined.
Usually this means the macro was only invoked conditionally." "$LINENO" 5
......
......@@ -121,6 +121,7 @@ if test "$with_libffi" != no; then
fi
AC_SUBST(LIBFFI)
AC_SUBST(LIBFFIINCS)
AM_CONDITIONAL(USE_LIBFFI, test "$with_liffi" != "no")
# See if the user wants to configure without libatomic. This is useful if we are
# on an architecture for which libgo does not need an atomic support library and
......
......@@ -63,7 +63,7 @@ func MakeFunc(typ Type, fn func(args []Value) (results []Value)) Value {
method: -1,
}
makeFuncFFI(ftyp, unsafe.Pointer(impl))
makeFuncFFI(makeCIF(ftyp), unsafe.Pointer(impl))
return Value{t, unsafe.Pointer(&impl), flag(Func) | flagIndir}
}
......@@ -102,7 +102,7 @@ func makeMethodValue(op string, v Value) Value {
rcvr: rcvr,
}
makeFuncFFI(ftyp, unsafe.Pointer(fv))
makeFuncFFI(makeCIF(ftyp), unsafe.Pointer(fv))
return Value{ft, unsafe.Pointer(&fv), v.flag&flagRO | flag(Func) | flagIndir}
}
......@@ -128,7 +128,7 @@ func makeValueMethod(v Value) Value {
rcvr: v,
}
makeFuncFFI(ftyp, unsafe.Pointer(impl))
makeFuncFFI(makeCIF(ftyp), unsafe.Pointer(impl))
return Value{t, unsafe.Pointer(&impl), v.flag&flagRO | flag(Func) | flagIndir}
}
......
......@@ -10,7 +10,10 @@ import (
// The makeFuncFFI function, written in C, fills in an FFI closure.
// It arranges for ffiCall to be invoked directly from FFI.
func makeFuncFFI(ftyp *funcType, impl unsafe.Pointer)
func makeFuncFFI(cif unsafe.Pointer, impl unsafe.Pointer)
// The makeCIF function, implemented in the runtime package, allocates a CIF.
func makeCIF(ft *funcType) unsafe.Pointer
// FFICallbackGo implements the Go side of the libffi callback.
// It is exported so that C code can call it.
......
......@@ -8,7 +8,7 @@
#ifdef USE_LIBFFI
#include "go-ffi.h"
#include "ffi.h"
#if FFI_GO_CLOSURES
#define USE_LIBFFI_CLOSURES
......@@ -18,7 +18,7 @@
/* Declare C functions with the names used to call from Go. */
void makeFuncFFI(const struct __go_func_type *ftyp, void *impl)
void makeFuncFFI(void *cif, void *impl)
__asm__ (GOSYM_PREFIX "reflect.makeFuncFFI");
#ifdef USE_LIBFFI_CLOSURES
......@@ -70,20 +70,15 @@ ffi_callback (ffi_cif* cif __attribute__ ((unused)), void *results,
/* Allocate an FFI closure and arrange to call ffi_callback. */
void
makeFuncFFI(const struct __go_func_type *ftyp, void *impl)
makeFuncFFI(void *cif, void *impl)
{
ffi_cif *cif;
cif = (ffi_cif *) __go_alloc (sizeof (ffi_cif));
__go_func_to_cif (ftyp, 0, 0, cif);
ffi_prep_go_closure(impl, cif, ffi_callback);
ffi_prep_go_closure(impl, (ffi_cif*)cif, ffi_callback);
}
#else /* !defined(USE_LIBFFI_CLOSURES) */
void
makeFuncFFI(const struct __go_func_type *ftyp __attribute__ ((unused)),
makeFuncFFI(void *cif __attribute__ ((unused)),
void *impl __attribute__ ((unused)))
{
runtime_panicstring ("libgo built without FFI does not support "
......
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Only build this file if libffi is supported.
// +build libffi
package runtime
import "unsafe"
// This file contains the code that converts a Go type to an FFI type.
// This has to be written in Go because it allocates memory in the Go heap.
// C functions to return pointers to libffi variables.
func ffi_type_pointer() *__ffi_type
func ffi_type_sint8() *__ffi_type
func ffi_type_sint16() *__ffi_type
func ffi_type_sint32() *__ffi_type
func ffi_type_sint64() *__ffi_type
func ffi_type_uint8() *__ffi_type
func ffi_type_uint16() *__ffi_type
func ffi_type_uint32() *__ffi_type
func ffi_type_uint64() *__ffi_type
func ffi_type_float() *__ffi_type
func ffi_type_double() *__ffi_type
func ffi_supports_complex() bool
func ffi_type_complex_float() *__ffi_type
func ffi_type_complex_double() *__ffi_type
func ffi_type_void() *__ffi_type
// C functions defined in libffi.
//extern ffi_prep_cif
func ffi_prep_cif(*_ffi_cif, _ffi_abi, uint32, *__ffi_type, **__ffi_type) _ffi_status
// ffiFuncToCIF is called from C code.
//go:linkname ffiFuncToCIF runtime.ffiFuncToCIF
// ffiFuncToCIF builds an _ffi_cif struct for function described by ft.
func ffiFuncToCIF(ft *functype, isInterface bool, isMethod bool, cif *_ffi_cif) {
nparams := len(ft.in)
nargs := nparams
if isInterface {
nargs++
}
args := make([]*__ffi_type, nargs)
i := 0
off := 0
if isInterface {
args[0] = ffi_type_pointer()
off = 1
} else if isMethod {
args[0] = ffi_type_pointer()
i = 1
}
for ; i < nparams; i++ {
args[i+off] = typeToFFI(ft.in[i])
}
rettype := funcReturnFFI(ft)
var pargs **__ffi_type
if len(args) > 0 {
pargs = &args[0]
}
status := ffi_prep_cif(cif, _FFI_DEFAULT_ABI, uint32(nargs), rettype, pargs)
if status != _FFI_OK {
throw("ffi_prep_cif failed")
}
}
// funcReturnFFI returns the FFI definition of the return type of ft.
func funcReturnFFI(ft *functype) *__ffi_type {
c := len(ft.out)
if c == 0 {
return ffi_type_void()
}
// Compile a function that returns a zero-sized value as
// though it returns void. This works around a problem in
// libffi: it can't represent a zero-sized value.
var size uintptr
for _, v := range ft.out {
size += v.size
}
if size == 0 {
return ffi_type_void()
}
if c == 1 {
return typeToFFI(ft.out[0])
}
elements := make([]*__ffi_type, c+1)
for i, v := range ft.out {
elements[i] = typeToFFI(v)
}
elements[c] = nil
return &__ffi_type{
_type: _FFI_TYPE_STRUCT,
elements: &elements[0],
}
}
// typeToFFI returns the __ffi_type for a Go type.
func typeToFFI(typ *_type) *__ffi_type {
switch typ.kind & kindMask {
case kindBool:
switch unsafe.Sizeof(false) {
case 1:
return ffi_type_uint8()
case 4:
return ffi_type_uint32()
default:
throw("bad bool size")
return nil
}
case kindInt:
return intToFFI()
case kindInt8:
return ffi_type_sint8()
case kindInt16:
return ffi_type_sint16()
case kindInt32:
return ffi_type_sint32()
case kindInt64:
return ffi_type_sint64()
case kindUint:
switch unsafe.Sizeof(uint(0)) {
case 4:
return ffi_type_uint32()
case 8:
return ffi_type_uint64()
default:
throw("bad uint size")
return nil
}
case kindUint8:
return ffi_type_uint8()
case kindUint16:
return ffi_type_uint16()
case kindUint32:
return ffi_type_uint32()
case kindUint64:
return ffi_type_uint64()
case kindUintptr:
switch unsafe.Sizeof(uintptr(0)) {
case 4:
return ffi_type_uint32()
case 8:
return ffi_type_uint64()
default:
throw("bad uinptr size")
return nil
}
case kindFloat32:
return ffi_type_float()
case kindFloat64:
return ffi_type_double()
case kindComplex64:
if ffi_supports_complex() {
return ffi_type_complex_float()
} else {
return complexToFFI(ffi_type_float())
}
case kindComplex128:
if ffi_supports_complex() {
return ffi_type_complex_double()
} else {
return complexToFFI(ffi_type_double())
}
case kindArray:
return arrayToFFI((*arraytype)(unsafe.Pointer(typ)))
case kindChan, kindFunc, kindMap, kindPtr, kindUnsafePointer:
// These types are always simple pointers, and for FFI
// purposes nothing else matters.
return ffi_type_pointer()
case kindInterface:
return interfaceToFFI()
case kindSlice:
return sliceToFFI((*slicetype)(unsafe.Pointer(typ)))
case kindString:
return stringToFFI()
case kindStruct:
return structToFFI((*structtype)(unsafe.Pointer(typ)))
default:
throw("unknown type kind")
return nil
}
}
// interfaceToFFI returns an ffi_type for a Go interface type.
// This is used for both empty and non-empty interface types.
func interfaceToFFI() *__ffi_type {
elements := make([]*__ffi_type, 3)
elements[0] = ffi_type_pointer()
elements[1] = elements[0]
elements[2] = nil
return &__ffi_type{
_type: _FFI_TYPE_STRUCT,
elements: &elements[0],
}
}
// stringToFFI returns an ffi_type for a Go string type.
func stringToFFI() *__ffi_type {
elements := make([]*__ffi_type, 3)
elements[0] = ffi_type_pointer()
elements[1] = intToFFI()
elements[2] = nil
return &__ffi_type{
_type: _FFI_TYPE_STRUCT,
elements: &elements[0],
}
}
// structToFFI returns an ffi_type for a Go struct type.
func structToFFI(typ *structtype) *__ffi_type {
c := len(typ.fields)
if c == 0 {
return emptyStructToFFI()
}
fields := make([]*__ffi_type, c+1)
for i, v := range typ.fields {
fields[i] = typeToFFI(v.typ)
}
fields[c] = nil
return &__ffi_type{
_type: _FFI_TYPE_STRUCT,
elements: &fields[0],
}
}
// sliceToFFI returns an ffi_type for a Go slice type.
func sliceToFFI(typ *slicetype) *__ffi_type {
elements := make([]*__ffi_type, 4)
elements[0] = ffi_type_pointer()
elements[1] = intToFFI()
elements[2] = elements[1]
elements[3] = nil
return &__ffi_type{
_type: _FFI_TYPE_STRUCT,
elements: &elements[0],
}
}
// complexToFFI returns an ffi_type for a Go complex type.
// This is only used if libffi does not support complex types internally
// for this target.
func complexToFFI(ffiFloatType *__ffi_type) *__ffi_type {
elements := make([]*__ffi_type, 3)
elements[0] = ffiFloatType
elements[1] = ffiFloatType
elements[2] = nil
return &__ffi_type{
_type: _FFI_TYPE_STRUCT,
elements: &elements[0],
}
}
// arrayToFFI returns an ffi_type for a Go array type.
func arrayToFFI(typ *arraytype) *__ffi_type {
if typ.len == 0 {
return emptyStructToFFI()
}
elements := make([]*__ffi_type, typ.len+1)
et := typeToFFI(typ.elem)
for i := uintptr(0); i < typ.len; i++ {
elements[i] = et
}
elements[typ.len] = nil
return &__ffi_type{
_type: _FFI_TYPE_STRUCT,
elements: &elements[0],
}
}
// intToFFI returns an ffi_type for the Go int type.
func intToFFI() *__ffi_type {
switch unsafe.Sizeof(0) {
case 4:
return ffi_type_sint32()
case 8:
return ffi_type_sint64()
default:
throw("bad int size")
return nil
}
}
// emptyStructToFFI returns an ffi_type for an empty struct.
// The libffi library won't accept a struct with no fields.
func emptyStructToFFI() *__ffi_type {
elements := make([]*__ffi_type, 2)
elements[0] = ffi_type_void()
elements[1] = nil
return &__ffi_type{
_type: _FFI_TYPE_STRUCT,
elements: &elements[0],
}
}
//go:linkname makeCIF reflect.makeCIF
// makeCIF is used by the reflect package to allocate a CIF.
func makeCIF(ft *functype) *_ffi_cif {
cif := new(_ffi_cif)
ffiFuncToCIF(ft, false, false, cif)
return cif
}
......@@ -18,6 +18,7 @@ echo 'package runtime' > ${OUT}
# will all have a leading underscore.
grep -v '^// ' gen-sysinfo.go | \
grep -v '^func' | \
grep -v '^var ' | \
grep -v '^type _timeval ' | \
grep -v '^type _timespec_t ' | \
grep -v '^type _timespec ' | \
......
/* go-ffi.c -- convert Go type description to libffi.
Copyright 2014 The Go Authors. All rights reserved.
Use of this source code is governed by a BSD-style
license that can be found in the LICENSE file. */
#include "config.h"
#include "go-type.h"
#ifdef USE_LIBFFI
#include "ffi.h"
void __go_func_to_cif (const struct __go_func_type *, _Bool, _Bool, ffi_cif *);
#endif
......@@ -12,7 +12,10 @@
#include "go-alloc.h"
#include "go-assert.h"
#include "go-type.h"
#include "go-ffi.h"
#ifdef USE_LIBFFI
#include "ffi.h"
#endif
#if defined(USE_LIBFFI) && FFI_GO_CLOSURES
......@@ -197,6 +200,11 @@ go_set_results (const struct __go_func_type *func, unsigned char *call_result,
}
}
/* The code that converts the Go type to an FFI type is written in Go,
so that it can allocate Go heap memory. */
extern void ffiFuncToCIF(const struct __go_func_type*, _Bool, _Bool, ffi_cif*)
__asm__ ("runtime.ffiFuncToCIF");
/* Call a function. The type of the function is FUNC_TYPE, and the
closure is FUNC_VAL. PARAMS is an array of parameter addresses.
RESULTS is an array of result addresses.
......@@ -218,7 +226,7 @@ reflect_call (const struct __go_func_type *func_type, FuncVal *func_val,
unsigned char *call_result;
__go_assert ((func_type->__common.__code & GO_CODE_MASK) == GO_FUNC);
__go_func_to_cif (func_type, is_interface, is_method, &cif);
ffiFuncToCIF (func_type, is_interface, is_method, &cif);
call_result = (unsigned char *) malloc (go_results_size (func_type));
......
......@@ -163,6 +163,10 @@
#include <port.h>
#endif
#ifdef USE_LIBFFI
#include "ffi.h"
#endif
/* Constants that may only be defined as expressions on some systems,
expressions too complex for -fdump-go-spec to handle. These are
handled specially below. */
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment