Commit 385c9217 by Stephane Carrez Committed by Stephane Carrez

m68hc11.md: New file, machine description for 68HC11 & 68HC12.

	* config/m68hc11/m68hc11.md: New file, machine description for
	68HC11 & 68HC12.
	* config/m68hc11/m68hc11.h: New file, definitions for 68HC11 & 68HC12.
	* config/m68hc11/m68hc11.c: New file, functions for 68HC11 & 68HC12.
	* config/m68hc11/m68hc12.h: New file, definitions for 68HC12.
	* config/m68hc11/m68hc11-protos.h: New file.
	* config/m68hc11/m68hc11-crt0.S: New file, startup code.
	* config/m68hc11/t-m68hc11-gas: New file, makefile fragment.
	* config/m68hc11/xm-m68hc11.h: New file, target defs.
	* config/m68hc11/larith.asm: New file, libgcc routines.

From-SVN: r36276
parent e0b7ed05
2000-09-08 Stephane Carrez <Stephane.Carrez@worldnet.fr>
* config/m68hc11/m68hc11.md: New file, machine description for
68HC11 & 68HC12.
* config/m68hc11/m68hc11.h: New file, definitions for 68HC11 & 68HC12.
* config/m68hc11/m68hc11.c: New file, functions for 68HC11 & 68HC12.
* config/m68hc11/m68hc12.h: New file, definitions for 68HC12.
* config/m68hc11/m68hc11-protos.h: New file.
* config/m68hc11/m68hc11-crt0.S: New file, startup code.
* config/m68hc11/t-m68hc11-gas: New file, makefile fragment.
* config/m68hc11/xm-m68hc11.h: New file, target defs.
* config/m68hc11/larith.asm: New file, libgcc routines.
2000-09-08 Stephane Carrez <Stephane.Carrez@worldnet.fr>
* Makefile.in (DPBIT_FUNCS): Add _usi_to_df.
(FPBIT_FUNCS): Add _usi_to_sf.
* config/fp-bit.c (usi_to_float): New function.
......
/* libgcc1 routines for M68HC11.
Copyright (C) 1999, 2000 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file with other programs, and to distribute
those programs without any restriction coming from the use of this
file. (The General Public License restrictions do apply in other
respects; for example, they cover modification of the file, and
distribution when not linked into another program.)
This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* As a special exception, if you link this library with other files,
some of which are compiled with GCC, to produce an executable,
this library does not by itself cause the resulting executable
to be covered by the GNU General Public License.
This exception does not however invalidate any other reasons why
the executable file might be covered by the GNU General Public License. */
.file "larith.asm"
.sect .text
#define REG(NAME) \
NAME: .word 0; \
.type NAME,@object ; \
.size NAME,2
#ifdef L_regs_min
/* Pseudo hard registers used by gcc.
They must be located in page0.
They will normally appear at the end of .page0 section. */
.sect .page0
.globl _.tmp,_.frame
.globl _.z,_.xy
REG(_.tmp)
REG(_.z)
REG(_.xy)
REG(_.frame)
#endif
#ifdef L_regs_d1_8
/* Pseudo hard registers used by gcc.
They must be located in page0.
They will normally appear at the end of .page0 section. */
.sect .page0
.globl _.d1,_.d2,_.d3,_.d4,_.d5,_.d6
.globl _.d7,_.d8
REG(_.d1)
REG(_.d2)
REG(_.d3)
REG(_.d4)
REG(_.d5)
REG(_.d6)
REG(_.d7)
REG(_.d8)
#endif
#ifdef L_regs_d8_16
/* Pseudo hard registers used by gcc.
They must be located in page0.
They will normally appear at the end of .page0 section. */
.sect .page0
.globl _.d9,_.d10,_.d11,_.d12,_.d13,_.d14
.globl _.d15,_.d16
REG(_.d9)
REG(_.d10)
REG(_.d11)
REG(_.d12)
REG(_.d13)
REG(_.d14)
REG(_.d15)
REG(_.d16)
#endif
#ifdef L_regs_d17_32
/* Pseudo hard registers used by gcc.
They must be located in page0.
They will normally appear at the end of .page0 section. */
.sect .page0
.globl _.d17,_.d18,_.d19,_.d20,_.d21,_.d22
.globl _.d23,_.d24,_.d25,_.d26,_.d27,_.d28
.globl _.d29,_.d30,_.d31,_.d32
REG(_.d17)
REG(_.d18)
REG(_.d19)
REG(_.d20)
REG(_.d21)
REG(_.d22)
REG(_.d23)
REG(_.d24)
REG(_.d25)
REG(_.d26)
REG(_.d27)
REG(_.d28)
REG(_.d29)
REG(_.d30)
REG(_.d31)
REG(_.d32)
#endif
#ifdef L_premain
;;
;; Specific initialization for 68hc11 before the main.
;; Nothing special for a generic routine; Just enable interrupts.
;;
.sect .text
.globl __premain
__premain:
clra
tap ; Clear both I and X.
rts
#endif
#ifdef L__exit
;;
;; Exit operation. Just loop forever and wait for interrupts.
;; (no other place to go)
;;
.sect .text
.globl _exit
.globl exit
.weak exit
exit:
_exit:
fatal:
cli
wai
bra fatal
#endif
#ifdef L_abort
;;
;; Abort operation. This is defined for the GCC testsuite.
;;
.sect .text
.globl abort
abort:
ldd #255 ;
.byte 0xCD ; Generate an illegal instruction trap
.byte 0x03 ; The simulator catches this and stops.
jmp _exit
#endif
#ifdef L_cleanup
;;
;; Cleanup operation used by exit().
;;
.sect .text
.globl _cleanup
_cleanup:
rts
#endif
;-----------------------------------------
; required gcclib code
;-----------------------------------------
#ifdef L_memcpy
.sect .text
.weak memcpy
.globl memcpy
.globl __memcpy
;;;
;;; void* memcpy(void*, const void*, size_t)
;;;
;;; D = dst Pmode
;;; 2,sp = src Pmode
;;; 4,sp = size HImode (size_t)
;;;
__memcpy:
memcpy:
xgdy
tsx
ldd 4,x
ldx 2,x ; SRC = X, DST = Y
cpd #0
beq End
pshy
inca ; Correction for the deca below
L0:
psha ; Save high-counter part
L1:
ldaa 0,x ; Copy up to 256 bytes
staa 0,y
inx
iny
decb
bne L1
pula
deca
bne L0
puly ; Restore Y to return the DST
End:
xgdy
rts
#endif
#ifdef L_memset
.sect .text
.globl memset
.globl __memset
;;;
;;; void* memset(void*, int value, size_t)
;;;
#ifndef __HAVE_SHORT_INT__
;;; D = dst Pmode
;;; 2,sp = src SImode
;;; 6,sp = size HImode (size_t)
val = 5
size = 6
#else
;;; D = dst Pmode
;;; 2,sp = src SImode
;;; 6,sp = size HImode (size_t)
val = 3
size = 4
#endif
__memset:
memset:
xgdx
tsy
ldab val,y
ldy size,y ; DST = X, CNT = Y
beq End
pshx
L0:
stab 0,x ; Fill up to 256 bytes
inx
dey
bne L0
pulx ; Restore X to return the DST
End:
xgdx
rts
#endif
#ifdef L_adddi3
.sect .text
.globl ___adddi3
___adddi3:
tsx
tsy
pshb
psha
ldd 8,x
addd 16,y
pshb
psha
ldd 6,x
adcb 15,y
adca 14,y
pshb
psha
ldd 4,x
adcb 13,y
adca 12,y
pshb
psha
ldd 2,x
adcb 11,y
adca 10,y
tsx
ldy 6,x
std 0,y
pulx
stx 2,y
pulx
stx 4,y
pulx
stx 6,y
pulx
rts
#endif
#ifdef L_subdi3
.sect .text
.globl ___subdi3
___subdi3:
tsx
tsy
pshb
psha
ldd 8,x
subd 16,y
pshb
psha
ldd 6,x
sbcb 15,y
sbca 14,y
pshb
psha
ldd 4,x
sbcb 13,y
sbca 12,y
pshb
psha
ldd 2,x
sbcb 11,y
sbca 10,y
tsx
ldy 6,x
std 0,y
pulx
stx 2,y
pulx
stx 4,y
pulx
stx 6,y
pulx
rts
#endif
#ifdef L_notdi2
.sect .text
.globl ___notdi2
___notdi2:
tsy
xgdx
ldd 8,y
coma
comb
std 6,x
ldd 6,y
coma
comb
std 4,x
ldd 4,y
coma
comb
std 2,x
ldd 2,y
coma
comb
std 0,x
rts
#endif
#ifdef L_negsi2
.sect .text
.globl ___negsi2
___negsi2:
comb
coma
addd #1
xgdx
eorb #0xFF
eora #0xFF
adcb #0
adca #0
xgdx
rts
#endif
#ifdef L_one_cmplsi2
.sect .text
.globl ___one_cmplsi2
___one_cmplsi2:
comb
coma
xgdx
comb
coma
xgdx
rts
#endif
#ifdef L_ashlsi3
.sect .text
.globl ___ashlsi3
___ashlsi3:
xgdy
clra
andb #0x1f
xgdy
beq Return
Loop:
lsld
xgdx
rolb
rola
xgdx
dey
bne Loop
Return:
rts
#endif
#ifdef L_ashrsi3
.sect .text
.globl ___ashrsi3
___ashrsi3:
xgdy
clra
andb #0x1f
xgdy
beq Return
Loop:
xgdx
asra
rorb
xgdx
rora
rorb
dey
bne Loop
Return:
rts
#endif
#ifdef L_lshrsi3
.sect .text
.globl ___lshrsi3
___lshrsi3:
xgdy
clra
andb #0x1f
xgdy
beq Return
Loop:
xgdx
lsrd
xgdx
rora
rorb
dey
bne Loop
Return:
rts
#endif
#ifdef L_lshrhi3
.sect .text
.globl ___lshrhi3
___lshrhi3:
cpx #16
bge Return_zero
cpx #0
beq Return
Loop:
lsrd
dex
bne Loop
Return:
rts
Return_zero:
clra
clrb
rts
#endif
#ifdef L_lshlhi3
.sect .text
.globl ___lshlhi3
___lshlhi3:
cpx #16
bge Return_zero
cpx #0
beq Return
Loop:
lsld
dex
bne Loop
Return:
rts
Return_zero:
clra
clrb
rts
#endif
#ifdef L_ashrhi3
.sect .text
.globl ___ashrhi3
___ashrhi3:
cpx #16
bge Return_minus_1_or_zero
cpx #0
beq Return
Loop:
asra
rorb
dex
bne Loop
Return:
rts
Return_minus_1_or_zero:
clrb
tsta
bpl Return_zero
comb
Return_zero:
tba
rts
#endif
#ifdef L_ashrqi3
.sect .text
.globl ___ashrqi3
___ashrqi3:
cmpa #8
bge Return_minus_1_or_zero
tsta
beq Return
Loop:
asrb
deca
bne Loop
Return:
rts
Return_minus_1_or_zero:
clrb
tstb
bpl Return_zero
coma
Return_zero:
tab
rts
#endif
#ifdef L_lshlqi3
.sect .text
.globl ___lshlqi3
___lshlqi3:
cmpa #8
bge Return_zero
tsta
beq Return
Loop:
lslb
deca
bne Loop
Return:
rts
Return_zero:
clrb
rts
#endif
#ifdef L_divmodhi4
.sect .text
.globl __divmodhi4
;
;; D = numerator
;; X = denominator
;;
;; Result: D = D / X
;; X = D % X
;;
__divmodhi4:
tsta
bpl Numerator_pos
comb ; D = -D <=> D = (~D) + 1
coma
xgdx
inx
tsta
bpl Numerator_neg_denominator_pos
Numerator_neg_denominator_neg:
comb ; X = -X
coma
addd #1
xgdx
idiv
coma
comb
xgdx ; Remainder <= 0 and result >= 0
inx
rts
Numerator_pos_denominator_pos:
xgdx
idiv
xgdx ; Both values are >= 0
rts
Numerator_pos:
xgdx
tsta
bpl Numerator_pos_denominator_pos
Numerator_pos_denominator_neg:
coma ; X = -X
comb
xgdx
inx
idiv
xgdx ; Remainder >= 0 but result <= 0
coma
comb
addd #1
rts
Numerator_neg_denominator_pos:
xgdx
idiv
coma ; One value is > 0 and the other < 0
comb ; Change the sign of result and remainder
xgdx
inx
coma
comb
addd #1
rts
#endif
#ifdef L_mulqi3
.sect .text
.globl __mulqi3
;
; short __mulqi3(signed char a, signed char b);
;
; signed char a -> register A
; signed char b -> register B
;
; returns the signed result of A * B in register D.
;
__mulqi3:
tsta
bmi A_neg
tstb
bmi B_neg
mul
rts
B_neg:
negb
bra A_or_B_neg
A_neg:
nega
tstb
bmi AB_neg
A_or_B_neg:
mul
coma
comb
addd #1
rts
AB_neg:
nega
negb
mul
rts
#endif
#ifdef L_mulhi3
.sect .text
.globl ___mulhi3
;
;
; unsigned short ___mulhi3(unsigned short a, unsigned short b)
;
; a = register D
; b = register X
;
___mulhi3:
stx *_.tmp
pshb
ldab *_.tmp+1
mul ; A.high * B.low
ldaa *_.tmp
stab *_.tmp
pulb
pshb
mul ; A.low * B.high
addb *_.tmp
stab *_.tmp
ldaa *_.tmp+1
pulb
mul ; A.low * B.low
adda *_.tmp
rts
#endif
#ifdef L_mulhi32
.sect .text
.globl __mulhi32
;
;
; unsigned long __mulhi32(unsigned short a, unsigned short b)
;
; a = register D
; b = value on stack
;
; +---------------+
; | B low | <- 5,x
; +---------------+
; | B high | <- 4,x
; +---------------+
; | PC low |
; +---------------+
; | PC high |
; +---------------+
; | A low |
; +---------------+
; | A high |
; +---------------+ <- 0,x
;
;
; <B-low> 5,x
; <B-high> 4,x
; <ret> 2,x
; <A-low> 1,x
; <A-high> 0,x
;
__mulhi32:
pshb
psha
tsx
ldab 4,x
mul
xgdy ; A.high * B.high
ldab 5,x
pula
mul ; A.high * B.low
std *_.tmp
ldaa 1,x
ldab 4,x
mul ; A.low * B.high
addd *_.tmp
stab *_.tmp
tab
aby
bcc N
ldab #0xff
aby
iny
N:
ldab 5,x
pula
mul ; A.low * B.low
adda *_.tmp
bcc Ret
iny
Ret:
pshy
pulx
rts
#endif
#ifdef L_mulsi3
.sect .text
.globl __mulsi3
;
; <B-low> 8,y
; <B-high> 6,y
; <ret> 4,y
; <tmp> 2,y
; <A-low> 0,y
;
; D,X -> A
; Stack -> B
;
; The result is:
;
; (((A.low * B.high) + (A.high * B.low)) << 16) + (A.low * B.low)
;
;
;
B_low = 8
B_high = 6
A_low = 0
A_high = 2
__mulsi3:
pshx
pshb
psha
tsy
;
; If B.low is 0, optimize into: (A.low * B.high) << 16
;
ldd B_low,y
beq B_low_zero
;
; If A.high is 0, optimize into: (A.low * B.high) << 16 + (A.low * B.low)
;
stx *_.tmp
beq A_high_zero
bsr ___mulhi3 ; A.high * B.low
;
; If A.low is 0, optimize into: (A.high * B.low) << 16
;
ldx A_low,y
beq A_low_zero ; X = 0, D = A.high * B.low
std 2,y
;
; If B.high is 0, we can avoid the (A.low * B.high) << 16 term.
;
ldd B_high,y
beq B_high_zero
bsr ___mulhi3 ; A.low * B.high
addd 2,y
std 2,y
;
; Here, we know that A.low and B.low are not 0.
;
B_high_zero:
ldd B_low,y ; A.low is on the stack
bsr __mulhi32 ; A.low * B.low
xgdx
tsy ; Y was clobbered, get it back
addd 2,y
A_low_zero: ; See A_low_zero_non_optimized below
xgdx
Return:
ins
ins
ins
ins
rts
;
;
; A_low_zero_non_optimized:
;
; At this step, X = 0 and D = (A.high * B.low)
; Optimize into: (A.high * B.low) << 16
;
; xgdx
; clra ; Since X was 0, clearing D is superfuous.
; clrb
; bra Return
; ----------------
; B.low == 0, the result is: (A.low * B.high) << 16
;
; At this step:
; D = B.low = 0
; X = A.high ?
; A.low is at A_low,y ?
; B.low is at B_low,y ?
;
B_low_zero:
ldd A_low,y
beq Zero1
ldx B_high,y
beq Zero2
bsr ___mulhi3
Zero1:
xgdx
Zero2:
clra
clrb
bra Return
; ----------------
; A.high is 0, optimize into: (A.low * B.high) << 16 + (A.low * B.low)
;
; At this step:
; D = B.low != 0
; X = A.high = 0
; A.low is at A_low,y ?
; B.low is at B_low,y ?
;
A_high_zero:
ldd A_low,y ; A.low
beq Zero1
ldx B_high,y ; B.high
beq A_low_B_low
bsr ___mulhi3
std 2,y
bra B_high_zero ; Do the (A.low * B.low) and the add.
; ----------------
; A.high and B.high are 0 optimize into: (A.low * B.low)
;
; At this step:
; D = B.high = 0
; X = A.low != 0
; A.low is at A_low,y != 0
; B.high is at B_high,y = 0
;
A_low_B_low:
ldd B_low,y ; A.low is on the stack
bsr __mulhi32
bra Return
#endif
#ifdef L_map_data
.sect .install3,"ax",@progbits
.globl __map_data_section
__map_data_section:
ldd #__data_section_size
beq Done
ldx #__data_image
ldy #__data_section_start
Loop:
psha
ldaa 0,x
staa 0,y
pula
inx
iny
subd #1
bne Loop
Done:
#endif
#ifdef L_init_bss
.sect .install3,"ax",@progbits
.globl __init_bss_section
__init_bss_section:
ldd #__bss_size
beq Done
ldx #__bss_start
Loop:
clr 0,x
inx
subd #1
bne Loop
Done:
#endif
;-----------------------------------------
; end required gcclib code
;-----------------------------------------
/* Startup code for M68HC11.
Copyright (C) 1999, 2000 Free Software Foundation, Inc.
This file is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file with other programs, and to distribute
those programs without any restriction coming from the use of this
file. (The General Public License restrictions do apply in other
respects; for example, they cover modification of the file, and
distribution when not linked into another program.)
This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* As a special exception, if you link this library with other files,
some of which are compiled with GCC, to produce an executable,
this library does not by itself cause the resulting executable
to be covered by the GNU General Public License.
This exception does not however invalidate any other reasons why
the executable file might be covered by the GNU General Public License. */
;-----------------------------------------
; startup code
;-----------------------------------------
.file "crt0.s"
;;
;;
;; The linker concatenate the .install* sections in the following order:
;;
;; .install0 Setup the stack pointer
;; .install1 Place holder for applications
;; .install2 Optional installation of data section in memory
;; .install3 Place holder for applications
;; .install4 Invokes the main
;;
.sect .install0,"ax",@progbits
.globl _start
_start:
;;
;; At this step, the stack is not initialized and interrupts are masked.
;; Applications only have 64 cycles to initialize some registers.
;;
;; To have a generic/configurable startup, initialize the stack to
;; the end of some memory region. The _stack symbol is defined by
;; the linker.
;;
lds #_stack
.sect .install2,"ax",@progbits
;;
;; Call a specific initialization operation. The default is empty.
;; It can be overriden by applications. It is intended to initialize
;; the 68hc11 registers. Function prototype is:
;;
;; int __premain(void);
;;
jsr __premain
;;
;;
;;
.sect .install4,"ax",@progbits
jsr main
fatal:
jsr exit
bra fatal
;-----------------------------------------
; end startup code
;-----------------------------------------
;; Force loading of data section mapping and bss clear
.2byte __map_data_section
.2byte __init_bss_section
/* Prototypes for exported functions defined in m68hc11.c
Copyright (C) 1999, 2000 Free Software Foundation, Inc.
Contributed by Stephane Carrez (stcarrez@worldnet.fr)
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
extern int m68hc11_override_options PARAMS((void));
extern void m68hc11_conditional_register_usage PARAMS((void));
extern int hard_regno_mode_ok PARAMS((int, enum machine_mode));
extern int m68hc11_total_frame_size PARAMS((void));
extern int m68hc11_initial_frame_pointer_offset PARAMS((void));
extern int m68hc11_initial_elimination_offset PARAMS((int, int));
extern void expand_prologue PARAMS((void));
extern void expand_epilogue PARAMS((void));
extern void output_function_prologue PARAMS((FILE*, int));
extern void output_function_epilogue PARAMS((FILE*, int));
extern int m68hc11_function_block_profiler PARAMS((FILE*,int));
extern int m68hc11_block_profiler PARAMS((FILE*,int));
extern void m68hc11_asm_file_start PARAMS((FILE*, char*));
#ifdef TREE_CODE
extern void m68hc11_function_arg_advance PARAMS((CUMULATIVE_ARGS*,
enum machine_mode,
tree,
int));
extern int m68hc11_valid_decl_attribute_p PARAMS((tree, tree,
tree, tree));
extern int m68hc11_valid_type_attribute_p PARAMS((tree, tree,
tree, tree));
extern int m68hc11_comp_type_attributes PARAMS((tree, tree));
extern void m68hc11_set_default_type_attributes PARAMS((tree));
extern void m68hc11_encode_section_info PARAMS((tree));
#endif
#ifdef RTX_CODE
#if GCC_VERSION > 2095
extern rtx m68hc11_compare_op0;
extern rtx m68hc11_compare_op1;
#endif
extern rtx m68hc11_soft_tmp_reg;
extern rtx iy_reg;
extern rtx d_reg;
extern rtx m68hc11_expand_compare_and_branch PARAMS((enum rtx_code,
rtx, rtx, rtx));
extern enum reg_class preferred_reload_class PARAMS((rtx, enum reg_class));
extern int m68hc11_go_if_legitimate_address PARAMS((rtx,
enum machine_mode,
int));
extern int m68hc11_legitimize_address PARAMS((rtx*, rtx, enum machine_mode));
extern void m68hc11_notice_update_cc PARAMS((rtx, rtx));
extern void m68hc11_reorg PARAMS((rtx));
extern void m68hc11_gen_movqi PARAMS((rtx, rtx*));
extern void m68hc11_gen_movhi PARAMS((rtx, rtx*));
extern void m68hc11_gen_rotate PARAMS((enum rtx_code, rtx, rtx*));
extern void m68hc11_output_swap PARAMS((rtx,rtx*));
extern int next_insn_test_reg PARAMS((rtx,rtx));
extern void print_operand PARAMS((FILE*,rtx,int));
extern void print_operand_address PARAMS((FILE*,rtx));
extern int m68hc11_reload_operands PARAMS((rtx*));
extern int dead_register_here PARAMS((rtx, rtx));
extern int push_pop_operand_p PARAMS((rtx));
extern void m68hc11_split_move PARAMS((rtx, rtx, rtx));
extern void m68hc11_split_compare_and_branch PARAMS((enum rtx_code,
rtx, rtx, rtx));
extern void aux_restore_IX_IY PARAMS((rtx));
extern void aux_validate_IX_IY PARAMS((rtx));
extern rtx m68hc11_gen_lowpart PARAMS((enum machine_mode, rtx));
extern rtx m68hc11_gen_highpart PARAMS((enum machine_mode, rtx));
#ifdef HAVE_MACHINE_MODES
extern int m68hc11_memory_move_cost PARAMS((enum machine_mode, enum reg_class,
int));
extern int m68hc11_register_move_cost PARAMS((enum reg_class, enum reg_class));
extern int m68hc11_rtx_costs PARAMS((rtx, enum rtx_code, enum rtx_code));
extern int m68hc11_address_cost PARAMS((rtx));
extern void m68hc11_emit_libcall PARAMS((const char*, enum rtx_code,
enum machine_mode, enum machine_mode,
int, rtx*));
extern int m68hc11_small_indexed_indirect_p PARAMS((rtx, enum machine_mode));
extern int go_if_legitimate_address2 PARAMS((rtx, enum machine_mode, int));
extern int reg_or_indexed_operand PARAMS((rtx,enum machine_mode));
extern int tst_operand PARAMS((rtx,enum machine_mode));
extern int cmp_operand PARAMS((rtx,enum machine_mode));
extern int memory_indexed_operand PARAMS((rtx, enum machine_mode));
extern void m68hc11_split_logical PARAMS((enum machine_mode, int, rtx*));
extern int m68hc11_register_indirect_p PARAMS((rtx, enum machine_mode));
extern int symbolic_memory_operand PARAMS((rtx, enum machine_mode));
extern int memory_reload_operand PARAMS((rtx, enum machine_mode));
extern int stack_register_operand PARAMS((rtx, enum machine_mode));
extern int d_register_operand PARAMS((rtx, enum machine_mode));
extern int hard_addr_reg_operand PARAMS((rtx, enum machine_mode));
extern int arith_src_operand PARAMS((rtx, enum machine_mode));
extern int m68hc11_logical_operator PARAMS((rtx, enum machine_mode));
extern int m68hc11_arith_operator PARAMS((rtx, enum machine_mode));
extern int m68hc11_non_shift_operator PARAMS((rtx, enum machine_mode));
extern int m68hc11_unary_operator PARAMS((rtx, enum machine_mode));
extern int non_push_operand PARAMS((rtx, enum machine_mode));
extern int hard_reg_operand PARAMS((rtx, enum machine_mode));
extern int soft_reg_operand PARAMS((rtx, enum machine_mode));
extern int reg_or_some_mem_operand PARAMS((rtx, enum machine_mode));
extern enum reg_class limit_reload_class PARAMS((enum machine_mode, enum reg_class));
#if defined TREE_CODE
extern void m68hc11_init_cumulative_args PARAMS((CUMULATIVE_ARGS*,
tree,
rtx));
extern rtx m68hc11_function_arg PARAMS((const CUMULATIVE_ARGS* ,
enum machine_mode,
tree, int));
extern int m68hc11_function_arg_pass_by_reference PARAMS((const CUMULATIVE_ARGS*,
enum machine_mode,
tree,
int));
extern int m68hc11_function_arg_padding PARAMS((enum machine_mode, tree));
extern void m68hc11_expand_builtin_va_start PARAMS((int, tree, rtx));
extern rtx m68hc11_va_arg PARAMS((tree,tree));
extern void m68hc11_expand_builtin_va_start PARAMS((int,tree,rtx));
extern void m68hc11_function_epilogue PARAMS((FILE*,int));
#endif /* TREE_CODE */
#if GCC_VERSION > 2095
extern HOST_WIDE_INT m68hc11_min_offset;
extern HOST_WIDE_INT m68hc11_max_offset;
#endif
#endif /* HAVE_MACHINE_MODES */
#endif /* RTX_CODE */
This source diff could not be displayed because it is too large. You can view the blob instead.
/* Definitions of target machine for GNU compiler.
Motorola 68HC11 and 68HC12.
Copyright (C) 1999, 2000 Free Software Foundation, Inc.
Contributed by Stephane Carrez (stcarrez@worldnet.fr)
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.
Note:
A first 68HC11 port was made by Otto Lind (otto@coactive.com)
on gcc 2.6.3. I have used it as a starting point for this port.
However, this new port is a complete re-write. Its internal
design is completely different. The generated code is not
compatible with the gcc 2.6.3 port.
The gcc 2.6.3 port is available at:
ftp.unina.it/pub/electronics/motorola/68hc11/gcc/gcc-6811-fsf.tar.gz
*/
#undef GCC_VERSION
#if 1 /* def N_*/
# define GCC_VERSION 2096
#else
# define GCC_VERSION 2095
/* NLS support in 2.96 */
# define N_(X) X
#endif
#include "elfos.h"
/*****************************************************************************
**
** Controlling the Compilation Driver, `gcc'
**
*****************************************************************************/
#undef ENDFILE_SPEC
/* Compile and assemble for a 68hc11 unless there is a -m68hc12 option. */
#ifndef ASM_SPEC
#define ASM_SPEC "%{m68hc12:-m68hc12}%{!m68hc12:-m68hc11}"
#endif
/* We need to tell the linker the target elf format. Just pass an
emulation option. This can be overriden by -Wl option of gcc. */
#ifndef LINK_SPEC
#define LINK_SPEC "%{m68hc12:-m m68hc12elf}%{!m68hc12:-m m68hc11elf}"
#endif
#ifndef LIB_SPEC
#define LIB_SPEC ""
#endif
#ifndef CC1_SPEC
#define CC1_SPEC ""
#endif
#ifndef CPP_SPEC
#define CPP_SPEC \
"%{mshort:-D__HAVE_SHORT_INT__ -D__INT__=16 -D__INT_MAX__=32767}\
%{!mshort:-D__INT__=32 -D__INT_MAX__=2147483647}\
%{m68hc12:-Dmc6812 -DMC6812 -Dmc68hc12}\
%{!m68hc12:-Dmc6811 -DMC6811 -Dmc68hc11}"
#endif
#undef STARTFILE_SPEC
#define STARTFILE_SPEC "crt1%O%s"
/* Names to predefine in the preprocessor for this target machine. */
#define CPP_PREDEFINES "-Dmc68hc1x"
#ifndef IN_LIBGCC2
# include <stdio.h>
#endif
#include "gansidecl.h"
#if GCC_VERSION == 2095
#ifndef PARAMS
#if defined(ANSI_PROTOTYPES) || defined(__cplusplus)
#define PARAMS(args) args
#else
#define PARAMS(args) ()
#endif
#endif
/* Forward type declaration for prototypes definitions.
rtx_ptr is equivalent to rtx. Can't use the same name. */
struct rtx_def;
typedef struct rtx_def *rtx_ptr;
union tree_node;
typedef union tree_node *tree_ptr;
/* We can't declare enum machine_mode forward nor include 'machmode.h' here.
Prototypes defined here will use an int instead. It's better than no
prototype at all. */
typedef int enum_machine_mode;
#endif
/*****************************************************************************
**
** Run-time Target Specification
**
*****************************************************************************/
/* Run-time compilation parameters selecting different hardware subsets. */
extern int target_flags;
extern short *reg_renumber; /* def in local_alloc.c */
/* Macros used in the machine description to test the flags. */
/* 6811 specific options
*
* For 68HC12, the auto inc/dec mode is disabled by default. The reason
* is that for most programs, the reload pass will fail because it needs
* more registers to save the value of the indexed register after the
* memory access. For simple programs, you can enable this
* with -mauto-incdec.
*/
#define MASK_SHORT 0002 /* Compile with 16-bit `int' */
#define MASK_AUTO_INC_DEC 0004
#define MASK_M6811 0010
#define MASK_M6812 0020
#define TARGET_OP_TIME (optimize && optimize_size == 0)
#define TARGET_SHORT (target_flags & MASK_SHORT)
#define TARGET_M6811 (target_flags & MASK_M6811)
#define TARGET_M6812 (target_flags & MASK_M6812)
#define TARGET_AUTO_INC_DEC (target_flags & MASK_AUTO_INC_DEC)
/* Default target_flags if no switches specified. */
#ifndef TARGET_DEFAULT
# define TARGET_DEFAULT (MASK_M6811)
#endif
/* Define this macro as a C expression for the initializer of an
array of string to tell the driver program which options are
defaults for this target and thus do not need to be handled
specially when using `MULTILIB_OPTIONS'. */
#ifndef MULTILIB_DEFAULTS
# if TARGET_DEFAULT & MASK_M6811
# define MULTILIB_DEFAULTS { "m68hc11" }
# else
# define MULTILIB_DEFAULTS { "m68hc12" }
# endif
#endif
/* Macro to define tables used to set the flags. This is a list in braces of
pairs in braces, each pair being { "NAME", VALUE } where VALUE is the bits
to set or minus the bits to clear. An empty string NAME is used to
identify the default VALUE. */
#define TARGET_SWITCHES \
{ { "short", MASK_SHORT, \
N_("Compile with 16-bit integer mode")}, \
{ "noshort", - MASK_SHORT, \
N_("Compile with 32-bit integer mode")}, \
{ "auto-incdec", MASK_AUTO_INC_DEC, \
N_("Auto pre/post decrement increment allowed")}, \
{ "noauto-incdec", - MASK_AUTO_INC_DEC, \
N_("Auto pre/post decrement increment not allowed")}, \
{ "68hc11", MASK_M6811, \
N_("Compile for a 68HC11")}, \
{ "68hc12", MASK_M6812, \
N_("Compile for a 68HC12")}, \
{ "6811", MASK_M6811, \
N_("Compile for a 68HC11")}, \
{ "6812", MASK_M6812, \
N_("Compile for a 68HC12")}, \
{ "", TARGET_DEFAULT, 0 }}
/* This macro is similar to `TARGET_SWITCHES' but defines names of
command options that have values. Its definition is an
initializer with a subgrouping for each command option.
Each subgrouping contains a string constant, that defines the
fixed part of the option name, and the address of a variable. The
variable, type `char *', is set to the variable part of the given
option if the fixed part matches. The actual option name is made
by appending `-m' to the specified name. */
#define TARGET_OPTIONS \
{ { "reg-alloc=", &m68hc11_reg_alloc_order, \
N_("Specify the register allocation order")}, \
{ "soft-reg-count=", &m68hc11_soft_reg_count, \
N_("Indicate the number of soft registers available") }, \
SUBTARGET_OPTIONS \
}
/* These are meant to be redefined in the host dependent files */
#define SUBTARGET_SWITCHES
#define SUBTARGET_OPTIONS
extern const char *m68hc11_regparm_string;
extern const char *m68hc11_reg_alloc_order;
extern const char *m68hc11_soft_reg_count;
#ifndef TARGET_M68HC12
# define TARGET_M68HC11 1
#endif
/* Print subsidiary information on the compiler version in use. */
#define TARGET_VERSION fprintf (stderr, " (MC68HC11/MC68HC12)")
/* Sometimes certain combinations of command options do not make
sense on a particular target machine. You can define a macro
`OVERRIDE_OPTIONS' to take account of this. This macro, if
defined, is executed once just after all the command options have
been parsed.
Don't use this macro to turn on various extra optimizations for
`-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
#define OVERRIDE_OPTIONS m68hc11_override_options ();
/* target machine storage layout */
/* Define this if most significant byte of a word is the lowest numbered. */
#define BYTES_BIG_ENDIAN 1
/* Define this if most significant bit is lowest numbered
in instructions that operate on numbered bit-fields. */
#define BITS_BIG_ENDIAN 0
/* Define this if most significant word of a multiword number is numbered. */
#define WORDS_BIG_ENDIAN 1
/* Number of bits in an addressible storage unit */
#define BITS_PER_UNIT 8
/* Number of bits in a word */
#define BITS_PER_WORD 16
/* Width of a word, in units (bytes). */
#define UNITS_PER_WORD (BITS_PER_WORD/8)
/* Define if you don't want extended real, but do want to use the
software floating point emulator for REAL_ARITHMETIC and
decimal <-> binary conversion. */
#define REAL_ARITHMETIC
/* Width in bits of a pointer. See also the macro `Pmode' defined below. */
#define POINTER_SIZE 16
/* Definition of size_t. This is really an unsigned short as the
68hc11 only handles a 64K address space. */
#define SIZE_TYPE "short unsigned int"
/* A C expression for a string describing the name of the data type
to use for the result of subtracting two pointers. The typedef
name `ptrdiff_t' is defined using the contents of the string.
The 68hc11 only has a 64K address space. */
#define PTRDIFF_TYPE "short int"
/* Allocation boundary (bits) for storing pointers in memory. */
#define POINTER_BOUNDARY 8
/* Normal alignment required for function parameters on the stack, in bits.
This can't be less than BITS_PER_WORD */
#define PARM_BOUNDARY (BITS_PER_WORD)
/* Boundary (bits) on which stack pointer should be aligned. */
#define STACK_BOUNDARY 8
/* Allocation boundary (bits) for the code of a function. */
#define FUNCTION_BOUNDARY 8
/* Biggest alignment that any data type can require on this machine,
in bits. */
#define BIGGEST_ALIGNMENT 8
/* Alignment of field after `int : 0' in a structure. */
#define EMPTY_FIELD_BOUNDARY 8
/* Every structure's size must be a multiple of this. */
#define STRUCTURE_SIZE_BOUNDARY 8
/* Define this if instructions will fail to work if given data not
on the nominal alignment. If instructions will merely go slower
in that case, do not define this macro. */
#define STRICT_ALIGNMENT 0
/* An integer expression for the size in bits of the largest integer
machine mode that should actually be used. All integer machine modes of
this size or smaller can be used for structures and unions with the
appropriate sizes. */
#define MAX_FIXED_MODE_SIZE 64
/* Floats are checked in a generic way. */
/* #define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) */
/* target machine storage layout */
/* Size (bits) of the type "int" on target machine
(If undefined, default is BITS_PER_WORD). */
#define INT_TYPE_SIZE (TARGET_SHORT ? 16 : 32)
/* Size (bits) of the type "short" on target machine */
#define SHORT_TYPE_SIZE 16
/* Size (bits) of the type "long" on target machine */
#define LONG_TYPE_SIZE 32
/* Size (bits) of the type "long long" on target machine */
#define LONG_LONG_TYPE_SIZE 64
/* Size (bits) of the type "char" on target machine */
#define CHAR_TYPE_SIZE 8
/* A C expression for the size in bits of the type `float' on the
target machine. If you don't define this, the default is one word.
Don't use default: a word is only 16. */
#define FLOAT_TYPE_SIZE 32
/* A C expression for the size in bits of the type double on the target
machine. If you don't define this, the default is two words.
Be IEEE compliant. */
#define DOUBLE_TYPE_SIZE 64
#define LONG_DOUBLE_TYPE_SIZE 64
/* Define this as 1 if `char' should by default be signed; else as 0. */
#define DEFAULT_SIGNED_CHAR 0
/* Define these to avoid dependence on meaning of `int'.
Note that WCHAR_TYPE_SIZE is used in cexp.y,
where TARGET_SHORT is not available. */
#define WCHAR_TYPE "short int"
#define WCHAR_TYPE_SIZE 16
/* Define results of standard character escape sequences. */
#define TARGET_BELL 007
#define TARGET_BS 010
#define TARGET_TAB 011
#define TARGET_NEWLINE 012
#define TARGET_VT 013
#define TARGET_FF 014
#define TARGET_CR 015
/* Standard register usage. */
#define HARD_REG_SIZE (UNITS_PER_WORD)
/* Assign names to real MC68HC11 registers.
A and B registers are not really used (A+B = D)
X register is first so that GCC allocates X+D for 32-bit integers and
the lowpart of that integer will be D. Having the lower part in D is
better for 32<->16bit conversions and for many arithmetic operations. */
#define HARD_X_REGNUM 0
#define HARD_D_REGNUM 1
#define HARD_Y_REGNUM 2
#define HARD_SP_REGNUM 3
#define HARD_PC_REGNUM 4
#define HARD_A_REGNUM 5
#define HARD_B_REGNUM 6
#define HARD_CCR_REGNUM 7
/* The Z register does not really exist in the 68HC11. This a fake register
for GCC. It is treated exactly as an index register (X or Y). It is only
in the A_REGS class, which is the BASE_REG_CLASS for GCC. Defining this
register helps the reload pass of GCC. Otherwise, the reload often aborts
with register spill failures.
The Z register is replaced by either X or Y during the machine specific
reorg (m68hc11_reorg). It is saved in the SOFT_Z_REGNUM soft-register
when this is necessary.
It's possible to tell GCC not to use this register with -ffixed-z. */
#define HARD_Z_REGNUM 8
/* The frame pointer is a soft-register. It's treated as such by GCC:
it is not and must not be part of the BASE_REG_CLASS. */
#define DEFAULT_HARD_FP_REGNUM (9)
#define HARD_FP_REGNUM (9)
#define HARD_AP_REGNUM (HARD_FP_REGNUM)
/* Temporary soft-register used in some cases when an operand came
up into a bad register class (D, X, Y, SP) and gcc failed to
recognize this. This register is never allocated by GCC. */
#define SOFT_TMP_REGNUM 10
/* The soft-register which is used to save the Z register
(see Z register replacement notes in m68hc11.c). */
#define SOFT_Z_REGNUM 11
/* The soft-register which is used to save either X or Y. */
#define SOFT_SAVED_XY_REGNUM 12
/* A fake clobber register for 68HC12 patterns. */
#define FAKE_CLOBBER_REGNUM (13)
/* Define 32 soft-registers of 16-bit each. By default,
only 12 of them are enabled and can be used by GCC. The
-msoft-reg-count=<n> option allows to control the number of valid
soft-registers. GCC can put 32-bit values in them
by allocating consecutive registers. The first 3 soft-registers
are never allocated by GCC. They are used in case the insn template needs
a temporary register, or for the Z register replacement. */
#define MAX_SOFT_REG_COUNT (32)
#define SOFT_REG_FIXED 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1
#define SOFT_REG_USED 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1
#define SOFT_REG_ORDER \
SOFT_REG_FIRST, SOFT_REG_FIRST+1,SOFT_REG_FIRST+2,SOFT_REG_FIRST+3,\
SOFT_REG_FIRST+4, SOFT_REG_FIRST+5,SOFT_REG_FIRST+6,SOFT_REG_FIRST+7,\
SOFT_REG_FIRST+8, SOFT_REG_FIRST+9,SOFT_REG_FIRST+10,SOFT_REG_FIRST+11,\
SOFT_REG_FIRST+12, SOFT_REG_FIRST+13,SOFT_REG_FIRST+14,SOFT_REG_FIRST+15,\
SOFT_REG_FIRST+16, SOFT_REG_FIRST+17,SOFT_REG_FIRST+18,SOFT_REG_FIRST+19,\
SOFT_REG_FIRST+20, SOFT_REG_FIRST+21,SOFT_REG_FIRST+22,SOFT_REG_FIRST+23,\
SOFT_REG_FIRST+24, SOFT_REG_FIRST+25,SOFT_REG_FIRST+26,SOFT_REG_FIRST+27,\
SOFT_REG_FIRST+28, SOFT_REG_FIRST+29,SOFT_REG_FIRST+30,SOFT_REG_FIRST+31
#define SOFT_REG_NAMES \
"*_.d1", "*_.d2", "*_.d3", "*_.d4", \
"*_.d5", "*_.d6", "*_.d7", "*_.d8", \
"*_.d9", "*_.d10", "*_.d11", "*_.d12", \
"*_.d13", "*_.d14", "*_.d15", "*_.d16", \
"*_.d17", "*_.d18", "*_.d19", "*_.d20", \
"*_.d21", "*_.d22", "*_.d23", "*_.d24", \
"*_.d25", "*_.d26", "*_.d27", "*_.d28", \
"*_.d29", "*_.d30", "*_.d31", "*_.d32"
/* First available soft-register for GCC. */
#define SOFT_REG_FIRST (SOFT_SAVED_XY_REGNUM+2)
/* Last available soft-register for GCC. */
#define SOFT_REG_LAST (SOFT_REG_FIRST+MAX_SOFT_REG_COUNT)
#define SOFT_FP_REGNUM (SOFT_REG_LAST)
#define SOFT_AP_REGNUM (SOFT_FP_REGNUM+1)
/* Number of actual hardware registers. The hardware registers are assigned
numbers for the compiler from 0 to just below FIRST_PSEUDO_REGISTER.
All registers that the compiler knows about must be given numbers, even
those that are not normally considered general registers. */
#define FIRST_PSEUDO_REGISTER (SOFT_REG_LAST+2)
/* 1 for registers that have pervasive standard uses and are not available
for the register allocator. */
#define FIXED_REGISTERS \
{0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1,1, 1, SOFT_REG_FIXED, 1, 1}
/* X, D, Y, SP,PC,A, B, CCR, Z, FP,ZTMP,ZR,XYR, FK, D1 - D32, SOFT-FP, AP */
/* 1 for registers not available across function calls. For our pseudo
registers, all are available. */
#define CALL_USED_REGISTERS \
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,1, 1, SOFT_REG_USED, 1, 1}
/* X, D, Y, SP,PC,A, B, CCR, Z, FP, ZTMP,ZR,XYR, D1 - 32, SOFT-FP, AP */
/* Define this macro to change register usage conditional on target flags.
The soft-registers are disabled or enabled according to the
-msoft-reg-count=<n> option. */
#define CONDITIONAL_REGISTER_USAGE (m68hc11_conditional_register_usage ())
/* List the order in which to allocate registers. Each register must be
listed once, even those in FIXED_REGISTERS. */
#define REG_ALLOC_ORDER \
{ HARD_D_REGNUM, HARD_X_REGNUM, HARD_Y_REGNUM, \
SOFT_REG_ORDER, HARD_Z_REGNUM, HARD_PC_REGNUM, HARD_A_REGNUM, \
HARD_B_REGNUM, HARD_CCR_REGNUM, HARD_FP_REGNUM, SOFT_FP_REGNUM, \
HARD_SP_REGNUM, SOFT_TMP_REGNUM, SOFT_Z_REGNUM, SOFT_SAVED_XY_REGNUM, \
SOFT_AP_REGNUM, FAKE_CLOBBER_REGNUM }
/* A C expression for the number of consecutive hard registers,
starting at register number REGNO, required to hold a value of
mode MODE. */
#define HARD_REGNO_NREGS(REGNO, MODE) \
((Q_REGNO_P (REGNO)) ? (GET_MODE_SIZE (MODE)) : \
((GET_MODE_SIZE (MODE) + HARD_REG_SIZE - 1) / HARD_REG_SIZE))
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
- 8 bit values are stored anywhere (except the SP register).
- 16 bit values can be stored in any register whose mode is 16
- 32 bit values can be stored in D, X registers or in a soft register
(except the last one because we need 2 soft registers)
- Values whose size is > 32 bit are not stored in real hard
registers. They may be stored in soft registers if there are
enough of them. */
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
hard_regno_mode_ok (REGNO,MODE)
/* Value is 1 if it is a good idea to tie two pseudo registers when one has
mode MODE1 and one has mode MODE2. If HARD_REGNO_MODE_OK could produce
different values for MODE1 and MODE2, for any hard reg, then this must be
0 for correct output. */
#define MODES_TIEABLE_P(MODE1, MODE2) \
(((MODE1) == (MODE2)) \
|| ((MODE1) == SImode && (MODE2) == HImode) \
|| ((MODE1) == HImode && (MODE2) == SImode))
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
For any two classes, it is very desirable that there be another
class that represents their union. */
/* The M68hc11 has so fiew registers that it's not possible for GCC to
do any register allocation without breaking. We extend the processor
registers by having soft registers. These registers are treated as
hard registers by GCC but they are located in memory and accessed by page0
accesses (IND mode). */
enum reg_class
{
NO_REGS,
D_REGS, /* 16-bit data register */
X_REGS, /* 16-bit X register */
Y_REGS, /* 16-bit Y register */
SP_REGS, /* 16 bit stack pointer */
DA_REGS, /* 8-bit A reg. */
DB_REGS, /* 8-bit B reg. */
Z_REGS, /* 16-bit fake Z register */
D8_REGS, /* 8-bit A or B reg. */
Q_REGS, /* 8-bit (byte (QI)) data (A, B or D) */
D_OR_X_REGS, /* D or X register */
D_OR_Y_REGS, /* D or Y register */
D_OR_SP_REGS, /* D or SP register */
X_OR_Y_REGS, /* IX or Y register */
A_REGS, /* 16-bit address register (X, Y, Z) */
X_OR_SP_REGS, /* X or SP register */
Y_OR_SP_REGS, /* Y or SP register */
X_OR_Y_OR_D_REGS, /* X, Y or D */
A_OR_D_REGS, /* X, Y, Z or D */
A_OR_SP_REGS, /* X, Y, Z or SP */
H_REGS, /* 16-bit hard register (D, X, Y, Z, SP) */
S_REGS, /* 16-bit soft register */
D_OR_S_REGS, /* 16-bit soft register or D register */
X_OR_S_REGS, /* 16-bit soft register or X register */
Y_OR_S_REGS, /* 16-bit soft register or Y register */
SP_OR_S_REGS, /* 16-bit soft register or SP register */
D_OR_X_OR_S_REGS, /* 16-bit soft register or D or X register */
D_OR_Y_OR_S_REGS, /* 16-bit soft register or D or Y register */
D_OR_SP_OR_S_REGS, /* 16-bit soft register or D or SP register */
A_OR_S_REGS, /* 16-bit soft register or X, Y registers */
D_OR_A_OR_S_REGS, /* 16-bit soft register or D, X, Y registers */
TMP_REGS, /* 16 bit fake scratch register */
D_OR_A_OR_TMP_REGS, /* General scratch register */
G_REGS, /* 16-bit general register
(H_REGS + soft registers) */
ALL_REGS,
LIM_REG_CLASSES
};
/* alias GENERAL_REGS to G_REGS. */
#define GENERAL_REGS G_REGS
#define N_REG_CLASSES (int) LIM_REG_CLASSES
/* Give names of register classes as strings for dump file. */
#define REG_CLASS_NAMES \
{ "NO_REGS", \
"D_REGS", \
"X_REGS", \
"Y_REGS", \
"SP_REGS", \
"DA_REGS", \
"DB_REGS", \
"D8_REGS", \
"Z_REGS", \
"Q_REGS", \
"D_OR_X_REGS", \
"D_OR_Y_REGS", \
"D_OR_SP_REGS", \
"X_OR_Y_REGS", \
"A_REGS", \
"X_OR_SP_REGS", \
"Y_OR_SP_REGS", \
"X_OR_Y_OR_D_REGS", \
"A_OR_D_REGS", \
"A_OR_SP_REGS", \
"H_REGS", \
"S_REGS", \
"D_OR_S_REGS", \
"X_OR_S_REGS", \
"Y_OR_S_REGS", \
"SP_OR_S_REGS", \
"D_OR_X_OR_S_REGS", \
"D_OR_Y_OR_S_REGS", \
"D_OR_SP_OR_S_REGS", \
"A_OR_S_REGS", \
"D_OR_A_OR_S_REGS", \
"TMP_REGS", \
"D_OR_A_OR_TMP_REGS", \
"G_REGS", \
"ALL_REGS" }
/* An initializer containing the contents of the register classes,
as integers which are bit masks. The Nth integer specifies the
contents of class N. The way the integer MASK is interpreted is
that register R is in the class if `MASK & (1 << R)' is 1. */
/*--------------------------------------------------------------
X 0x00000001
D 0x00000002
Y 0x00000004
SP 0x00000008
PC 0x00000010
A 0x00000020
B 0x00000040
CCR 0x00000080
Z 0x00000100
FRAME 0x00000200
ZTMP 0x00000400
ZREG 0x00000800
XYREG 0x00001000
FAKE 0x00002000
Di 0xFFFFc000, 0x03FFF
SFRAME 0x00000000, 0x04000
AP 0x00000000, 0x08000
D_OR_X_REGS represents D+X. It is used for 32-bits numbers.
A_REGS represents a valid base register for indexing. It represents
X,Y and the Z register.
S_REGS represents the soft-registers. This includes the hard frame
and soft frame registers.
--------------------------------------------------------------*/
#define REG_CLASS_CONTENTS \
/* NO_REGS */ {{ 0x00000000, 0x00000000 }, \
/* D_REGS */ { 0x00000002, 0x00000000 }, /* D */ \
/* X_REGS */ { 0x00000001, 0x00000000 }, /* X */ \
/* Y_REGS */ { 0x00000004, 0x00000000 }, /* Y */ \
/* SP_REGS */ { 0x00000008, 0x00000000 }, /* SP */ \
/* DA_REGS */ { 0x00000020, 0x00000000 }, /* A */ \
/* DB_REGS */ { 0x00000040, 0x00000000 }, /* B */ \
/* D8_REGS */ { 0x00000060, 0x00000000 }, /* A B */ \
/* Z_REGS */ { 0x00000100, 0x00000000 }, /* Z */ \
/* Q_REGS */ { 0x00000062, 0x00000000 }, /* A B D */ \
/* D_OR_X_REGS */ { 0x00000003, 0x00000000 }, /* D X */ \
/* D_OR_Y_REGS */ { 0x00000006, 0x00000000 }, /* D Y */ \
/* D_OR_SP_REGS */ { 0x0000000A, 0x00000000 }, /* D SP */ \
/* X_OR_Y_REGS */ { 0x00000005, 0x00000000 }, /* X Y */ \
/* A_REGS */ { 0x00000105, 0x00000000 }, /* X Y Z */ \
/* X_OR_SP_REGS */ { 0x00000009, 0x00000000 }, /* X SP */ \
/* Y_OR_SP_REGS */ { 0x0000000C, 0x00000000 }, /* Y SP */ \
/* X_OR_Y_OR_D_REGS */ { 0x00000007, 0x00000000 }, /* D X Y */ \
/* A_OR_D_REGS */ { 0x00000107, 0x00000000 }, /* D X Y Z */ \
/* A_OR_SP_REGS */ { 0x0000010D, 0x00000000 }, /* X Y SP */ \
/* H_REGS */ { 0x0000010F, 0x00000000 }, /* D X Y SP */ \
/* S_REGS */ { 0xFFFFDE00, 0x00007FFF }, /* _.D,..,FP,Z* */ \
/* D_OR_S_REGS */ { 0xFFFFDE02, 0x00007FFF }, /* D _.D */ \
/* X_OR_S_REGS */ { 0xFFFFDE01, 0x00007FFF }, /* X _.D */ \
/* Y_OR_S_REGS */ { 0xFFFFDE04, 0x00007FFF }, /* Y _.D */ \
/* SP_OR_S_REGS */ { 0xFFFFDE08, 0x00007FFF }, /* SP _.D */ \
/* D_OR_X_OR_S_REGS */ { 0xFFFFDE03, 0x00007FFF }, /* D X _.D */ \
/* D_OR_Y_OR_S_REGS */ { 0xFFFFDE06, 0x00007FFF }, /* D Y _.D */ \
/* D_OR_SP_OR_S_REGS */ { 0xFFFFDE0A, 0x00007FFF }, /* D SP _.D */ \
/* A_OR_S_REGS */ { 0xFFFFDF05, 0x00007FFF }, /* X Y _.D */ \
/* D_OR_A_OR_S_REGS */ { 0xFFFFDF07, 0x00007FFF }, /* D X Y _.D */ \
/* TMP_REGS */ { 0x00002000, 0x00000000 }, /* FAKE */ \
/* D_OR_A_OR_TMP_REGS*/ { 0x00002107, 0x00000000 }, /* D X Y Z Fake */ \
/* G_REGS */ { 0xFFFFFF1F, 0x00007FFF }, /* ? _.D D X Y */ \
/* ALL_REGS*/ { 0xFFFFFFFF, 0x00007FFF }}
/* set up a C expression whose value is a register class containing hard
register REGNO */
#define Q_REGNO_P(REGNO) ((REGNO) == HARD_A_REGNUM \
|| (REGNO) == HARD_B_REGNUM)
#define Q_REG_P(X) (REG_P (X) && Q_REGNO_P (REGNO (X)))
#define D_REGNO_P(REGNO) ((REGNO) == HARD_D_REGNUM)
#define D_REG_P(X) (REG_P (X) && D_REGNO_P (REGNO (X)))
#define DB_REGNO_P(REGNO) ((REGNO) == HARD_B_REGNUM)
#define DB_REG_P(X) (REG_P (X) && DB_REGNO_P (REGNO (X)))
#define DA_REGNO_P(REGNO) ((REGNO) == HARD_A_REGNUM)
#define DA_REG_P(X) (REG_P (X) && DA_REGNO_P (REGNO (X)))
#define X_REGNO_P(REGNO) ((REGNO) == HARD_X_REGNUM)
#define X_REG_P(X) (REG_P (X) && X_REGNO_P (REGNO (X)))
#define Y_REGNO_P(REGNO) ((REGNO) == HARD_Y_REGNUM)
#define Y_REG_P(X) (REG_P (X) && Y_REGNO_P (REGNO (X)))
#define SP_REGNO_P(REGNO) ((REGNO) == HARD_SP_REGNUM)
#define SP_REG_P(X) (REG_P (X) && SP_REGNO_P (REGNO (X)))
/* Address register. */
#define A_REGNO_P(REGNO) ((REGNO) == HARD_X_REGNUM \
|| (REGNO) == HARD_Y_REGNUM \
|| (REGNO) == HARD_Z_REGNUM)
#define A_REG_P(X) (REG_P (X) && A_REGNO_P (REGNO (X)))
/* M68hc11 hard registers. */
#define H_REGNO_P(REGNO) (D_REGNO_P (REGNO) || A_REGNO_P (REGNO) \
|| SP_REGNO_P (REGNO) || Q_REGNO_P (REGNO))
#define H_REG_P(X) (REG_P (X) && H_REGNO_P (REGNO (X)))
#define FAKE_REGNO_P(REGNO) ((REGNO) == FAKE_CLOBBER_REGNUM)
#define FAKE_REG_P(X) (REG_P (X) && FAKE_REGNO_P (REGNO (X)))
/* Soft registers (or register emulation for gcc). The temporary register
used by insn template must be part of the S_REGS class so that it
matches the 'u' constraint. */
#define S_REGNO_P(REGNO) ((REGNO) >= SOFT_TMP_REGNUM \
&& (REGNO) <= SOFT_REG_LAST \
&& (REGNO) != FAKE_CLOBBER_REGNUM)
#define S_REG_P(X) (REG_P (X) && S_REGNO_P (REGNO (X)))
#define Z_REGNO_P(REGNO) ((REGNO) == HARD_Z_REGNUM)
#define Z_REG_P(X) (REG_P (X) && Z_REGNO_P (REGNO (X)))
/* General register. */
#define G_REGNO_P(REGNO) (H_REGNO_P (REGNO) || S_REGNO_P (REGNO) \
|| ((REGNO) == HARD_PC_REGNUM) \
|| ((REGNO) == HARD_FP_REGNUM) \
|| ((REGNO) == SOFT_FP_REGNUM) \
|| ((REGNO) == FAKE_CLOBBER_REGNUM) \
|| ((REGNO) == SOFT_AP_REGNUM))
#define G_REG_P(X) (REG_P (X) && G_REGNO_P (REGNO (X)))
#define REGNO_REG_CLASS(REGNO) \
(D_REGNO_P (REGNO) ? D_REGS : \
(X_REGNO_P (REGNO) ? X_REGS : \
(Y_REGNO_P (REGNO) ? Y_REGS : \
(SP_REGNO_P (REGNO) ? SP_REGS : \
(Z_REGNO_P (REGNO) ? Z_REGS : \
(H_REGNO_P (REGNO) ? H_REGS : \
(FAKE_REGNO_P (REGNO) ? TMP_REGS : \
(S_REGNO_P (REGNO) ? S_REGS : \
(DA_REGNO_P (REGNO) ? DA_REGS: \
(DB_REGNO_P (REGNO) ? DB_REGS: \
(G_REGNO_P (REGNO) ? G_REGS : ALL_REGS)))))))))))
/* Get reg_class from a letter in the machine description. */
extern enum reg_class m68hc11_tmp_regs_class;
#define REG_CLASS_FROM_LETTER(C) \
((C) == 'a' ? DA_REGS : \
(C) == 'A' ? A_REGS : \
(C) == 'b' ? DB_REGS : \
(C) == 'B' ? X_OR_Y_REGS : \
(C) == 'd' ? D_REGS : \
(C) == 'D' ? D_OR_X_REGS : \
(C) == 'q' ? Q_REGS : \
(C) == 'h' ? H_REGS : \
(C) == 't' ? TMP_REGS : \
(C) == 'u' ? S_REGS : \
(C) == 'v' ? m68hc11_tmp_regs_class : \
(C) == 'w' ? SP_REGS : \
(C) == 'x' ? X_REGS : \
(C) == 'y' ? Y_REGS : \
(C) == 'z' ? Z_REGS : NO_REGS)
#define PREFERRED_RELOAD_CLASS(X,CLASS) preferred_reload_class(X,CLASS)
#define LIMIT_RELOAD_CLASS(MODE, CLASS) limit_reload_class(MODE,CLASS)
#define SMALL_REGISTER_CLASSES 1
/* A C expression whose value is nonzero if pseudos that have been
assigned to registers of class CLASS would likely be spilled
because registers of CLASS are needed for spill registers.
The default value of this macro returns 1 if CLASS has exactly one
register and zero otherwise. On most machines, this default
should be used. Only define this macro to some other expression
if pseudo allocated by `local-alloc.c' end up in memory because
their hard registers were needed for spill registers. If this
macro returns nonzero for those classes, those pseudos will only
be allocated by `global.c', which knows how to reallocate the
pseudo to another register. If there would not be another
register available for reallocation, you should not change the
definition of this macro since the only effect of such a
definition would be to slow down register allocation. */
#define CLASS_LIKELY_SPILLED_P(CLASS) \
(((CLASS) == D_REGS) \
|| ((CLASS) == X_REGS) \
|| ((CLASS) == Y_REGS) \
|| ((CLASS) == A_REGS) \
|| ((CLASS) == SP_REGS) \
|| ((CLASS) == D_OR_X_REGS) \
|| ((CLASS) == D_OR_Y_REGS) \
|| ((CLASS) == X_OR_SP_REGS) \
|| ((CLASS) == Y_OR_SP_REGS) \
|| ((CLASS) == D_OR_SP_REGS))
/* Return the maximum number of consecutive registers needed to represent
mode MODE in a register of class CLASS. */
#define CLASS_MAX_NREGS(CLASS, MODE) \
(((CLASS) == DA_REGS || (CLASS) == DB_REGS \
|| (CLASS) == D8_REGS || (CLASS) == Q_REGS) ? GET_MODE_SIZE (MODE) \
: ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
/* The letters I, J, K, L and M in a register constraint string
can be used to stand for particular ranges of immediate operands.
This macro defines what the ranges are.
C is the letter, and VALUE is a constant value.
Return 1 if VALUE is in the range specified by C.
`L' is for range -65536 to 65536
`M' is for values whose 16-bit low part is 0
'N' is for +1 or -1.
'O' is for 16 (for rotate using swap).
'P' is for range -8 to 2 (used by addhi_sp)
'I', 'J', 'K' are not used. */
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'L' ? (VALUE) >= -65536 && (VALUE) <= 65535 : \
(C) == 'M' ? ((VALUE) & 0x0ffffL) == 0 : \
(C) == 'N' ? ((VALUE) == 1 || (VALUE) == -1): \
(C) == 'O' ? (VALUE) == 16 : \
(C) == 'P' ? (VALUE) <= 2 && (VALUE) >= -8 : 0)
/* Similar, but for floating constants, and defining letters G and H.
No floating-point constants are valid on 68HC11. */
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0
/* 'U' represents certain kind of memory indexed operand for 68HC12.
and any memory operand for 68HC11. */
#define EXTRA_CONSTRAINT(OP, C) \
((C) == 'U' ? m68hc11_small_indexed_indirect_p (OP, GET_MODE (OP)) : 0)
/* Stack layout; function entry, exit and calling. */
/* Define this if pushing a word on the stack
makes the stack pointer a smaller address. */
#define STACK_GROWS_DOWNWARD
/* Define this if the nominal address of the stack frame
is at the high-address end of the local variables;
that is, each additional local variable allocated
goes at a more negative offset in the frame.
Don't define for 68HC11, the frame pointer is the bottom
of local variables. */
/* #define FRAME_GROWS_DOWNWARD */
/* Define this if successive arguments to a function occupy decreasing
addresses in the stack. */
/* #define ARGS_GROW_DOWNWARD */
/* Offset within stack frame to start allocating local variables at.
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
first local allocated. Otherwise, it is the offset to the BEGINNING
of the first local allocated. */
extern int m68hc11_sp_correction;
#define STARTING_FRAME_OFFSET m68hc11_sp_correction
/* Offset of first parameter from the argument pointer register value. */
#define FIRST_PARM_OFFSET(FNDECL) 2
/* A C expression whose value is RTL representing the location of the
incoming return address at the beginning of any function, before the
prologue. This RTL is either a REG, indicating that the return
value is saved in REG, or a MEM representing a location in
the stack.
Before the prologue, RA is at 0(sp). */
#define INCOMING_RETURN_ADDR_RTX \
gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
/* Before the prologue, the top of the frame is at 2(sp). */
#define INCOMING_FRAME_SP_OFFSET 2
/* Define this if functions should assume that stack space has been
allocated for arguments even when their values are passed in
registers.
The value of this macro is the size, in bytes, of the area reserved for
arguments passed in registers.
This space can either be allocated by the caller or be a part of the
machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE'
says which. */
/* #define REG_PARM_STACK_SPACE(FNDECL) 2 */
/* Define this macro if REG_PARM_STACK_SPACE is defined but stack
parameters don't skip the area specified by REG_PARM_STACK_SPACE.
Normally, when a parameter is not passed in registers, it is placed on
the stack beyond the REG_PARM_STACK_SPACE area. Defining this macro
suppresses this behavior and causes the parameter to be passed on the
stack in its natural location. */
/* #define STACK_PARMS_IN_REG_PARM_AREA */
/* Register to use for pushing function arguments. */
#define STACK_POINTER_REGNUM HARD_SP_REGNUM
/* Base register for access to local variables of the function. */
#define FRAME_POINTER_REGNUM SOFT_FP_REGNUM
#define HARD_FRAME_POINTER_REGNUM HARD_FP_REGNUM
/* Base register for access to arguments of the function. */
#define ARG_POINTER_REGNUM SOFT_AP_REGNUM
/* Register in which static-chain is passed to a function. */
#define STATIC_CHAIN_REGNUM SOFT_REG_FIRST
/* Definitions for register eliminations.
This is an array of structures. Each structure initializes one pair
of eliminable registers. The "from" register number is given first,
followed by "to". Eliminations of the same "from" register are listed
in order of preference.
We have two registers that are eliminated on the 6811. The psuedo arg
pointer and pseudo frame pointer registers can always be eliminated;
they are replaced with either the stack or the real frame pointer. */
#define ELIMINABLE_REGS \
{{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
{FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
/* Value should be nonzero if functions must have frame pointers.
Zero means the frame pointer need not be set up (and parms may be
accessed via the stack pointer) in functions that seem suitable.
This is computed in `reload', in reload1.c. */
#define FRAME_POINTER_REQUIRED 0
/* Given FROM and TO register numbers, say whether this elimination is allowed.
Frame pointer elimination is automatically handled.
All other eliminations are valid. */
#define CAN_ELIMINATE(FROM, TO) \
((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
? ! frame_pointer_needed \
: 1)
/* Define the offset between two registers, one to be eliminated, and the other
its replacement, at the start of a routine. */
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
{ OFFSET = m68hc11_initial_elimination_offset (FROM, TO); }
/* LONGJMP_RESTORE_FROM_STACK */
/* Passing Function Arguments on the Stack. */
/* When a prototype says `char' or `short', really pass an `int'. */
/* #define PROMOTE_PROTOTYPES */
/* If we generate an insn to push BYTES bytes, this says how many the
stack pointer really advances by. No rounding or alignment needed
for MC6811. */
#define PUSH_ROUNDING(BYTES) (BYTES)
/* Value is 1 if returning from a function call automatically pops the
arguments described by the number-of-args field in the call. FUNTYPE is
the data type of the function (as a tree), or for a library call it is
an identifier node for the subroutine name.
The standard MC6811 call, with arg count word, includes popping the
args as part of the call template. */
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
/* Nonzero if type TYPE should be returned in memory.
Blocks and data types largers than 4 bytes cannot be returned
in the register (D + X = 4). */
#define RETURN_IN_MEMORY(TYPE) \
((TYPE_MODE (TYPE) == BLKmode) \
? (int_size_in_bytes (TYPE) > 4) \
: (GET_MODE_SIZE (TYPE_MODE (TYPE)) > 4))
/* Passing Arguments in Registers. */
/* Define a data type for recording info about an argument list
during the scan of that argument list. This data type should
hold all necessary information about the function itself
and about the args processed so far, enough to enable macros
such as FUNCTION_ARG to determine where the next arg should go. */
typedef struct m68hc11_args
{
int words;
int nregs;
} CUMULATIVE_ARGS;
/* A C expression that indicates when an argument must be passed by reference.
If nonzero for an argument, a copy of that argument is made in memory and a
pointer to the argument is passed instead of the argument itself.
The pointer is passed in whatever way is appropriate for passing a pointer
to that type.
64-bit numbers are passed by reference. */
#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
m68hc11_function_arg_pass_by_reference (& (CUM), (MODE), (TYPE), (NAMED))
/* If defined, a C expression which determines whether, and in which direction,
to pad out an argument with extra space. The value should be of type
`enum direction': either `upward' to pad above the argument,
`downward' to pad below, or `none' to inhibit padding.
Structures are stored left shifted in their argument slot. */
#define FUNCTION_ARG_PADDING(MODE, TYPE) \
m68hc11_function_arg_padding ((MODE), (TYPE))
/* A C expression that indicates when it is the called function's
responsibility to make a copy of arguments passed by invisible
reference. Normally, the caller makes a copy and passes the
address of the copy to the routine being called. When
FUNCTION_ARG_CALLEE_COPIES is defined and is nonzero, the caller
does not make a copy. Instead, it passes a pointer to the "live"
value. The called function must not modify this value. If it can
be determined that the value won't be modified, it need not make a
copy; otherwise a copy must be made. */
#define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
((NAMED) && FUNCTION_ARG_PASS_BY_REFERENCE (CUM, MODE, TYPE, NAMED))
/* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a
function whose data type is FNTYPE. For a library call, FNTYPE is 0. */
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
(m68hc11_init_cumulative_args (&CUM, FNTYPE, LIBNAME))
/* Update the data in CUM to advance over an argument of mode MODE and data
type TYPE. (TYPE is null for libcalls where that information may not be
available.) */
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
(m68hc11_function_arg_advance (&CUM, MODE, TYPE, NAMED))
/* Define where to put the arguments to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis). */
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
(m68hc11_function_arg (&CUM, MODE, TYPE, NAMED))
/* Define the profitability of saving registers around calls.
Disable this because the saving instructions generated by
caller-save need a reload and the way it is implemented,
it forbids all spill registers at that point. Enabling
caller saving results in spill failure. */
#define CALLER_SAVE_PROFITABLE(REFS,CALLS) 0
/* Implement `va_arg'. */
#define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
m68hc11_expand_builtin_va_start (stdarg, valist, nextarg)
#define EXPAND_BUILTIN_VA_ARG(valist, type) \
m68hc11_va_arg (valist, type)
#define FUNCTION_EPILOGUE(FILE, SIZE) m68hc11_function_epilogue(FILE, SIZE)
/* For an arg passed partly in registers and partly in memory,
this is the number of registers used.
For args passed entirely in registers or entirely in memory, zero.
Passing an arg partly in register and memory does not work at all.
Don't do that. */
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) (0)
/* 1 if N is a possible register number for function argument passing.
D is for 16-bit values, X is for 32-bit (X+D). */
#define FUNCTION_ARG_REGNO_P(N) \
(((N) == HARD_D_REGNUM) || ((N) == HARD_X_REGNUM))
/* All return values are in the D or X+D registers:
- 8 and 16-bit values are returned in D.
BLKmode are passed in D as pointer.
- 32-bit values are returned in X + D.
The high part is passed in X and the low part in D.
For GCC, the register number must be HARD_X_REGNUM. */
#define FUNCTION_VALUE(VALTYPE, FUNC) \
gen_rtx (REG, TYPE_MODE (VALTYPE), \
((TYPE_MODE (VALTYPE) == BLKmode \
|| GET_MODE_SIZE (TYPE_MODE (VALTYPE)) <= 2) \
? HARD_D_REGNUM : HARD_X_REGNUM))
#define LIBCALL_VALUE(MODE) \
gen_rtx (REG, MODE, \
(((MODE) == BLKmode || GET_MODE_SIZE (MODE) <= 2) \
? HARD_D_REGNUM : HARD_X_REGNUM))
/* 1 if N is a possible register number for a function value. */
#define FUNCTION_VALUE_REGNO_P(N) \
((N) == HARD_D_REGNUM || (N) == HARD_X_REGNUM)
/* Register in which address to store a structure value is passed to a
function. */
#define STRUCT_VALUE_REGNUM HARD_D_REGNUM
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. The value is tested only in functions
that have frame pointers. No definition is equivalent to always zero. */
#define EXIT_IGNORE_STACK 0
/* Generating Code for Profiling. */
/* Output assembler code to FILE to increment profiler label # LABELNO
for profiling a function entry. */
#define FUNCTION_PROFILER(FILE, LABELNO) \
asm_fprintf (FILE, "\tldy LP%d\n\tjsr mcount\n", (LABELNO))
/* Output assembler code to FILE to initialize this source file's
basic block profiling info, if that has not already been done. */
#define FUNCTION_BLOCK_PROFILER(FILE, BLOCK_OR_LABEL) \
m68hc11_function_block_profiler(FILE, BLOCK_OR_LABEL)
/* Output assembler code to FILE to increment the counter for
the BLOCKNO'th basic block in this source file. */
#define BLOCK_PROFILER(FILE, BLOCKNO) \
m68hc11_block_profiler(FILE, BLOCKNO)
/* Output assembler code to FILE to indicate return from
a function during basic block profiling. */
#define FUNCTION_BLOCK_PROFILER_EXIT(FILE) \
asm_fprintf (FILE, "\tjsr %U__bb_trace_ret\n");
/* Save all registers which may be clobbered by a function call.
MACHINE_STATE_SAVE and MACHINE_STATE_RESTORE are target-code macros,
used in libgcc2.c. They may not refer to TARGET_* macros !!!
We don't need to save the CCR nor the soft registers because
they will be saved by gcc. */
#define MACHINE_STATE_SAVE(id) \
{ \
asm ("pshy"); \
asm ("pshx"); \
asm ("psha"); \
asm ("pshb"); \
}
#define MACHINE_STATE_RESTORE(id) \
{ \
asm ("pulb"); \
asm ("pula"); \
asm ("pulx"); \
asm ("puly"); \
}
/* Output assembler code for a block containing the constant parts
of a trampoline, leaving space for the variable parts. */
#define TRAMPOLINE_TEMPLATE(FILE) { \
fprintf (FILE, "\t.bogus\t\t; TRAMPOLINE_TEMPLATE unimplemented\n"); }
/* Length in units of the trampoline for entering a nested function. */
#define TRAMPOLINE_SIZE 0
/* A C statement to initialize the variable parts of a trampoline.
ADDR is an RTX for the address of the trampoline; FNADDR is an
RTX for the address of the nested function; STATIC_CHAIN is an
RTX for the static chain value that should be passed to the
function when it is called. */
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) { \
}
/* If defined, a C expression whose value is nonzero if IDENTIFIER
with arguments ARGS is a valid machine specific attribute for DECL.
The attributes in ATTRIBUTES have previously been assigned to DECL. */
#define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, NAME, ARGS) \
(m68hc11_valid_decl_attribute_p (DECL, ATTRIBUTES, NAME, ARGS))
/* If defined, a C expression whose value is nonzero if IDENTIFIER
with arguments ARGS is a valid machine specific attribute for TYPE.
The attributes in ATTRIBUTES have previously been assigned to TYPE. */
#define VALID_MACHINE_TYPE_ATTRIBUTE(TYPE, ATTRIBUTES, NAME, ARGS) \
(m68hc11_valid_type_attribute_p (TYPE, ATTRIBUTES, NAME, ARGS))
/* If defined, a C expression whose value is zero if the attributes on
TYPE1 and TYPE2 are incompatible, one if they are compatible, and
two if they are nearly compatible (which causes a warning to be
generated). */
#define COMP_TYPE_ATTRIBUTES(TYPE1, TYPE2) \
(m68hc11_comp_type_attributes (TYPE1, TYPE2))
/* If defined, a C statement that assigns default attributes to newly
defined TYPE. */
#define SET_DEFAULT_TYPE_ATTRIBUTES(TYPE) \
(m68hc11_set_default_type_attributes (TYPE))
/* Define this macro if references to a symbol must be treated
differently depending on something about the variable or function
named by the symbol (such as what section it is in).
For the 68HC11, we want to recognize trap handlers so that we
handle calls to traps in a special manner (by issuing the trap).
This information is stored in SYMBOL_REF_FLAG. */
#define ENCODE_SECTION_INFO(DECL) m68hc11_encode_section_info (DECL)
/* Override what GCC does for section info to let us recognize traps. */
#define REDO_SECTION_INFO_P(DECL) 1
/* `INIT_TARGET_OPTABS'
Define this macro as a C statement that declares additional library
routines renames existing ones. `init_optabs' calls this macro
after initializing all the normal library routines.
Overrides the memcpy */
#define INIT_TARGET_OPTABS \
do \
{ \
memcpy_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__memcpy"); \
memcmp_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__memcmp"); \
memset_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__memset"); \
} \
while (0)
/* Addressing modes, and classification of registers for them. */
/* The 68HC12 has all the post/pre increment/decrement modes. */
#define HAVE_POST_INCREMENT (TARGET_M6812 && TARGET_AUTO_INC_DEC)
#define HAVE_PRE_INCREMENT (TARGET_M6812 && TARGET_AUTO_INC_DEC)
#define HAVE_POST_DECREMENT (TARGET_M6812 && TARGET_AUTO_INC_DEC)
#define HAVE_PRE_DECREMENT (TARGET_M6812 && TARGET_AUTO_INC_DEC)
/* The class value for base registers. This depends on the target:
A_REGS for 68HC11 and A_OR_SP_REGS for 68HC12. The class value
is stored at init time. */
extern enum reg_class m68hc11_base_reg_class;
#define BASE_REG_CLASS m68hc11_base_reg_class
/* The class value for index registers. This is NO_REGS for 68HC11. */
extern enum reg_class m68hc11_index_reg_class;
#define INDEX_REG_CLASS m68hc11_index_reg_class
/* These assume that REGNO is a hard or pseudo reg number. They give nonzero
only if REGNO is a hard reg of the suitable class or a pseudo reg currently
allocated to a suitable hard reg. Since they use reg_renumber, they are
safe only once reg_renumber has been allocated, which happens in
local-alloc.c. */
/* Internal macro, return 1 if REGNO is a valid base register. */
#if GCC_VERSION == 2095
# define REG_VALID_P(REGNO) ((REGNO) >= 0)
#else
# define REG_VALID_P(REGNO) (1) /* ? */
#endif
extern unsigned char m68hc11_reg_valid_for_base[FIRST_PSEUDO_REGISTER];
#define REG_VALID_FOR_BASE_P(REGNO) \
(REG_VALID_P (REGNO) && (REGNO) < FIRST_PSEUDO_REGISTER \
&& m68hc11_reg_valid_for_base[REGNO])
/* Internal macro, return 1 if REGNO is a valid index register. */
extern unsigned char m68hc11_reg_valid_for_index[FIRST_PSEUDO_REGISTER];
#define REG_VALID_FOR_INDEX_P(REGNO) \
(REG_VALID_P (REGNO) >= 0 && (REGNO) < FIRST_PSEUDO_REGISTER \
&& m68hc11_reg_valid_for_index[REGNO])
/* Internal macro, the nonstrict definition for REGNO_OK_FOR_BASE_P. */
#define REGNO_OK_FOR_BASE_NONSTRICT_P(REGNO) \
((REGNO) >= FIRST_PSEUDO_REGISTER \
|| REG_VALID_FOR_BASE_P (REGNO) \
|| (REGNO) == FRAME_POINTER_REGNUM \
|| (REGNO) == HARD_FRAME_POINTER_REGNUM \
|| (REGNO) == ARG_POINTER_REGNUM \
|| (reg_renumber && REG_VALID_FOR_BASE_P (reg_renumber[REGNO])))
/* Internal macro, the nonstrict definition for REGNO_OK_FOR_INDEX_P. */
#define REGNO_OK_FOR_INDEX_NONSTRICT_P(REGNO) \
(TARGET_M6812 \
&& ((REGNO) >= FIRST_PSEUDO_REGISTER \
|| REG_VALID_FOR_INDEX_P (REGNO) \
|| (reg_renumber && REG_VALID_FOR_INDEX_P (reg_renumber[REGNO]))))
/* Internal macro, the strict definition for REGNO_OK_FOR_BASE_P. */
#define REGNO_OK_FOR_BASE_STRICT_P(REGNO) \
((REGNO) < FIRST_PSEUDO_REGISTER ? REG_VALID_FOR_BASE_P (REGNO) \
: (reg_renumber && REG_VALID_FOR_BASE_P (reg_renumber[REGNO])))
/* Internal macro, the strict definition for REGNO_OK_FOR_INDEX_P. */
#define REGNO_OK_FOR_INDEX_STRICT_P(REGNO) \
(TARGET_M6812 \
&& ((REGNO) < FIRST_PSEUDO_REGISTER ? REG_VALID_FOR_INDEX_P (REGNO) \
: (reg_renumber && REG_VALID_FOR_INDEX_P (reg_renumber[REGNO]))))
#define REGNO_OK_FOR_BASE_P2(REGNO,STRICT) \
((STRICT) ? (REGNO_OK_FOR_BASE_STRICT_P (REGNO)) \
: (REGNO_OK_FOR_BASE_NONSTRICT_P (REGNO)))
#define REGNO_OK_FOR_INDEX_P2(REGNO,STRICT) \
((STRICT) ? (REGNO_OK_FOR_INDEX_STRICT_P (REGNO)) \
: (REGNO_OK_FOR_INDEX_NONSTRICT_P (REGNO)))
#define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_BASE_STRICT_P (REGNO)
#define REGNO_OK_FOR_INDEX_P(REGNO) REGNO_OK_FOR_INDEX_STRICT_P (REGNO)
#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_STRICT_P (REGNO (X))
#define REG_OK_FOR_BASE_NONSTRICT_P(X) REGNO_OK_FOR_BASE_NONSTRICT_P (REGNO (X))
#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_STRICT_P (REGNO (X))
#define REG_OK_FOR_INDEX_NONSTRICT_P(X) REGNO_OK_FOR_INDEX_NONSTRICT_P (REGNO (X))
/* see PUSH_POP_ADDRESS_P() below for an explanation of this. */
#define IS_STACK_PUSH(operand) \
((GET_CODE (operand) == MEM) \
&& (GET_CODE (XEXP (operand, 0)) == PRE_DEC) \
&& (SP_REG_P (XEXP (XEXP (operand, 0), 0))))
#define IS_STACK_POP(operand) \
((GET_CODE (operand) == MEM) \
&& (GET_CODE (XEXP (operand, 0)) == POST_INC) \
&& (SP_REG_P (XEXP (XEXP (operand, 0), 0))))
/* 1 if X is an rtx for a constant that is a valid address. */
#define CONSTANT_ADDRESS_P(X) (CONSTANT_P (X))
/* Maximum number of registers that can appear in a valid memory address */
#define MAX_REGS_PER_ADDRESS 2
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
valid memory address for an instruction. The MODE argument is the
machine mode for the MEM expression that wants to use this address. */
/*--------------------------------------------------------------
Valid addresses are either direct or indirect (MEM) versions
of the following forms:
constant N
register ,X
indexed N,X
--------------------------------------------------------------*/
/* The range of index that is allowed by indirect addressing. */
#define VALID_MIN_OFFSET m68hc11_min_offset
#define VALID_MAX_OFFSET m68hc11_max_offset
/* The offset values which are allowed by the n,x and n,y addressing modes.
Take into account the size of the mode because we may have to add
a mode offset to access the lowest part of the data.
(For example, for an SImode, the last valid offset is 252.) */
#define VALID_CONSTANT_OFFSET_P(X,MODE) \
((GET_CODE (X) == CONST_INT) && \
((INTVAL (X) >= VALID_MIN_OFFSET) \
&& ((INTVAL (X) <= VALID_MAX_OFFSET \
- (HOST_WIDE_INT) (GET_MODE_SIZE (MODE) + 1)))))
/* This is included to allow stack push/pop operations. Special hacks in the
md and m6811.c files exist to support this. */
#define PUSH_POP_ADDRESS_P(X) \
(((GET_CODE (X) == PRE_DEC) || (GET_CODE (X) == POST_INC)) \
&& SP_REG_P (XEXP (X, 0)))
/* Go to ADDR if X is a valid address. */
#ifndef REG_OK_STRICT
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ \
if (m68hc11_go_if_legitimate_address ((X), (MODE), 0)) goto ADDR; \
}
#else
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ \
if (m68hc11_go_if_legitimate_address ((X), (MODE), 1)) goto ADDR; \
}
#endif
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx and check its
validity for a certain class. We have two alternate definitions for each
of them. The usual definition accepts all pseudo regs; the other rejects
them unless they have been allocated suitable hard regs. The symbol
REG_OK_STRICT causes the latter definition to be used.
Most source files want to accept pseudo regs in the hope that they will
get allocated to the class that the insn wants them to be in. Source files
for reload pass need to be strict. After reload, it makes no difference,
since pseudo regs have been eliminated by then. */
#ifndef REG_OK_STRICT
/* Nonzero if X is a hard reg that can be used as a base reg. */
#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P(X)
/* Nonzero if X is a hard reg that can be used as an index. */
#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P(X)
#else
#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P(X)
#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P(X)
#endif
/* Try machine-dependent ways of modifying an illegitimate address
to be legitimate. If we find one, return the new, valid address.
This macro is used in only one place: `memory_address' in explow.c.
OLDX is the address as it was before break_out_memory_refs was called.
In some cases it is useful to look at this to decide what needs to be done.
MODE and WIN are passed so that this macro can use
GO_IF_LEGITIMATE_ADDRESS.
It is always safe for this macro to do nothing.
It exists to recognize opportunities to optimize the output. */
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
{ rtx operand = (X); \
if (m68hc11_legitimize_address (&operand, (OLDX), (MODE))) \
{ \
(X) = operand; \
GO_IF_LEGITIMATE_ADDRESS (MODE,X,WIN); \
} \
}
/* Go to LABEL if ADDR (a legitimate address expression)
has an effect that depends on the machine mode it is used for. */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
{ \
if (GET_CODE (ADDR) == PRE_DEC || GET_CODE (ADDR) == POST_DEC \
|| GET_CODE (ADDR) == PRE_INC || GET_CODE (ADDR) == POST_INC) \
goto LABEL; \
}
/* Nonzero if the constant value X is a legitimate general operand.
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
#define LEGITIMATE_CONSTANT_P(X) 1
/* Tell final.c how to eliminate redundant test instructions. */
#define NOTICE_UPDATE_CC(EXP, INSN) \
m68hc11_notice_update_cc ((EXP), (INSN))
/* Compute the cost of computing a constant rtl expression RTX whose rtx-code
is CODE. The body of this macro is a portion of a switch statement. If
the code is computed here, return it with a return statement. Otherwise,
break from the switch. */
#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
case CONST_INT: \
if (RTX == const0_rtx) return 0; \
case CONST: \
return 0; \
case LABEL_REF: \
case SYMBOL_REF: \
return 1; \
case CONST_DOUBLE: \
return 0;
#define DEFAULT_RTX_COSTS(X,CODE,OUTER_CODE) \
return m68hc11_rtx_costs (X, CODE, OUTER_CODE);
/* An expression giving the cost of an addressing mode that contains
ADDRESS. If not defined, the cost is computed from the ADDRESS
expression and the `CONST_COSTS' values. */
#define ADDRESS_COST(RTX) m68hc11_address_cost (RTX)
/* Move costs between classes of registers */
#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
(m68hc11_register_move_cost (CLASS1, CLASS2))
/* Move cost between register and memory.
- Move to a 16-bit register is reasonable,
- Move to a soft register can be expensive. */
#define MEMORY_MOVE_COST(MODE,CLASS,IN) \
m68hc11_memory_move_cost ((MODE),(CLASS),(IN))
/* A C expression for the cost of a branch instruction. A value of 1
is the default; other values are interpreted relative to that.
Pretend branches are cheap because GCC generates sub-optimal code
for the default value. */
#define BRANCH_COST 0
/* Nonzero if access to memory by bytes is slow and undesirable. */
#define SLOW_BYTE_ACCESS 0
/* It is as good to call a constant function address as to call an address
kept in a register. */
#define NO_FUNCTION_CSE
/* Try a machine-dependent way of reloading an illegitimate address
operand. If we find one, push the reload and jump to WIN. This
macro is used in only one place: `find_reloads_address' in reload.c.
For M68HC11, we handle large displacements of a base register
by splitting the addend accors an addhi3 insn.
For M68HC12, the 64K offset range is available.
*/
#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
do { \
/* We must recognize output that we have already generated ourselves. */ \
if (GET_CODE (X) == PLUS \
&& GET_CODE (XEXP (X, 0)) == PLUS \
&& GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
&& GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
&& GET_CODE (XEXP (X, 1)) == CONST_INT) \
{ \
push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \
BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
OPNUM, TYPE); \
goto WIN; \
} \
if (GET_CODE (X) == PLUS \
&& GET_CODE (XEXP (X, 0)) == REG \
&& GET_CODE (XEXP (X, 1)) == CONST_INT \
&& !VALID_CONSTANT_OFFSET_P (XEXP (X, 1), MODE)) \
{ \
HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
HOST_WIDE_INT low, high; \
high = val & (~0x0FF); \
low = val & 0x00FF; \
if (low >= 256-15) { high += 16; low -= 16; } \
/* Reload the high part into a base reg; leave the low part \
in the mem directly. */ \
\
X = gen_rtx_PLUS (Pmode, \
gen_rtx_PLUS (Pmode, XEXP (X, 0), \
GEN_INT (high)), \
GEN_INT (low)); \
\
push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \
BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
OPNUM, TYPE); \
goto WIN; \
} \
} while (0)
/* Defining the Output Assembler Language. */
/* A default list of other sections which we might be "in" at any given
time. For targets that use additional sections (e.g. .tdesc) you
should override this definition in the target-specific file which
includes this file. */
/* Output before read-only data. */
#define TEXT_SECTION_ASM_OP ("\t.sect\t.text")
/* Output before writable data. */
#define DATA_SECTION_ASM_OP ("\t.sect\t.data")
/* Output before uninitialized data. */
#define BSS_SECTION_ASM_OP ("\t.sect\t.bss")
/* This is how to begin an assembly language file. Most svr4 assemblers want
at least a .file directive to come first, and some want to see a .version
directive come right after that. Here we just establish a default
which generates only the .file directive. If you need a .version
directive for any specific target, you should override this definition
in the target-specific file which includes this one. */
#undef ASM_FILE_START
#define ASM_FILE_START(FILE) \
m68hc11_asm_file_start ((FILE), main_input_filename)
/* Comment character */
#define ASM_COMMENT_START ";"
/* Output to assembler file text saying following lines
may contain character constants, extra white space, comments, etc. */
#define ASM_APP_ON "; Begin inline assembler code\n#APP\n"
/* Output to assembler file text saying following lines
no longer contain unusual constructs. */
#define ASM_APP_OFF "; End of inline assembler code\n#NO_APP\n"
/* Output #ident as a .ident. */
/* This is how to output a `long double' extended real constant. */
#define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
ASM_OUTPUT_DOUBLE(FILE,VALUE)
/* This is how to output an assembler line defining a `double' constant. */
#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
do { long l[2]; \
REAL_VALUE_TO_TARGET_DOUBLE (VALUE, l); \
fprintf (FILE, "\t%s\t0x%lx,0x%lx\n", ASM_LONG, l[0], l[1]); \
} while (0)
/* This is how to output an assembler line defining a `float' constant. */
#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
do { long l; \
REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
fprintf ((FILE), "\t%s\t0x%lx\n", ASM_LONG, l); \
} while (0)
/* This is how to output an assembler line defining a `long' constant. */
#define ASM_OUTPUT_INT(FILE,VALUE) \
( fprintf (FILE, "\t%s\t", ASM_LONG), \
output_addr_const (FILE, (VALUE)), \
fprintf (FILE, "\n"))
/* Likewise for `char' and `short' constants. */
#define ASM_OUTPUT_SHORT(FILE,VALUE) \
( fprintf (FILE, "\t%s\t", ASM_SHORT), \
output_addr_const (FILE, (VALUE)), \
fprintf (FILE, "\n"))
/* This is how to output an assembler line for a numeric constant byte. */
#define ASM_OUTPUT_CHAR(FILE,VALUE) \
( fprintf (FILE, "\t%s\t", ASM_BYTE_OP), \
output_addr_const (FILE, (VALUE)), \
putc ('\n', FILE))
#define ASM_OUTPUT_BYTE(FILE,VALUE) \
fprintf ((FILE), "%s 0x%x\n", ASM_BYTE_OP, (VALUE))
/* Define the parentheses used to group arithmetic operations in assembler
* code.
*/
#define ASM_OPEN_PAREN "("
#define ASM_CLOSE_PAREN ")"
/* This is how to output the definition of a user-level label named NAME,
such as the label on a static function or variable NAME. */
#define ASM_OUTPUT_LABEL(FILE,NAME) \
do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
/* This is how to output a command to make the user-level label named NAME
defined for reference from other files. */
#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
do { fprintf (FILE, "%s ", GLOBAL_ASM_OP); \
assemble_name (FILE, NAME); \
fputs ("\n", FILE);} while (0)
/* output external reference */
#define ASM_OUTPUT_EXTERNAL(FILE,DECL,NAME) \
{fputs ("\t; extern\t", FILE); \
assemble_name (FILE, NAME); \
fputs ("\n", FILE);}
/* Store in OUTPUT a string (made with alloca) containing
an assembler-name for a local static variable named NAME.
LABELNO is an integer which is different for each call. */
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
/* How to refer to registers in assembler output. This sequence is indexed
by compiler's hard-register-number (see above). */
#define REGISTER_NAMES \
{ "x", "d", "y", "sp", "pc", "a", "b", "ccr", "z", \
"*_.frame", "*_.tmp", "*_.z", "*_.xy", "*fake clobber", \
SOFT_REG_NAMES, "*sframe", "*ap"}
/* Output a float value (represented as a C double) as an immediate operand.
This macro is a 68k-specific macro. */
#define ASM_OUTPUT_FLOAT_OPERAND(CODE,FILE,VALUE) \
do { \
long l; \
REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
asm_fprintf ((FILE), "%I0x%lx", l); \
} while (0)
/* Output a double value (represented as a C double) as an immediate operand.
This macro is a 68k-specific macro. */
#define ASM_OUTPUT_DOUBLE_OPERAND(FILE,VALUE) \
do { char dstr[30]; \
REAL_VALUE_TO_DECIMAL (VALUE, "%.20g", dstr); \
asm_fprintf (FILE, "%I0r%s", dstr); \
} while (0)
/* Note, long double immediate operands are not actually
generated by m68k.md. */
#define ASM_OUTPUT_LONG_DOUBLE_OPERAND(FILE,VALUE) \
do { char dstr[30]; \
REAL_VALUE_TO_DECIMAL (VALUE, "%.20g", dstr); \
asm_fprintf (FILE, "%I0r%s", dstr); \
} while (0)
/* Print an instruction operand X on file FILE. CODE is the code from the
%-spec for printing this operand. If `%z3' was used to print operand
3, then CODE is 'z'. */
#define PRINT_OPERAND(FILE, X, CODE) \
print_operand (FILE, X, CODE)
/* Print a memory operand whose address is X, on file FILE. */
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
print_operand_address (FILE, ADDR)
/* This is how to output an insn to push/pop a register on the stack.
It need not be very fast code.
Don't define because we don't know how to handle that with
the STATIC_CHAIN_REGNUM (soft register). Saving the static
chain must be made inside FUNCTION_PROFILER. */
#undef ASM_OUTPUT_REG_PUSH
#undef ASM_OUTPUT_REG_POP
/* This is how to output an element of a case-vector that is relative. */
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
asm_fprintf (FILE, "\t%s\tL%d-L%d\n", ASM_SHORT, VALUE, REL)
/* This is how to output an element of a case-vector that is absolute. */
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
asm_fprintf (FILE, "\t%s\t.L%d\n", ASM_SHORT, VALUE)
/* This is how to output an assembler line that says to advance the
location counter to a multiple of 2**LOG bytes. */
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
do { \
if ((LOG) > 1) \
asm_fprintf ((FILE), "\t%s\n", ALIGN_ASM_OP); \
} while (0)
/* Assembler Commands for Exception Regions. */
/* Default values provided by GCC should be ok. Assumming that DWARF-2
frame unwind info is ok for this platform. */
/* How to renumber registers for dbx and gdb. */
#define DBX_REGISTER_NUMBER(REGNO) \
((REGNO))
#undef PREFERRED_DEBUGGING_TYPE
#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
/* The prefix for local labels. You should be able to define this as
an empty string, or any arbitrary string (such as ".", ".L%", etc)
without having to make any other changes to account for the specific
definition. Note it is a string literal, not interpreted by printf
and friends. */
#define LOCAL_LABEL_PREFIX "."
/* The prefix for immediate operands. */
#define IMMEDIATE_PREFIX "#"
#define GLOBAL_ASM_OP ".globl"
#define ASM_LONG ".long"
#define ASM_SHORT ".word"
/* Miscellaneous Parameters. */
/* Define the codes that are matched by predicates in m68hc11.c. */
#define PREDICATE_CODES \
{"stack_register_operand", {SUBREG, REG}}, \
{"d_register_operand", {SUBREG, REG}}, \
{"hard_addr_reg_operand", {SUBREG, REG}}, \
{"hard_reg_operand", {SUBREG, REG}}, \
{"m68hc11_logical_operator", {AND, IOR, XOR}}, \
{"m68hc11_arith_operator", {AND, IOR, XOR, PLUS, MINUS, \
ASHIFT, ASHIFTRT, LSHIFTRT, \
ROTATE, ROTATERT }}, \
{"m68hc11_non_shift_operator", {AND, IOR, XOR, PLUS, MINUS}}, \
{"m68hc11_unary_operator", {NEG, NOT, SIGN_EXTEND, ZERO_EXTEND}}, \
{"non_push_operand", {SUBREG, REG, MEM}}, \
{"reg_or_some_mem_operand", {SUBREG, REG, MEM}}, \
{"tst_operand", {SUBREG, REG, MEM}}, \
{"cmp_operand", {SUBREG, REG, MEM, SYMBOL_REF, LABEL_REF, \
CONST_INT, CONST_DOUBLE}},
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction. */
#define CASE_VECTOR_MODE Pmode
/* Specify the tree operation to be used to convert reals to integers. */
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
/* This flag, if defined, says the same insns that convert to a signed fixnum
also convert validly to an unsigned one. */
#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
/* This is the kind of divide that is easiest to do in the general case. */
#define EASY_DIV_EXPR TRUNC_DIV_EXPR
/* Max number of bytes we can move from memory to memory in one
reasonably fast instruction. */
#define MOVE_MAX 2
/* MOVE_RATIO is the number of move instructions that is better than a
block move. Make this small on 6811, since the code size grows very
large with each move. */
#define MOVE_RATIO 3
/* Define if shifts truncate the shift count which implies one can omit
a sign-extension or zero-extension of a shift count. */
#define SHIFT_COUNT_TRUNCATED 1
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
is done just by pretending it is already truncated. */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
/* Specify the machine mode that pointers have. After generation of rtl, the
compiler makes no further distinction between pointers and any other
objects of this machine mode. */
#define Pmode HImode
/* A function address in a call instruction is a byte address (for indexing
purposes) so give the MEM rtx a byte's mode. */
#define FUNCTION_MODE QImode
/* define SCCS_DIRECTIVE if SCCS directives should be ignored */
#define SCCS_DIRECTIVE 1
/* Allow $ in identifiers */
#define DOLLARS_IN_IDENTIFIERS 1
/* Machine-dependent reorg pass.
Specific optimizations are defined here:
- this pass changes the Z register into either X or Y
(it preserves X/Y previous values in a memory slot in page0).
When this pass is finished, the global variable
'z_replacement_completed' is set to 2. */
#define MACHINE_DEPENDENT_REORG(X) m68hc11_reorg (X)
extern int debug_m6811;
extern int z_replacement_completed;
extern int current_function_interrupt;
extern int current_function_trap;
#if GCC_VERSION == 2095
extern rtx_ptr iy_reg;
extern rtx_ptr iy_reg;
extern rtx_ptr d_reg;
extern rtx_ptr m68hc11_soft_tmp_reg;
extern rtx_ptr m68hc11_compare_op0;
extern rtx_ptr m68hc11_compare_op1;
extern long m68hc11_min_offset;
extern long m68hc11_max_offset;
#endif
This source diff could not be displayed because it is too large. You can view the blob instead.
/* Definitions of target machine for GNU compiler, for m68hc12.
Copyright (C) 1999, 2000 Free Software Foundation, Inc.
Contributed by Stephane Carrez (stcarrez@worldnet.fr).
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* Compile and assemble for a 68hc12 unless there is a -m68hc11 option. */
#define ASM_SPEC "%{m68hc11:-m68hc11}%{!m68hc11:-m68hc12}"
#define LIB_SPEC ""
#define CC1_SPEC ""
/* We need to tell the linker the target elf format. Just pass an
emulation option. This can be overriden by -Wl option of gcc. */
#define LINK_SPEC "%{m68hc11:-m m68hc11elf}%{!m68hc11:-m m68hc12elf}"
#define CPP_SPEC \
"%{mshort:-D__HAVE_SHORT_INT__ -D__INT__=16 -D__INT_MAX__=32767}\
%{!mshort:-D__INT__=32 -D__INT_MAX__=2147483647}\
%{m68hc11:-Dmc6811 -DMC6811 -Dmc68hc11}\
%{!m68hc11:-Dmc6812 -DMC6812 -Dmc68hc12}"
/* Default target_flags if no switches specified. */
#define TARGET_DEFAULT (MASK_M6812)
#define TARGET_M68HC12
#include "m68hc11/m68hc11.h"
RANLIB_FOR_TARGET = ` \
if [ -f $(objdir)/../binutils/ranlib ] ; then \
echo $(objdir)/../binutils/ranlib ; \
else \
if [ "$(host_canonical)" = "$(target)" ] ; then \
echo ranlib; \
else \
if [ -f $(bindir)/$(target_alias)-ranlib ] ; then \
echo $(bindir)/$(target_alias)-ranlib ; \
else \
t='$(program_transform_cross_name)'; echo ranlib | sed -e $$t ; \
fi; \
fi; \
fi`
T_CPPFLAGS = -DUSE_GAS
CROSS_LIBGCC1 = libgcc1-asm.a
LIB1ASMSRC = m68hc11/larith.asm
LIB1ASMFUNCS = _mulsi3 \
_mulqi3 _ashlsi3 _ashrsi3 _lshrsi3 \
_divmodhi4 _mulhi3 _mulhi32 \
_memcpy _memset _negsi2 _one_cmplsi2 \
_regs_min _regs_d1_8 _regs_d8_16 _regs_d17_32 \
_premain __exit _abort _cleanup \
_adddi3 _subdi3 _notdi2 \
_ashrhi3 _lshrhi3 _lshlhi3 _ashrqi3 _lshlqi3 _map_data _init_bss
TARGET_LIBGCC2_CFLAGS = -DUSE_GAS -DIN_GCC
# 32-bit div/mod from the mn10200 port. Prototypes have been added
# to avoid problems in passing 16/32-bit int (last param of udivmodsi4).
LIB2FUNCS_EXTRA = $(srcdir)/config/m68hc11/udivmodsi4.c \
$(srcdir)/config/m68hc11/divmod.c $(srcdir)/config/m68hc11/udivmod.c
# Don't compile with -g1 this reduces the size of some sections (.eh_frame).
LIBGCC2_DEBUG_CFLAGS =
LIBGCC2_CFLAGS = -Os $(LIBGCC2_INCLUDES) $(TARGET_LIBGCC2_CFLAGS) $(LIBGCC2_DEBUG_CFLAGS) $(GTHREAD_FLAGS) -DIN_LIBGCC2
MULTILIB_OPTIONS = m68hc11/m68hc12 mshort fshort-double
MULTILIB_DIRNAMES =
MULTILIB_MATCHES = m68hc11=m6811 m68hc12=m6812
MULTILIB_EXCEPTIONS = -mnoshort -mno68hc11
LIBGCC = stmp-multilib
INSTALL_LIBGCC = install-multilib
# We want fine grained libraries, so use the new code to build the
# floating point emulation libraries.
FPBIT = fp-bit.c
DPBIT = dp-bit.c
dp-bit.c: $(srcdir)/config/fp-bit.c
echo '#define SMALL_MACHINE' >> dp-bit.c
echo '#define CMPtype HItype' >> dp-bit.c
echo '#ifdef __LITTLE_ENDIAN__' > dp-bit.c
echo '#define FLOAT_BIT_ORDER_MISMATCH' >>dp-bit.c
echo '#endif' >> dp-bit.c
cat $(srcdir)/config/fp-bit.c >> dp-bit.c
fp-bit.c: $(srcdir)/config/fp-bit.c
echo '#define FLOAT' > fp-bit.c
echo '#define CMPtype HItype' >> fp-bit.c
echo '#define SMALL_MACHINE' >> fp-bit.c
echo '#ifdef __LITTLE_ENDIAN__' >> fp-bit.c
echo '#define FLOAT_BIT_ORDER_MISMATCH' >>fp-bit.c
echo '#endif' >> fp-bit.c
cat $(srcdir)/config/fp-bit.c >> fp-bit.c
CRT0_S = $(srcdir)/config/m68hc11/m68hc11-crt0.S
MCRT0_S= $(srcdir)/config/m68hc11/m68hc11-crt0.S
CRT0STUFF_T_CFLAGS =
# Assemble startup files.
$(T)crt1.o: $(CRT0_S) $(GCC_PASSES)
$(GCC_FOR_TARGET) $(MULTILIB_CFLAGS) -c -o $(T)crt1.o -x assembler-with-cpp $(CRT0_S)
EXTRA_MULTILIB_PARTS = crt1.o
/* Configuration for GNU C-compiler for Motorola 68HC11 and 68HC12.
Copyright (C) 1999, 2000 Free Software Foundation, Inc.
Contributed by Stephane Carrez (stcarrez@worldnet.fr)
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "tm.h"
#define inhibit_libc
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment