Commit 45967a8a by Sascha Brawer Committed by Michael Koch

CubicCurve2D.java (contains): Docfix for URL of embedded drawing.

2003-10-29  Sascha Brawer  <brawer@dandelis.ch>

        * java/awt/geom/CubicCurve2D.java (contains): Docfix for URL of embedded drawing.
        * java/awt/geom/QuadCurve2D.java: Likewise.

2003-10-29  Sascha Brawer  <brawer@dandelis.ch>

	* java/awt/geom/CubicCurve2D.java: Added documentation.
	* java/awt/geom/QuadCurve2D.java: Likewise.

	* java/awt/geom/doc-files/QuadCurve2D-4.png,
	java/awt/geom/doc-files/QuadCurve2D-5.png,
	java/awt/geom/doc-files/CubicCurve2D-4.png,
	java/awt/geom/doc-files/Cubicurve2D-5.png: New illustrations.

2003-10-29  Sascha Brawer  <brawer@dandelis.ch>

	* java/awt/geom/CubicCurve2D.java (getFlatnessSq): Implement.
	(subdivide(CubicCurve2D, CubicCurve2D)): Avoid useless object allocation.
	(subdivide(double[],int,double[],int,double[],int)): Implement.

2003-10-29  Sascha Brawer  <brawer@dandelis.ch>

	* java/awt/geom/doc-files/CubicCurve2D-1.png,
	java/awt/geom/doc-files/CubicCurve2D-2.png,
	java/awt/geom/doc-files/CubicCurve2D-3.png: New illustrations.

From-SVN: r73048
parent 4b6be8de
2003-10-29 Sascha Brawer <brawer@dandelis.ch>
* java/awt/geom/CubicCurve2D.java (contains): Docfix for URL of embedded drawing.
* java/awt/geom/QuadCurve2D.java: Likewise.
2003-10-29 Sascha Brawer <brawer@dandelis.ch>
* java/awt/geom/CubicCurve2D.java: Added documentation.
* java/awt/geom/QuadCurve2D.java: Likewise.
* java/awt/geom/doc-files/QuadCurve2D-4.png,
java/awt/geom/doc-files/QuadCurve2D-5.png,
java/awt/geom/doc-files/CubicCurve2D-4.png,
java/awt/geom/doc-files/Cubicurve2D-5.png: New illustrations.
2003-10-29 Sascha Brawer <brawer@dandelis.ch>
* java/awt/geom/CubicCurve2D.java (getFlatnessSq): Implement.
(subdivide(CubicCurve2D, CubicCurve2D)): Avoid useless object allocation.
(subdivide(double[],int,double[],int,double[],int)): Implement.
2003-10-29 Sascha Brawer <brawer@dandelis.ch>
* java/awt/geom/doc-files/CubicCurve2D-1.png,
java/awt/geom/doc-files/CubicCurve2D-2.png,
java/awt/geom/doc-files/CubicCurve2D-3.png: New illustrations.
2003-10-29 Ito Kazumitsu <kaz@maczuka.gcd.org> 2003-10-29 Ito Kazumitsu <kaz@maczuka.gcd.org>
* java/text/DecimalFormat.java * java/text/DecimalFormat.java
......
/* CubicCurve2D.java -- represents a parameterized cubic curve in 2-D space /* CubicCurve2D.java -- represents a parameterized cubic curve in 2-D space
Copyright (C) 2002 Free Software Foundation Copyright (C) 2002, 2003 Free Software Foundation
This file is part of GNU Classpath. This file is part of GNU Classpath.
...@@ -42,31 +42,168 @@ import java.awt.Rectangle; ...@@ -42,31 +42,168 @@ import java.awt.Rectangle;
import java.awt.Shape; import java.awt.Shape;
import java.util.NoSuchElementException; import java.util.NoSuchElementException;
/** /**
* STUBS ONLY * A two-dimensional curve that is parameterized with a cubic
* XXX Implement and document. * function.
*
* <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
* alt="A drawing of a CubicCurve2D" />
*
* @author Eric Blake (ebb9@email.byu.edu)
* @author Graydon Hoare (graydon@redhat.com)
* @author Sascha Brawer (brawer@dandelis.ch)
*
* @since 1.2
*/ */
public abstract class CubicCurve2D implements Shape, Cloneable public abstract class CubicCurve2D
implements Shape, Cloneable
{ {
/**
* Constructs a new CubicCurve2D. Typical users will want to
* construct instances of a subclass, such as {@link
* CubicCurve2D.Float} or {@link CubicCurve2D.Double}.
*/
protected CubicCurve2D() protected CubicCurve2D()
{ {
} }
/**
* Returns the <i>x</i> coordinate of the curve&#x2019;s start
* point.
*/
public abstract double getX1(); public abstract double getX1();
/**
* Returns the <i>y</i> coordinate of the curve&#x2019;s start
* point.
*/
public abstract double getY1(); public abstract double getY1();
/**
* Returns the curve&#x2019;s start point.
*/
public abstract Point2D getP1(); public abstract Point2D getP1();
/**
* Returns the <i>x</i> coordinate of the curve&#x2019;s first
* control point.
*/
public abstract double getCtrlX1(); public abstract double getCtrlX1();
/**
* Returns the <i>y</i> coordinate of the curve&#x2019;s first
* control point.
*/
public abstract double getCtrlY1(); public abstract double getCtrlY1();
/**
* Returns the curve&#x2019;s first control point.
*/
public abstract Point2D getCtrlP1(); public abstract Point2D getCtrlP1();
/**
* Returns the <i>x</i> coordinate of the curve&#x2019;s second
* control point.
*/
public abstract double getCtrlX2(); public abstract double getCtrlX2();
/**
* Returns the <i>y</i> coordinate of the curve&#x2019;s second
* control point.
*/
public abstract double getCtrlY2(); public abstract double getCtrlY2();
/**
* Returns the curve&#x2019;s second control point.
*/
public abstract Point2D getCtrlP2(); public abstract Point2D getCtrlP2();
/**
* Returns the <i>x</i> coordinate of the curve&#x2019;s end
* point.
*/
public abstract double getX2(); public abstract double getX2();
/**
* Returns the <i>y</i> coordinate of the curve&#x2019;s end
* point.
*/
public abstract double getY2(); public abstract double getY2();
/**
* Returns the curve&#x2019;s end point.
*/
public abstract Point2D getP2(); public abstract Point2D getP2();
/**
* Changes the curve geometry, separately specifying each coordinate
* value.
*
* <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
* alt="A drawing of a CubicCurve2D" />
*
* @param x1 the <i>x</i> coordinate of the curve&#x2019;s new start
* point.
*
* @param y1 the <i>y</i> coordinate of the curve&#x2019;s new start
* point.
*
* @param cx1 the <i>x</i> coordinate of the curve&#x2019;s new
* first control point.
*
* @param cy1 the <i>y</i> coordinate of the curve&#x2019;s new
* first control point.
*
* @param cx2 the <i>x</i> coordinate of the curve&#x2019;s new
* second control point.
*
* @param cy2 the <i>y</i> coordinate of the curve&#x2019;s new
* second control point.
*
* @param x2 the <i>x</i> coordinate of the curve&#x2019;s new end
* point.
*
* @param y2 the <i>y</i> coordinate of the curve&#x2019;s new end
* point.
*/
public abstract void setCurve(double x1, double y1, double cx1, double cy1, public abstract void setCurve(double x1, double y1, double cx1, double cy1,
double cx2, double cy2, double x2, double y2); double cx2, double cy2, double x2, double y2);
/**
* Changes the curve geometry, specifying coordinate values in an
* array.
*
* @param coords an array containing the new coordinate values. The
* <i>x</i> coordinate of the new start point is located at
* <code>coords[offset]</code>, its <i>y</i> coordinate at
* <code>coords[offset + 1]</code>. The <i>x</i> coordinate of the
* new first control point is located at <code>coords[offset +
* 2]</code>, its <i>y</i> coordinate at <code>coords[offset +
* 3]</code>. The <i>x</i> coordinate of the new second control
* point is located at <code>coords[offset + 4]</code>, its <i>y</i>
* coordinate at <code>coords[offset + 5]</code>. The <i>x</i>
* coordinate of the new end point is located at <code>coords[offset
* + 6]</code>, its <i>y</i> coordinate at <code>coords[offset +
* 7]</code>.
*
* @param offset the offset of the first coordinate value in
* <code>coords</code>.
*/
public void setCurve(double[] coords, int offset) public void setCurve(double[] coords, int offset)
{ {
setCurve(coords[offset++], coords[offset++], setCurve(coords[offset++], coords[offset++],
...@@ -74,11 +211,51 @@ public abstract class CubicCurve2D implements Shape, Cloneable ...@@ -74,11 +211,51 @@ public abstract class CubicCurve2D implements Shape, Cloneable
coords[offset++], coords[offset++], coords[offset++], coords[offset++],
coords[offset++], coords[offset++]); coords[offset++], coords[offset++]);
} }
/**
* Changes the curve geometry, specifying coordinate values in
* separate Point objects.
*
* <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
* alt="A drawing of a CubicCurve2D" />
*
* <p>The curve does not keep any reference to the passed point
* objects. Therefore, a later change to <code>p1</code>,
* <code>c1</code>, <code>c2</code> or <code>p2</code> will not
* affect the curve geometry.
*
* @param p1 the new start point.
* @param c1 the new first control point.
* @param c2 the new second control point.
* @param p2 the new end point.
*/
public void setCurve(Point2D p1, Point2D c1, Point2D c2, Point2D p2) public void setCurve(Point2D p1, Point2D c1, Point2D c2, Point2D p2)
{ {
setCurve(p1.getX(), p1.getY(), c1.getX(), c1.getY(), setCurve(p1.getX(), p1.getY(), c1.getX(), c1.getY(),
c2.getX(), c2.getY(), p2.getX(), p2.getY()); c2.getX(), c2.getY(), p2.getX(), p2.getY());
} }
/**
* Changes the curve geometry, specifying coordinate values in an
* array of Point objects.
*
* <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
* alt="A drawing of a CubicCurve2D" />
*
* <p>The curve does not keep references to the passed point
* objects. Therefore, a later change to the <code>pts</code> array
* or any of its elements will not affect the curve geometry.
*
* @param pts an array containing the points. The new start point
* is located at <code>pts[offset]</code>, the new first control
* point at <code>pts[offset + 1]</code>, the new second control
* point at <code>pts[offset + 2]</code>, and the new end point
* at <code>pts[offset + 3]</code>.
*
* @param offset the offset of the start point in <code>pts</code>.
*/
public void setCurve(Point2D[] pts, int offset) public void setCurve(Point2D[] pts, int offset)
{ {
setCurve(pts[offset].getX(), pts[offset++].getY(), setCurve(pts[offset].getX(), pts[offset++].getY(),
...@@ -86,24 +263,115 @@ public abstract class CubicCurve2D implements Shape, Cloneable ...@@ -86,24 +263,115 @@ public abstract class CubicCurve2D implements Shape, Cloneable
pts[offset].getX(), pts[offset++].getY(), pts[offset].getX(), pts[offset++].getY(),
pts[offset].getX(), pts[offset++].getY()); pts[offset].getX(), pts[offset++].getY());
} }
/**
* Changes the curve geometry to that of another curve.
*
* @param c the curve whose coordinates will be copied.
*/
public void setCurve(CubicCurve2D c) public void setCurve(CubicCurve2D c)
{ {
setCurve(c.getX1(), c.getY1(), c.getCtrlX1(), c.getCtrlY1(), setCurve(c.getX1(), c.getY1(), c.getCtrlX1(), c.getCtrlY1(),
c.getCtrlX2(), c.getCtrlY2(), c.getX2(), c.getY2()); c.getCtrlX2(), c.getCtrlY2(), c.getX2(), c.getY2());
} }
/**
* Calculates the squared flatness of a cubic curve, directly
* specifying each coordinate value. The flatness is the maximal
* distance of a control point to the line between start and end
* point.
*
* <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
* alt="A drawing that illustrates the flatness" />
*
* <p>In the above drawing, the straight line connecting start point
* P1 and end point P2 is depicted in gray. In comparison to C1,
* control point C2 is father away from the gray line. Therefore,
* the result will be the square of the distance between C2 and the
* gray line, i.e. the squared length of the red line.
*
* @param x1 the <i>x</i> coordinate of the start point P1.
* @param y1 the <i>y</i> coordinate of the start point P1.
* @param cx1 the <i>x</i> coordinate of the first control point C1.
* @param cy1 the <i>y</i> coordinate of the first control point C1.
* @param cx2 the <i>x</i> coordinate of the second control point C2.
* @param cy2 the <i>y</i> coordinate of the second control point C2.
* @param x2 the <i>x</i> coordinate of the end point P2.
* @param y2 the <i>y</i> coordinate of the end point P2.
*/
public static double getFlatnessSq(double x1, double y1, double cx1, public static double getFlatnessSq(double x1, double y1, double cx1,
double cy1, double cx2, double cy2, double cy1, double cx2, double cy2,
double x2, double y2) double x2, double y2)
{ {
// XXX Implement. return Math.max(Line2D.ptSegDistSq(x1, y1, x2, y2, cx1, cy1),
throw new Error("not implemented"); Line2D.ptSegDistSq(x1, y1, x2, y2, cx2, cy2));
} }
/**
* Calculates the flatness of a cubic curve, directly specifying
* each coordinate value. The flatness is the maximal distance of a
* control point to the line between start and end point.
*
* <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
* alt="A drawing that illustrates the flatness" />
*
* <p>In the above drawing, the straight line connecting start point
* P1 and end point P2 is depicted in gray. In comparison to C1,
* control point C2 is father away from the gray line. Therefore,
* the result will be the distance between C2 and the gray line,
* i.e. the length of the red line.
*
* @param x1 the <i>x</i> coordinate of the start point P1.
* @param y1 the <i>y</i> coordinate of the start point P1.
* @param cx1 the <i>x</i> coordinate of the first control point C1.
* @param cy1 the <i>y</i> coordinate of the first control point C1.
* @param cx2 the <i>x</i> coordinate of the second control point C2.
* @param cy2 the <i>y</i> coordinate of the second control point C2.
* @param x2 the <i>x</i> coordinate of the end point P2.
* @param y2 the <i>y</i> coordinate of the end point P2.
*/
public static double getFlatness(double x1, double y1, double cx1, public static double getFlatness(double x1, double y1, double cx1,
double cy1, double cx2, double cy2, double cy1, double cx2, double cy2,
double x2, double y2) double x2, double y2)
{ {
return Math.sqrt(getFlatnessSq(x1, y1, cx1, cy1, cx2, cy2, x2, y2)); return Math.sqrt(getFlatnessSq(x1, y1, cx1, cy1, cx2, cy2, x2, y2));
} }
/**
* Calculates the squared flatness of a cubic curve, specifying the
* coordinate values in an array. The flatness is the maximal
* distance of a control point to the line between start and end
* point.
*
* <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
* alt="A drawing that illustrates the flatness" />
*
* <p>In the above drawing, the straight line connecting start point
* P1 and end point P2 is depicted in gray. In comparison to C1,
* control point C2 is father away from the gray line. Therefore,
* the result will be the square of the distance between C2 and the
* gray line, i.e. the squared length of the red line.
*
* @param coords an array containing the coordinate values. The
* <i>x</i> coordinate of the start point P1 is located at
* <code>coords[offset]</code>, its <i>y</i> coordinate at
* <code>coords[offset + 1]</code>. The <i>x</i> coordinate of the
* first control point C1 is located at <code>coords[offset +
* 2]</code>, its <i>y</i> coordinate at <code>coords[offset +
* 3]</code>. The <i>x</i> coordinate of the second control point C2
* is located at <code>coords[offset + 4]</code>, its <i>y</i>
* coordinate at <code>coords[offset + 5]</code>. The <i>x</i>
* coordinate of the end point P2 is located at <code>coords[offset
* + 6]</code>, its <i>y</i> coordinate at <code>coords[offset +
* 7]</code>.
*
* @param offset the offset of the first coordinate value in
* <code>coords</code>.
*/
public static double getFlatnessSq(double[] coords, int offset) public static double getFlatnessSq(double[] coords, int offset)
{ {
return getFlatnessSq(coords[offset++], coords[offset++], return getFlatnessSq(coords[offset++], coords[offset++],
...@@ -111,6 +379,39 @@ public abstract class CubicCurve2D implements Shape, Cloneable ...@@ -111,6 +379,39 @@ public abstract class CubicCurve2D implements Shape, Cloneable
coords[offset++], coords[offset++], coords[offset++], coords[offset++],
coords[offset++], coords[offset++]); coords[offset++], coords[offset++]);
} }
/**
* Calculates the flatness of a cubic curve, specifying the
* coordinate values in an array. The flatness is the maximal
* distance of a control point to the line between start and end
* point.
*
* <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
* alt="A drawing that illustrates the flatness" />
*
* <p>In the above drawing, the straight line connecting start point
* P1 and end point P2 is depicted in gray. In comparison to C1,
* control point C2 is father away from the gray line. Therefore,
* the result will be the distance between C2 and the gray line,
* i.e. the length of the red line.
*
* @param coords an array containing the coordinate values. The
* <i>x</i> coordinate of the start point P1 is located at
* <code>coords[offset]</code>, its <i>y</i> coordinate at
* <code>coords[offset + 1]</code>. The <i>x</i> coordinate of the
* first control point C1 is located at <code>coords[offset +
* 2]</code>, its <i>y</i> coordinate at <code>coords[offset +
* 3]</code>. The <i>x</i> coordinate of the second control point C2
* is located at <code>coords[offset + 4]</code>, its <i>y</i>
* coordinate at <code>coords[offset + 5]</code>. The <i>x</i>
* coordinate of the end point P2 is located at <code>coords[offset
* + 6]</code>, its <i>y</i> coordinate at <code>coords[offset +
* 7]</code>.
*
* @param offset the offset of the first coordinate value in
* <code>coords</code>.
*/
public static double getFlatness(double[] coords, int offset) public static double getFlatness(double[] coords, int offset)
{ {
return Math.sqrt(getFlatnessSq(coords[offset++], coords[offset++], return Math.sqrt(getFlatnessSq(coords[offset++], coords[offset++],
...@@ -118,11 +419,43 @@ public abstract class CubicCurve2D implements Shape, Cloneable ...@@ -118,11 +419,43 @@ public abstract class CubicCurve2D implements Shape, Cloneable
coords[offset++], coords[offset++], coords[offset++], coords[offset++],
coords[offset++], coords[offset++])); coords[offset++], coords[offset++]));
} }
/**
* Calculates the squared flatness of this curve. The flatness is
* the maximal distance of a control point to the line between start
* and end point.
*
* <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
* alt="A drawing that illustrates the flatness" />
*
* <p>In the above drawing, the straight line connecting start point
* P1 and end point P2 is depicted in gray. In comparison to C1,
* control point C2 is father away from the gray line. Therefore,
* the result will be the square of the distance between C2 and the
* gray line, i.e. the squared length of the red line.
*/
public double getFlatnessSq() public double getFlatnessSq()
{ {
return getFlatnessSq(getX1(), getY1(), getCtrlX1(), getCtrlY1(), return getFlatnessSq(getX1(), getY1(), getCtrlX1(), getCtrlY1(),
getCtrlX2(), getCtrlY2(), getX2(), getY2()); getCtrlX2(), getCtrlY2(), getX2(), getY2());
} }
/**
* Calculates the flatness of this curve. The flatness is the
* maximal distance of a control point to the line between start and
* end point.
*
* <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
* alt="A drawing that illustrates the flatness" />
*
* <p>In the above drawing, the straight line connecting start point
* P1 and end point P2 is depicted in gray. In comparison to C1,
* control point C2 is father away from the gray line. Therefore,
* the result will be the distance between C2 and the gray line,
* i.e. the length of the red line.
*/
public double getFlatness() public double getFlatness()
{ {
return Math.sqrt(getFlatnessSq(getX1(), getY1(), getCtrlX1(), return Math.sqrt(getFlatnessSq(getX1(), getY1(), getCtrlX1(),
...@@ -130,75 +463,266 @@ public abstract class CubicCurve2D implements Shape, Cloneable ...@@ -130,75 +463,266 @@ public abstract class CubicCurve2D implements Shape, Cloneable
getX2(), getY2())); getX2(), getY2()));
} }
public void subdivide(CubicCurve2D l, CubicCurve2D r)
/**
* Subdivides this curve into two halves.
*
* <p><img src="doc-files/CubicCurve2D-3.png" width="700"
* height="180" alt="A drawing that illustrates the effects of
* subdividing a CubicCurve2D" />
*
* @param left a curve whose geometry will be set to the left half
* of this curve, or <code>null</code> if the caller is not
* interested in the left half.
*
* @param right a curve whose geometry will be set to the right half
* of this curve, or <code>null</code> if the caller is not
* interested in the right half.
*/
public void subdivide(CubicCurve2D left, CubicCurve2D right)
{ {
if (l == null)
l = new CubicCurve2D.Double();
if (r == null)
r = new CubicCurve2D.Double();
// Use empty slots at end to share single array. // Use empty slots at end to share single array.
double[] d = new double[] { getX1(), getY1(), getCtrlX1(), getCtrlY1(), double[] d = new double[] { getX1(), getY1(), getCtrlX1(), getCtrlY1(),
getCtrlX2(), getCtrlY2(), getX2(), getY2(), getCtrlX2(), getCtrlY2(), getX2(), getY2(),
0, 0, 0, 0, 0, 0 }; 0, 0, 0, 0, 0, 0 };
subdivide(d, 0, d, 0, d, 6); subdivide(d, 0, d, 0, d, 6);
l.setCurve(d, 0); if (left != null)
r.setCurve(d, 6); left.setCurve(d, 0);
if (right != null)
right.setCurve(d, 6);
} }
/**
* Subdivides a cubic curve into two halves.
*
* <p><img src="doc-files/CubicCurve2D-3.png" width="700"
* height="180" alt="A drawing that illustrates the effects of
* subdividing a CubicCurve2D" />
*
* @param src the curve to be subdivided.
*
* @param left a curve whose geometry will be set to the left half
* of <code>src</code>, or <code>null</code> if the caller is not
* interested in the left half.
*
* @param right a curve whose geometry will be set to the right half
* of <code>src</code>, or <code>null</code> if the caller is not
* interested in the right half.
*/
public static void subdivide(CubicCurve2D src, public static void subdivide(CubicCurve2D src,
CubicCurve2D l, CubicCurve2D r) CubicCurve2D left, CubicCurve2D right)
{ {
src.subdivide(l, r); src.subdivide(left, right);
} }
/**
* Subdivides a cubic curve into two halves, passing all coordinates
* in an array.
*
* <p><img src="doc-files/CubicCurve2D-3.png" width="700"
* height="180" alt="A drawing that illustrates the effects of
* subdividing a CubicCurve2D" />
*
* <p>The left end point and the right start point will always be
* identical. Memory-concious programmers thus may want to pass the
* same array for both <code>left</code> and <code>right</code>, and
* set <code>rightOff</code> to <code>leftOff + 6</code>.
*
* @param src an array containing the coordinates of the curve to be
* subdivided. The <i>x</i> coordinate of the start point P1 is
* located at <code>src[srcOff]</code>, its <i>y</i> at
* <code>src[srcOff + 1]</code>. The <i>x</i> coordinate of the
* first control point C1 is located at <code>src[srcOff +
* 2]</code>, its <i>y</i> at <code>src[srcOff + 3]</code>. The
* <i>x</i> coordinate of the second control point C2 is located at
* <code>src[srcOff + 4]</code>, its <i>y</i> at <code>src[srcOff +
* 5]</code>. The <i>x</i> coordinate of the end point is located at
* <code>src[srcOff + 6]</code>, its <i>y</i> at <code>src[srcOff +
* 7]</code>.
*
* @param srcOff an offset into <code>src</code>, specifying
* the index of the start point&#x2019;s <i>x</i> coordinate.
*
* @param left an array that will receive the coordinates of the
* left half of <code>src</code>. It is acceptable to pass
* <code>src</code>. A caller who is not interested in the left half
* can pass <code>null</code>.
*
* @param leftOff an offset into <code>left</code>, specifying the
* index where the start point&#x2019;s <i>x</i> coordinate will be
* stored.
*
* @param right an array that will receive the coordinates of the
* right half of <code>src</code>. It is acceptable to pass
* <code>src</code> or <code>left</code>. A caller who is not
* interested in the right half can pass <code>null</code>.
*
* @param rightOff an offset into <code>right</code>, specifying the
* index where the start point&#x2019;s <i>x</i> coordinate will be
* stored.
*/
public static void subdivide(double[] src, int srcOff, public static void subdivide(double[] src, int srcOff,
double[] left, int leftOff, double[] left, int leftOff,
double[] right, int rightOff) double[] right, int rightOff)
{ {
// XXX Implement. // To understand this code, please have a look at the image
throw new Error("not implemented"); // "CubicCurve2D-3.png" in the sub-directory "doc-files".
double src_C1_x, src_C1_y, src_C2_x, src_C2_y;
double left_P1_x, left_P1_y;
double left_C1_x, left_C1_y, left_C2_x, left_C2_y;
double right_C1_x, right_C1_y, right_C2_x, right_C2_y;
double right_P2_x, right_P2_y;
double Mid_x, Mid_y; // Mid = left.P2 = right.P1
left_P1_x = src[srcOff];
left_P1_y = src[srcOff + 1];
src_C1_x = src[srcOff + 2];
src_C1_y = src[srcOff + 3];
src_C2_x = src[srcOff + 4];
src_C2_y = src[srcOff + 5];
right_P2_x = src[srcOff + 6];
right_P2_y = src[srcOff + 7];
left_C1_x = (left_P1_x + src_C1_x) / 2;
left_C1_y = (left_P1_y + src_C1_y) / 2;
right_C2_x = (right_P2_x + src_C2_x) / 2;
right_C2_y = (right_P2_y + src_C2_y) / 2;
Mid_x = (src_C1_x + src_C2_x) / 2;
Mid_y = (src_C1_y + src_C2_y) / 2;
left_C2_x = (left_C1_x + Mid_x) / 2;
left_C2_y = (left_C1_y + Mid_y) / 2;
right_C1_x = (Mid_x + right_C2_x) / 2;
right_C1_y = (Mid_y + right_C2_y) / 2;
Mid_x = (left_C2_x + right_C1_x) / 2;
Mid_y = (left_C2_y + right_C1_y) / 2;
if (left != null)
{
left[leftOff] = left_P1_x;
left[leftOff + 1] = left_P1_y;
left[leftOff + 2] = left_C1_x;
left[leftOff + 3] = left_C1_y;
left[leftOff + 4] = left_C2_x;
left[leftOff + 5] = left_C2_y;
left[leftOff + 6] = Mid_x;
left[leftOff + 7] = Mid_y;
}
if (right != null)
{
right[rightOff] = Mid_x;
right[rightOff + 1] = Mid_y;
right[rightOff + 2] = right_C1_x;
right[rightOff + 3] = right_C1_y;
right[rightOff + 4] = right_C2_x;
right[rightOff + 5] = right_C2_y;
right[rightOff + 6] = right_P2_x;
right[rightOff + 7] = right_P2_y;
}
} }
public static int solveCubic(double[] eqn) public static int solveCubic(double[] eqn)
{ {
return solveCubic(eqn, eqn); return solveCubic(eqn, eqn);
} }
public static int solveCubic(double[] eqn, double[] res) public static int solveCubic(double[] eqn, double[] res)
{ {
if (eqn[3] == 0) double a, b, c, q, r, Q, R;
double c3 = eqn[3];
if (c3 == 0)
return QuadCurve2D.solveQuadratic(eqn, res); return QuadCurve2D.solveQuadratic(eqn, res);
// XXX Implement.
throw new Error("not implemented"); // Divide the equation by the cubic coefficient.
c = eqn[0] / c3;
b = eqn[1] / c3;
a = eqn[2] / c3;
// We now need to solve x^3 + ax^2 + bx + c = 0.
throw new Error("not implemented"); // FIXME
} }
/**
* Determines whether a position lies inside the area that is bounded
* by the curve and the straight line connecting its end points.
*
* <p><img src="doc-files/CubicCurve2D-5.png" width="350" height="180"
* alt="A drawing of the area spanned by the curve" />
*
* <p>The above drawing illustrates in which area points are
* considered &#x201c;contained&#x201d; in a CubicCurve2D.
*/
public boolean contains(double x, double y) public boolean contains(double x, double y)
{ {
// XXX Implement. // XXX Implement.
throw new Error("not implemented"); throw new Error("not implemented");
} }
/**
* Determines whether a point lies inside the area that is bounded
* by the curve and the straight line connecting its end points.
*
* <p><img src="doc-files/CubicCurve2D-5.png" width="350" height="180"
* alt="A drawing of the area spanned by the curve" />
*
* <p>The above drawing illustrates in which area points are
* considered &#x201c;contained&#x201d; in a CubicCurve2D.
*/
public boolean contains(Point2D p) public boolean contains(Point2D p)
{ {
return contains(p.getX(), p.getY()); return contains(p.getX(), p.getY());
} }
public boolean intersects(double x, double y, double w, double h) public boolean intersects(double x, double y, double w, double h)
{ {
// XXX Implement. // XXX Implement.
throw new Error("not implemented"); throw new Error("not implemented");
} }
public boolean intersects(Rectangle2D r) public boolean intersects(Rectangle2D r)
{ {
return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight()); return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
} }
public boolean contains(double x, double y, double w, double h) public boolean contains(double x, double y, double w, double h)
{ {
// XXX Implement. // XXX Implement.
throw new Error("not implemented"); throw new Error("not implemented");
} }
public boolean contains(Rectangle2D r) public boolean contains(Rectangle2D r)
{ {
return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight()); return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
} }
/**
* Determines the smallest rectangle that encloses the
* curve&#x2019;s start, end and control points. As the illustration
* below shows, the invisible control points may cause the bounds to
* be much larger than the area that is actually covered by the
* curve.
*
* <p><img src="doc-files/CubicCurve2D-2.png" width="350" height="180"
* alt="An illustration of the bounds of a CubicCurve2D" />
*/
public Rectangle getBounds() public Rectangle getBounds()
{ {
return getBounds2D().getBounds(); return getBounds2D().getBounds();
} }
public PathIterator getPathIterator(final AffineTransform at) public PathIterator getPathIterator(final AffineTransform at)
{ {
return new PathIterator() return new PathIterator()
...@@ -276,47 +800,135 @@ public abstract class CubicCurve2D implements Shape, Cloneable ...@@ -276,47 +800,135 @@ public abstract class CubicCurve2D implements Shape, Cloneable
} }
}; };
} }
public PathIterator getPathIterator(AffineTransform at, double flatness) public PathIterator getPathIterator(AffineTransform at, double flatness)
{ {
return new FlatteningPathIterator(getPathIterator(at), flatness); return new FlatteningPathIterator(getPathIterator(at), flatness);
} }
/** /**
* Create a new curve of the same run-time type with the same contents as * Create a new curve with the same contents as this one.
* this one.
* *
* @return the clone * @return the clone.
*/ */
public Object clone() public Object clone()
{ {
try try
{ {
return super.clone(); return super.clone();
} }
catch (CloneNotSupportedException e) catch (CloneNotSupportedException e)
{ {
throw (Error) new InternalError().initCause(e); // Impossible throw (Error) new InternalError().initCause(e); // Impossible
} }
} }
/** /**
* STUBS ONLY * A two-dimensional curve that is parameterized with a cubic
* function and stores coordinate values in double-precision
* floating-point format.
*
* @see CubicCurve2D.Float
*
* @author Eric Blake (ebb9@email.byu.edu)
* @author Sascha Brawer (brawer@dandelis.ch)
*/ */
public static class Double extends CubicCurve2D public static class Double
extends CubicCurve2D
{ {
/**
* The <i>x</i> coordinate of the curve&#x2019;s start point.
*/
public double x1; public double x1;
/**
* The <i>y</i> coordinate of the curve&#x2019;s start point.
*/
public double y1; public double y1;
/**
* The <i>x</i> coordinate of the curve&#x2019;s first control point.
*/
public double ctrlx1; public double ctrlx1;
/**
* The <i>y</i> coordinate of the curve&#x2019;s first control point.
*/
public double ctrly1; public double ctrly1;
/**
* The <i>x</i> coordinate of the curve&#x2019;s second control point.
*/
public double ctrlx2; public double ctrlx2;
/**
* The <i>y</i> coordinate of the curve&#x2019;s second control point.
*/
public double ctrly2; public double ctrly2;
/**
* The <i>x</i> coordinate of the curve&#x2019;s end point.
*/
public double x2; public double x2;
/**
* The <i>y</i> coordinate of the curve&#x2019;s end point.
*/
public double y2; public double y2;
/**
* Constructs a new CubicCurve2D that stores its coordinate values
* in double-precision floating-point format. All points are
* initially at position (0, 0).
*/
public Double() public Double()
{ {
} }
/**
* Constructs a new CubicCurve2D that stores its coordinate values
* in double-precision floating-point format, specifying the
* initial position of each point.
*
* <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
* alt="A drawing of a CubicCurve2D" />
*
* @param x1 the <i>x</i> coordinate of the curve&#x2019;s start
* point.
*
* @param y1 the <i>y</i> coordinate of the curve&#x2019;s start
* point.
*
* @param cx1 the <i>x</i> coordinate of the curve&#x2019;s first
* control point.
*
* @param cy1 the <i>y</i> coordinate of the curve&#x2019;s first
* control point.
*
* @param cx2 the <i>x</i> coordinate of the curve&#x2019;s second
* control point.
*
* @param cy2 the <i>y</i> coordinate of the curve&#x2019;s second
* control point.
*
* @param x2 the <i>x</i> coordinate of the curve&#x2019;s end
* point.
*
* @param y2 the <i>y</i> coordinate of the curve&#x2019;s end
* point.
*/
public Double(double x1, double y1, double cx1, double cy1, public Double(double x1, double y1, double cx1, double cy1,
double cx2, double cy2, double x2, double y2) double cx2, double cy2, double x2, double y2)
{ {
...@@ -330,58 +942,154 @@ public abstract class CubicCurve2D implements Shape, Cloneable ...@@ -330,58 +942,154 @@ public abstract class CubicCurve2D implements Shape, Cloneable
this.y2 = y2; this.y2 = y2;
} }
/**
* Returns the <i>x</i> coordinate of the curve&#x2019;s start
* point.
*/
public double getX1() public double getX1()
{ {
return x1; return x1;
} }
/**
* Returns the <i>y</i> coordinate of the curve&#x2019;s start
* point.
*/
public double getY1() public double getY1()
{ {
return y1; return y1;
} }
/**
* Returns the curve&#x2019;s start point.
*/
public Point2D getP1() public Point2D getP1()
{ {
return new Point2D.Double(x1, y1); return new Point2D.Double(x1, y1);
} }
/**
* Returns the <i>x</i> coordinate of the curve&#x2019;s first
* control point.
*/
public double getCtrlX1() public double getCtrlX1()
{ {
return ctrlx1; return ctrlx1;
} }
/**
* Returns the <i>y</i> coordinate of the curve&#x2019;s first
* control point.
*/
public double getCtrlY1() public double getCtrlY1()
{ {
return ctrly1; return ctrly1;
} }
/**
* Returns the curve&#x2019;s first control point.
*/
public Point2D getCtrlP1() public Point2D getCtrlP1()
{ {
return new Point2D.Double(ctrlx1, ctrly1); return new Point2D.Double(ctrlx1, ctrly1);
} }
/**
* Returns the <i>x</i> coordinate of the curve&#x2019;s second
* control point.
*/
public double getCtrlX2() public double getCtrlX2()
{ {
return ctrlx2; return ctrlx2;
} }
/**
* Returns the <i>y</i> coordinate of the curve&#x2019;s second
* control point.
*/
public double getCtrlY2() public double getCtrlY2()
{ {
return ctrly2; return ctrly2;
} }
/**
* Returns the curve&#x2019;s second control point.
*/
public Point2D getCtrlP2() public Point2D getCtrlP2()
{ {
return new Point2D.Double(ctrlx2, ctrly2); return new Point2D.Double(ctrlx2, ctrly2);
} }
/**
* Returns the <i>x</i> coordinate of the curve&#x2019;s end
* point.
*/
public double getX2() public double getX2()
{ {
return x2; return x2;
} }
/**
* Returns the <i>y</i> coordinate of the curve&#x2019;s end
* point.
*/
public double getY2() public double getY2()
{ {
return y2; return y2;
} }
/**
* Returns the curve&#x2019;s end point.
*/
public Point2D getP2() public Point2D getP2()
{ {
return new Point2D.Double(x2, y2); return new Point2D.Double(x2, y2);
} }
/**
* Changes the curve geometry, separately specifying each coordinate
* value.
*
* <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
* alt="A drawing of a CubicCurve2D" />
*
* @param x1 the <i>x</i> coordinate of the curve&#x2019;s new start
* point.
*
* @param y1 the <i>y</i> coordinate of the curve&#x2019;s new start
* point.
*
* @param cx1 the <i>x</i> coordinate of the curve&#x2019;s new
* first control point.
*
* @param cy1 the <i>y</i> coordinate of the curve&#x2019;s new
* first control point.
*
* @param cx2 the <i>x</i> coordinate of the curve&#x2019;s new
* second control point.
*
* @param cy2 the <i>y</i> coordinate of the curve&#x2019;s new
* second control point.
*
* @param x2 the <i>x</i> coordinate of the curve&#x2019;s new end
* point.
*
* @param y2 the <i>y</i> coordinate of the curve&#x2019;s new end
* point.
*/
public void setCurve(double x1, double y1, double cx1, double cy1, public void setCurve(double x1, double y1, double cx1, double cy1,
double cx2, double cy2, double x2, double y2) double cx2, double cy2, double x2, double y2)
{ {
...@@ -394,6 +1102,18 @@ public abstract class CubicCurve2D implements Shape, Cloneable ...@@ -394,6 +1102,18 @@ public abstract class CubicCurve2D implements Shape, Cloneable
this.x2 = x2; this.x2 = x2;
this.y2 = y2; this.y2 = y2;
} }
/**
* Determines the smallest rectangle that encloses the
* curve&#x2019;s start, end and control points. As the
* illustration below shows, the invisible control points may cause
* the bounds to be much larger than the area that is actually
* covered by the curve.
*
* <p><img src="doc-files/CubicCurve2D-2.png" width="350" height="180"
* alt="An illustration of the bounds of a CubicCurve2D" />
*/
public Rectangle2D getBounds2D() public Rectangle2D getBounds2D()
{ {
double nx1 = Math.min(Math.min(x1, ctrlx1), Math.min(ctrlx2, x2)); double nx1 = Math.min(Math.min(x1, ctrlx1), Math.min(ctrlx2, x2));
...@@ -402,26 +1122,112 @@ public abstract class CubicCurve2D implements Shape, Cloneable ...@@ -402,26 +1122,112 @@ public abstract class CubicCurve2D implements Shape, Cloneable
double ny2 = Math.max(Math.max(y1, ctrly1), Math.max(ctrly2, y2)); double ny2 = Math.max(Math.max(y1, ctrly1), Math.max(ctrly2, y2));
return new Rectangle2D.Double(nx1, ny1, nx2 - nx1, ny2 - ny1); return new Rectangle2D.Double(nx1, ny1, nx2 - nx1, ny2 - ny1);
} }
} // class Double }
/** /**
* STUBS ONLY * A two-dimensional curve that is parameterized with a cubic
* function and stores coordinate values in single-precision
* floating-point format.
*
* @see CubicCurve2D.Float
*
* @author Eric Blake (ebb9@email.byu.edu)
* @author Sascha Brawer (brawer@dandelis.ch)
*/ */
public static class Float extends CubicCurve2D public static class Float
extends CubicCurve2D
{ {
/**
* The <i>x</i> coordinate of the curve&#x2019;s start point.
*/
public float x1; public float x1;
/**
* The <i>y</i> coordinate of the curve&#x2019;s start point.
*/
public float y1; public float y1;
/**
* The <i>x</i> coordinate of the curve&#x2019;s first control point.
*/
public float ctrlx1; public float ctrlx1;
/**
* The <i>y</i> coordinate of the curve&#x2019;s first control point.
*/
public float ctrly1; public float ctrly1;
/**
* The <i>x</i> coordinate of the curve&#x2019;s second control point.
*/
public float ctrlx2; public float ctrlx2;
/**
* The <i>y</i> coordinate of the curve&#x2019;s second control point.
*/
public float ctrly2; public float ctrly2;
/**
* The <i>x</i> coordinate of the curve&#x2019;s end point.
*/
public float x2; public float x2;
/**
* The <i>y</i> coordinate of the curve&#x2019;s end point.
*/
public float y2; public float y2;
/**
* Constructs a new CubicCurve2D that stores its coordinate values
* in single-precision floating-point format. All points are
* initially at position (0, 0).
*/
public Float() public Float()
{ {
} }
/**
* Constructs a new CubicCurve2D that stores its coordinate values
* in single-precision floating-point format, specifying the
* initial position of each point.
*
* <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
* alt="A drawing of a CubicCurve2D" />
*
* @param x1 the <i>x</i> coordinate of the curve&#x2019;s start
* point.
*
* @param y1 the <i>y</i> coordinate of the curve&#x2019;s start
* point.
*
* @param cx1 the <i>x</i> coordinate of the curve&#x2019;s first
* control point.
*
* @param cy1 the <i>y</i> coordinate of the curve&#x2019;s first
* control point.
*
* @param cx2 the <i>x</i> coordinate of the curve&#x2019;s second
* control point.
*
* @param cy2 the <i>y</i> coordinate of the curve&#x2019;s second
* control point.
*
* @param x2 the <i>x</i> coordinate of the curve&#x2019;s end
* point.
*
* @param y2 the <i>y</i> coordinate of the curve&#x2019;s end
* point.
*/
public Float(float x1, float y1, float cx1, float cy1, public Float(float x1, float y1, float cx1, float cy1,
float cx2, float cy2, float x2, float y2) float cx2, float cy2, float x2, float y2)
{ {
...@@ -435,58 +1241,154 @@ public abstract class CubicCurve2D implements Shape, Cloneable ...@@ -435,58 +1241,154 @@ public abstract class CubicCurve2D implements Shape, Cloneable
this.y2 = y2; this.y2 = y2;
} }
/**
* Returns the <i>x</i> coordinate of the curve&#x2019;s start
* point.
*/
public double getX1() public double getX1()
{ {
return x1; return x1;
} }
/**
* Returns the <i>y</i> coordinate of the curve&#x2019;s start
* point.
*/
public double getY1() public double getY1()
{ {
return y1; return y1;
} }
/**
* Returns the curve&#x2019;s start point.
*/
public Point2D getP1() public Point2D getP1()
{ {
return new Point2D.Float(x1, y1); return new Point2D.Float(x1, y1);
} }
/**
* Returns the <i>x</i> coordinate of the curve&#x2019;s first
* control point.
*/
public double getCtrlX1() public double getCtrlX1()
{ {
return ctrlx1; return ctrlx1;
} }
/**
* Returns the <i>y</i> coordinate of the curve&#x2019;s first
* control point.
*/
public double getCtrlY1() public double getCtrlY1()
{ {
return ctrly1; return ctrly1;
} }
/**
* Returns the curve&#x2019;s first control point.
*/
public Point2D getCtrlP1() public Point2D getCtrlP1()
{ {
return new Point2D.Float(ctrlx1, ctrly1); return new Point2D.Float(ctrlx1, ctrly1);
} }
/**
* Returns the <i>s</i> coordinate of the curve&#x2019;s second
* control point.
*/
public double getCtrlX2() public double getCtrlX2()
{ {
return ctrlx2; return ctrlx2;
} }
/**
* Returns the <i>y</i> coordinate of the curve&#x2019;s second
* control point.
*/
public double getCtrlY2() public double getCtrlY2()
{ {
return ctrly2; return ctrly2;
} }
/**
* Returns the curve&#x2019;s second control point.
*/
public Point2D getCtrlP2() public Point2D getCtrlP2()
{ {
return new Point2D.Float(ctrlx2, ctrly2); return new Point2D.Float(ctrlx2, ctrly2);
} }
/**
* Returns the <i>x</i> coordinate of the curve&#x2019;s end
* point.
*/
public double getX2() public double getX2()
{ {
return x2; return x2;
} }
/**
* Returns the <i>y</i> coordinate of the curve&#x2019;s end
* point.
*/
public double getY2() public double getY2()
{ {
return y2; return y2;
} }
/**
* Returns the curve&#x2019;s end point.
*/
public Point2D getP2() public Point2D getP2()
{ {
return new Point2D.Float(x2, y2); return new Point2D.Float(x2, y2);
} }
/**
* Changes the curve geometry, separately specifying each coordinate
* value as a double-precision floating-point number.
*
* <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
* alt="A drawing of a CubicCurve2D" />
*
* @param x1 the <i>x</i> coordinate of the curve&#x2019;s new start
* point.
*
* @param y1 the <i>y</i> coordinate of the curve&#x2019;s new start
* point.
*
* @param cx1 the <i>x</i> coordinate of the curve&#x2019;s new
* first control point.
*
* @param cy1 the <i>y</i> coordinate of the curve&#x2019;s new
* first control point.
*
* @param cx2 the <i>x</i> coordinate of the curve&#x2019;s new
* second control point.
*
* @param cy2 the <i>y</i> coordinate of the curve&#x2019;s new
* second control point.
*
* @param x2 the <i>x</i> coordinate of the curve&#x2019;s new end
* point.
*
* @param y2 the <i>y</i> coordinate of the curve&#x2019;s new end
* point.
*/
public void setCurve(double x1, double y1, double cx1, double cy1, public void setCurve(double x1, double y1, double cx1, double cy1,
double cx2, double cy2, double x2, double y2) double cx2, double cy2, double x2, double y2)
{ {
...@@ -499,6 +1401,39 @@ public abstract class CubicCurve2D implements Shape, Cloneable ...@@ -499,6 +1401,39 @@ public abstract class CubicCurve2D implements Shape, Cloneable
this.x2 = (float) x2; this.x2 = (float) x2;
this.y2 = (float) y2; this.y2 = (float) y2;
} }
/**
* Changes the curve geometry, separately specifying each coordinate
* value as a single-precision floating-point number.
*
* <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
* alt="A drawing of a CubicCurve2D" />
*
* @param x1 the <i>x</i> coordinate of the curve&#x2019;s new start
* point.
*
* @param y1 the <i>y</i> coordinate of the curve&#x2019;s new start
* point.
*
* @param cx1 the <i>x</i> coordinate of the curve&#x2019;s new
* first control point.
*
* @param cy1 the <i>y</i> coordinate of the curve&#x2019;s new
* first control point.
*
* @param cx2 the <i>x</i> coordinate of the curve&#x2019;s new
* second control point.
*
* @param cy2 the <i>y</i> coordinate of the curve&#x2019;s new
* second control point.
*
* @param x2 the <i>x</i> coordinate of the curve&#x2019;s new end
* point.
*
* @param y2 the <i>y</i> coordinate of the curve&#x2019;s new end
* point.
*/
public void setCurve(float x1, float y1, float cx1, float cy1, public void setCurve(float x1, float y1, float cx1, float cy1,
float cx2, float cy2, float x2, float y2) float cx2, float cy2, float x2, float y2)
{ {
...@@ -511,6 +1446,18 @@ public abstract class CubicCurve2D implements Shape, Cloneable ...@@ -511,6 +1446,18 @@ public abstract class CubicCurve2D implements Shape, Cloneable
this.x2 = x2; this.x2 = x2;
this.y2 = y2; this.y2 = y2;
} }
/**
* Determines the smallest rectangle that encloses the
* curve&#x2019;s start, end and control points. As the
* illustration below shows, the invisible control points may cause
* the bounds to be much larger than the area that is actually
* covered by the curve.
*
* <p><img src="doc-files/CubicCurve2D-2.png" width="350" height="180"
* alt="An illustration of the bounds of a CubicCurve2D" />
*/
public Rectangle2D getBounds2D() public Rectangle2D getBounds2D()
{ {
float nx1 = (float) Math.min(Math.min(x1, ctrlx1), Math.min(ctrlx2, x2)); float nx1 = (float) Math.min(Math.min(x1, ctrlx1), Math.min(ctrlx2, x2));
...@@ -519,5 +1466,5 @@ public abstract class CubicCurve2D implements Shape, Cloneable ...@@ -519,5 +1466,5 @@ public abstract class CubicCurve2D implements Shape, Cloneable
float ny2 = (float) Math.max(Math.max(y1, ctrly1), Math.max(ctrly2, y2)); float ny2 = (float) Math.max(Math.max(y1, ctrly1), Math.max(ctrly2, y2));
return new Rectangle2D.Float(nx1, ny1, nx2 - nx1, ny2 - ny1); return new Rectangle2D.Float(nx1, ny1, nx2 - nx1, ny2 - ny1);
} }
} // class Float }
} // class CubicCurve2D }
...@@ -51,6 +51,7 @@ import java.util.NoSuchElementException; ...@@ -51,6 +51,7 @@ import java.util.NoSuchElementException;
* alt="A drawing of a QuadCurve2D" /> * alt="A drawing of a QuadCurve2D" />
* *
* @author Eric Blake (ebb9@email.byu.edu) * @author Eric Blake (ebb9@email.byu.edu)
* @author Graydon Hoare (graydon@redhat.com)
* @author Sascha Brawer (brawer@dandelis.ch) * @author Sascha Brawer (brawer@dandelis.ch)
* *
* @since 1.2 * @since 1.2
...@@ -129,7 +130,8 @@ public abstract class QuadCurve2D ...@@ -129,7 +130,8 @@ public abstract class QuadCurve2D
/** /**
* Changes the geometry of the curve. * Changes the curve geometry, separately specifying each coordinate
* value.
* *
* @param x1 the <i>x</i> coordinate of the curve&#x2019;s new start * @param x1 the <i>x</i> coordinate of the curve&#x2019;s new start
* point. * point.
...@@ -153,6 +155,23 @@ public abstract class QuadCurve2D ...@@ -153,6 +155,23 @@ public abstract class QuadCurve2D
double x2, double y2); double x2, double y2);
/**
* Changes the curve geometry, passing coordinate values in an
* array.
*
* @param coords an array containing the new coordinate values. The
* <i>x</i> coordinate of the new start point is located at
* <code>coords[offset]</code>, its <i>y</i> coordinate at
* <code>coords[offset + 1]</code>. The <i>x</i> coordinate of the
* new control point is located at <code>coords[offset + 2]</code>,
* its <i>y</i> coordinate at <code>coords[offset + 3]</code>. The
* <i>x</i> coordinate of the new end point is located at
* <code>coords[offset + 4]</code>, its <i>y</i> coordinate at
* <code>coords[offset + 5]</code>.
*
* @param offset the offset of the first coordinate value in
* <code>coords</code>.
*/
public void setCurve(double[] coords, int offset) public void setCurve(double[] coords, int offset)
{ {
setCurve(coords[offset++], coords[offset++], setCurve(coords[offset++], coords[offset++],
...@@ -161,6 +180,22 @@ public abstract class QuadCurve2D ...@@ -161,6 +180,22 @@ public abstract class QuadCurve2D
} }
/**
* Changes the curve geometry, specifying coordinate values in
* separate Point objects.
*
* <p><img src="doc-files/QuadCurve2D-1.png" width="350" height="180"
* alt="A drawing of a QuadCurve2D" />
*
* <p>The curve does not keep any reference to the passed point
* objects. Therefore, a later change to <code>p1</code>,
* <code>c</code> <code>p2</code> will not affect the curve
* geometry.
*
* @param p1 the new start point.
* @param c the new control point.
* @param p2 the new end point.
*/
public void setCurve(Point2D p1, Point2D c, Point2D p2) public void setCurve(Point2D p1, Point2D c, Point2D p2)
{ {
setCurve(p1.getX(), p1.getY(), c.getX(), c.getY(), setCurve(p1.getX(), p1.getY(), c.getX(), c.getY(),
...@@ -168,11 +203,29 @@ public abstract class QuadCurve2D ...@@ -168,11 +203,29 @@ public abstract class QuadCurve2D
} }
/**
* Changes the curve geometry, specifying coordinate values in an
* array of Point objects.
*
* <p><img src="doc-files/QuadCurve2D-1.png" width="350" height="180"
* alt="A drawing of a QuadCurve2D" />
*
* <p>The curve does not keep references to the passed point
* objects. Therefore, a later change to the <code>pts</code> array
* or any of its elements will not affect the curve geometry.
*
* @param pts an array containing the points. The new start point
* is located at <code>pts[offset]</code>, the new control
* point at <code>pts[offset + 1]</code>, and the new end point
* at <code>pts[offset + 2]</code>.
*
* @param offset the offset of the start point in <code>pts</code>.
*/
public void setCurve(Point2D[] pts, int offset) public void setCurve(Point2D[] pts, int offset)
{ {
setCurve(pts[offset].getX(), pts[offset++].getY(), setCurve(pts[offset].getX(), pts[offset].getY(),
pts[offset].getX(), pts[offset++].getY(), pts[offset + 1].getX(), pts[offset + 1].getY(),
pts[offset].getX(), pts[offset++].getY()); pts[offset + 2].getX(), pts[offset + 2].getY());
} }
...@@ -188,6 +241,26 @@ public abstract class QuadCurve2D ...@@ -188,6 +241,26 @@ public abstract class QuadCurve2D
} }
/**
* Calculates the squared flatness of a quadratic curve, directly
* specifying each coordinate value. The flatness is the distance of
* the control point to the line between start and end point.
*
* <p><img src="doc-files/QuadCurve2D-4.png" width="350" height="180"
* alt="A drawing that illustrates the flatness" />
*
* <p>In the above drawing, the straight line connecting start point
* P1 and end point P2 is depicted in gray. The result will be the
* the square of the distance between C and the gray line, i.e.
* the squared length of the red line.
*
* @param x1 the <i>x</i> coordinate of the start point P1.
* @param y1 the <i>y</i> coordinate of the start point P1.
* @param cx the <i>x</i> coordinate of the control point C.
* @param cy the <i>y</i> coordinate of the control point C.
* @param x2 the <i>x</i> coordinate of the end point P2.
* @param y2 the <i>y</i> coordinate of the end point P2.
*/
public static double getFlatnessSq(double x1, double y1, double cx, public static double getFlatnessSq(double x1, double y1, double cx,
double cy, double x2, double y2) double cy, double x2, double y2)
{ {
...@@ -195,6 +268,26 @@ public abstract class QuadCurve2D ...@@ -195,6 +268,26 @@ public abstract class QuadCurve2D
} }
/**
* Calculates the flatness of a quadratic curve, directly specifying
* each coordinate value. The flatness is the distance of the
* control point to the line between start and end point.
*
* <p><img src="doc-files/QuadCurve2D-4.png" width="350" height="180"
* alt="A drawing that illustrates the flatness" />
*
* <p>In the above drawing, the straight line connecting start point
* P1 and end point P2 is depicted in gray. The result will be the
* the distance between C and the gray line, i.e. the length of
* the red line.
*
* @param x1 the <i>x</i> coordinate of the start point P1.
* @param y1 the <i>y</i> coordinate of the start point P1.
* @param cx the <i>x</i> coordinate of the control point C.
* @param cy the <i>y</i> coordinate of the control point C.
* @param x2 the <i>x</i> coordinate of the end point P2.
* @param y2 the <i>y</i> coordinate of the end point P2.
*/
public static double getFlatness(double x1, double y1, double cx, double cy, public static double getFlatness(double x1, double y1, double cx, double cy,
double x2, double y2) double x2, double y2)
{ {
...@@ -202,6 +295,32 @@ public abstract class QuadCurve2D ...@@ -202,6 +295,32 @@ public abstract class QuadCurve2D
} }
/**
* Calculates the squared flatness of a quadratic curve, specifying
* the coordinate values in an array. The flatness is the distance
* of the control point to the line between start and end point.
*
* <p><img src="doc-files/QuadCurve2D-4.png" width="350" height="180"
* alt="A drawing that illustrates the flatness" />
*
* <p>In the above drawing, the straight line connecting start point
* P1 and end point P2 is depicted in gray. The result will be the
* the square of the distance between C and the gray line, i.e.
* the squared length of the red line.
*
* @param coords an array containing the coordinate values. The
* <i>x</i> coordinate of the start point P1 is located at
* <code>coords[offset]</code>, its <i>y</i> coordinate at
* <code>coords[offset + 1]</code>. The <i>x</i> coordinate of the
* control point C is located at <code>coords[offset + 2]</code>,
* its <i>y</i> coordinate at <code>coords[offset + 3]</code>. The
* <i>x</i> coordinate of the end point P2 is located at
* <code>coords[offset + 4]</code>, its <i>y</i> coordinate at
* <code>coords[offset + 5]</code>.
*
* @param offset the offset of the first coordinate value in
* <code>coords</code>.
*/
public static double getFlatnessSq(double[] coords, int offset) public static double getFlatnessSq(double[] coords, int offset)
{ {
return Line2D.ptSegDistSq(coords[offset], coords[offset + 1], return Line2D.ptSegDistSq(coords[offset], coords[offset + 1],
...@@ -210,6 +329,32 @@ public abstract class QuadCurve2D ...@@ -210,6 +329,32 @@ public abstract class QuadCurve2D
} }
/**
* Calculates the flatness of a quadratic curve, specifying the
* coordinate values in an array. The flatness is the distance of
* the control point to the line between start and end point.
*
* <p><img src="doc-files/QuadCurve2D-4.png" width="350" height="180"
* alt="A drawing that illustrates the flatness" />
*
* <p>In the above drawing, the straight line connecting start point
* P1 and end point P2 is depicted in gray. The result will be the
* the the distance between C and the gray line, i.e. the length of
* the red line.
*
* @param coords an array containing the coordinate values. The
* <i>x</i> coordinate of the start point P1 is located at
* <code>coords[offset]</code>, its <i>y</i> coordinate at
* <code>coords[offset + 1]</code>. The <i>x</i> coordinate of the
* control point C is located at <code>coords[offset + 2]</code>,
* its <i>y</i> coordinate at <code>coords[offset + 3]</code>. The
* <i>x</i> coordinate of the end point P2 is located at
* <code>coords[offset + 4]</code>, its <i>y</i> coordinate at
* <code>coords[offset + 5]</code>.
*
* @param offset the offset of the first coordinate value in
* <code>coords</code>.
*/
public static double getFlatness(double[] coords, int offset) public static double getFlatness(double[] coords, int offset)
{ {
return Line2D.ptSegDist(coords[offset], coords[offset + 1], return Line2D.ptSegDist(coords[offset], coords[offset + 1],
...@@ -218,6 +363,19 @@ public abstract class QuadCurve2D ...@@ -218,6 +363,19 @@ public abstract class QuadCurve2D
} }
/**
* Calculates the squared flatness of this curve. The flatness is
* the distance of the control point to the line between start and
* end point.
*
* <p><img src="doc-files/QuadCurve2D-4.png" width="350" height="180"
* alt="A drawing that illustrates the flatness" />
*
* <p>In the above drawing, the straight line connecting start point
* P1 and end point P2 is depicted in gray. The result will be the
* the square of the distance between C and the gray line, i.e. the
* squared length of the red line.
*/
public double getFlatnessSq() public double getFlatnessSq()
{ {
return Line2D.ptSegDistSq(getX1(), getY1(), return Line2D.ptSegDistSq(getX1(), getY1(),
...@@ -226,6 +384,19 @@ public abstract class QuadCurve2D ...@@ -226,6 +384,19 @@ public abstract class QuadCurve2D
} }
/**
* Calculates the flatness of this curve. The flatness is the
* distance of the control point to the line between start and end
* point.
*
* <p><img src="doc-files/QuadCurve2D-4.png" width="350" height="180"
* alt="A drawing that illustrates the flatness" />
*
* <p>In the above drawing, the straight line connecting start point
* P1 and end point P2 is depicted in gray. The result will be the
* the distance between C and the gray line, i.e. the length of the
* red line.
*/
public double getFlatness() public double getFlatness()
{ {
return Line2D.ptSegDist(getX1(), getY1(), return Line2D.ptSegDist(getX1(), getY1(),
...@@ -417,6 +588,16 @@ public abstract class QuadCurve2D ...@@ -417,6 +588,16 @@ public abstract class QuadCurve2D
} }
/**
* Determines whether a point lies inside the area that is bounded
* by the curve and the straight line connecting its end points.
*
* <p><img src="doc-files/QuadCurve2D-5.png" width="350" height="180"
* alt="A drawing of the area spanned by the curve" />
*
* <p>The above drawing illustrates in which area points are
* considered &#x201c;contained&#x201d; in a QuadCurve2D.
*/
public boolean contains(double x, double y) public boolean contains(double x, double y)
{ {
// XXX Implement. // XXX Implement.
...@@ -424,6 +605,16 @@ public abstract class QuadCurve2D ...@@ -424,6 +605,16 @@ public abstract class QuadCurve2D
} }
/**
* Determines whether a point lies inside the area that is bounded
* by the curve and the straight line connecting its end points.
*
* <p><img src="doc-files/QuadCurve2D-5.png" width="350" height="180"
* alt="A drawing of the area spanned by the curve" />
*
* <p>The above drawing illustrates in which area points are
* considered &#x201c;contained&#x201d; in a QuadCurve2D.
*/
public boolean contains(Point2D p) public boolean contains(Point2D p)
{ {
return contains(p.getX(), p.getY()); return contains(p.getX(), p.getY());
...@@ -563,8 +754,7 @@ public abstract class QuadCurve2D ...@@ -563,8 +754,7 @@ public abstract class QuadCurve2D
/** /**
* Creates a new curve with the same contents as * Creates a new curve with the same contents as this one.
* this one.
* *
* @return the clone. * @return the clone.
*/ */
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment