Commit 2ecfd709 by Zdenek Dvorak Committed by Jan Hubicka

basic-block.h (struct basic_block_def): New field loop_father.

	* basic-block.h (struct basic_block_def): New field loop_father.
	(BB_VISITED): New flag.
	(struct loop): New field pred, removed field shared.
	(struct loops): New field parray.
	(LOOP_EXITS_DOMS): Removed.
	(flow_loop_tree_node_add, flow_loop_tree_node_remove,
	flow_loop_nested_p, flow_bb_inside_loop_p, get_loop_body,
	dfs_enumerate_from, loop_preheader_edge, loop_latch_edge,
	add_bb_to_loop, remove_bb_from_loops, find_common_loop,
	verify_loop_structure): Declare.
	* cfg.c (entry_exit_blocks): Initialize loop_father field.
	* cfganal.c (dfs_enumerate_from): New function.
	* cfgloop.c (HEAVY_EDGE_RATIO): New constant.
	(flow_loop_entry_edges_find, flow_loop_exit_edges_find,
	flow_loop_nodes_find, flow_loop_level_compute, flow_loop_nested_p,
	flow_loop_dump, flow_loops_dump, flow_loops_free,
	flow_loop_tree_node_add, flow_loop_level_compute,
	flow_loops_level_compute, flow_loop_scan, flow_loops_update,
	flow_loop_outside_edge_p): Modified for new infrastructure.
	(make_forwarder_block, canonicalize_loop_headers, glb_enum_p,
	redirect_edge_with_latch_update, flow_loop_free): New static functions.
	(flow_loop_tree_node_remove, flow_bb_inside_loop_p,
	get_loop_body, add_bb_to_loop, remove_bb_from_loops,
	find_common_loop, verify_loop_structure, loop_latch_edge,
	loop_preheader_edge): New functions.
	(flow_loops_cfg_dump): Do not show dominators, as this information
	does not remain up to date long.
	(flow_loops_find): Store results in new format.
	* predict.c (propagate_freq, estimate_probability,
	estimate_loops_at_level, estimate_bb_frequencies): Use new loop
	infrastructure.

From-SVN: r54142
parent d6ee5ebf
Sat Jun 1 11:23:22 CEST 2002 Zdenek Dvorak <rakdver@atrey.karlin.mff.cuni.cz>
* basic-block.h (struct basic_block_def): New field loop_father.
(BB_VISITED): New flag.
(struct loop): New field pred, removed field shared.
(struct loops): New field parray.
(LOOP_EXITS_DOMS): Removed.
(flow_loop_tree_node_add, flow_loop_tree_node_remove,
flow_loop_nested_p, flow_bb_inside_loop_p, get_loop_body,
dfs_enumerate_from, loop_preheader_edge, loop_latch_edge,
add_bb_to_loop, remove_bb_from_loops, find_common_loop,
verify_loop_structure): Declare.
* cfg.c (entry_exit_blocks): Initialize loop_father field.
* cfganal.c (dfs_enumerate_from): New function.
* cfgloop.c (HEAVY_EDGE_RATIO): New constant.
(flow_loop_entry_edges_find, flow_loop_exit_edges_find,
flow_loop_nodes_find, flow_loop_level_compute, flow_loop_nested_p,
flow_loop_dump, flow_loops_dump, flow_loops_free,
flow_loop_tree_node_add, flow_loop_level_compute,
flow_loops_level_compute, flow_loop_scan, flow_loops_update,
flow_loop_outside_edge_p): Modified for new infrastructure.
(make_forwarder_block, canonicalize_loop_headers, glb_enum_p,
redirect_edge_with_latch_update, flow_loop_free): New static functions.
(flow_loop_tree_node_remove, flow_bb_inside_loop_p,
get_loop_body, add_bb_to_loop, remove_bb_from_loops,
find_common_loop, verify_loop_structure, loop_latch_edge,
loop_preheader_edge): New functions.
(flow_loops_cfg_dump): Do not show dominators, as this information
does not remain up to date long.
(flow_loops_find): Store results in new format.
* predict.c (propagate_freq, estimate_probability,
estimate_loops_at_level, estimate_bb_frequencies): Use new loop
infrastructure.
2002-06-01 Alan Lehotsky <apl@alum.mit.edu>
* except.c (nothrow_function_p): Walk epilogue delay list
......
......@@ -212,6 +212,9 @@ typedef struct basic_block_def {
/* The loop depth of this block. */
int loop_depth;
/* Outermost loop containing the block. */
struct loop *loop_father;
/* Expected number of executions: calculated in profile.c. */
gcov_type count;
......@@ -228,6 +231,7 @@ typedef struct basic_block_def {
#define BB_DIRTY 1
#define BB_NEW 2
#define BB_REACHABLE 4
#define BB_VISITED 8
/* Number of basic blocks in the current function. */
......@@ -403,6 +407,9 @@ struct loop
/* The loop nesting depth. */
int depth;
/* Superloops of the loop. */
struct loop **pred;
/* The height of the loop (enclosed loop levels) within the loop
hierarchy tree. */
int level;
......@@ -416,9 +423,6 @@ struct loop
/* Link to the next (sibling) loop. */
struct loop *next;
/* Non-zero if the loop shares a header with another loop. */
int shared;
/* Non-zero if the loop is invalid (e.g., contains setjmp.). */
int invalid;
......@@ -484,6 +488,11 @@ struct loops
will find the inner loops before their enclosing outer loops). */
struct loop *array;
/* The above array is unused in new loop infrastructure and is kept only for
purposes of the old loop optimizer. Instead we store just pointers to
loops here. */
struct loop **parray;
/* Pointer to root of loop heirachy tree. */
struct loop *tree_root;
......@@ -515,6 +524,8 @@ extern void flow_loop_dump PARAMS ((const struct loop *, FILE *,
void (*)(const struct loop *,
FILE *, int), int));
extern int flow_loop_scan PARAMS ((struct loops *, struct loop *, int));
extern void flow_loop_tree_node_add PARAMS ((struct loop *, struct loop *));
extern void flow_loop_tree_node_remove PARAMS ((struct loop *));
/* This structure maintains an edge list vector. */
struct edge_list
......@@ -613,8 +624,7 @@ enum update_life_extent
#define LOOP_ENTRY_EDGES 4 /* Find entry edges. */
#define LOOP_EXIT_EDGES 8 /* Find exit edges. */
#define LOOP_EDGES (LOOP_ENTRY_EDGES | LOOP_EXIT_EDGES)
#define LOOP_EXITS_DOMS 16 /* Find nodes that dom. all exits. */
#define LOOP_ALL 31 /* All of the above */
#define LOOP_ALL 15 /* All of the above */
extern void life_analysis PARAMS ((rtx, FILE *, int));
extern int update_life_info PARAMS ((sbitmap, enum update_life_extent,
......@@ -701,7 +711,24 @@ extern void free_aux_for_edges PARAMS ((void));
debugger, and it is declared extern so we don't get warnings about
it being unused. */
extern void verify_flow_info PARAMS ((void));
extern int flow_loop_outside_edge_p PARAMS ((const struct loop *, edge));
extern bool flow_loop_outside_edge_p PARAMS ((const struct loop *, edge));
extern bool flow_loop_nested_p PARAMS ((const struct loop *, const struct loop *));
extern bool flow_bb_inside_loop_p PARAMS ((const struct loop *, basic_block));
extern basic_block *get_loop_body PARAMS ((const struct loop *));
extern int dfs_enumerate_from PARAMS ((basic_block, int,
bool (*)(basic_block, void *),
basic_block *, int, void *));
extern edge loop_preheader_edge PARAMS ((struct loop *));
extern edge loop_latch_edge PARAMS ((struct loop *));
extern void add_bb_to_loop PARAMS ((basic_block, struct loop *));
extern void remove_bb_from_loops PARAMS ((basic_block));
extern struct loop * find_common_loop PARAMS ((struct loop *, struct loop *));
extern void verify_loop_structure PARAMS ((struct loops *, int));
#define VLS_EXPECT_PREHEADERS 1
#define VLS_EXPECT_SIMPLE_LATCHES 2
typedef struct conflict_graph_def *conflict_graph;
......
......@@ -100,6 +100,7 @@ struct basic_block_def entry_exit_blocks[2]
NULL, /* prev_bb */
EXIT_BLOCK_PTR, /* next_bb */
0, /* loop_depth */
NULL, /* loop_father */
0, /* count */
0, /* frequency */
0 /* flags */
......@@ -120,6 +121,7 @@ struct basic_block_def entry_exit_blocks[2]
ENTRY_BLOCK_PTR, /* prev_bb */
NULL, /* next_bb */
0, /* loop_depth */
NULL, /* loop_father */
0, /* count */
0, /* frequency */
0 /* flags */
......
......@@ -1103,3 +1103,54 @@ flow_dfs_compute_reverse_finish (data)
free (data->stack);
sbitmap_free (data->visited_blocks);
}
/* Performs dfs search from BB over vertices satisfying PREDICATE;
if REVERSE, go against direction of edges. Returns number of blocks
found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
int
dfs_enumerate_from (bb, reverse, predicate, rslt, rslt_max, data)
basic_block bb;
int reverse;
bool (*predicate) (basic_block, void *);
basic_block *rslt;
int rslt_max;
void *data;
{
basic_block *st, lbb;
int sp = 0, tv = 0;
st = xcalloc (rslt_max, sizeof (basic_block));
rslt[tv++] = st[sp++] = bb;
bb->flags |= BB_VISITED;
while (sp)
{
edge e;
lbb = st[--sp];
if (reverse)
{
for (e = lbb->pred; e; e = e->pred_next)
if (!(e->src->flags & BB_VISITED) && predicate (e->src, data))
{
if (tv == rslt_max)
abort ();
rslt[tv++] = st[sp++] = e->src;
e->src->flags |= BB_VISITED;
}
}
else
{
for (e = lbb->succ; e; e = e->succ_next)
if (!(e->dest->flags & BB_VISITED) && predicate (e->dest, data))
{
if (tv == rslt_max)
abort ();
rslt[tv++] = st[sp++] = e->dest;
e->dest->flags |= BB_VISITED;
}
}
}
free (st);
for (sp = 0; sp < tv; sp++)
rslt[sp]->flags &= ~BB_VISITED;
return tv;
}
......@@ -23,24 +23,28 @@ Software Foundation, 59 Temple Place - Suite 330, Boston, MA
#include "rtl.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "toplev.h"
/* Ratio of frequencies of edges so that one of more latch edges is
considered to belong to inner loop with same header. */
#define HEAVY_EDGE_RATIO 8
static void flow_loops_cfg_dump PARAMS ((const struct loops *,
FILE *));
static int flow_loop_nested_p PARAMS ((struct loop *,
struct loop *));
static int flow_loop_entry_edges_find PARAMS ((basic_block, const sbitmap,
edge **));
static int flow_loop_exit_edges_find PARAMS ((const sbitmap, edge **));
static int flow_loop_nodes_find PARAMS ((basic_block, basic_block,
sbitmap));
static void flow_loop_entry_edges_find PARAMS ((struct loop *));
static void flow_loop_exit_edges_find PARAMS ((struct loop *));
static int flow_loop_nodes_find PARAMS ((basic_block, struct loop *));
static void flow_loop_pre_header_scan PARAMS ((struct loop *));
static basic_block flow_loop_pre_header_find PARAMS ((basic_block,
const sbitmap *));
static void flow_loop_tree_node_add PARAMS ((struct loop *,
struct loop *));
static void flow_loops_tree_build PARAMS ((struct loops *));
static int flow_loop_level_compute PARAMS ((struct loop *, int));
static int flow_loop_level_compute PARAMS ((struct loop *));
static int flow_loops_level_compute PARAMS ((struct loops *));
static basic_block make_forwarder_block PARAMS ((basic_block, int, int,
edge, int));
static void canonicalize_loop_headers PARAMS ((void));
static bool glb_enum_p PARAMS ((basic_block, void *));
static void redirect_edge_with_latch_update PARAMS ((edge, basic_block));
static void flow_loop_free PARAMS ((struct loop *));
/* Dump loop related CFG information. */
......@@ -62,7 +66,7 @@ flow_loops_cfg_dump (loops, file)
fprintf (file, ";; %d succs { ", bb->index);
for (succ = bb->succ; succ; succ = succ->succ_next)
fprintf (file, "%d ", succ->dest->index);
flow_nodes_print ("} dom", loops->cfg.dom[bb->index], file);
fprintf (file, "}\n");
}
/* Dump the DFS node order. */
......@@ -88,12 +92,13 @@ flow_loops_cfg_dump (loops, file)
/* Return non-zero if the nodes of LOOP are a subset of OUTER. */
static int
bool
flow_loop_nested_p (outer, loop)
struct loop *outer;
struct loop *loop;
const struct loop *outer;
const struct loop *loop;
{
return sbitmap_a_subset_b_p (loop->nodes, outer->nodes);
return loop->depth > outer->depth
&& loop->pred[outer->depth] == outer;
}
/* Dump the loop information specified by LOOP to the stream FILE
......@@ -106,22 +111,18 @@ flow_loop_dump (loop, file, loop_dump_aux, verbose)
void (*loop_dump_aux) PARAMS((const struct loop *, FILE *, int));
int verbose;
{
basic_block *bbs;
int i;
if (! loop || ! loop->header)
return;
if (loop->first->head && loop->last->end)
fprintf (file, ";;\n;; Loop %d (%d to %d):%s%s\n",
loop->num, INSN_UID (loop->first->head),
INSN_UID (loop->last->end),
loop->shared ? " shared" : "", loop->invalid ? " invalid" : "");
else
fprintf (file, ";;\n;; Loop %d:%s%s\n", loop->num,
loop->shared ? " shared" : "", loop->invalid ? " invalid" : "");
fprintf (file, ";;\n;; Loop %d:%s\n", loop->num,
loop->invalid ? " invalid" : "");
fprintf (file, ";; header %d, latch %d, pre-header %d, first %d, last %d\n",
fprintf (file, ";; header %d, latch %d, pre-header %d\n",
loop->header->index, loop->latch->index,
loop->pre_header ? loop->pre_header->index : -1,
loop->first->index, loop->last->index);
loop->pre_header ? loop->pre_header->index : -1);
fprintf (file, ";; depth %d, level %d, outer %ld\n",
loop->depth, loop->level,
(long) (loop->outer ? loop->outer->num : -1));
......@@ -132,14 +133,15 @@ flow_loop_dump (loop, file, loop_dump_aux, verbose)
flow_edge_list_print (";; entry edges", loop->entry_edges,
loop->num_entries, file);
fprintf (file, ";; %d", loop->num_nodes);
flow_nodes_print (" nodes", loop->nodes, file);
fprintf (file, ";; nodes:");
bbs = get_loop_body (loop);
for (i = 0; i < loop->num_nodes; i++)
fprintf (file, " %d", bbs[i]->index);
free (bbs);
fprintf (file, "\n");
flow_edge_list_print (";; exit edges", loop->exit_edges,
loop->num_exits, file);
if (loop->exits_doms)
flow_nodes_print (";; exit doms", loop->exits_doms, file);
if (loop_dump_aux)
loop_dump_aux (loop, file, verbose);
}
......@@ -154,55 +156,53 @@ flow_loops_dump (loops, file, loop_dump_aux, verbose)
void (*loop_dump_aux) PARAMS((const struct loop *, FILE *, int));
int verbose;
{
int i, j;
int i;
int num_loops;
num_loops = loops->num;
if (! num_loops || ! file)
return;
fprintf (file, ";; %d loops found, %d levels\n", num_loops, loops->levels);
fprintf (file, ";; %d loops found, %d levels\n",
num_loops, loops->levels);
for (i = 0; i < num_loops; i++)
{
struct loop *loop = &loops->array[i];
struct loop *loop = loops->parray[i];
flow_loop_dump (loop, file, loop_dump_aux, verbose);
if (loop->shared)
for (j = 0; j < i; j++)
{
struct loop *oloop = &loops->array[j];
if (!loop)
continue;
if (loop->header == oloop->header)
{
int disjoint;
int smaller;
smaller = loop->num_nodes < oloop->num_nodes;
/* If the union of LOOP and OLOOP is different than
the larger of LOOP and OLOOP then LOOP and OLOOP
must be disjoint. */
disjoint = ! flow_loop_nested_p (smaller ? loop : oloop,
smaller ? oloop : loop);
fprintf (file,
";; loop header %d shared by loops %d, %d %s\n",
loop->header->index, i, j,
disjoint ? "disjoint" : "nested");
}
}
flow_loop_dump (loop, file, loop_dump_aux, verbose);
}
if (verbose)
flow_loops_cfg_dump (loops, file);
}
/* Free data allocated for LOOP. */
static void
flow_loop_free (loop)
struct loop *loop;
{
if (loop->pre_header_edges)
free (loop->pre_header_edges);
if (loop->entry_edges)
free (loop->entry_edges);
if (loop->exit_edges)
free (loop->exit_edges);
if (loop->pred)
free (loop->pred);
free (loop);
}
/* Free all the memory allocated for LOOPS. */
void
flow_loops_free (loops)
struct loops *loops;
{
if (loops->array)
if (loops->parray)
{
int i;
......@@ -212,180 +212,163 @@ flow_loops_free (loops)
/* Free the loop descriptors. */
for (i = 0; i < loops->num; i++)
{
struct loop *loop = &loops->array[i];
if (loop->pre_header_edges)
free (loop->pre_header_edges);
if (loop->nodes)
sbitmap_free (loop->nodes);
if (loop->entry_edges)
free (loop->entry_edges);
if (loop->exit_edges)
free (loop->exit_edges);
if (loop->exits_doms)
sbitmap_free (loop->exits_doms);
struct loop *loop = loops->parray[i];
if (!loop)
continue;
flow_loop_free (loop);
}
free (loops->array);
loops->array = NULL;
free (loops->parray);
loops->parray = NULL;
if (loops->cfg.dom)
sbitmap_vector_free (loops->cfg.dom);
if (loops->cfg.dfs_order)
free (loops->cfg.dfs_order);
if (loops->cfg.rc_order)
free (loops->cfg.rc_order);
if (loops->shared_headers)
sbitmap_free (loops->shared_headers);
}
}
/* Find the entry edges into the loop with header HEADER and nodes
NODES and store in ENTRY_EDGES array. Return the number of entry
edges from the loop. */
/* Find the entry edges into the LOOP. */
static int
flow_loop_entry_edges_find (header, nodes, entry_edges)
basic_block header;
const sbitmap nodes;
edge **entry_edges;
static void
flow_loop_entry_edges_find (loop)
struct loop *loop;
{
edge e;
int num_entries;
*entry_edges = NULL;
num_entries = 0;
for (e = header->pred; e; e = e->pred_next)
for (e = loop->header->pred; e; e = e->pred_next)
{
basic_block src = e->src;
if (src == ENTRY_BLOCK_PTR || ! TEST_BIT (nodes, src->index))
if (flow_loop_outside_edge_p (loop, e))
num_entries++;
}
if (! num_entries)
abort ();
*entry_edges = (edge *) xmalloc (num_entries * sizeof (edge));
loop->entry_edges = (edge *) xmalloc (num_entries * sizeof (edge *));
num_entries = 0;
for (e = header->pred; e; e = e->pred_next)
for (e = loop->header->pred; e; e = e->pred_next)
{
basic_block src = e->src;
if (src == ENTRY_BLOCK_PTR || ! TEST_BIT (nodes, src->index))
(*entry_edges)[num_entries++] = e;
if (flow_loop_outside_edge_p (loop, e))
loop->entry_edges[num_entries++] = e;
}
return num_entries;
loop->num_entries = num_entries;
}
/* Find the exit edges from the loop using the bitmap of loop nodes
NODES and store in EXIT_EDGES array. Return the number of
exit edges from the loop. */
/* Find the exit edges from the LOOP. */
static int
flow_loop_exit_edges_find (nodes, exit_edges)
const sbitmap nodes;
edge **exit_edges;
static void
flow_loop_exit_edges_find (loop)
struct loop *loop;
{
edge e;
int node;
int num_exits;
basic_block node, *bbs;
int num_exits, i;
*exit_edges = NULL;
loop->exit_edges = NULL;
loop->num_exits = 0;
/* Check all nodes within the loop to see if there are any
successors not in the loop. Note that a node may have multiple
exiting edges ????? A node can have one jumping edge and one fallthru
edge so only one of these can exit the loop. */
exiting edges. */
num_exits = 0;
EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {
for (e = BASIC_BLOCK (node)->succ; e; e = e->succ_next)
{
basic_block dest = e->dest;
bbs = get_loop_body (loop);
for (i = 0; i < loop->num_nodes; i++)
{
node = bbs[i];
for (e = node->succ; e; e = e->succ_next)
{
basic_block dest = e->dest;
if (dest == EXIT_BLOCK_PTR || ! TEST_BIT (nodes, dest->index))
if (!flow_bb_inside_loop_p (loop, dest))
num_exits++;
}
});
}
}
if (! num_exits)
return 0;
{
free (bbs);
return;
}
*exit_edges = (edge *) xmalloc (num_exits * sizeof (edge));
loop->exit_edges = (edge *) xmalloc (num_exits * sizeof (edge *));
/* Store all exiting edges into an array. */
num_exits = 0;
EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {
for (e = BASIC_BLOCK (node)->succ; e; e = e->succ_next)
{
basic_block dest = e->dest;
for (i = 0; i < loop->num_nodes; i++)
{
node = bbs[i];
for (e = node->succ; e; e = e->succ_next)
{
basic_block dest = e->dest;
if (dest == EXIT_BLOCK_PTR || ! TEST_BIT (nodes, dest->index))
(*exit_edges)[num_exits++] = e;
if (!flow_bb_inside_loop_p (loop, dest))
loop->exit_edges[num_exits++] = e;
}
});
return num_exits;
}
free (bbs);
loop->num_exits = num_exits;
}
/* Find the nodes contained within the loop with header HEADER and
latch LATCH and store in NODES. Return the number of nodes within
the loop. */
/* Find the nodes contained within the LOOP with header HEADER.
Return the number of nodes within the loop. */
static int
flow_loop_nodes_find (header, latch, nodes)
flow_loop_nodes_find (header, loop)
basic_block header;
basic_block latch;
sbitmap nodes;
struct loop *loop;
{
basic_block *stack;
int sp;
int num_nodes = 0;
stack = (basic_block *) xmalloc (n_basic_blocks * sizeof (basic_block));
sp = 0;
int num_nodes = 1;
int findex, lindex;
/* Start with only the loop header in the set of loop nodes. */
sbitmap_zero (nodes);
SET_BIT (nodes, header->index);
num_nodes++;
header->loop_depth++;
header->loop_father = loop;
header->loop_depth = loop->depth;
findex = lindex = header->index;
/* Push the loop latch on to the stack. */
if (! TEST_BIT (nodes, latch->index))
if (loop->latch->loop_father != loop)
{
SET_BIT (nodes, latch->index);
latch->loop_depth++;
stack = (basic_block *) xmalloc (n_basic_blocks * sizeof (basic_block));
sp = 0;
num_nodes++;
stack[sp++] = latch;
}
while (sp)
{
basic_block node;
edge e;
node = stack[--sp];
for (e = node->pred; e; e = e->pred_next)
stack[sp++] = loop->latch;
loop->latch->loop_father = loop;
loop->latch->loop_depth = loop->depth;
while (sp)
{
basic_block ancestor = e->src;
basic_block node;
edge e;
/* If each ancestor not marked as part of loop, add to set of
loop nodes and push on to stack. */
if (ancestor != ENTRY_BLOCK_PTR
&& ! TEST_BIT (nodes, ancestor->index))
node = stack[--sp];
for (e = node->pred; e; e = e->pred_next)
{
SET_BIT (nodes, ancestor->index);
ancestor->loop_depth++;
num_nodes++;
stack[sp++] = ancestor;
basic_block ancestor = e->src;
if (ancestor != ENTRY_BLOCK_PTR
&& ancestor->loop_father != loop)
{
ancestor->loop_father = loop;
ancestor->loop_depth = loop->depth;
num_nodes++;
stack[sp++] = ancestor;
}
}
}
free (stack);
}
free (stack);
return num_nodes;
}
......@@ -462,68 +445,55 @@ flow_loop_pre_header_find (header, dom)
return pre_header;
}
/* Add LOOP to the loop hierarchy tree where PREVLOOP was the loop
previously added. The insertion algorithm assumes that the loops
are added in the order found by a depth first search of the CFG. */
/* Add LOOP to the loop hierarchy tree where FATHER is father of the
added loop. */
static void
flow_loop_tree_node_add (prevloop, loop)
struct loop *prevloop;
void
flow_loop_tree_node_add (father, loop)
struct loop *father;
struct loop *loop;
{
if (flow_loop_nested_p (prevloop, loop))
{
prevloop->inner = loop;
loop->outer = prevloop;
return;
}
for (; prevloop->outer; prevloop = prevloop->outer)
if (flow_loop_nested_p (prevloop->outer, loop))
{
prevloop->next = loop;
loop->outer = prevloop->outer;
return;
}
prevloop->next = loop;
loop->outer = NULL;
loop->next = father->inner;
father->inner = loop;
loop->outer = father;
loop->depth = father->depth + 1;
loop->pred = xmalloc (sizeof (struct loop *) * loop->depth);
memcpy (loop->pred, father->pred, sizeof (struct loop *) * father->depth);
loop->pred[father->depth] = father;
}
/* Build the loop hierarchy tree for LOOPS. */
/* Remove LOOP from the loop hierarchy tree. */
static void
flow_loops_tree_build (loops)
struct loops *loops;
void
flow_loop_tree_node_remove (loop)
struct loop *loop;
{
int i;
int num_loops;
struct loop *prev, *father;
num_loops = loops->num;
if (! num_loops)
return;
father = loop->outer;
loop->outer = NULL;
/* Root the loop hierarchy tree with the first loop found.
Since we used a depth first search this should be the
outermost loop. */
loops->tree_root = &loops->array[0];
loops->tree_root->outer = loops->tree_root->inner
= loops->tree_root->next = NULL;
/* Remove loop from the list of sons. */
if (father->inner == loop)
father->inner = loop->next;
else
{
for (prev = father->inner; prev->next != loop; prev = prev->next);
prev->next = loop->next;
}
/* Add the remaining loops to the tree. */
for (i = 1; i < num_loops; i++)
flow_loop_tree_node_add (&loops->array[i - 1], &loops->array[i]);
loop->depth = -1;
free (loop->pred);
loop->pred = NULL;
}
/* Helper function to compute loop nesting depth and enclosed loop level
for the natural loop specified by LOOP at the loop depth DEPTH.
Returns the loop level. */
for the natural loop specified by LOOP. Returns the loop level. */
static int
flow_loop_level_compute (loop, depth)
flow_loop_level_compute (loop)
struct loop *loop;
int depth;
{
struct loop *inner;
int level = 1;
......@@ -538,13 +508,13 @@ flow_loop_level_compute (loop, depth)
itself). */
for (inner = loop->inner; inner; inner = inner->next)
{
int ilevel = flow_loop_level_compute (inner, depth + 1) + 1;
int ilevel = flow_loop_level_compute (inner) + 1;
level = MAX (ilevel, level);
if (ilevel > level)
level = ilevel;
}
loop->level = level;
loop->depth = depth;
return level;
}
......@@ -556,18 +526,7 @@ static int
flow_loops_level_compute (loops)
struct loops *loops;
{
int levels = 0;
struct loop *loop;
int level;
/* Traverse all the outer level loops. */
for (loop = loops->tree_root; loop; loop = loop->next)
{
level = flow_loop_level_compute (loop, 1);
levels = MAX (levels, level);
}
return levels;
return flow_loop_level_compute (loops->tree_root);
}
/* Scan a single natural loop specified by LOOP collecting information
......@@ -579,37 +538,18 @@ flow_loop_scan (loops, loop, flags)
struct loop *loop;
int flags;
{
/* Determine prerequisites. */
if ((flags & LOOP_EXITS_DOMS) && ! loop->exit_edges)
flags |= LOOP_EXIT_EDGES;
if (flags & LOOP_ENTRY_EDGES)
/* Find edges which enter the loop header. Note that the entry edges
should only enter the header of a natural loop. */
loop->num_entries = flow_loop_entry_edges_find (loop->header, loop->nodes,
&loop->entry_edges);
{
/* Find edges which enter the loop header.
Note that the entry edges should only
enter the header of a natural loop. */
flow_loop_entry_edges_find (loop);
}
if (flags & LOOP_EXIT_EDGES)
/* Find edges which exit the loop. */
loop->num_exits
= flow_loop_exit_edges_find (loop->nodes, &loop->exit_edges);
if (flags & LOOP_EXITS_DOMS)
{
int j;
/* Determine which loop nodes dominate all the exits
of the loop. */
loop->exits_doms = sbitmap_alloc (last_basic_block);
sbitmap_copy (loop->exits_doms, loop->nodes);
for (j = 0; j < loop->num_exits; j++)
sbitmap_a_and_b (loop->exits_doms, loop->exits_doms,
loops->cfg.dom[loop->exit_edges[j]->src->index]);
/* The header of a natural loop must dominate
all exits. */
if (! TEST_BIT (loop->exits_doms, loop->header->index))
abort ();
/* Find edges which exit the loop. */
flow_loop_exit_edges_find (loop);
}
if (flags & LOOP_PRE_HEADER)
......@@ -626,6 +566,190 @@ flow_loop_scan (loops, loop, flags)
return 1;
}
#define HEADER_BLOCK(B) (* (int *) (B)->aux)
#define LATCH_EDGE(E) (*(int *) (E)->aux)
/* Redirect edge and update latch and header info. */
static void
redirect_edge_with_latch_update (e, to)
edge e;
basic_block to;
{
basic_block jump;
jump = redirect_edge_and_branch_force (e, to);
if (jump)
{
alloc_aux_for_block (jump, sizeof (int));
HEADER_BLOCK (jump) = 0;
alloc_aux_for_edge (jump->pred, sizeof (int));
LATCH_EDGE (jump->succ) = LATCH_EDGE (e);
LATCH_EDGE (jump->pred) = 0;
}
}
/* Split BB into entry part and rest; if REDIRECT_LATCH, redirect edges
marked as latch into entry part, analogically for REDIRECT_NONLATCH.
In both of these cases, ignore edge EXCEPT. If CONN_LATCH, set edge
between created entry part and BB as latch one. Return created entry
part. */
static basic_block
make_forwarder_block (bb, redirect_latch, redirect_nonlatch, except,
conn_latch)
basic_block bb;
int redirect_latch;
int redirect_nonlatch;
edge except;
int conn_latch;
{
edge e, next_e, fallthru;
basic_block dummy;
rtx insn;
insn = PREV_INSN (first_insn_after_basic_block_note (bb));
fallthru = split_block (bb, insn);
dummy = fallthru->src;
bb = fallthru->dest;
bb->aux = xmalloc (sizeof (int));
HEADER_BLOCK (dummy) = 0;
HEADER_BLOCK (bb) = 1;
/* Redirect back edges we want to keep. */
for (e = dummy->pred; e; e = next_e)
{
next_e = e->pred_next;
if (e == except
|| !((redirect_latch && LATCH_EDGE (e))
|| (redirect_nonlatch && !LATCH_EDGE (e))))
{
dummy->frequency -= EDGE_FREQUENCY (e);
dummy->count -= e->count;
if (dummy->frequency < 0)
dummy->frequency = 0;
if (dummy->count < 0)
dummy->count = 0;
redirect_edge_with_latch_update (e, bb);
}
}
alloc_aux_for_edge (fallthru, sizeof (int));
LATCH_EDGE (fallthru) = conn_latch;
return dummy;
}
/* Takes care of merging natural loops with shared headers. */
static void
canonicalize_loop_headers ()
{
sbitmap *dom;
basic_block header;
edge e;
/* Compute the dominators. */
dom = sbitmap_vector_alloc (last_basic_block, last_basic_block);
calculate_dominance_info (NULL, dom, CDI_DOMINATORS);
alloc_aux_for_blocks (sizeof (int));
alloc_aux_for_edges (sizeof (int));
/* Split blocks so that each loop has only single latch. */
FOR_EACH_BB (header)
{
int num_latches = 0;
int have_abnormal_edge = 0;
for (e = header->pred; e; e = e->pred_next)
{
basic_block latch = e->src;
if (e->flags & EDGE_ABNORMAL)
have_abnormal_edge = 1;
if (latch != ENTRY_BLOCK_PTR
&& TEST_BIT (dom[latch->index], header->index))
{
num_latches++;
LATCH_EDGE (e) = 1;
}
}
if (have_abnormal_edge)
HEADER_BLOCK (header) = 0;
else
HEADER_BLOCK (header) = num_latches;
}
if (HEADER_BLOCK (ENTRY_BLOCK_PTR->succ->dest))
{
basic_block bb;
/* We could not redirect edges freely here. On the other hand,
we can simply split the edge from entry block. */
bb = split_edge (ENTRY_BLOCK_PTR->succ);
alloc_aux_for_edge (bb->succ, sizeof (int));
LATCH_EDGE (bb->succ) = 0;
alloc_aux_for_block (bb, sizeof (int));
HEADER_BLOCK (bb) = 0;
}
FOR_EACH_BB (header)
{
int num_latch;
int want_join_latch;
int max_freq, is_heavy;
edge heavy;
if (!HEADER_BLOCK (header))
continue;
num_latch = HEADER_BLOCK (header);
want_join_latch = (num_latch > 1);
if (!want_join_latch)
continue;
/* Find a heavy edge. */
is_heavy = 1;
heavy = NULL;
max_freq = 0;
for (e = header->pred; e; e = e->pred_next)
if (LATCH_EDGE (e) &&
EDGE_FREQUENCY (e) > max_freq)
max_freq = EDGE_FREQUENCY (e);
for (e = header->pred; e; e = e->pred_next)
if (LATCH_EDGE (e) &&
EDGE_FREQUENCY (e) >= max_freq / HEAVY_EDGE_RATIO)
{
if (heavy)
{
is_heavy = 0;
break;
}
else
heavy = e;
}
if (is_heavy)
{
basic_block new_header =
make_forwarder_block (header, true, true, heavy, 0);
if (num_latch > 2)
make_forwarder_block (new_header, true, false, NULL, 1);
}
else
make_forwarder_block (header, true, false, NULL, 1);
}
free_aux_for_blocks ();
free_aux_for_edges ();
sbitmap_vector_free (dom);
}
/* Find all the natural loops in the function and save in LOOPS structure and
recalculate loop_depth information in basic block structures. FLAGS
controls which loop information is collected. Return the number of natural
......@@ -662,32 +786,81 @@ flow_loops_find (loops, flags)
dfs_order = NULL;
rc_order = NULL;
/* Join loops with shared headers. */
canonicalize_loop_headers ();
/* Compute the dominators. */
dom = sbitmap_vector_alloc (last_basic_block, last_basic_block);
loops->cfg.dom = dom = sbitmap_vector_alloc (last_basic_block, last_basic_block);
calculate_dominance_info (NULL, dom, CDI_DOMINATORS);
/* Count the number of loop edges (back edges). This should be the
/* Count the number of loop headers. This should be the
same as the number of natural loops. */
headers = sbitmap_alloc (last_basic_block);
sbitmap_zero (headers);
num_loops = 0;
FOR_EACH_BB (header)
{
int more_latches = 0;
header->loop_depth = 0;
for (e = header->pred; e; e = e->pred_next)
{
basic_block latch = e->src;
if (e->flags & EDGE_ABNORMAL)
{
if (more_latches)
{
RESET_BIT (headers, header->index);
num_loops--;
}
break;
}
/* Look for back edges where a predecessor is dominated
by this block. A natural loop has a single entry
node (header) that dominates all the nodes in the
loop. It also has single back edge to the header
from a latch node. Note that multiple natural loops
may share the same header. */
if (latch != ENTRY_BLOCK_PTR && TEST_BIT (dom[latch->index], header->index))
num_loops++;
from a latch node. */
if (latch != ENTRY_BLOCK_PTR && TEST_BIT (dom[latch->index],
header->index))
{
/* Shared headers should be eliminated by now. */
if (more_latches)
abort ();
more_latches = 1;
SET_BIT (headers, header->index);
num_loops++;
}
}
}
/* Allocate loop structures. */
loops->parray = (struct loop **) xcalloc (num_loops + 1, sizeof (struct loop *));
/* Dummy loop containing whole function. */
loops->parray[0] = xcalloc (1, sizeof (struct loop));
loops->parray[0]->next = NULL;
loops->parray[0]->inner = NULL;
loops->parray[0]->outer = NULL;
loops->parray[0]->depth = 0;
loops->parray[0]->pred = NULL;
loops->parray[0]->num_nodes = n_basic_blocks + 2;
loops->parray[0]->latch = EXIT_BLOCK_PTR;
loops->parray[0]->header = ENTRY_BLOCK_PTR;
ENTRY_BLOCK_PTR->loop_father = loops->parray[0];
EXIT_BLOCK_PTR->loop_father = loops->parray[0];
loops->tree_root = loops->parray[0];
/* Find and record information about all the natural loops
in the CFG. */
loops->num = 1;
FOR_EACH_BB (bb)
bb->loop_father = loops->tree_root;
if (num_loops)
{
/* Compute depth first search order of the CFG so that outer
......@@ -701,110 +874,65 @@ flow_loops_find (loops, flags)
loops->cfg.dfs_order = dfs_order;
loops->cfg.rc_order = rc_order;
/* Allocate loop structures. */
loops->array
= (struct loop *) xcalloc (num_loops, sizeof (struct loop));
headers = sbitmap_alloc (last_basic_block);
sbitmap_zero (headers);
num_loops = 1;
loops->shared_headers = sbitmap_alloc (last_basic_block);
sbitmap_zero (loops->shared_headers);
/* Find and record information about all the natural loops
in the CFG. */
num_loops = 0;
for (b = n_basic_blocks - 1; b >= 0; b--)
for (b = 0; b < n_basic_blocks; b++)
{
basic_block latch;
struct loop *loop;
/* Search the nodes of the CFG in reverse completion order
so that we can find outer loops first. */
latch = BASIC_BLOCK (rc_order[b]);
if (!TEST_BIT (headers, rc_order[b]))
continue;
header = BASIC_BLOCK (rc_order[b]);
loop = loops->parray[num_loops] = xcalloc (1, sizeof (struct loop));
/* Look for all the possible headers for this latch block. */
for (e = latch->succ; e; e = e->succ_next)
loop->header = header;
loop->num = num_loops;
num_loops++;
/* Look for the latch for this header block. */
for (e = header->pred; e; e = e->pred_next)
{
basic_block header = e->dest;
/* Look for forward edges where this block is dominated by
a successor of this block. A natural loop has a single
entry node (header) that dominates all the nodes in the
loop. It also has single back edge to the header from a
latch node. Note that multiple natural loops may share
the same header. */
if (header != EXIT_BLOCK_PTR
basic_block latch = e->src;
if (latch != ENTRY_BLOCK_PTR
&& TEST_BIT (dom[latch->index], header->index))
{
struct loop *loop;
loop = loops->array + num_loops;
loop->header = header;
loop->latch = latch;
loop->num = num_loops;
num_loops++;
break;
}
}
}
for (i = 0; i < num_loops; i++)
{
struct loop *loop = &loops->array[i];
/* Keep track of blocks that are loop headers so
that we can tell which loops should be merged. */
if (TEST_BIT (headers, loop->header->index))
SET_BIT (loops->shared_headers, loop->header->index);
SET_BIT (headers, loop->header->index);
/* Find nodes contained within the loop. */
loop->nodes = sbitmap_alloc (last_basic_block);
loop->num_nodes
= flow_loop_nodes_find (loop->header, loop->latch, loop->nodes);
/* Compute first and last blocks within the loop.
These are often the same as the loop header and
loop latch respectively, but this is not always
the case. */
FOR_EACH_BB (bb)
if (TEST_BIT (loop->nodes, bb->index))
break;
loop->first = bb;
FOR_EACH_BB_REVERSE (bb)
if (TEST_BIT (loop->nodes, bb->index))
break;
loop->last = bb;
flow_loop_scan (loops, loop, flags);
flow_loop_tree_node_add (header->loop_father, loop);
loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
}
/* Natural loops with shared headers may either be disjoint or
nested. Disjoint loops with shared headers cannot be inner
loops and should be merged. For now just mark loops that share
headers. */
for (i = 0; i < num_loops; i++)
if (TEST_BIT (loops->shared_headers, loops->array[i].header->index))
loops->array[i].shared = 1;
sbitmap_free (headers);
}
else
sbitmap_vector_free (dom);
loops->num = num_loops;
/* Assign the loop nesting depth and enclosed loop level for each
loop. */
loops->levels = flow_loops_level_compute (loops);
/* Build the loop hierarchy tree. */
flow_loops_tree_build (loops);
/* Scan the loops. */
for (i = 1; i < num_loops; i++)
flow_loop_scan (loops, loops->parray[i], flags);
/* Assign the loop nesting depth and enclosed loop level for each
loop. */
loops->levels = flow_loops_level_compute (loops);
loops->num = num_loops;
}
else
{
loops->cfg.dom = NULL;
sbitmap_vector_free (dom);
}
#ifdef ENABLE_CHECKING
verify_flow_info ();
verify_loop_structure (loops, 0);
#endif
return num_loops;
return loops->num;
}
/* Update the information regarding the loops in the CFG
......@@ -817,22 +945,259 @@ flow_loops_update (loops, flags)
{
/* One day we may want to update the current loop data. For now
throw away the old stuff and rebuild what we need. */
if (loops->array)
if (loops->parray)
flow_loops_free (loops);
return flow_loops_find (loops, flags);
}
/* Return non-zero if basic block BB belongs to LOOP. */
bool
flow_bb_inside_loop_p (loop, bb)
const struct loop *loop;
const basic_block bb;
{
struct loop *source_loop;
if (bb == ENTRY_BLOCK_PTR || bb == EXIT_BLOCK_PTR)
return 0;
source_loop = bb->loop_father;
return loop == source_loop || flow_loop_nested_p (loop, source_loop);
}
/* Return non-zero if edge E enters header of LOOP from outside of LOOP. */
int
bool
flow_loop_outside_edge_p (loop, e)
const struct loop *loop;
edge e;
{
if (e->dest != loop->header)
abort ();
return !flow_bb_inside_loop_p (loop, e->src);
}
/* Enumeration predicate for get_loop_body. */
static bool
glb_enum_p (bb, glb_header)
basic_block bb;
void *glb_header;
{
return bb != (basic_block) glb_header;
}
/* Gets basic blocks of a loop. */
basic_block *
get_loop_body (loop)
const struct loop *loop;
{
basic_block *tovisit, bb;
int tv = 0;
if (!loop->num_nodes)
abort ();
tovisit = xcalloc (loop->num_nodes, sizeof (basic_block));
tovisit[tv++] = loop->header;
if (loop->latch == EXIT_BLOCK_PTR)
{
/* There may be blocks unreachable from EXIT_BLOCK. */
if (loop->num_nodes != n_basic_blocks + 2)
abort ();
FOR_EACH_BB (bb)
tovisit[tv++] = bb;
tovisit[tv++] = EXIT_BLOCK_PTR;
}
else if (loop->latch != loop->header)
{
tv = dfs_enumerate_from (loop->latch, 1, glb_enum_p,
tovisit + 1, loop->num_nodes - 1,
loop->header) + 1;
}
if (tv != loop->num_nodes)
abort ();
return tovisit;
}
/* Adds basic block BB to LOOP. */
void
add_bb_to_loop (bb, loop)
basic_block bb;
struct loop *loop;
{
int i;
bb->loop_father = loop;
bb->loop_depth = loop->depth;
loop->num_nodes++;
for (i = 0; i < loop->depth; i++)
loop->pred[i]->num_nodes++;
}
/* Remove basic block BB from loops. */
void
remove_bb_from_loops (bb)
basic_block bb;
{
int i;
struct loop *loop = bb->loop_father;
loop->num_nodes--;
for (i = 0; i < loop->depth; i++)
loop->pred[i]->num_nodes--;
bb->loop_father = NULL;
bb->loop_depth = 0;
}
/* Finds nearest common ancestor in loop tree for given loops. */
struct loop *
find_common_loop (loop_s, loop_d)
struct loop *loop_s;
struct loop *loop_d;
{
if (!loop_s) return loop_d;
if (!loop_d) return loop_s;
if (loop_s->depth < loop_d->depth)
loop_d = loop_d->pred[loop_s->depth];
else if (loop_s->depth > loop_d->depth)
loop_s = loop_s->pred[loop_d->depth];
while (loop_s != loop_d)
{
loop_s = loop_s->outer;
loop_d = loop_d->outer;
}
return loop_s;
}
/* Checks that LOOPS are allright:
-- sizes of loops are allright
-- results of get_loop_body really belong to the loop
-- loop header have just single entry edge and single latch edge
-- loop latches have only single successor that is header of their loop
*/
void
verify_loop_structure (loops, flags)
struct loops *loops;
int flags;
{
int *sizes, i, j;
basic_block *bbs, bb;
struct loop *loop;
int err = 0;
/* Check sizes. */
sizes = xcalloc (loops->num, sizeof (int));
sizes[0] = 2;
FOR_EACH_BB (bb)
for (loop = bb->loop_father; loop; loop = loop->outer)
sizes[loop->num]++;
for (i = 0; i < loops->num; i++)
{
if (!loops->parray[i])
continue;
if (loops->parray[i]->num_nodes != sizes[i])
{
error ("Size of loop %d should be %d, not %d.",
i, sizes[i], loops->parray[i]->num_nodes);
err = 1;
}
}
free (sizes);
/* Check get_loop_body. */
for (i = 1; i < loops->num; i++)
{
loop = loops->parray[i];
if (!loop)
continue;
bbs = get_loop_body (loop);
for (j = 0; j < loop->num_nodes; j++)
if (!flow_bb_inside_loop_p (loop, bbs[j]))
{
error ("Bb %d do not belong to loop %d.",
bbs[j]->index, i);
err = 1;
}
free (bbs);
}
/* Check headers and latches. */
for (i = 1; i < loops->num; i++)
{
loop = loops->parray[i];
if (!loop)
continue;
if ((flags & VLS_EXPECT_PREHEADERS)
&& (!loop->header->pred->pred_next
|| loop->header->pred->pred_next->pred_next))
{
error ("Loop %d's header does not have exactly 2 entries.", i);
err = 1;
}
if (flags & VLS_EXPECT_SIMPLE_LATCHES)
{
if (!loop->latch->succ
|| loop->latch->succ->succ_next)
{
error ("Loop %d's latch does not have exactly 1 successor.", i);
err = 1;
}
if (loop->latch->succ->dest != loop->header)
{
error ("Loop %d's latch does not have header as successor.", i);
err = 1;
}
if (loop->latch->loop_father != loop)
{
error ("Loop %d's latch does not belong directly to it.", i);
err = 1;
}
}
if (loop->header->loop_father != loop)
{
error ("Loop %d's header does not belong directly to it.", i);
err = 1;
}
}
if (err)
abort ();
}
/* Returns latch edge of LOOP. */
edge
loop_latch_edge (loop)
struct loop *loop;
{
edge e;
for (e = loop->header->pred; e->src != loop->latch; e = e->pred_next)
continue;
return (e->src == ENTRY_BLOCK_PTR)
|| ! TEST_BIT (loop->nodes, e->src->index);
return e;
}
/* Returns preheader edge of LOOP. */
edge
loop_preheader_edge (loop)
struct loop *loop;
{
edge e;
for (e = loop->header->pred; e->src == loop->latch; e = e->pred_next)
continue;
return e;
}
......@@ -70,7 +70,7 @@ static void combine_predictions_for_insn PARAMS ((rtx, basic_block));
static void dump_prediction PARAMS ((enum br_predictor, int,
basic_block, int));
static void estimate_loops_at_level PARAMS ((struct loop *loop));
static void propagate_freq PARAMS ((basic_block));
static void propagate_freq PARAMS ((struct loop *));
static void estimate_bb_frequencies PARAMS ((struct loops *));
static void counts_to_freqs PARAMS ((void));
static void process_note_predictions PARAMS ((basic_block, int *, int *,
......@@ -419,19 +419,23 @@ estimate_probability (loops_info)
/* Try to predict out blocks in a loop that are not part of a
natural loop. */
for (i = 0; i < loops_info->num; i++)
for (i = 1; i < loops_info->num; i++)
{
basic_block bb, *bbs;
int j;
int exits;
struct loop *loop = &loops_info->array[i];
struct loop *loop = loops_info->parray[i];
flow_loop_scan (loops_info, loop, LOOP_EXIT_EDGES);
exits = loop->num_exits;
FOR_BB_BETWEEN (bb, loop->first, loop->last->next_bb, next_bb)
if (TEST_BIT (loop->nodes, bb->index))
{
int header_found = 0;
edge e;
bbs = get_loop_body (loop);
for (j = 0; j < loop->num_nodes; j++)
{
int header_found = 0;
edge e;
bb = bbs[j];
/* Bypass loop heuristics on continue statement. These
statements construct loops via "non-loop" constructs
......@@ -440,28 +444,28 @@ estimate_probability (loops_info)
if (predicted_by_p (bb, PRED_CONTINUE))
continue;
/* Loop branch heuristics - predict an edge back to a
loop's head as taken. */
for (e = bb->succ; e; e = e->succ_next)
if (e->dest == loop->header
&& e->src == loop->latch)
{
header_found = 1;
predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
}
/* Loop branch heuristics - predict an edge back to a
loop's head as taken. */
for (e = bb->succ; e; e = e->succ_next)
if (e->dest == loop->header
&& e->src == loop->latch)
{
header_found = 1;
predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
}
/* Loop exit heuristics - predict an edge exiting the loop if the
conditinal has no loop header successors as not taken. */
if (!header_found)
for (e = bb->succ; e; e = e->succ_next)
if (e->dest->index < 0
|| !TEST_BIT (loop->nodes, e->dest->index))
predict_edge
(e, PRED_LOOP_EXIT,
(REG_BR_PROB_BASE
- predictor_info [(int) PRED_LOOP_EXIT].hitrate)
/ exits);
}
/* Loop exit heuristics - predict an edge exiting the loop if the
conditinal has no loop header successors as not taken. */
if (!header_found)
for (e = bb->succ; e; e = e->succ_next)
if (e->dest->index < 0
|| !flow_bb_inside_loop_p (loop, e->dest))
predict_edge
(e, PRED_LOOP_EXIT,
(REG_BR_PROB_BASE
- predictor_info [(int) PRED_LOOP_EXIT].hitrate)
/ exits);
}
}
/* Attempt to predict conditional jumps using a number of heuristics. */
......@@ -896,12 +900,13 @@ typedef struct edge_info_def
#define EDGE_INFO(E) ((edge_info) (E)->aux)
/* Helper function for estimate_bb_frequencies.
Propagate the frequencies for loops headed by HEAD. */
Propagate the frequencies for LOOP. */
static void
propagate_freq (head)
basic_block head;
propagate_freq (loop)
struct loop *loop;
{
basic_block head = loop->header;
basic_block bb;
basic_block last;
edge e;
......@@ -1028,41 +1033,28 @@ static void
estimate_loops_at_level (first_loop)
struct loop *first_loop;
{
struct loop *l, *loop = first_loop;
struct loop *loop;
for (loop = first_loop; loop; loop = loop->next)
{
int n;
edge e;
basic_block *bbs;
int i;
estimate_loops_at_level (loop->inner);
/* Find current loop back edge and mark it. */
for (e = loop->latch->succ; e->dest != loop->header; e = e->succ_next)
;
EDGE_INFO (e)->back_edge = 1;
/* In case the loop header is shared, ensure that it is the last
one sharing the same header, so we avoid redundant work. */
if (loop->shared)
if (loop->latch->succ) /* Do not do this for dummy function loop. */
{
for (l = loop->next; l; l = l->next)
if (l->header == loop->header)
break;
if (l)
continue;
}
/* Now merge all nodes of all loops with given header as not visited. */
for (l = loop->shared ? first_loop : loop; l != loop->next; l = l->next)
if (loop->header == l->header)
EXECUTE_IF_SET_IN_SBITMAP (l->nodes, 0, n,
BLOCK_INFO (BASIC_BLOCK (n))->tovisit = 1
);
propagate_freq (loop->header);
/* Find current loop back edge and mark it. */
e = loop_latch_edge (loop);
EDGE_INFO (e)->back_edge = 1;
}
bbs = get_loop_body (loop);
for (i = 0; i < loop->num_nodes; i++)
BLOCK_INFO (bbs[i])->tovisit = 1;
free (bbs);
propagate_freq (loop);
}
}
......@@ -1202,12 +1194,6 @@ estimate_bb_frequencies (loops)
to outermost to examine probabilities for back edges. */
estimate_loops_at_level (loops->tree_root);
/* Now fake loop around whole function to finalize probabilities. */
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
BLOCK_INFO (bb)->tovisit = 1;
propagate_freq (ENTRY_BLOCK_PTR);
memcpy (&freq_max, &real_zero, sizeof (real_zero));
FOR_EACH_BB (bb)
if (REAL_VALUES_LESS
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment