Commit 3ec54569 by Pierre-Marie de Rodat

[multiple changes]

2017-11-09  Pascal Obry  <obry@adacore.com>

	* libgnarl/s-taprop__mingw.adb: On Windows, initialize the thead handle
	only for foreign threads.  We initialize the thread handle only if not
	yet initialized. This happens in Enter_Task for foreign threads only.
	But for native threads (Ada tasking) we do want to keep the real
	handle (from Create_Task) to be able to free the corresponding
	resources in Finalize_TCB (CloseHandle).

2017-11-09  Yannick Moy  <moy@adacore.com>

	* sem_attr.adb (Analyze_Attribute): Default initialize P_Type,
	P_Base_Type.
	(Error_Attr_P): Fix name in pragma No_Return.
	(Unexpected_Argument): Add pragma No_Return.
	(Placement_Error): Add pragma No_Return.

2017-11-09  Javier Miranda  <miranda@adacore.com>

	* exp_disp.adb (Elab_Flag_Needed): Elaboration flag not needed when the
	dispatch table is statically built.
	(Make_DT): Declare constant the Interface_Table object associated with
	an statically built dispatch table. For this purpose the Offset_To_Top
	value of each interface is computed using the dummy object.
	* exp_ch3.adb (Build_Init_Procedure): Do not generate code initializing
	the Offset_To_Top field of secondary dispatch tables when the dispatch
	table is statically built.
	(Initialize_Tag): Do not generate calls to Register_Interface_Offset
	when the dispatch table is statically built.
	* doc/gnat_rm/standard_and_implementation_defined_restrictions.rst:
	Document the new GNAT restriction Static_Dispatch_Tables.
	* gnat_rm.texi: Regenerate.

2017-11-09  Hristian Kirtchev  <kirtchev@adacore.com>

	* sem_aggr.adb (Resolve_Delta_Record_Aggregate): Reorder declarations
	to avoid a dormant bug.

2017-11-09  Jerome Lambourg  <lambourg@adacore.com>

	* init.c: Define missing __gnat_alternate_stack for QNX. Set it to 0,
	as such capability is not available on the OS.
	* link.c: Make sure linker options for QNX are correct.
	* libgnarl/s-osinte__qnx.ads: Add some missing bindings to pthread.
	* libgnarl/s-taprop__qnx.adb: New, derived from s-taprop__posix.adb. This brings
	in particular a workaround with locks priority ceiling where a higher
	priority task is allowed to lock a lower ceiling priority lock. This
	also fixes the scheduling of FIFO tasks when the priority of a task is
	lowered.
	* libgnat/system-qnx-aarch64.ads: Fix priority ranges.

2017-11-09  Yannick Moy  <moy@adacore.com>

	* erroutc.adb (Output_Error_Msgs): Justify CodePeer false positive
	message.
	* gnatbind.adb (Scan_Bind_Arg): Simplify test to remove always true
	condition.
	* namet.adb (Copy_One_Character): Add assumption for static analysis,
	as knowledge that Hex(2) is in the range 0..255 is too complex for
	CodePeer.
	(Finalize): Add assumption for static analysis, as the fact that there
	are symbols in the table depends on a global invariant at this point in
	the program.
	* set_targ.adb (Check_Spaces): Justify CodePeer false positive message.
	* stylesw.adb (Save_Style_Check_Options): Rewrite to avoid test always
	true.

From-SVN: r254573
parent 6214b83b
2017-11-09 Pascal Obry <obry@adacore.com>
* libgnarl/s-taprop__mingw.adb: On Windows, initialize the thead handle
only for foreign threads. We initialize the thread handle only if not
yet initialized. This happens in Enter_Task for foreign threads only.
But for native threads (Ada tasking) we do want to keep the real
handle (from Create_Task) to be able to free the corresponding
resources in Finalize_TCB (CloseHandle).
2017-11-09 Yannick Moy <moy@adacore.com>
* sem_attr.adb (Analyze_Attribute): Default initialize P_Type,
P_Base_Type.
(Error_Attr_P): Fix name in pragma No_Return.
(Unexpected_Argument): Add pragma No_Return.
(Placement_Error): Add pragma No_Return.
2017-11-09 Javier Miranda <miranda@adacore.com>
* exp_disp.adb (Elab_Flag_Needed): Elaboration flag not needed when the
dispatch table is statically built.
(Make_DT): Declare constant the Interface_Table object associated with
an statically built dispatch table. For this purpose the Offset_To_Top
value of each interface is computed using the dummy object.
* exp_ch3.adb (Build_Init_Procedure): Do not generate code initializing
the Offset_To_Top field of secondary dispatch tables when the dispatch
table is statically built.
(Initialize_Tag): Do not generate calls to Register_Interface_Offset
when the dispatch table is statically built.
* doc/gnat_rm/standard_and_implementation_defined_restrictions.rst:
Document the new GNAT restriction Static_Dispatch_Tables.
* gnat_rm.texi: Regenerate.
2017-11-09 Hristian Kirtchev <kirtchev@adacore.com>
* sem_aggr.adb (Resolve_Delta_Record_Aggregate): Reorder declarations
to avoid a dormant bug.
2017-11-09 Jerome Lambourg <lambourg@adacore.com>
* init.c: Define missing __gnat_alternate_stack for QNX. Set it to 0,
as such capability is not available on the OS.
* link.c: Make sure linker options for QNX are correct.
* libgnarl/s-osinte__qnx.ads: Add some missing bindings to pthread.
* libgnarl/s-taprop__qnx.adb: New, derived from s-taprop__posix.adb. This brings
in particular a workaround with locks priority ceiling where a higher
priority task is allowed to lock a lower ceiling priority lock. This
also fixes the scheduling of FIFO tasks when the priority of a task is
lowered.
* libgnat/system-qnx-aarch64.ads: Fix priority ranges.
2017-11-09 Yannick Moy <moy@adacore.com>
* erroutc.adb (Output_Error_Msgs): Justify CodePeer false positive
message.
* gnatbind.adb (Scan_Bind_Arg): Simplify test to remove always true
condition.
* namet.adb (Copy_One_Character): Add assumption for static analysis,
as knowledge that Hex(2) is in the range 0..255 is too complex for
CodePeer.
(Finalize): Add assumption for static analysis, as the fact that there
are symbols in the table depends on a global invariant at this point in
the program.
* set_targ.adb (Check_Spaces): Justify CodePeer false positive message.
* stylesw.adb (Save_Style_Check_Options): Rewrite to avoid test always
true.
2017-11-09 Javier Miranda <miranda@adacore.com>
* libgnat/s-rident.ads (Static_Dispatch_Tables): New restriction name.
......
......@@ -988,6 +988,13 @@ appear, and that no wide or wide wide string or character literals
appear in the program (that is literals representing characters not in
type ``Character``).
Static_Dispatch_Tables
----------------------
.. index:: Static_Dispatch_Tables
[GNAT] This restriction ensures at compile time that all the artifacts
associated with dispatch tables can be placed in read-only memory.
SPARK_05
--------
.. index:: SPARK_05
......
......@@ -512,6 +512,9 @@ package body Erroutc is
-- so now we output a tab to match up with the text.
if Src (P) = ASCII.HT then
pragma Annotate
(CodePeer, False_Positive, "validity check",
"Src(P) is initialized at this point");
Write_Char (ASCII.HT);
P := P + 1;
......
......@@ -2544,6 +2544,7 @@ package body Exp_Ch3 is
and then Has_Interfaces (Rec_Type)
then
declare
Elab_List : List_Id := New_List;
Elab_Sec_DT_Stmts_List : constant List_Id := New_List;
begin
......@@ -2555,24 +2556,30 @@ package body Exp_Ch3 is
Fixed_Comps => True,
Variable_Comps => False);
Append_To (Elab_Sec_DT_Stmts_List,
Make_Assignment_Statement (Loc,
Name =>
New_Occurrence_Of
(Access_Disp_Table_Elab_Flag (Rec_Type), Loc),
Expression =>
New_Occurrence_Of (Standard_False, Loc)));
Prepend_List_To (Body_Stmts, New_List (
Elab_List := New_List (
Make_If_Statement (Loc,
Condition => New_Occurrence_Of (Set_Tag, Loc),
Then_Statements => Init_Tags_List),
Then_Statements => Init_Tags_List));
if Elab_Flag_Needed (Rec_Type) then
Append_To (Elab_Sec_DT_Stmts_List,
Make_Assignment_Statement (Loc,
Name =>
New_Occurrence_Of
(Access_Disp_Table_Elab_Flag (Rec_Type),
Loc),
Expression =>
New_Occurrence_Of (Standard_False, Loc)));
Append_To (Elab_List,
Make_If_Statement (Loc,
Condition =>
New_Occurrence_Of
(Access_Disp_Table_Elab_Flag (Rec_Type), Loc),
Then_Statements => Elab_Sec_DT_Stmts_List));
end if;
Make_If_Statement (Loc,
Condition =>
New_Occurrence_Of
(Access_Disp_Table_Elab_Flag (Rec_Type), Loc),
Then_Statements => Elab_Sec_DT_Stmts_List)));
Prepend_List_To (Body_Stmts, Elab_List);
end;
else
Prepend_To (Body_Stmts,
......@@ -8588,7 +8595,9 @@ package body Exp_Ch3 is
-- Offset_Value => n,
-- Offset_Func => null);
if RTE_Available (RE_Register_Interface_Offset) then
if not Building_Static_Secondary_DT (Typ)
and then RTE_Available (RE_Register_Interface_Offset)
then
Append_To (Stmts_List,
Make_Procedure_Call_Statement (Loc,
Name =>
......
......@@ -677,7 +677,8 @@ package body Exp_Disp is
begin
return Ada_Version >= Ada_2005
and then not Is_Interface (Typ)
and then Has_Interfaces (Typ);
and then Has_Interfaces (Typ)
and then not Building_Static_DT (Typ);
end Elab_Flag_Needed;
-----------------------------
......@@ -5513,11 +5514,23 @@ package body Exp_Disp is
else
declare
TSD_Ifaces_List : constant List_Id := New_List;
Elmt : Elmt_Id;
Sec_DT_Tag : Node_Id;
TSD_Ifaces_List : constant List_Id := New_List;
Elmt : Elmt_Id;
Ifaces_List : Elist_Id;
Ifaces_Comp_List : Elist_Id;
Ifaces_Tag_List : Elist_Id;
Offset_To_Top : Node_Id;
Sec_DT_Tag : Node_Id;
begin
-- Collect interfaces information if we need to compute the
-- offset to the top using the dummy object.
if Present (Dummy_Object) then
Collect_Interfaces_Info (Typ,
Ifaces_List, Ifaces_Comp_List, Ifaces_Tag_List);
end if;
AI := First_Elmt (Typ_Ifaces);
while Present (AI) loop
if Is_Ancestor (Node (AI), Typ, Use_Full_View => True) then
......@@ -5552,6 +5565,46 @@ package body Exp_Disp is
Loc);
end if;
-- For static dispatch tables compute Offset_To_Top using
-- the dummy object.
if Present (Dummy_Object) then
declare
Iface : constant Node_Id := Node (AI);
Iface_Comp : Node_Id := Empty;
Iface_Comp_Elmt : Elmt_Id;
Iface_Elmt : Elmt_Id;
begin
Iface_Elmt := First_Elmt (Ifaces_List);
Iface_Comp_Elmt := First_Elmt (Ifaces_Comp_List);
while Present (Iface_Elmt) loop
if Node (Iface_Elmt) = Iface then
Iface_Comp := Node (Iface_Comp_Elmt);
exit;
end if;
Next_Elmt (Iface_Elmt);
Next_Elmt (Iface_Comp_Elmt);
end loop;
pragma Assert (Present (Iface_Comp));
Offset_To_Top :=
Make_Op_Minus (Loc,
Make_Attribute_Reference (Loc,
Prefix =>
Make_Selected_Component (Loc,
Prefix =>
New_Occurrence_Of (Dummy_Object, Loc),
Selector_Name =>
New_Occurrence_Of (Iface_Comp, Loc)),
Attribute_Name => Name_Position));
end;
else
Offset_To_Top := Make_Integer_Literal (Loc, 0);
end if;
Append_To (TSD_Ifaces_List,
Make_Aggregate (Loc,
Expressions => New_List (
......@@ -5569,7 +5622,7 @@ package body Exp_Disp is
-- Offset_To_Top_Value
Make_Integer_Literal (Loc, 0),
Offset_To_Top,
-- Offset_To_Top_Func
......@@ -5589,17 +5642,15 @@ package body Exp_Disp is
Set_Is_Statically_Allocated (ITable,
Is_Library_Level_Tagged_Type (Typ));
-- The table of interfaces is not constant; its slots are
-- filled at run time by the IP routine using attribute
-- 'Position to know the location of the tag components
-- (and this attribute cannot be safely used before the
-- object is initialized).
-- The table of interfaces is constant if we are building a
-- static dispatch table; otherwise is not constant because
-- its slots are filled at run time by the IP routine.
Append_To (Result,
Make_Object_Declaration (Loc,
Defining_Identifier => ITable,
Aliased_Present => True,
Constant_Present => False,
Constant_Present => Present (Dummy_Object),
Object_Definition =>
Make_Subtype_Indication (Loc,
Subtype_Mark =>
......
This source diff could not be displayed because it is too large. You can view the blob instead.
......@@ -330,9 +330,7 @@ procedure Gnatbind is
then
Output_File_Name_Seen := True;
if Argv'Length = 0
or else (Argv'Length >= 1 and then Argv (1) = '-')
then
if Argv'Length = 0 or else Argv (1) = '-' then
Fail ("output File_Name missing after -o");
else
......
......@@ -2568,6 +2568,10 @@ __gnat_error_handler (int sig, siginfo_t *si, void *ucontext)
(__sigtramphandler_t *)&__gnat_map_signal);
}
/* This must be in keeping with System.OS_Interface.Alternate_Stack_Size. */
/* sigaltstack is currently not supported by QNX7 */
char __gnat_alternate_stack[0];
void
__gnat_install_handler (void)
{
......
......@@ -141,7 +141,7 @@ package System.OS_Interface is
SIGKILL, SIGSTOP);
-- These two signals actually can't be masked (POSIX won't allow it)
Reserved : constant Signal_Set := (SIGKILL, SIGSTOP, SIGSEGV);
Reserved : constant Signal_Set := (SIGABRT, SIGKILL, SIGSTOP, SIGSEGV);
type sigset_t is private;
......@@ -160,18 +160,18 @@ package System.OS_Interface is
function sigemptyset (set : access sigset_t) return int;
pragma Import (C, sigemptyset, "sigemptyset");
type union_type_3 is new String (1 .. 116);
type pad7 is array (1 .. 7) of int;
type siginfo_t is record
si_signo : int;
si_code : int;
si_errno : int;
X_data : union_type_3;
X_data : pad7;
end record;
pragma Convention (C, siginfo_t);
type struct_sigaction is record
sa_handler : System.Address;
sa_flags : Interfaces.C.int;
sa_flags : int;
sa_mask : sigset_t;
end record;
pragma Convention (C, struct_sigaction);
......@@ -228,19 +228,13 @@ package System.OS_Interface is
function To_Timespec (D : Duration) return timespec;
pragma Inline (To_Timespec);
function sysconf (name : int) return long;
pragma Import (C, sysconf);
SC_CLK_TCK : constant := 2;
SC_NPROCESSORS_ONLN : constant := 84;
-------------------------
-- Priority Scheduling --
-------------------------
SCHED_OTHER : constant := 3;
SCHED_FIFO : constant := 1;
SCHED_RR : constant := 2;
SCHED_OTHER : constant := 3;
function To_Target_Priority
(Prio : System.Any_Priority) return Interfaces.C.int
......@@ -270,12 +264,9 @@ package System.OS_Interface is
function Thread_Body_Access is new
Ada.Unchecked_Conversion (System.Address, Thread_Body);
type pthread_t is new unsigned_long;
type pthread_t is new int;
subtype Thread_Id is pthread_t;
function To_pthread_t is
new Ada.Unchecked_Conversion (unsigned_long, pthread_t);
type pthread_mutex_t is limited private;
type pthread_cond_t is limited private;
type pthread_attr_t is limited private;
......@@ -285,8 +276,11 @@ package System.OS_Interface is
PTHREAD_CREATE_DETACHED : constant := 1;
PTHREAD_SCOPE_PROCESS : constant := 4;
PTHREAD_SCOPE_SYSTEM : constant := 0;
PTHREAD_SCOPE_PROCESS : constant := 4;
PTHREAD_SCOPE_SYSTEM : constant := 0;
PTHREAD_INHERIT_SCHED : constant := 0;
PTHREAD_EXPLICIT_SCHED : constant := 2;
-- Read/Write lock not supported on Android.
......@@ -306,15 +300,16 @@ package System.OS_Interface is
function sigaltstack
(ss : not null access stack_t;
oss : access stack_t) return int;
pragma Import (C, sigaltstack, "sigaltstack");
oss : access stack_t) return int
is (0);
-- Not supported on QNX
Alternate_Stack : aliased System.Address;
-- Dummy definition: alternate stack not available due to missing
-- sigaltstack
-- sigaltstack in QNX
Alternate_Stack_Size : constant := 0;
-- This must be in keeping with init.c:__gnat_alternate_stack
-- This must be kept in sync with init.c:__gnat_alternate_stack
Stack_Base_Available : constant Boolean := False;
-- Indicates whether the stack base is available on this target
......@@ -327,10 +322,10 @@ package System.OS_Interface is
pragma Import (C, Get_Page_Size, "getpagesize");
-- Returns the size of a page
PROT_NONE : constant := 0;
PROT_READ : constant := 1;
PROT_WRITE : constant := 2;
PROT_EXEC : constant := 4;
PROT_NONE : constant := 16#00_00#;
PROT_READ : constant := 16#01_00#;
PROT_WRITE : constant := 16#02_00#;
PROT_EXEC : constant := 16#04_00#;
PROT_ALL : constant := PROT_READ + PROT_WRITE + PROT_EXEC;
PROT_ON : constant := PROT_READ;
PROT_OFF : constant := PROT_ALL;
......@@ -358,10 +353,7 @@ package System.OS_Interface is
(how : int;
set : access sigset_t;
oset : access sigset_t) return int;
pragma Import (C, pthread_sigmask, "sigprocmask");
-- pthread_sigmask maybe be broken due to mismatch between sigset_t and
-- kernel_sigset_t, substitute sigprocmask temporarily. ???
-- pragma Import (C, pthread_sigmask, "pthread_sigmask");
pragma Import (C, pthread_sigmask, "pthread_sigmask");
--------------------------
-- POSIX.1c Section 11 --
......@@ -389,6 +381,12 @@ package System.OS_Interface is
function pthread_mutex_unlock (mutex : access pthread_mutex_t) return int;
pragma Import (C, pthread_mutex_unlock, "pthread_mutex_unlock");
function pthread_mutex_setprioceiling
(mutex : access pthread_mutex_t;
prioceiling : int;
old_ceiling : access int) return int;
pragma Import (C, pthread_mutex_setprioceiling);
function pthread_condattr_init
(attr : access pthread_condattr_t) return int;
pragma Import (C, pthread_condattr_init, "pthread_condattr_init");
......@@ -432,14 +430,36 @@ package System.OS_Interface is
function pthread_mutexattr_setprotocol
(attr : access pthread_mutexattr_t;
protocol : int) return int is (0);
protocol : int) return int;
pragma Import (C, pthread_mutexattr_setprotocol);
function pthread_mutexattr_getprotocol
(attr : access pthread_mutexattr_t;
protocol : access int) return int;
pragma Import (C, pthread_mutexattr_getprotocol);
function pthread_mutexattr_setprioceiling
(attr : access pthread_mutexattr_t;
prioceiling : int) return int is (0);
prioceiling : int) return int;
pragma Import (C, pthread_mutexattr_setprioceiling);
function pthread_mutexattr_getprioceiling
(attr : access pthread_mutexattr_t;
prioceiling : access int) return int;
pragma Import (C, pthread_mutexattr_getprioceiling);
function pthread_mutex_getprioceiling
(attr : access pthread_mutex_t;
prioceiling : access int) return int;
pragma Import (C, pthread_mutex_getprioceiling);
type pad8 is array (1 .. 8) of int;
pragma Convention (C, pad8);
type struct_sched_param is record
sched_priority : int; -- scheduling priority
sched_priority : int := 0; -- scheduling priority
sched_curpriority : int := 0;
reserved : pad8 := (others => 0);
end record;
pragma Convention (C, struct_sched_param);
......@@ -449,6 +469,27 @@ package System.OS_Interface is
param : access struct_sched_param) return int;
pragma Import (C, pthread_setschedparam, "pthread_setschedparam");
function pthread_getschedparam
(thread : pthread_t;
policy : access int;
param : access struct_sched_param) return int;
pragma Import (C, pthread_getschedparam, "pthread_getschedparam");
function pthread_setschedprio
(thread : pthread_t;
priority : int) return int;
pragma Import (C, pthread_setschedprio);
function pthread_attr_setschedparam
(attr : access pthread_attr_t;
param : access struct_sched_param) return int;
pragma Import (C, pthread_attr_setschedparam);
function pthread_attr_setinheritsched
(attr : access pthread_attr_t;
inheritsched : int) return int;
pragma Import (C, pthread_attr_setinheritsched);
function pthread_attr_setscope
(attr : access pthread_attr_t;
scope : int) return int;
......@@ -478,13 +519,12 @@ package System.OS_Interface is
function pthread_attr_setdetachstate
(attr : access pthread_attr_t;
detachstate : int) return int;
pragma Import
(C, pthread_attr_setdetachstate, "pthread_attr_setdetachstate");
pragma Import (C, pthread_attr_setdetachstate);
function pthread_attr_setstacksize
(attr : access pthread_attr_t;
stacksize : size_t) return int;
pragma Import (C, pthread_attr_setstacksize, "pthread_attr_setstacksize");
pragma Import (C, pthread_attr_setstacksize);
function pthread_create
(thread : access pthread_t;
......@@ -522,53 +562,10 @@ package System.OS_Interface is
destructor : destructor_pointer) return int;
pragma Import (C, pthread_key_create, "pthread_key_create");
CPU_SETSIZE : constant := 1_024;
-- Size of the cpu_set_t mask on most linux systems (SUSE 11 uses 4_096).
-- This is kept for backward compatibility (System.Task_Info uses it), but
-- the run-time library does no longer rely on static masks, using
-- dynamically allocated masks instead.
type bit_field is array (1 .. CPU_SETSIZE) of Boolean;
for bit_field'Size use CPU_SETSIZE;
pragma Pack (bit_field);
pragma Convention (C, bit_field);
type cpu_set_t is record
bits : bit_field;
end record;
pragma Convention (C, cpu_set_t);
type cpu_set_t_ptr is access all cpu_set_t;
-- In the run-time library we use this pointer because the size of type
-- cpu_set_t varies depending on the glibc version. Hence, objects of type
-- cpu_set_t are allocated dynamically using the number of processors
-- available in the target machine (value obtained at execution time).
function CPU_ALLOC (count : size_t) return cpu_set_t_ptr;
pragma Import (C, CPU_ALLOC, "__gnat_cpu_alloc");
-- Wrapper around the CPU_ALLOC C macro
function CPU_ALLOC_SIZE (count : size_t) return size_t;
pragma Import (C, CPU_ALLOC_SIZE, "__gnat_cpu_alloc_size");
-- Wrapper around the CPU_ALLOC_SIZE C macro
procedure CPU_FREE (cpuset : cpu_set_t_ptr);
pragma Import (C, CPU_FREE, "__gnat_cpu_free");
-- Wrapper around the CPU_FREE C macro
procedure CPU_ZERO (count : size_t; cpuset : cpu_set_t_ptr);
pragma Import (C, CPU_ZERO, "__gnat_cpu_zero");
-- Wrapper around the CPU_ZERO_S C macro
procedure CPU_SET (cpu : int; count : size_t; cpuset : cpu_set_t_ptr);
pragma Import (C, CPU_SET, "__gnat_cpu_set");
-- Wrapper around the CPU_SET_S C macro
private
type sigset_t is new Interfaces.C.unsigned_long;
type sigset_t is array (1 .. 2) of Interfaces.Unsigned_32;
pragma Convention (C, sigset_t);
for sigset_t'Alignment use Interfaces.C.unsigned_long'Alignment;
type pid_t is new int;
......@@ -615,6 +612,6 @@ private
pragma Convention (C, pthread_cond_t);
for pthread_cond_t'Alignment use unsigned_long_long_t'Alignment;
type pthread_key_t is new unsigned;
type pthread_key_t is new int;
end System.OS_Interface;
......@@ -796,7 +796,17 @@ package body System.Task_Primitives.Operations is
raise Invalid_CPU_Number;
end if;
Self_ID.Common.LL.Thread := GetCurrentThread;
-- Initialize the thread here only if not set. This is done for a
-- foreign task but is not needed when a real thread-id is already
-- set in Create_Task. Note that we do want to keep the real thread-id
-- as it is the only way to free the associated resource. Another way
-- to say this is that a pseudo thread-id from a foreign thread won't
-- allow for freeing resources.
if Self_ID.Common.LL.Thread = Null_Thread_Id then
Self_ID.Common.LL.Thread := GetCurrentThread;
end if;
Self_ID.Common.LL.Thread_Id := GetCurrentThreadId;
Get_Stack_Bounds
......
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
-- --
-- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
-- --
-- GNARL is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNARL was developed by the GNARL team at Florida State University. --
-- Extensive contributions were provided by Ada Core Technologies, Inc. --
-- --
------------------------------------------------------------------------------
-- This is a POSIX-like version of this package
-- This package contains all the GNULL primitives that interface directly with
-- the underlying OS.
-- Note: this file can only be used for POSIX compliant systems that implement
-- SCHED_FIFO and Ceiling Locking correctly.
-- For configurations where SCHED_FIFO and priority ceiling are not a
-- requirement, this file can also be used (e.g AiX threads)
pragma Polling (Off);
-- Turn off polling, we do not want ATC polling to take place during tasking
-- operations. It causes infinite loops and other problems.
with Ada.Unchecked_Conversion;
with Interfaces.C;
with System.Tasking.Debug;
with System.Interrupt_Management;
with System.OS_Constants;
with System.OS_Primitives;
with System.Task_Info;
with System.Soft_Links;
-- We use System.Soft_Links instead of System.Tasking.Initialization
-- because the later is a higher level package that we shouldn't depend on.
-- For example when using the restricted run time, it is replaced by
-- System.Tasking.Restricted.Stages.
package body System.Task_Primitives.Operations is
package OSC renames System.OS_Constants;
package SSL renames System.Soft_Links;
use System.Tasking.Debug;
use System.Tasking;
use Interfaces.C;
use System.OS_Interface;
use System.Parameters;
use System.OS_Primitives;
----------------
-- Local Data --
----------------
-- The followings are logically constants, but need to be initialized
-- at run time.
Single_RTS_Lock : aliased RTS_Lock;
-- This is a lock to allow only one thread of control in the RTS at
-- a time; it is used to execute in mutual exclusion from all other tasks.
-- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
Environment_Task_Id : Task_Id;
-- A variable to hold Task_Id for the environment task
Locking_Policy : Character;
pragma Import (C, Locking_Policy, "__gl_locking_policy");
-- Value of the pragma Locking_Policy:
-- 'C' for Ceiling_Locking
-- 'I' for Inherit_Locking
-- ' ' for none.
Unblocked_Signal_Mask : aliased sigset_t;
-- The set of signals that should unblocked in all tasks
-- The followings are internal configuration constants needed
Next_Serial_Number : Task_Serial_Number := 100;
-- We start at 100, to reserve some special values for
-- using in error checking.
Time_Slice_Val : Integer;
pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
Dispatching_Policy : Character;
pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
Foreign_Task_Elaborated : aliased Boolean := True;
-- Used to identified fake tasks (i.e., non-Ada Threads)
Use_Alternate_Stack : constant Boolean := Alternate_Stack_Size /= 0;
-- Whether to use an alternate signal stack for stack overflows
Abort_Handler_Installed : Boolean := False;
-- True if a handler for the abort signal is installed
type RTS_Lock_Ptr is not null access all RTS_Lock;
function Init_Mutex (L : RTS_Lock_Ptr; Prio : Any_Priority) return int;
-- Initialize the mutex L. If Ceiling_Support is True, then set the ceiling
-- to Prio. Returns 0 for success, or ENOMEM for out-of-memory.
function Get_Policy (Prio : System.Any_Priority) return Character;
pragma Import (C, Get_Policy, "__gnat_get_specific_dispatching");
-- Get priority specific dispatching policy
--------------------
-- Local Packages --
--------------------
package Specific is
procedure Initialize (Environment_Task : Task_Id);
pragma Inline (Initialize);
-- Initialize various data needed by this package
function Is_Valid_Task return Boolean;
pragma Inline (Is_Valid_Task);
-- Does executing thread have a TCB?
procedure Set (Self_Id : Task_Id);
pragma Inline (Set);
-- Set the self id for the current task
function Self return Task_Id;
pragma Inline (Self);
-- Return a pointer to the Ada Task Control Block of the calling task
end Specific;
package body Specific is separate;
-- The body of this package is target specific
package Monotonic is
function Monotonic_Clock return Duration;
pragma Inline (Monotonic_Clock);
-- Returns an absolute time, represented as an offset relative to some
-- unspecified starting point, typically system boot time. This clock
-- is not affected by discontinuous jumps in the system time.
function RT_Resolution return Duration;
pragma Inline (RT_Resolution);
-- Returns resolution of the underlying clock used to implement RT_Clock
procedure Timed_Sleep
(Self_ID : ST.Task_Id;
Time : Duration;
Mode : ST.Delay_Modes;
Reason : System.Tasking.Task_States;
Timedout : out Boolean;
Yielded : out Boolean);
-- Combination of Sleep (above) and Timed_Delay
procedure Timed_Delay
(Self_ID : ST.Task_Id;
Time : Duration;
Mode : ST.Delay_Modes);
-- Implement the semantics of the delay statement.
-- The caller should be abort-deferred and should not hold any locks.
end Monotonic;
package body Monotonic is separate;
----------------------------------
-- ATCB allocation/deallocation --
----------------------------------
package body ATCB_Allocation is separate;
-- The body of this package is shared across several targets
---------------------------------
-- Support for foreign threads --
---------------------------------
function Register_Foreign_Thread
(Thread : Thread_Id;
Sec_Stack_Size : Size_Type := Unspecified_Size) return Task_Id;
-- Allocate and initialize a new ATCB for the current Thread. The size of
-- the secondary stack can be optionally specified.
function Register_Foreign_Thread
(Thread : Thread_Id;
Sec_Stack_Size : Size_Type := Unspecified_Size)
return Task_Id is separate;
-----------------------
-- Local Subprograms --
-----------------------
procedure Abort_Handler (Sig : Signal);
-- Signal handler used to implement asynchronous abort.
-- See also comment before body, below.
function To_Address is
new Ada.Unchecked_Conversion (Task_Id, System.Address);
function GNAT_pthread_condattr_setup
(attr : access pthread_condattr_t) return int;
pragma Import (C,
GNAT_pthread_condattr_setup, "__gnat_pthread_condattr_setup");
-------------------
-- Abort_Handler --
-------------------
-- Target-dependent binding of inter-thread Abort signal to the raising of
-- the Abort_Signal exception.
-- The technical issues and alternatives here are essentially the
-- same as for raising exceptions in response to other signals
-- (e.g. Storage_Error). See code and comments in the package body
-- System.Interrupt_Management.
-- Some implementations may not allow an exception to be propagated out of
-- a handler, and others might leave the signal or interrupt that invoked
-- this handler masked after the exceptional return to the application
-- code.
-- GNAT exceptions are originally implemented using setjmp()/longjmp(). On
-- most UNIX systems, this will allow transfer out of a signal handler,
-- which is usually the only mechanism available for implementing
-- asynchronous handlers of this kind. However, some systems do not
-- restore the signal mask on longjmp(), leaving the abort signal masked.
procedure Abort_Handler (Sig : Signal) is
pragma Unreferenced (Sig);
T : constant Task_Id := Self;
Old_Set : aliased sigset_t;
Result : Interfaces.C.int;
pragma Warnings (Off, Result);
begin
-- It's not safe to raise an exception when using GCC ZCX mechanism.
-- Note that we still need to install a signal handler, since in some
-- cases (e.g. shutdown of the Server_Task in System.Interrupts) we
-- need to send the Abort signal to a task.
if ZCX_By_Default then
return;
end if;
if T.Deferral_Level = 0
and then T.Pending_ATC_Level < T.ATC_Nesting_Level and then
not T.Aborting
then
T.Aborting := True;
-- Make sure signals used for RTS internal purpose are unmasked
Result := pthread_sigmask (SIG_UNBLOCK,
Unblocked_Signal_Mask'Access, Old_Set'Access);
pragma Assert (Result = 0);
raise Standard'Abort_Signal;
end if;
end Abort_Handler;
-----------------
-- Stack_Guard --
-----------------
procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
Stack_Base : constant Address := Get_Stack_Base (T.Common.LL.Thread);
Page_Size : Address;
Res : Interfaces.C.int;
begin
if Stack_Base_Available then
-- Compute the guard page address
Page_Size := Address (Get_Page_Size);
Res :=
mprotect
(Stack_Base - (Stack_Base mod Page_Size) + Page_Size,
size_t (Page_Size),
prot => (if On then PROT_ON else PROT_OFF));
pragma Assert (Res = 0);
end if;
end Stack_Guard;
--------------------
-- Get_Thread_Id --
--------------------
function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
begin
return T.Common.LL.Thread;
end Get_Thread_Id;
----------
-- Self --
----------
function Self return Task_Id renames Specific.Self;
----------------
-- Init_Mutex --
----------------
function Init_Mutex (L : RTS_Lock_Ptr; Prio : Any_Priority) return int
is
Attributes : aliased pthread_mutexattr_t;
Result : int;
Result_2 : aliased int;
begin
Result := pthread_mutexattr_init (Attributes'Access);
pragma Assert (Result = 0 or else Result = ENOMEM);
if Result = ENOMEM then
return Result;
end if;
if Locking_Policy = 'C' then
Result := pthread_mutexattr_setprotocol
(Attributes'Access, PTHREAD_PRIO_PROTECT);
pragma Assert (Result = 0);
Result := pthread_mutexattr_getprotocol
(Attributes'Access, Result_2'Access);
if Result_2 /= PTHREAD_PRIO_PROTECT then
raise Program_Error with "setprotocol failed";
end if;
Result := pthread_mutexattr_setprioceiling
(Attributes'Access, To_Target_Priority (Prio));
pragma Assert (Result = 0);
elsif Locking_Policy = 'I' then
Result := pthread_mutexattr_setprotocol
(Attributes'Access, PTHREAD_PRIO_INHERIT);
pragma Assert (Result = 0);
end if;
Result := pthread_mutex_init (L, Attributes'Access);
pragma Assert (Result = 0 or else Result = ENOMEM);
Result_2 := pthread_mutexattr_destroy (Attributes'Access);
pragma Assert (Result_2 = 0);
return Result;
end Init_Mutex;
---------------------
-- Initialize_Lock --
---------------------
-- Note: mutexes and cond_variables needed per-task basis are initialized
-- in Initialize_TCB and the Storage_Error is handled. Other mutexes (such
-- as RTS_Lock, Memory_Lock...) used in RTS is initialized before any
-- status change of RTS. Therefore raising Storage_Error in the following
-- routines should be able to be handled safely.
procedure Initialize_Lock
(Prio : System.Any_Priority;
L : not null access Lock)
is
begin
if Init_Mutex (L.WO'Access, Prio) = ENOMEM then
raise Storage_Error with "Failed to allocate a lock";
end if;
end Initialize_Lock;
procedure Initialize_Lock
(L : not null access RTS_Lock; Level : Lock_Level)
is
pragma Unreferenced (Level);
begin
if Init_Mutex (L.all'Access, Any_Priority'Last) = ENOMEM then
raise Storage_Error with "Failed to allocate a lock";
end if;
end Initialize_Lock;
-------------------
-- Finalize_Lock --
-------------------
procedure Finalize_Lock (L : not null access Lock) is
Result : Interfaces.C.int;
begin
Result := pthread_mutex_destroy (L.WO'Access);
pragma Assert (Result = 0);
end Finalize_Lock;
procedure Finalize_Lock (L : not null access RTS_Lock) is
Result : Interfaces.C.int;
begin
Result := pthread_mutex_destroy (L);
pragma Assert (Result = 0);
end Finalize_Lock;
----------------
-- Write_Lock --
----------------
procedure Write_Lock
(L : not null access Lock; Ceiling_Violation : out Boolean)
is
Self : constant pthread_t := pthread_self;
Result : int;
Policy : aliased int;
Ceiling : aliased int;
Sched : aliased struct_sched_param;
begin
Result := pthread_mutex_lock (L.WO'Access);
-- The cause of EINVAL is a priority ceiling violation
Ceiling_Violation := Result = EINVAL;
pragma Assert (Result = 0 or else Ceiling_Violation);
-- Workaround bug in QNX on ceiling locks: tasks with priority higher
-- than the ceiling priority don't receive EINVAL upon trying to lock.
if Result = 0 then
Result := pthread_getschedparam (Self, Policy'Access, Sched'Access);
pragma Assert (Result = 0);
Result := pthread_mutex_getprioceiling (L.WO'Access, Ceiling'Access);
pragma Assert (Result = 0);
-- Ceiling = 0 means no Ceiling Priority policy is set on this mutex
-- Else, Ceiling < current priority means Ceiling violation
-- (otherwise the current priority == ceiling)
if Ceiling > 0 and then Ceiling < Sched.sched_curpriority then
Ceiling_Violation := True;
Result := pthread_mutex_unlock (L.WO'Access);
pragma Assert (Result = 0);
end if;
end if;
end Write_Lock;
procedure Write_Lock
(L : not null access RTS_Lock;
Global_Lock : Boolean := False)
is
Result : Interfaces.C.int;
begin
if not Single_Lock or else Global_Lock then
Result := pthread_mutex_lock (L);
pragma Assert (Result = 0);
end if;
end Write_Lock;
procedure Write_Lock (T : Task_Id) is
Result : Interfaces.C.int;
begin
if not Single_Lock then
Result := pthread_mutex_lock (T.Common.LL.L'Access);
pragma Assert (Result = 0);
end if;
end Write_Lock;
---------------
-- Read_Lock --
---------------
procedure Read_Lock
(L : not null access Lock; Ceiling_Violation : out Boolean) is
begin
Write_Lock (L, Ceiling_Violation);
end Read_Lock;
------------
-- Unlock --
------------
procedure Unlock (L : not null access Lock) is
Result : Interfaces.C.int;
begin
Result := pthread_mutex_unlock (L.WO'Access);
pragma Assert (Result = 0);
end Unlock;
procedure Unlock
(L : not null access RTS_Lock; Global_Lock : Boolean := False)
is
Result : Interfaces.C.int;
begin
if not Single_Lock or else Global_Lock then
Result := pthread_mutex_unlock (L);
pragma Assert (Result = 0);
end if;
end Unlock;
procedure Unlock (T : Task_Id) is
Result : Interfaces.C.int;
begin
if not Single_Lock then
Result := pthread_mutex_unlock (T.Common.LL.L'Access);
pragma Assert (Result = 0);
end if;
end Unlock;
-----------------
-- Set_Ceiling --
-----------------
procedure Set_Ceiling
(L : not null access Lock;
Prio : System.Any_Priority)
is
Result : Interfaces.C.int;
begin
Result := pthread_mutex_setprioceiling
(L.WO'Access, To_Target_Priority (Prio), null);
pragma Assert (Result = 0);
end Set_Ceiling;
-----------
-- Sleep --
-----------
procedure Sleep
(Self_ID : Task_Id;
Reason : System.Tasking.Task_States)
is
pragma Unreferenced (Reason);
Result : Interfaces.C.int;
begin
Result :=
pthread_cond_wait
(cond => Self_ID.Common.LL.CV'Access,
mutex => (if Single_Lock
then Single_RTS_Lock'Access
else Self_ID.Common.LL.L'Access));
-- EINTR is not considered a failure
pragma Assert (Result = 0 or else Result = EINTR);
end Sleep;
-----------------
-- Timed_Sleep --
-----------------
-- This is for use within the run-time system, so abort is
-- assumed to be already deferred, and the caller should be
-- holding its own ATCB lock.
procedure Timed_Sleep
(Self_ID : Task_Id;
Time : Duration;
Mode : ST.Delay_Modes;
Reason : Task_States;
Timedout : out Boolean;
Yielded : out Boolean) renames Monotonic.Timed_Sleep;
-----------------
-- Timed_Delay --
-----------------
-- This is for use in implementing delay statements, so we assume the
-- caller is abort-deferred but is holding no locks.
procedure Timed_Delay
(Self_ID : Task_Id;
Time : Duration;
Mode : ST.Delay_Modes) renames Monotonic.Timed_Delay;
---------------------
-- Monotonic_Clock --
---------------------
function Monotonic_Clock return Duration renames Monotonic.Monotonic_Clock;
-------------------
-- RT_Resolution --
-------------------
function RT_Resolution return Duration renames Monotonic.RT_Resolution;
------------
-- Wakeup --
------------
procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
pragma Unreferenced (Reason);
Result : Interfaces.C.int;
begin
Result := pthread_cond_signal (T.Common.LL.CV'Access);
pragma Assert (Result = 0);
end Wakeup;
-----------
-- Yield --
-----------
procedure Yield (Do_Yield : Boolean := True) is
Result : Interfaces.C.int;
pragma Unreferenced (Result);
begin
if Do_Yield then
Result := sched_yield;
end if;
end Yield;
------------------
-- Set_Priority --
------------------
procedure Set_Priority
(T : Task_Id;
Prio : System.Any_Priority;
Loss_Of_Inheritance : Boolean := False)
is
pragma Unreferenced (Loss_Of_Inheritance);
Result : Interfaces.C.int;
Old : constant System.Any_Priority := T.Common.Current_Priority;
begin
T.Common.Current_Priority := Prio;
Result := pthread_setschedprio
(T.Common.LL.Thread, To_Target_Priority (Prio));
pragma Assert (Result = 0);
if T.Common.LL.Thread = Pthread_Self
and then Old > Prio
then
-- When lowering the priority via a pthread_setschedprio, QNX ensures
-- that the running thread remains in the head of the FIFO for tne
-- new priority. Annex D expects the thread to be requeued so let's
-- yield to the other threads of the same priority.
Result := sched_yield;
pragma Assert (Result = 0);
end if;
end Set_Priority;
------------------
-- Get_Priority --
------------------
function Get_Priority (T : Task_Id) return System.Any_Priority is
begin
return T.Common.Current_Priority;
end Get_Priority;
----------------
-- Enter_Task --
----------------
procedure Enter_Task (Self_ID : Task_Id) is
begin
Self_ID.Common.LL.Thread := pthread_self;
Self_ID.Common.LL.LWP := lwp_self;
Specific.Set (Self_ID);
if Use_Alternate_Stack then
declare
Stack : aliased stack_t;
Result : Interfaces.C.int;
begin
Stack.ss_sp := Self_ID.Common.Task_Alternate_Stack;
Stack.ss_size := Alternate_Stack_Size;
Stack.ss_flags := 0;
Result := sigaltstack (Stack'Access, null);
pragma Assert (Result = 0);
end;
end if;
end Enter_Task;
-------------------
-- Is_Valid_Task --
-------------------
function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
-----------------------------
-- Register_Foreign_Thread --
-----------------------------
function Register_Foreign_Thread return Task_Id is
begin
if Is_Valid_Task then
return Self;
else
return Register_Foreign_Thread (pthread_self);
end if;
end Register_Foreign_Thread;
--------------------
-- Initialize_TCB --
--------------------
procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean)
is
Result : Interfaces.C.int;
Cond_Attr : aliased pthread_condattr_t;
begin
-- Give the task a unique serial number
Self_ID.Serial_Number := Next_Serial_Number;
Next_Serial_Number := Next_Serial_Number + 1;
pragma Assert (Next_Serial_Number /= 0);
if not Single_Lock then
Result := Init_Mutex (Self_ID.Common.LL.L'Access, Any_Priority'Last);
pragma Assert (Result = 0);
if Result /= 0 then
Succeeded := False;
return;
end if;
end if;
Result := pthread_condattr_init (Cond_Attr'Access);
pragma Assert (Result = 0 or else Result = ENOMEM);
if Result = 0 then
Result := GNAT_pthread_condattr_setup (Cond_Attr'Access);
pragma Assert (Result = 0);
Result :=
pthread_cond_init
(Self_ID.Common.LL.CV'Access, Cond_Attr'Access);
pragma Assert (Result = 0 or else Result = ENOMEM);
end if;
if Result = 0 then
Succeeded := True;
else
if not Single_Lock then
Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access);
pragma Assert (Result = 0);
end if;
Succeeded := False;
end if;
Result := pthread_condattr_destroy (Cond_Attr'Access);
pragma Assert (Result = 0);
end Initialize_TCB;
-----------------
-- Create_Task --
-----------------
procedure Create_Task
(T : Task_Id;
Wrapper : System.Address;
Stack_Size : System.Parameters.Size_Type;
Priority : System.Any_Priority;
Succeeded : out Boolean)
is
Attributes : aliased pthread_attr_t;
Adjusted_Stack_Size : Interfaces.C.size_t;
Page_Size : constant Interfaces.C.size_t :=
Interfaces.C.size_t (Get_Page_Size);
Sched_Param : aliased struct_sched_param;
Result : Interfaces.C.int;
Priority_Specific_Policy : constant Character := Get_Policy (Priority);
-- Upper case first character of the policy name corresponding to the
-- task as set by a Priority_Specific_Dispatching pragma.
function Thread_Body_Access is new
Ada.Unchecked_Conversion (System.Address, Thread_Body);
begin
Adjusted_Stack_Size :=
Interfaces.C.size_t (Stack_Size + Alternate_Stack_Size);
if Stack_Base_Available then
-- If Stack Checking is supported then allocate 2 additional pages:
-- In the worst case, stack is allocated at something like
-- N * Get_Page_Size - epsilon, we need to add the size for 2 pages
-- to be sure the effective stack size is greater than what
-- has been asked.
Adjusted_Stack_Size := Adjusted_Stack_Size + 2 * Page_Size;
end if;
-- Round stack size as this is required by some OSes (Darwin)
Adjusted_Stack_Size := Adjusted_Stack_Size + Page_Size - 1;
Adjusted_Stack_Size :=
Adjusted_Stack_Size - Adjusted_Stack_Size mod Page_Size;
Result := pthread_attr_init (Attributes'Access);
pragma Assert (Result = 0 or else Result = ENOMEM);
if Result /= 0 then
Succeeded := False;
return;
end if;
Result :=
pthread_attr_setdetachstate
(Attributes'Access, PTHREAD_CREATE_DETACHED);
pragma Assert (Result = 0);
Result :=
pthread_attr_setstacksize
(Attributes'Access, Adjusted_Stack_Size);
pragma Assert (Result = 0);
-- Set thread priority
T.Common.Current_Priority := Priority;
Sched_Param.sched_priority := To_Target_Priority (Priority);
Result := pthread_attr_setinheritsched
(Attributes'Access, PTHREAD_EXPLICIT_SCHED);
pragma Assert (Result = 0);
Result := pthread_attr_setschedparam
(Attributes'Access, Sched_Param'Access);
pragma Assert (Result = 0);
if Time_Slice_Supported
and then (Dispatching_Policy = 'R'
or else Priority_Specific_Policy = 'R'
or else Time_Slice_Val > 0)
then
Result := pthread_attr_setschedpolicy
(Attributes'Access, SCHED_RR);
elsif Dispatching_Policy = 'F'
or else Priority_Specific_Policy = 'F'
or else Time_Slice_Val = 0
then
Result := pthread_attr_setschedpolicy
(Attributes'Access, SCHED_FIFO);
else
Result := pthread_attr_setschedpolicy
(Attributes'Access, SCHED_OTHER);
end if;
pragma Assert (Result = 0);
-- Since the initial signal mask of a thread is inherited from the
-- creator, and the Environment task has all its signals masked, we
-- do not need to manipulate caller's signal mask at this point.
-- All tasks in RTS will have All_Tasks_Mask initially.
-- Note: the use of Unrestricted_Access in the following call is needed
-- because otherwise we have an error of getting a access-to-volatile
-- value which points to a non-volatile object. But in this case it is
-- safe to do this, since we know we have no problems with aliasing and
-- Unrestricted_Access bypasses this check.
Result := pthread_create
(T.Common.LL.Thread'Unrestricted_Access,
Attributes'Access,
Thread_Body_Access (Wrapper),
To_Address (T));
pragma Assert (Result = 0 or else Result = EAGAIN);
Succeeded := Result = 0;
Result := pthread_attr_destroy (Attributes'Access);
pragma Assert (Result = 0);
end Create_Task;
------------------
-- Finalize_TCB --
------------------
procedure Finalize_TCB (T : Task_Id) is
Result : Interfaces.C.int;
begin
if not Single_Lock then
Result := pthread_mutex_destroy (T.Common.LL.L'Access);
pragma Assert (Result = 0);
end if;
Result := pthread_cond_destroy (T.Common.LL.CV'Access);
pragma Assert (Result = 0);
if T.Known_Tasks_Index /= -1 then
Known_Tasks (T.Known_Tasks_Index) := null;
end if;
ATCB_Allocation.Free_ATCB (T);
end Finalize_TCB;
---------------
-- Exit_Task --
---------------
procedure Exit_Task is
begin
-- Mark this task as unknown, so that if Self is called, it won't
-- return a dangling pointer.
Specific.Set (null);
end Exit_Task;
----------------
-- Abort_Task --
----------------
procedure Abort_Task (T : Task_Id) is
Result : Interfaces.C.int;
begin
if Abort_Handler_Installed then
Result :=
pthread_kill
(T.Common.LL.Thread,
Signal (System.Interrupt_Management.Abort_Task_Interrupt));
pragma Assert (Result = 0);
end if;
end Abort_Task;
----------------
-- Initialize --
----------------
procedure Initialize (S : in out Suspension_Object) is
Mutex_Attr : aliased pthread_mutexattr_t;
Cond_Attr : aliased pthread_condattr_t;
Result : Interfaces.C.int;
begin
-- Initialize internal state (always to False (RM D.10 (6)))
S.State := False;
S.Waiting := False;
-- Initialize internal mutex
Result := pthread_mutexattr_init (Mutex_Attr'Access);
pragma Assert (Result = 0 or else Result = ENOMEM);
if Result = ENOMEM then
raise Storage_Error;
end if;
Result := pthread_mutex_init (S.L'Access, Mutex_Attr'Access);
pragma Assert (Result = 0 or else Result = ENOMEM);
if Result = ENOMEM then
Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
pragma Assert (Result = 0);
raise Storage_Error;
end if;
Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
pragma Assert (Result = 0);
-- Initialize internal condition variable
Result := pthread_condattr_init (Cond_Attr'Access);
pragma Assert (Result = 0 or else Result = ENOMEM);
if Result /= 0 then
Result := pthread_mutex_destroy (S.L'Access);
pragma Assert (Result = 0);
-- Storage_Error is propagated as intended if the allocation of the
-- underlying OS entities fails.
raise Storage_Error;
else
Result := GNAT_pthread_condattr_setup (Cond_Attr'Access);
pragma Assert (Result = 0);
end if;
Result := pthread_cond_init (S.CV'Access, Cond_Attr'Access);
pragma Assert (Result = 0 or else Result = ENOMEM);
if Result /= 0 then
Result := pthread_mutex_destroy (S.L'Access);
pragma Assert (Result = 0);
Result := pthread_condattr_destroy (Cond_Attr'Access);
pragma Assert (Result = 0);
-- Storage_Error is propagated as intended if the allocation of the
-- underlying OS entities fails.
raise Storage_Error;
end if;
Result := pthread_condattr_destroy (Cond_Attr'Access);
pragma Assert (Result = 0);
end Initialize;
--------------
-- Finalize --
--------------
procedure Finalize (S : in out Suspension_Object) is
Result : Interfaces.C.int;
begin
-- Destroy internal mutex
Result := pthread_mutex_destroy (S.L'Access);
pragma Assert (Result = 0);
-- Destroy internal condition variable
Result := pthread_cond_destroy (S.CV'Access);
pragma Assert (Result = 0);
end Finalize;
-------------------
-- Current_State --
-------------------
function Current_State (S : Suspension_Object) return Boolean is
begin
-- We do not want to use lock on this read operation. State is marked
-- as Atomic so that we ensure that the value retrieved is correct.
return S.State;
end Current_State;
---------------
-- Set_False --
---------------
procedure Set_False (S : in out Suspension_Object) is
Result : Interfaces.C.int;
begin
SSL.Abort_Defer.all;
Result := pthread_mutex_lock (S.L'Access);
pragma Assert (Result = 0);
S.State := False;
Result := pthread_mutex_unlock (S.L'Access);
pragma Assert (Result = 0);
SSL.Abort_Undefer.all;
end Set_False;
--------------
-- Set_True --
--------------
procedure Set_True (S : in out Suspension_Object) is
Result : Interfaces.C.int;
begin
SSL.Abort_Defer.all;
Result := pthread_mutex_lock (S.L'Access);
pragma Assert (Result = 0);
-- If there is already a task waiting on this suspension object then
-- we resume it, leaving the state of the suspension object to False,
-- as it is specified in (RM D.10(9)). Otherwise, it just leaves
-- the state to True.
if S.Waiting then
S.Waiting := False;
S.State := False;
Result := pthread_cond_signal (S.CV'Access);
pragma Assert (Result = 0);
else
S.State := True;
end if;
Result := pthread_mutex_unlock (S.L'Access);
pragma Assert (Result = 0);
SSL.Abort_Undefer.all;
end Set_True;
------------------------
-- Suspend_Until_True --
------------------------
procedure Suspend_Until_True (S : in out Suspension_Object) is
Result : Interfaces.C.int;
begin
SSL.Abort_Defer.all;
Result := pthread_mutex_lock (S.L'Access);
pragma Assert (Result = 0);
if S.Waiting then
-- Program_Error must be raised upon calling Suspend_Until_True
-- if another task is already waiting on that suspension object
-- (RM D.10(10)).
Result := pthread_mutex_unlock (S.L'Access);
pragma Assert (Result = 0);
SSL.Abort_Undefer.all;
raise Program_Error;
else
-- Suspend the task if the state is False. Otherwise, the task
-- continues its execution, and the state of the suspension object
-- is set to False (ARM D.10 par. 9).
if S.State then
S.State := False;
else
S.Waiting := True;
loop
-- Loop in case pthread_cond_wait returns earlier than expected
-- (e.g. in case of EINTR caused by a signal).
Result := pthread_cond_wait (S.CV'Access, S.L'Access);
pragma Assert (Result = 0 or else Result = EINTR);
exit when not S.Waiting;
end loop;
end if;
Result := pthread_mutex_unlock (S.L'Access);
pragma Assert (Result = 0);
SSL.Abort_Undefer.all;
end if;
end Suspend_Until_True;
----------------
-- Check_Exit --
----------------
-- Dummy version
function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
pragma Unreferenced (Self_ID);
begin
return True;
end Check_Exit;
--------------------
-- Check_No_Locks --
--------------------
function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
pragma Unreferenced (Self_ID);
begin
return True;
end Check_No_Locks;
----------------------
-- Environment_Task --
----------------------
function Environment_Task return Task_Id is
begin
return Environment_Task_Id;
end Environment_Task;
--------------
-- Lock_RTS --
--------------
procedure Lock_RTS is
begin
Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
end Lock_RTS;
----------------
-- Unlock_RTS --
----------------
procedure Unlock_RTS is
begin
Unlock (Single_RTS_Lock'Access, Global_Lock => True);
end Unlock_RTS;
------------------
-- Suspend_Task --
------------------
function Suspend_Task
(T : ST.Task_Id;
Thread_Self : Thread_Id) return Boolean
is
pragma Unreferenced (T, Thread_Self);
begin
return False;
end Suspend_Task;
-----------------
-- Resume_Task --
-----------------
function Resume_Task
(T : ST.Task_Id;
Thread_Self : Thread_Id) return Boolean
is
pragma Unreferenced (T, Thread_Self);
begin
return False;
end Resume_Task;
--------------------
-- Stop_All_Tasks --
--------------------
procedure Stop_All_Tasks is
begin
null;
end Stop_All_Tasks;
---------------
-- Stop_Task --
---------------
function Stop_Task (T : ST.Task_Id) return Boolean is
pragma Unreferenced (T);
begin
return False;
end Stop_Task;
-------------------
-- Continue_Task --
-------------------
function Continue_Task (T : ST.Task_Id) return Boolean is
pragma Unreferenced (T);
begin
return False;
end Continue_Task;
----------------
-- Initialize --
----------------
procedure Initialize (Environment_Task : Task_Id) is
act : aliased struct_sigaction;
old_act : aliased struct_sigaction;
Tmp_Set : aliased sigset_t;
Result : Interfaces.C.int;
function State
(Int : System.Interrupt_Management.Interrupt_ID) return Character;
pragma Import (C, State, "__gnat_get_interrupt_state");
-- Get interrupt state. Defined in a-init.c
-- The input argument is the interrupt number,
-- and the result is one of the following:
Default : constant Character := 's';
-- 'n' this interrupt not set by any Interrupt_State pragma
-- 'u' Interrupt_State pragma set state to User
-- 'r' Interrupt_State pragma set state to Runtime
-- 's' Interrupt_State pragma set state to System (use "default"
-- system handler)
begin
Environment_Task_Id := Environment_Task;
Interrupt_Management.Initialize;
-- Prepare the set of signals that should unblocked in all tasks
Result := sigemptyset (Unblocked_Signal_Mask'Access);
pragma Assert (Result = 0);
for J in Interrupt_Management.Interrupt_ID loop
if System.Interrupt_Management.Keep_Unmasked (J) then
Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
pragma Assert (Result = 0);
end if;
end loop;
-- Initialize the lock used to synchronize chain of all ATCBs
Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
Specific.Initialize (Environment_Task);
if Use_Alternate_Stack then
Environment_Task.Common.Task_Alternate_Stack :=
Alternate_Stack'Address;
end if;
-- Make environment task known here because it doesn't go through
-- Activate_Tasks, which does it for all other tasks.
Known_Tasks (Known_Tasks'First) := Environment_Task;
Environment_Task.Known_Tasks_Index := Known_Tasks'First;
Enter_Task (Environment_Task);
if State
(System.Interrupt_Management.Abort_Task_Interrupt) /= Default
then
act.sa_flags := 0;
act.sa_handler := Abort_Handler'Address;
Result := sigemptyset (Tmp_Set'Access);
pragma Assert (Result = 0);
act.sa_mask := Tmp_Set;
Result :=
sigaction
(Signal (System.Interrupt_Management.Abort_Task_Interrupt),
act'Unchecked_Access,
old_act'Unchecked_Access);
pragma Assert (Result = 0);
Abort_Handler_Installed := True;
end if;
end Initialize;
-----------------------
-- Set_Task_Affinity --
-----------------------
procedure Set_Task_Affinity (T : ST.Task_Id) is
pragma Unreferenced (T);
begin
-- Setting task affinity is not supported by the underlying system
null;
end Set_Task_Affinity;
end System.Task_Primitives.Operations;
......@@ -95,20 +95,22 @@ package System is
-- Priority-related Declarations (RM D.1)
-- System priority is Ada priority + 1, so lies in the range 1 .. 63.
--
-- If the scheduling policy is SCHED_FIFO or SCHED_RR the runtime makes use
-- of the entire range provided by the system.
--
-- If the scheduling policy is SCHED_OTHER the only valid system priority
-- is 1 and other values are simply ignored.
Max_Priority : constant Positive := 62;
Max_Interrupt_Priority : constant Positive := 63;
Max_Priority : constant Positive := 61;
Max_Interrupt_Priority : constant Positive := 62;
subtype Any_Priority is Integer range 0 .. 63;
subtype Priority is Any_Priority range 0 .. 62;
subtype Interrupt_Priority is Any_Priority range 63 .. 63;
subtype Any_Priority is Integer range 0 .. 62;
subtype Priority is Any_Priority range 0 .. 61;
subtype Interrupt_Priority is Any_Priority range 62 .. 62;
Default_Priority : constant Priority := 31;
Default_Priority : constant Priority := 30;
private
......
......@@ -105,6 +105,7 @@ const char *__gnat_default_libgcc_subdir = "lib";
#elif defined (__FreeBSD__) || defined (__DragonFly__) \
|| defined (__NetBSD__) || defined (__OpenBSD__)
|| defined (__QNX__)
const char *__gnat_object_file_option = "-Wl,@";
const char *__gnat_run_path_option = "-Wl,-rpath,";
char __gnat_shared_libgnat_default = STATIC;
......
......@@ -258,7 +258,13 @@ package body Namet is
-- simply use their normal representation.
else
Insert_Character (Character'Val (Hex (2)));
declare
W2 : constant Word := Hex (2);
begin
pragma Assume (W2 <= 255);
-- Add assumption to facilitate static analysis
Insert_Character (Character'Val (W2));
end;
end if;
-- WW (wide wide character insertion)
......@@ -753,6 +759,9 @@ package body Namet is
Write_Eol;
Write_Str ("Average number of probes for lookup = ");
pragma Assume (Nsyms /= 0);
-- Add assumption to facilitate static analysis. Here Nsyms cannot be
-- zero because many symbols are added to the table by default.
Probes := Probes / Nsyms;
Write_Int (Probes / 200);
Write_Char ('.');
......
......@@ -2877,7 +2877,14 @@ package body Sem_Aggr is
-- Resolve_Delta_Record_Aggregate --
------------------------------------
procedure Resolve_Delta_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
procedure Resolve_Delta_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
-- Variables used to verify that discriminant-dependent components
-- appear in the same variant.
Comp_Ref : Entity_Id;
Variant : Node_Id;
procedure Check_Variant (Id : Entity_Id);
-- If a given component of the delta aggregate appears in a variant
-- part, verify that it is within the same variant as that of previous
......@@ -2900,17 +2907,13 @@ package body Sem_Aggr is
procedure Check_Variant (Id : Entity_Id) is
Comp : Entity_Id;
Comp_Ref : Entity_Id;
Comp_Variant : Node_Id;
Variant : Node_Id;
begin
if not Has_Discriminants (Typ) then
return;
end if;
Variant := Empty;
Comp := First_Entity (Typ);
while Present (Comp) loop
exit when Chars (Comp) = Chars (Id);
......@@ -3027,6 +3030,8 @@ package body Sem_Aggr is
-- Start of processing for Resolve_Delta_Record_Aggregate
begin
Variant := Empty;
Assoc := First (Deltas);
while Present (Assoc) loop
Choice := First (Choice_List (Assoc));
......
......@@ -231,10 +231,10 @@ package body Sem_Attr is
E1 : Node_Id;
E2 : Node_Id;
P_Type : Entity_Id;
P_Type : Entity_Id := Empty;
-- Type of prefix after analysis
P_Base_Type : Entity_Id;
P_Base_Type : Entity_Id := Empty;
-- Base type of prefix after analysis
-----------------------
......@@ -419,7 +419,7 @@ package body Sem_Attr is
-- required error messages.
procedure Error_Attr_P (Msg : String);
pragma No_Return (Error_Attr);
pragma No_Return (Error_Attr_P);
-- Like Error_Attr, but error is posted at the start of the prefix
procedure Legal_Formal_Attribute;
......@@ -446,7 +446,9 @@ package body Sem_Attr is
-- node in the aspect case).
procedure Unexpected_Argument (En : Node_Id);
-- Signal unexpected attribute argument (En is the argument)
pragma No_Return (Unexpected_Argument);
-- Signal unexpected attribute argument (En is the argument), and then
-- raises Bad_Attribute to avoid any further semantic processing.
procedure Validate_Non_Static_Attribute_Function_Call;
-- Called when processing an attribute that is a function call to a
......@@ -1108,8 +1110,10 @@ package body Sem_Attr is
-- node Nod is within enclosing node Encl_Nod.
procedure Placement_Error;
pragma No_Return (Placement_Error);
-- Emit a general error when the attributes does not appear in a
-- postcondition-like aspect or pragma.
-- postcondition-like aspect or pragma, and then raises Bad_Attribute
-- to avoid any further semantic processing.
------------------------------
-- Check_Placement_In_Check --
......
......@@ -604,6 +604,10 @@ package body Set_Targ is
procedure Check_Spaces is
begin
if N > Buflen or else Buffer (N) /= ' ' then
pragma Annotate
(CodePeer, False_Positive, "condition predetermined",
"N may be less than Buflen when calling Check_Spaces");
FailN ("missing space for");
end if;
......
......@@ -161,7 +161,8 @@ package body Stylesw is
if Style_Check_Comments then
if Style_Check_Comments_Spacing = 2 then
Add ('c', Style_Check_Comments);
elsif Style_Check_Comments_Spacing = 1 then
else
pragma Assert (Style_Check_Comments_Spacing = 1);
Add ('C', Style_Check_Comments);
end if;
end if;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment