Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
R
riscv-gcc-1
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
lvzhengyang
riscv-gcc-1
Commits
44cec300
Commit
44cec300
authored
Jul 09, 2001
by
Jeff Law
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Forgot to commit with last batch.
From-SVN: r43873
parent
0b47e4c1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
1221 additions
and
0 deletions
+1221
-0
gcc/ssa-ccp.c
+1221
-0
No files found.
gcc/ssa-ccp.c
0 → 100644
View file @
44cec300
/* Conditional constant propagation pass for the GNU compiler.
Copyright (C) 2000,2001 Free Software Foundation, Inc.
Original framework by Daniel Berlin <dan@cgsoftware.com>
Fleshed out and major cleanups by Jeff Law <law@redhat.com>
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
GNU CC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
/* Conditional constant propagation.
References:
Constant propagation with conditional branches,
Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
Building an Optimizing Compiler,
Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
Advanced Compiler Design and Implementation,
Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6
The overall structure is as follows:
1. Run a simple SSA based DCE pass to remove any dead code.
2. Run CCP to compute what registers are known constants
and what edges are not executable. Remove unexecutable
edges from the CFG and simplify PHI nodes.
3. Replace registers with constants where possible.
4. Remove unreachable blocks computed in step #2.
5. Another simple SSA DCE pass to remove dead code exposed
by CCP.
When we exit, we are still in SSA form.
Potential further enhancements:
1. Handle SUBREGs, STRICT_LOW_PART, etc in destinations more
gracefully.
2. Handle insns with multiple outputs more gracefully.
3. Handle CONST_DOUBLE and symbolic constants.
4. Fold expressions after performing constant substitutions. */
#include "config.h"
#include "system.h"
#include "rtl.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "ssa.h"
#include "insn-config.h"
#include "recog.h"
#include "output.h"
#include "errors.h"
#include "ggc.h"
#include "df.h"
#include "function.h"
/* Possible lattice values. */
typedef
enum
{
UNDEFINED
,
CONSTANT
,
VARYING
}
latticevalue
;
/* Main structure for CCP.
Contains the lattice value and, if it's a constant, the constant
value. */
typedef
struct
{
latticevalue
lattice_val
;
rtx
const_value
;
}
value
;
/* Array of values indexed by register number. */
static
value
*
values
;
/* A bitmap to keep track of executable blocks in the CFG. */
static
sbitmap
executable_blocks
;
/* A bitmap for all executable edges in the CFG. */
static
sbitmap
executable_edges
;
/* Array of edges on the work list. */
static
edge
*
edge_info
;
/* We need an edge list to be able to get indexes easily. */
static
struct
edge_list
*
edges
;
/* For building/following use-def and def-use chains. */
static
struct
df
*
df_analyzer
;
/* Current edge we are operating on, from the worklist */
static
edge
flow_edges
;
/* Bitmap of SSA edges which will need reexamination as their definition
has changed. */
static
sbitmap
ssa_edges
;
/* Simple macros to simplify code */
#define SSA_NAME(x) REGNO (SET_DEST (x))
#define PHI_PARMS(x) XVEC (SET_SRC (x), 0)
#define EIE(x,y) EDGE_INDEX (edges, x, y)
rtx
first_phi_node
PARAMS
((
basic_block
));
static
void
visit_phi_node
PARAMS
((
rtx
,
basic_block
));
static
void
visit_expression
PARAMS
((
rtx
,
basic_block
));
static
void
defs_to_undefined
PARAMS
((
rtx
));
static
void
defs_to_varying
PARAMS
((
rtx
));
static
void
examine_flow_edges
PARAMS
((
void
));
static
void
follow_def_use_chains
PARAMS
((
void
));
static
void
optimize_unexecutable_edges
PARAMS
((
struct
edge_list
*
,
sbitmap
));
static
void
ssa_ccp_substitute_constants
PARAMS
((
void
));
static
void
ssa_ccp_df_delete_unreachable_insns
PARAMS
((
void
));
/* Return the first PHI node in a basic block. This routine knows
what INSNs can start a basic block and what can validly follow
them up to the first PHI node.
If the INSN chain or block structures are incorrect, then the behavior
of this routine is undefined. verify_flow_info will normally catch
these problems in a more graceful manner. */
rtx
first_phi_node
(
block
)
basic_block
block
;
{
rtx
insn
=
block
->
head
;
/* Eat the optional CODE_LABEL at the start of the block. */
if
(
GET_CODE
(
insn
)
==
CODE_LABEL
)
insn
=
NEXT_INSN
(
insn
);
/* Eat the mandatory NOTE_INSN_BASIC_BLOCK. */
if
(
!
NOTE_INSN_BASIC_BLOCK_P
(
insn
)
||
NOTE_BASIC_BLOCK
(
insn
)
!=
block
)
abort
();
/* If there is a PHI node in this block, then it will be the next insn. */
return
NEXT_INSN
(
insn
);
}
/* Loop through the PHI_NODE's parameters for BLOCK and compare their
lattice values to determine PHI_NODE's lattice value. */
static
void
visit_phi_node
(
phi_node
,
block
)
rtx
phi_node
;
basic_block
block
;
{
unsigned
int
i
;
rtx
phi_node_expr
=
NULL
;
unsigned
int
phi_node_name
=
SSA_NAME
(
PATTERN
(
phi_node
));
latticevalue
phi_node_lattice_val
=
UNDEFINED
;
rtx
pat
=
PATTERN
(
phi_node
);
rtvec
phi_vec
=
XVEC
(
SET_SRC
(
pat
),
0
);
unsigned
int
num_elem
=
GET_NUM_ELEM
(
phi_vec
);
for
(
i
=
0
;
i
<
num_elem
;
i
+=
2
)
{
if
(
TEST_BIT
(
executable_edges
,
EIE
(
BASIC_BLOCK
(
INTVAL
(
RTVEC_ELT
(
phi_vec
,
i
+
1
))),
block
)))
{
unsigned
int
current_parm
=
REGNO
(
RTVEC_ELT
(
phi_vec
,
i
));
latticevalue
current_parm_lattice_val
=
values
[
current_parm
].
lattice_val
;
/* If any node is VARYING, then new value of PHI_NODE
is VARYING. */
if
(
current_parm_lattice_val
==
VARYING
)
{
phi_node_lattice_val
=
VARYING
;
phi_node_expr
=
NULL
;
break
;
}
/* If we have more than one distinct constant, then the new
value of PHI_NODE is VARYING. */
if
(
current_parm_lattice_val
==
CONSTANT
&&
phi_node_lattice_val
==
CONSTANT
&&
values
[
current_parm
].
const_value
!=
phi_node_expr
)
{
phi_node_lattice_val
=
VARYING
;
phi_node_expr
=
NULL
;
break
;
}
/* If the current value of PHI_NODE is UNDEFINED and one
node in PHI_NODE is CONSTANT, then the new value of the
PHI is that CONSTANT. Note this can turn into VARYING
if we find another distinct constant later. */
if
(
phi_node_lattice_val
==
UNDEFINED
&&
phi_node_expr
==
NULL
&&
current_parm_lattice_val
==
CONSTANT
)
{
phi_node_expr
=
values
[
current_parm
].
const_value
;
phi_node_lattice_val
=
CONSTANT
;
continue
;
}
}
}
/* If the value of PHI_NODE changed, then we will need to
re-execute uses of the output of PHI_NODE. */
if
(
phi_node_lattice_val
!=
values
[
phi_node_name
].
lattice_val
)
{
values
[
phi_node_name
].
lattice_val
=
phi_node_lattice_val
;
values
[
phi_node_name
].
const_value
=
phi_node_expr
;
SET_BIT
(
ssa_edges
,
phi_node_name
);
}
}
/* Sets all defs in an insn to UNDEFINED. */
static
void
defs_to_undefined
(
insn
)
rtx
insn
;
{
struct
df_link
*
currdef
;
for
(
currdef
=
DF_INSN_DEFS
(
df_analyzer
,
insn
);
currdef
;
currdef
=
currdef
->
next
)
{
if
(
values
[
DF_REF_REGNO
(
currdef
->
ref
)].
lattice_val
!=
UNDEFINED
)
SET_BIT
(
ssa_edges
,
DF_REF_REGNO
(
currdef
->
ref
));
values
[
DF_REF_REGNO
(
currdef
->
ref
)].
lattice_val
=
UNDEFINED
;
}
}
/* Sets all defs in an insn to VARYING. */
static
void
defs_to_varying
(
insn
)
rtx
insn
;
{
struct
df_link
*
currdef
;
for
(
currdef
=
DF_INSN_DEFS
(
df_analyzer
,
insn
);
currdef
;
currdef
=
currdef
->
next
)
{
if
(
values
[
DF_REF_REGNO
(
currdef
->
ref
)].
lattice_val
!=
VARYING
)
SET_BIT
(
ssa_edges
,
DF_REF_REGNO
(
currdef
->
ref
));
values
[
DF_REF_REGNO
(
currdef
->
ref
)].
lattice_val
=
VARYING
;
}
}
/* Go through the expression, call the approriate evaluation routines
to attempt cprop */
static
void
visit_expression
(
insn
,
block
)
rtx
insn
;
basic_block
block
;
{
rtx
src
,
dest
,
set
;
set
=
single_set
(
insn
);
if
(
!
set
)
{
defs_to_varying
(
insn
);
return
;
}
src
=
SET_SRC
(
set
);
dest
=
SET_DEST
(
set
);
/* We may want to refine this some day. */
if
(
GET_CODE
(
dest
)
!=
REG
&&
dest
!=
pc_rtx
)
{
defs_to_varying
(
insn
);
return
;
}
/* Hard registers are not put in SSA form and thus we must consider
them varying. All the more reason to avoid hard registers in
RTL until as late as possible in the compilation. */
if
(
GET_CODE
(
dest
)
==
REG
&&
REGNO
(
dest
)
<
FIRST_PSEUDO_REGISTER
)
{
defs_to_varying
(
insn
);
return
;
}
/* If this is assigning DEST to a constant, record that fact. */
if
(
GET_CODE
(
src
)
==
CONST_INT
&&
GET_CODE
(
insn
)
==
INSN
)
{
unsigned
int
resultreg
=
REGNO
(
dest
);
values
[
resultreg
].
lattice_val
=
CONSTANT
;
values
[
resultreg
].
const_value
=
SET_SRC
(
PATTERN
(
insn
));
SET_BIT
(
ssa_edges
,
resultreg
);
}
/* If this is a copy operation, then we can copy the lattice values. */
else
if
(
GET_CODE
(
src
)
==
REG
&&
GET_CODE
(
dest
)
==
REG
)
{
unsigned
int
old_value
=
REGNO
(
src
);
latticevalue
old_lattice_value
=
values
[
old_value
].
lattice_val
;
unsigned
int
new_value
=
REGNO
(
dest
);
/* Unless the lattice value is going to change, don't bother
adding the "new value" into the worklist. */
if
(
values
[
new_value
].
lattice_val
!=
old_lattice_value
||
values
[
new_value
].
const_value
!=
values
[
old_value
].
const_value
)
SET_BIT
(
ssa_edges
,
new_value
);
/* Copy the old lattice node info into the new value lattice node. */
values
[
new_value
].
lattice_val
=
old_lattice_value
;
values
[
new_value
].
const_value
=
values
[
old_value
].
const_value
;
}
/* Handle jumps. */
else
if
(
GET_CODE
(
insn
)
==
JUMP_INSN
)
{
rtx
x
=
pc_set
(
insn
);
if
(
GET_CODE
(
src
)
!=
IF_THEN_ELSE
)
{
edge
curredge
;
/* This is a computed jump, table jump, or an unconditional
jump. For all these cases we want to mark all successor
blocks as executable if they have not already been
marked.
One day we may try do better with swtich tables and
other computed jumps. */
for
(
curredge
=
block
->
succ
;
curredge
;
curredge
=
curredge
->
succ_next
)
{
int
index
=
EIE
(
curredge
->
src
,
curredge
->
dest
);
if
(
TEST_BIT
(
executable_edges
,
index
))
continue
;
SET_BIT
(
executable_edges
,
index
);
edge_info
[
index
]
=
flow_edges
;
flow_edges
=
curredge
;
}
}
else
{
edge
curredge
;
enum
rtx_code
comparison_code
;
rtx
comparison_src0
;
rtx
comparison_src1
;
comparison_code
=
GET_CODE
(
XEXP
(
src
,
0
));
comparison_src0
=
XEXP
(
XEXP
(
src
,
0
),
0
);
comparison_src1
=
XEXP
(
XEXP
(
src
,
0
),
1
);
/* If either operand is undefined, then there is nothing to
do right now. If/when operands are later defined we will
revaluate the condition and take the appropriate action. */
if
((
GET_CODE
(
comparison_src0
)
==
REG
&&
values
[
REGNO
(
comparison_src0
)].
lattice_val
==
UNDEFINED
)
||
(
GET_CODE
(
comparison_src1
)
==
REG
&&
values
[
REGNO
(
comparison_src1
)].
lattice_val
==
UNDEFINED
))
return
;
/* If either operand is varying, then we must consider all
paths as executable. */
if
((
GET_CODE
(
comparison_src0
)
==
REG
&&
values
[
REGNO
(
comparison_src0
)].
lattice_val
==
VARYING
)
||
(
GET_CODE
(
comparison_src1
)
==
REG
&&
values
[
REGNO
(
comparison_src1
)].
lattice_val
==
VARYING
))
{
for
(
curredge
=
block
->
succ
;
curredge
;
curredge
=
curredge
->
succ_next
)
{
int
index
=
EIE
(
curredge
->
src
,
curredge
->
dest
);
if
(
TEST_BIT
(
executable_edges
,
index
))
continue
;
SET_BIT
(
executable_edges
,
index
);
edge_info
[
index
]
=
flow_edges
;
flow_edges
=
curredge
;
}
return
;
}
/* Try to simplify the comparison. */
if
(
GET_CODE
(
comparison_src0
)
==
REG
&&
values
[
REGNO
(
comparison_src0
)].
lattice_val
==
CONSTANT
)
comparison_src0
=
values
[
REGNO
(
comparison_src0
)].
const_value
;
if
(
GET_CODE
(
comparison_src1
)
==
REG
&&
values
[
REGNO
(
comparison_src1
)].
lattice_val
==
CONSTANT
)
comparison_src1
=
values
[
REGNO
(
comparison_src1
)].
const_value
;
x
=
simplify_ternary_operation
(
IF_THEN_ELSE
,
VOIDmode
,
GET_MODE
(
XEXP
(
src
,
0
)),
gen_rtx
(
comparison_code
,
GET_MODE
(
XEXP
(
src
,
0
)),
comparison_src0
,
comparison_src1
),
XEXP
(
src
,
1
),
XEXP
(
src
,
2
));
/* Walk through all the outgoing edges from this block and see
which (if any) we should mark as executable. */
for
(
curredge
=
block
->
succ
;
curredge
;
curredge
=
curredge
->
succ_next
)
{
int
index
=
EIE
(
curredge
->
src
,
curredge
->
dest
);
if
(
TEST_BIT
(
executable_edges
,
index
))
continue
;
/* If we were unable to simplify the expression at this
point, it's highly unlikely we'll be able to simplify
it later. So consider all edges as executable if the
expression did not simplify.
If the expression simplified to (pc), then we know we
will take the fall-thru edge, so mark it. Similarly,
if the expression simplified to (label_ref ...), then
we know the branch will be taken and we mark that
edge as taken. */
if
(
!
x
||
(
x
==
pc_rtx
&&
(
curredge
->
flags
&
EDGE_FALLTHRU
))
||
(
GET_CODE
(
x
)
==
LABEL_REF
&&
!
(
curredge
->
flags
&
EDGE_FALLTHRU
)))
{
SET_BIT
(
executable_edges
,
index
);
edge_info
[
index
]
=
flow_edges
;
flow_edges
=
curredge
;
}
}
}
}
else
if
(
!
PHI_NODE_P
(
insn
))
{
rtx
simplified
=
NULL
;
/* We've got some kind of INSN. If it's simple, try to evaluate
it and record the results.
We already know this insn is a single_set and that it sets
a pseudo register. So we just need to extract the source
arguments, simplify them to constants if possible, then
simplify the expression as a whole if possible. */
switch
(
GET_RTX_CLASS
(
GET_CODE
(
src
)))
{
case
'<'
:
{
rtx
src0
=
XEXP
(
src
,
0
);
rtx
src1
=
XEXP
(
src
,
1
);
enum
machine_mode
mode
;
/* If either is undefined, then the result is undefined. */
if
((
GET_CODE
(
src0
)
==
REG
&&
values
[
REGNO
(
src0
)].
lattice_val
==
UNDEFINED
)
||
(
GET_CODE
(
src1
)
==
REG
&&
values
[
REGNO
(
src1
)].
lattice_val
==
UNDEFINED
))
{
defs_to_undefined
(
insn
);
break
;
}
/* Simplify source operands to whatever known values they
may have. */
if
(
GET_CODE
(
src0
)
==
REG
&&
values
[
REGNO
(
src0
)].
lattice_val
==
CONSTANT
)
src0
=
values
[
REGNO
(
src0
)].
const_value
;
if
(
GET_CODE
(
src1
)
==
REG
&&
values
[
REGNO
(
src1
)].
lattice_val
==
CONSTANT
)
src1
=
values
[
REGNO
(
src1
)].
const_value
;
/* See if the simplifier can determine if this operation
computes a constant value. */
mode
=
GET_MODE
(
src0
);
if
(
mode
==
VOIDmode
)
mode
=
GET_MODE
(
src1
);
simplified
=
simplify_relational_operation
(
GET_CODE
(
src
),
mode
,
src0
,
src1
);
break
;
}
case
'1'
:
{
rtx
src0
=
XEXP
(
src
,
0
);
/* If the operand is undefined, then the result is undefined. */
if
(
GET_CODE
(
src0
)
==
REG
&&
values
[
REGNO
(
src0
)].
lattice_val
==
UNDEFINED
)
{
defs_to_undefined
(
insn
);
break
;
}
/* Simplify source operands to whatever known values they
may have. */
if
(
GET_CODE
(
src0
)
==
REG
&&
values
[
REGNO
(
src0
)].
lattice_val
==
CONSTANT
)
src0
=
values
[
REGNO
(
src0
)].
const_value
;
/* See if the simplifier can determine if this operation
computes a constant value. */
simplified
=
simplify_unary_operation
(
GET_CODE
(
src
),
GET_MODE
(
src
),
src0
,
GET_MODE
(
src0
));
break
;
}
case
'2'
:
case
'c'
:
{
rtx
src0
=
XEXP
(
src
,
0
);
rtx
src1
=
XEXP
(
src
,
1
);
/* If either is undefined, then the result is undefined. */
if
((
GET_CODE
(
src0
)
==
REG
&&
values
[
REGNO
(
src0
)].
lattice_val
==
UNDEFINED
)
||
(
GET_CODE
(
src1
)
==
REG
&&
values
[
REGNO
(
src1
)].
lattice_val
==
UNDEFINED
))
{
defs_to_undefined
(
insn
);
break
;
}
/* Simplify source operands to whatever known values they
may have. */
if
(
GET_CODE
(
src0
)
==
REG
&&
values
[
REGNO
(
src0
)].
lattice_val
==
CONSTANT
)
src0
=
values
[
REGNO
(
src0
)].
const_value
;
if
(
GET_CODE
(
src1
)
==
REG
&&
values
[
REGNO
(
src1
)].
lattice_val
==
CONSTANT
)
src1
=
values
[
REGNO
(
src1
)].
const_value
;
/* See if the simplifier can determine if this operation
computes a constant value. */
simplified
=
simplify_binary_operation
(
GET_CODE
(
src
),
GET_MODE
(
src
),
src0
,
src1
);
break
;
}
case
'3'
:
case
'b'
:
{
rtx
src0
=
XEXP
(
src
,
0
);
rtx
src1
=
XEXP
(
src
,
1
);
rtx
src2
=
XEXP
(
src
,
2
);
/* If either is undefined, then the result is undefined. */
if
((
GET_CODE
(
src0
)
==
REG
&&
values
[
REGNO
(
src0
)].
lattice_val
==
UNDEFINED
)
||
(
GET_CODE
(
src1
)
==
REG
&&
values
[
REGNO
(
src1
)].
lattice_val
==
UNDEFINED
)
||
(
GET_CODE
(
src2
)
==
REG
&&
values
[
REGNO
(
src2
)].
lattice_val
==
UNDEFINED
))
{
defs_to_undefined
(
insn
);
break
;
}
/* Simplify source operands to whatever known values they
may have. */
if
(
GET_CODE
(
src0
)
==
REG
&&
values
[
REGNO
(
src0
)].
lattice_val
==
CONSTANT
)
src0
=
values
[
REGNO
(
src0
)].
const_value
;
if
(
GET_CODE
(
src1
)
==
REG
&&
values
[
REGNO
(
src1
)].
lattice_val
==
CONSTANT
)
src1
=
values
[
REGNO
(
src1
)].
const_value
;
if
(
GET_CODE
(
src2
)
==
REG
&&
values
[
REGNO
(
src2
)].
lattice_val
==
CONSTANT
)
src2
=
values
[
REGNO
(
src2
)].
const_value
;
/* See if the simplifier can determine if this operation
computes a constant value. */
simplified
=
simplify_ternary_operation
(
GET_CODE
(
src
),
GET_MODE
(
src
),
GET_MODE
(
src
),
src0
,
src1
,
src2
);
break
;
}
default
:
defs_to_varying
(
insn
);
}
if
(
simplified
&&
GET_CODE
(
simplified
)
==
CONST_INT
)
{
if
(
values
[
REGNO
(
dest
)].
lattice_val
!=
CONSTANT
||
values
[
REGNO
(
dest
)].
const_value
!=
simplified
)
SET_BIT
(
ssa_edges
,
REGNO
(
dest
));
values
[
REGNO
(
dest
)].
lattice_val
=
CONSTANT
;
values
[
REGNO
(
dest
)].
const_value
=
simplified
;
}
else
defs_to_varying
(
insn
);
}
}
/* Iterate over the FLOW_EDGES work list. Simulate the target block
for each edge. */
static
void
examine_flow_edges
(
void
)
{
while
(
flow_edges
!=
NULL
)
{
basic_block
succ_block
;
rtx
curr_phi_node
;
/* Pull the next block to simulate off the worklist. */
succ_block
=
flow_edges
->
dest
;
flow_edges
=
edge_info
[
EIE
(
flow_edges
->
src
,
flow_edges
->
dest
)];
/* There is nothing to do for the exit block. */
if
(
succ_block
==
EXIT_BLOCK_PTR
)
continue
;
/* Always simulate PHI nodes, even if we have simulated this block
before. Note that all PHI nodes are consecutive within a block. */
for
(
curr_phi_node
=
first_phi_node
(
succ_block
);
PHI_NODE_P
(
curr_phi_node
);
curr_phi_node
=
NEXT_INSN
(
curr_phi_node
))
visit_phi_node
(
curr_phi_node
,
succ_block
);
/* If this is the first time we've simulated this block, then we
must simulate each of its insns. */
if
(
!
TEST_BIT
(
executable_blocks
,
succ_block
->
index
))
{
rtx
currinsn
;
edge
succ_edge
=
succ_block
->
succ
;
/* Note that we have simulated this block. */
SET_BIT
(
executable_blocks
,
succ_block
->
index
);
/* Simulate each insn within the block. */
currinsn
=
succ_block
->
head
;
while
(
currinsn
!=
succ_block
->
end
)
{
if
(
INSN_P
(
currinsn
))
visit_expression
(
currinsn
,
succ_block
);
currinsn
=
NEXT_INSN
(
currinsn
);
}
/* Don't forget the last insn in the block. */
if
(
INSN_P
(
currinsn
))
visit_expression
(
currinsn
,
succ_block
);
/* If we haven't looked at the next block, and it has a
single successor, add it onto the worklist. This is because
if we only have one successor, we know it gets executed,
so we don't have to wait for cprop to tell us. */
if
(
succ_edge
!=
NULL
&&
succ_edge
->
succ_next
==
NULL
&&
!
TEST_BIT
(
executable_edges
,
EIE
(
succ_edge
->
src
,
succ_edge
->
dest
)))
{
SET_BIT
(
executable_edges
,
EIE
(
succ_edge
->
src
,
succ_edge
->
dest
));
edge_info
[
EIE
(
succ_edge
->
src
,
succ_edge
->
dest
)]
=
flow_edges
;
flow_edges
=
succ_edge
;
}
}
}
}
/* Follow the def-use chains for each definition on the worklist and
simulate the uses of the definition. */
static
void
follow_def_use_chains
()
{
/* Iterate over all the entries on the SSA_EDGES worklist. */
while
(
sbitmap_first_set_bit
(
ssa_edges
)
>=
0
)
{
int
member
;
struct
df_link
*
curruse
;
/* Pick an entry off the worklist (it does not matter which
entry we pick). */
member
=
sbitmap_first_set_bit
(
ssa_edges
);
RESET_BIT
(
ssa_edges
,
member
);
/* Iterate through all the uses of this entry. */
for
(
curruse
=
df_analyzer
->
regs
[
member
].
uses
;
curruse
;
curruse
=
curruse
->
next
)
{
rtx
useinsn
;
useinsn
=
DF_REF_INSN
(
curruse
->
ref
);
if
(
PHI_NODE_P
(
useinsn
))
{
if
(
TEST_BIT
(
executable_blocks
,
BLOCK_NUM
(
useinsn
)))
visit_phi_node
(
useinsn
,
BLOCK_FOR_INSN
(
useinsn
));
}
else
{
if
(
TEST_BIT
(
executable_blocks
,
BLOCK_NUM
(
useinsn
)))
visit_expression
(
useinsn
,
BLOCK_FOR_INSN
(
useinsn
));
}
}
}
}
/* Examine each edge to see if we were able to prove any were
not executable.
If an edge is not executable, then we can remove its alternative
in PHI nodes as the destination of the edge, we can simplify the
conditional branch at the source of the edge, and we can remove
the edge from the CFG. Note we do not delete unreachable blocks
yet as the DF analyzer can not deal with that yet. */
static
void
optimize_unexecutable_edges
(
edges
,
executable_edges
)
struct
edge_list
*
edges
;
sbitmap
executable_edges
;
{
int
i
;
for
(
i
=
0
;
i
<
NUM_EDGES
(
edges
);
i
++
)
{
if
(
!
TEST_BIT
(
executable_edges
,
i
))
{
edge
edge
=
INDEX_EDGE
(
edges
,
i
);
if
(
edge
->
flags
&
EDGE_ABNORMAL
)
continue
;
/* We found an edge that is not executable. First simplify
the PHI nodes in the target block. */
if
(
edge
->
dest
!=
EXIT_BLOCK_PTR
)
{
rtx
insn
=
first_phi_node
(
edge
->
dest
);
while
(
PHI_NODE_P
(
insn
))
{
remove_phi_alternative
(
PATTERN
(
insn
),
edge
->
src
);
insn
=
NEXT_INSN
(
insn
);
}
}
/* Since the edge was not executable, remove it from the CFG. */
remove_edge
(
edge
);
}
}
/* We have removed all the unexecutable edges from the CFG. Fix up
the conditional jumps at the end of any affected block.
We have three cases to deal with:
a. Both outgoing edges are not executable. This happens if the
source block is not reachable. We will deal with this by
deleting all the insns in the block later.
b. The fall-thru edge is not executable. In this case we
change the conditional jump into an unconditional jump and
add a BARRIER after the unconditional jump. Note that since
we are working on generic RTL we can change the jump in-place
instead of dealing with the headache of reemitting the jump.
c. The branch taken edge is not executable. In this case
we turn the jump into (set (pc) (pc)) which is a nop-jump
and we will remove the unrecognizable insn later.
In cases B & C we are removing uses of registers, so make sure
to note those changes for the DF analyzer. */
for
(
i
=
0
;
i
<
n_basic_blocks
;
i
++
)
{
basic_block
bb
=
BASIC_BLOCK
(
i
);
rtx
insn
=
bb
->
end
;
edge
edge
=
bb
->
succ
;
/* If we have no predecessors, then this block is unreachable and
will be cleaned up when we remove unreachable blocks. */
if
(
bb
->
pred
==
NULL
||
GET_CODE
(
insn
)
!=
JUMP_INSN
)
continue
;
/* If this block ends in a conditional jump, but only has one
successor, then the jump needs adjustment. */
if
(
condjump_p
(
insn
)
&&
!
simplejump_p
(
insn
)
&&
bb
->
succ
&&
bb
->
succ
->
succ_next
==
NULL
)
{
/* If the fallthru edge is the executable edge, then turn
this jump into a nop jump, otherwise make it an unconditinoal
jump to its target. */
if
(
edge
->
flags
&
EDGE_FALLTHRU
)
{
PUT_CODE
(
insn
,
NOTE
);
NOTE_LINE_NUMBER
(
insn
)
=
NOTE_INSN_DELETED
;
}
else
{
SET_SRC
(
PATTERN
(
insn
))
=
gen_rtx_LABEL_REF
(
Pmode
,
JUMP_LABEL
(
insn
));
emit_barrier_after
(
insn
);
INSN_CODE
(
insn
)
=
-
1
;
}
/* Inform the DF analyzer that this insn changed. */
df_insn_modify
(
df_analyzer
,
BLOCK_FOR_INSN
(
insn
),
insn
);
}
}
}
/* Perform substitution of known values for pseudo registers.
??? Note we do not do simplifications or constant folding here, it
is unlikely that any significant simplifications can be done here
anyway. Consider that if the simplification would result in an
expression that produces a constant value that the value would
have been discovered and recorded already.
We perform two transformations. First, we initialize pseudos to their
known constant values at their definition point. Second, we try to
replace uses with the known constant value. */
static
void
ssa_ccp_substitute_constants
()
{
int
i
;
for
(
i
=
FIRST_PSEUDO_REGISTER
;
i
<
VARRAY_SIZE
(
ssa_definition
);
i
++
)
{
if
(
values
[
i
].
lattice_val
==
CONSTANT
)
{
rtx
def
=
VARRAY_RTX
(
ssa_definition
,
i
);
rtx
set
=
single_set
(
def
);
struct
df_link
*
curruse
;
if
(
!
set
)
continue
;
/* Do not try to simplify PHI nodes down to a constant load.
That will be done later as we translate out of SSA. Also,
doing that here could violate the rule that all PHI nodes
are consecutive at the start of the basic block. */
if
(
!
PHI_NODE_P
(
def
))
{
SET_SRC
(
set
)
=
values
[
i
].
const_value
;
INSN_CODE
(
def
)
=
-
1
;
df_insn_modify
(
df_analyzer
,
BLOCK_FOR_INSN
(
def
),
def
);
}
/* Iterate through all the uses of this entry and try replacements
there too. Note it is not particularly profitable to try
and fold/simplify expressions here as most of the common
cases were handled above. */
for
(
curruse
=
df_analyzer
->
regs
[
i
].
uses
;
curruse
;
curruse
=
curruse
->
next
)
{
rtx
useinsn
;
useinsn
=
DF_REF_INSN
(
curruse
->
ref
);
if
(
!
INSN_DELETED_P
(
useinsn
)
&&
!
(
GET_CODE
(
useinsn
)
==
NOTE
&&
NOTE_LINE_NUMBER
(
useinsn
)
==
NOTE_INSN_DELETED
)
&&
(
GET_CODE
(
useinsn
)
==
INSN
||
GET_CODE
(
useinsn
)
==
JUMP_INSN
))
{
validate_replace_src
(
regno_reg_rtx
[
i
],
values
[
i
].
const_value
,
useinsn
);
INSN_CODE
(
useinsn
)
=
-
1
;
df_insn_modify
(
df_analyzer
,
BLOCK_FOR_INSN
(
useinsn
),
useinsn
);
}
}
}
}
}
/* Now find all unreachable basic blocks. All the insns in those
blocks are unreachable, so delete them and mark any necessary
updates for the DF analyzer. */
static
void
ssa_ccp_df_delete_unreachable_insns
()
{
int
i
;
/* Use the CFG to find all the reachable blocks. */
find_unreachable_blocks
();
/* Now we know what blocks are not reachable. Mark all the insns
in those blocks as deleted for the DF analyzer. We'll let the
normal flow code actually remove the unreachable blocks. */
for
(
i
=
n_basic_blocks
-
1
;
i
>=
0
;
--
i
)
{
basic_block
b
=
BASIC_BLOCK
(
i
);
if
(
b
->
aux
!=
NULL
)
/* This block was found. Tidy up the mark. */
b
->
aux
=
NULL
;
else
{
rtx
start
=
b
->
head
;
rtx
end
=
b
->
end
;
rtx
tmp
;
/* Include any jump table following the basic block. */
end
=
b
->
end
;
if
(
GET_CODE
(
end
)
==
JUMP_INSN
&&
(
tmp
=
JUMP_LABEL
(
end
))
!=
NULL_RTX
&&
(
tmp
=
NEXT_INSN
(
tmp
))
!=
NULL_RTX
&&
GET_CODE
(
tmp
)
==
JUMP_INSN
&&
(
GET_CODE
(
PATTERN
(
tmp
))
==
ADDR_VEC
||
GET_CODE
(
PATTERN
(
tmp
))
==
ADDR_DIFF_VEC
))
end
=
tmp
;
while
(
1
)
{
rtx
next
=
NEXT_INSN
(
start
);
if
(
GET_CODE
(
start
)
==
INSN
||
GET_CODE
(
start
)
==
CALL_INSN
||
GET_CODE
(
start
)
==
JUMP_INSN
)
df_insn_delete
(
df_analyzer
,
BLOCK_FOR_INSN
(
start
),
start
);
if
(
start
==
end
)
break
;
start
=
next
;
}
}
}
}
/* Main entry point for SSA Conditional Constant Propagation.
Long term it should accept as input the specific flow graph to
operate on so that it can be called for sub-graphs. */
void
ssa_const_prop
(
void
)
{
unsigned
int
i
;
edge
curredge
;
/* We need alias analysis (for what?) */
init_alias_analysis
();
df_analyzer
=
df_init
();
df_analyse
(
df_analyzer
,
0
,
DF_RD_CHAIN
|
DF_RU_CHAIN
|
DF_REG_INFO
|
DF_HARD_REGS
);
/* We need mappings from insn to its containing block. */
compute_bb_for_insn
(
get_max_uid
());
/* Perform a quick and dirty dead code elimination pass. This is not
as aggressive as it could be, but it's good enough to clean up a
lot of unwanted junk and it is fast. */
ssa_fast_dce
(
df_analyzer
);
/* Build an edge list from the CFG. */
edges
=
create_edge_list
();
/* Initialize the values array with everything as undefined. */
values
=
(
value
*
)
xmalloc
(
VARRAY_SIZE
(
ssa_definition
)
*
sizeof
(
value
));
for
(
i
=
0
;
i
<
VARRAY_SIZE
(
ssa_definition
);
i
++
)
{
if
(
i
<
FIRST_PSEUDO_REGISTER
)
values
[
i
].
lattice_val
=
VARYING
;
else
values
[
i
].
lattice_val
=
UNDEFINED
;
values
[
i
].
const_value
=
NULL
;
}
ssa_edges
=
sbitmap_alloc
(
VARRAY_SIZE
(
ssa_definition
));
sbitmap_zero
(
ssa_edges
);
executable_blocks
=
sbitmap_alloc
(
n_basic_blocks
);
sbitmap_zero
(
executable_blocks
);
executable_edges
=
sbitmap_alloc
(
NUM_EDGES
(
edges
));
sbitmap_zero
(
executable_edges
);
edge_info
=
(
edge
*
)
xmalloc
(
NUM_EDGES
(
edges
)
*
sizeof
(
edge
));
flow_edges
=
ENTRY_BLOCK_PTR
->
succ
;
/* Add the successors of the entry block to the edge worklist. That
is enough of a seed to get SSA-CCP started. */
for
(
curredge
=
ENTRY_BLOCK_PTR
->
succ
;
curredge
;
curredge
=
curredge
->
succ_next
)
{
int
index
=
EIE
(
curredge
->
src
,
curredge
->
dest
);
SET_BIT
(
executable_edges
,
index
);
edge_info
[
index
]
=
curredge
->
succ_next
;
}
/* Iterate until until the worklists are empty. */
do
{
examine_flow_edges
();
follow_def_use_chains
();
}
while
(
flow_edges
!=
NULL
);
/* Now perform substitutions based on the known constant values. */
ssa_ccp_substitute_constants
();
/* Remove unexecutable edges from the CFG and make appropriate
adjustments to PHI nodes. */
optimize_unexecutable_edges
(
edges
,
executable_edges
);
/* Now remove all unreachable insns and update the DF information.
as appropriate. */
ssa_ccp_df_delete_unreachable_insns
();
#if 0
/* The DF analyzer expects the number of blocks to remain constant,
so we can't remove unreachable blocks.
Code the DF analyzer calls expects there to be no unreachable
blocks in the CFG. So we can't leave unreachable blocks in the
CFG.
So, there is no way to do an incremental update of the DF data
at this point. */
df_analyse (df_analyzer, 0,
DF_RD_CHAIN | DF_RU_CHAIN | DF_REG_INFO | DF_HARD_REGS);
#endif
/* Clean up any dead code exposed by SSA-CCP, do this after updating
the dataflow information! */
ssa_fast_dce
(
df_analyzer
);
free
(
values
);
values
=
NULL
;
free
(
edge_info
);
edge_info
=
NULL
;
sbitmap_free
(
executable_blocks
);
executable_blocks
=
NULL
;
free_edge_list
(
edges
);
edges
=
NULL
;
sbitmap_free
(
executable_edges
);
executable_edges
=
NULL
;
df_finish
(
df_analyzer
);
end_alias_analysis
();
}
static
int
mark_references
(
current_rtx
,
data
)
rtx
*
current_rtx
;
void
*
data
;
{
rtx
x
=
*
current_rtx
;
sbitmap
worklist
=
(
sbitmap
)
data
;
if
(
x
==
NULL_RTX
)
return
0
;
if
(
GET_CODE
(
x
)
==
SET
)
{
rtx
dest
=
SET_DEST
(
x
);
if
(
GET_CODE
(
dest
)
==
STRICT_LOW_PART
||
GET_CODE
(
dest
)
==
SUBREG
||
GET_CODE
(
dest
)
==
SIGN_EXTRACT
||
GET_CODE
(
dest
)
==
ZERO_EXTRACT
)
{
rtx
reg
;
reg
=
dest
;
while
(
GET_CODE
(
reg
)
==
STRICT_LOW_PART
||
GET_CODE
(
reg
)
==
SUBREG
||
GET_CODE
(
reg
)
==
SIGN_EXTRACT
||
GET_CODE
(
reg
)
==
ZERO_EXTRACT
)
reg
=
XEXP
(
reg
,
0
);
if
(
GET_CODE
(
reg
)
==
REG
)
SET_BIT
(
worklist
,
REGNO
(
reg
));
}
if
(
GET_CODE
(
dest
)
==
REG
)
{
for_each_rtx
(
&
SET_SRC
(
x
),
mark_references
,
data
);
return
-
1
;
}
return
0
;
}
else
if
(
GET_CODE
(
x
)
==
REG
)
{
SET_BIT
(
worklist
,
REGNO
(
x
));
return
-
1
;
}
else
if
(
GET_CODE
(
x
)
==
CLOBBER
)
return
-
1
;
else
return
0
;
}
static
void
ssa_fast_dce
(
df
)
struct
df
*
df
;
{
sbitmap
worklist
=
sbitmap_alloc
(
VARRAY_SIZE
(
ssa_definition
));
sbitmap_ones
(
worklist
);
/* Iterate on the worklist until there's no definitions left to
examine. */
while
(
sbitmap_first_set_bit
(
worklist
)
>=
0
)
{
struct
df_link
*
curruse
;
int
reg
,
found_use
;
/* Remove an item from the worklist. */
reg
=
sbitmap_first_set_bit
(
worklist
);
RESET_BIT
(
worklist
,
reg
);
/* We never consider deleting assignments to hard regs or things
which do not have SSA definitions, or things we have already
deleted, or things with unusual side effects. */
if
(
reg
<
FIRST_PSEUDO_REGISTER
||
!
VARRAY_RTX
(
ssa_definition
,
reg
)
||
INSN_DELETED_P
(
VARRAY_RTX
(
ssa_definition
,
reg
))
||
(
GET_CODE
(
VARRAY_RTX
(
ssa_definition
,
reg
))
==
NOTE
&&
(
NOTE_LINE_NUMBER
(
VARRAY_RTX
(
ssa_definition
,
reg
))
==
NOTE_INSN_DELETED
))
||
side_effects_p
(
PATTERN
(
VARRAY_RTX
(
ssa_definition
,
reg
))))
continue
;
/* Iterate over the uses of this register. If we can not find
any uses that have not been deleted, then the definition of
this register is dead. */
found_use
=
0
;
for
(
curruse
=
df
->
regs
[
reg
].
uses
;
curruse
;
curruse
=
curruse
->
next
)
{
rtx
useinsn
;
if
(
curruse
->
ref
&&
DF_REF_INSN
(
curruse
->
ref
)
&&
!
INSN_DELETED_P
(
DF_REF_INSN
(
curruse
->
ref
))
&&
!
(
GET_CODE
(
DF_REF_INSN
(
curruse
->
ref
))
==
NOTE
&&
(
NOTE_LINE_NUMBER
(
DF_REF_INSN
(
curruse
->
ref
))
==
NOTE_INSN_DELETED
))
&&
DF_REF_INSN
(
curruse
->
ref
)
!=
VARRAY_RTX
(
ssa_definition
,
reg
))
{
found_use
=
1
;
break
;
}
}
/* If we did not find a use of this register, then the definition
of this register is dead. */
if
(
!
found_use
)
{
rtx
def
=
VARRAY_RTX
(
ssa_definition
,
reg
);
/* Add all registers referenced by INSN to the work
list. */
for_each_rtx
(
&
PATTERN
(
def
),
mark_references
,
worklist
);
/* Inform the analyzer that this insn is going to be
deleted. */
df_insn_delete
(
df
,
BLOCK_FOR_INSN
(
def
),
def
);
if
(
PHI_NODE_P
(
def
))
{
if
(
def
==
BLOCK_FOR_INSN
(
def
)
->
head
&&
def
==
BLOCK_FOR_INSN
(
def
)
->
end
)
{
/* Delete it. */
PUT_CODE
(
def
,
NOTE
);
NOTE_LINE_NUMBER
(
def
)
=
NOTE_INSN_DELETED
;
}
else
if
(
def
==
BLOCK_FOR_INSN
(
def
)
->
head
)
{
BLOCK_FOR_INSN
(
def
)
->
head
=
NEXT_INSN
(
def
);
flow_delete_insn
(
def
);
}
else
if
(
def
==
BLOCK_FOR_INSN
(
def
)
->
end
)
{
BLOCK_FOR_INSN
(
def
)
->
end
=
PREV_INSN
(
def
);
flow_delete_insn
(
def
);
}
else
flow_delete_insn
(
def
);
}
else
{
flow_delete_insn
(
def
);
}
VARRAY_RTX
(
ssa_definition
,
reg
)
=
NULL
;
}
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment