Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
R
riscv-gcc-1
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
lvzhengyang
riscv-gcc-1
Commits
28f4ec01
Commit
28f4ec01
authored
Jul 22, 1999
by
Bernd Schmidt
Committed by
Bernd Schmidt
Jul 22, 1999
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Break out builtin function expansion from expr.c
From-SVN: r28217
parent
89d68df8
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
2239 additions
and
1952 deletions
+2239
-1952
gcc/ChangeLog
+15
-0
gcc/Makefile.in
+6
-2
gcc/builtins.c
+2198
-0
gcc/expr.c
+1
-1948
gcc/expr.h
+19
-2
No files found.
gcc/ChangeLog
View file @
28f4ec01
Thu
Jul
22
11
:
25
:
20
1999
Bernd
Schmidt
<
bernds
@cygnus
.
co
.
uk
>
*
builtins
.
c
:
New
file
.
*
expr
.
c
(
saveregs_value
,
apply_args_value
)
:
Delete
definition
,
moved
into
builtins
.
c
.
(
string_constant
)
:
No
longer
static
.
(
get_pointer_alignment
,
c_strlen
,
get_memory_rtx
,
expand_builtin
,
apply_args_size
,
apply_result_size
,
result_vector
,
expand_builtin_apply_args
,
expand_builtin_apply
,
expand_builtin_return
)
:
Delete
functions
,
moved
into
builtins
.
c
.
(
INCOMING_REGNO
,
OUTGOING_REGNO
)
:
Delete
unused
macros
.
*
expr
.
h
(
saveregs_value
,
apply_args_value
)
:
Declare
variables
.
(
expand_builtin
,
string_constant
)
:
Declare
functions
.
*
Makefile
.
in
:
Update
to
build
builtin
.
o
.
Wed
Jul
21
12
:
37
:
34
IDT
1999
Vladik
Goytin
(
goytin
@yahoo
.
com
)
*
config
/
arm
/
aout
.
h
(
ASM_OUTPUT_SECTION_NAME
)
:
New
macro
:
Support
...
...
gcc/Makefile.in
View file @
28f4ec01
...
...
@@ -673,8 +673,8 @@ SCHED_CFLAGS = @sched_cflags@
# Language-independent object files.
OBJS
=
toplev.o version.o tree.o print-tree.o stor-layout.o fold-const.o
\
function
.o stmt.o except.o expr.o calls.o expmed.o explow.o optabs.o
\
intl.o varasm.o rtl.o print-rtl.o rtlanal.o emit-rtl.o genrtl.o rea
l.o
\
function
.o stmt.o except.o expr.o calls.o expmed.o explow.o optabs.o
real.o
\
builtins.o intl.o varasm.o rtl.o print-rtl.o rtlanal.o emit-rtl.o genrt
l.o
\
dbxout.o sdbout.o dwarfout.o dwarf2out.o xcoffout.o bitmap.o alias.o gcse.o
\
integrate.o jump.o cse.o loop.o unroll.o flow.o stupid.o combine.o varray.o
\
regclass.o regmove.o local-alloc.o global.o reload.o reload1.o caller-save.o
\
...
...
@@ -1484,6 +1484,10 @@ except.o : except.c $(CONFIG_H) system.h $(RTL_H) $(TREE_H) flags.h \
expr.o
:
expr.c $(CONFIG_H) system.h $(RTL_H) $(TREE_H) flags.h function.h
\
$(REGS_H) insn-flags.h insn-codes.h $(EXPR_H) insn-config.h $(RECOG_H)
\
output.h typeclass.h hard-reg-set.h toplev.h hard-reg-set.h except.h
builtins.o
:
builtins.c $(CONFIG_H) system.h $(RTL_H) $(TREE_H) flags.h
\
function.h $(REGS_H) insn-flags.h insn-codes.h $(EXPR_H) insn-config.h
\
$(RECOG_H) output.h typeclass.h hard-reg-set.h toplev.h hard-reg-set.h
\
except.h
calls.o
:
calls.c $(CONFIG_H) system.h $(RTL_H) $(TREE_H) flags.h $(EXPR_H)
\
insn-flags.h $(REGS_H) toplev.h output.h
expmed.o
:
expmed.c $(CONFIG_H) system.h $(RTL_H) $(TREE_H) flags.h
\
...
...
gcc/builtins.c
0 → 100644
View file @
28f4ec01
/* Expand builtin functions.
Copyright (C) 1988, 92-98, 1999 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "machmode.h"
#include "rtl.h"
#include "tree.h"
#include "obstack.h"
#include "flags.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "except.h"
#include "function.h"
#include "insn-flags.h"
#include "insn-codes.h"
#include "insn-config.h"
#include "expr.h"
#include "recog.h"
#include "output.h"
#include "typeclass.h"
#include "defaults.h"
#include "toplev.h"
#define CALLED_AS_BUILT_IN(NODE) \
(!strncmp (IDENTIFIER_POINTER (DECL_NAME (NODE)), "__builtin_", 10))
#define CEIL(x,y) (((x) + (y) - 1) / (y))
/* Register mappings for target machines without register windows. */
#ifndef INCOMING_REGNO
#define INCOMING_REGNO(OUT) (OUT)
#endif
#ifndef OUTGOING_REGNO
#define OUTGOING_REGNO(IN) (IN)
#endif
/* Nonzero means __builtin_saveregs has already been done in this function.
The value is the pseudoreg containing the value __builtin_saveregs
returned. */
rtx
saveregs_value
;
/* Similarly for __builtin_apply_args. */
rtx
apply_args_value
;
static
int
get_pointer_alignment
PROTO
((
tree
,
unsigned
));
static
tree
c_strlen
PROTO
((
tree
));
static
rtx
get_memory_rtx
PROTO
((
tree
));
static
int
apply_args_size
PROTO
((
void
));
static
int
apply_result_size
PROTO
((
void
));
static
rtx
result_vector
PROTO
((
int
,
rtx
));
static
rtx
expand_builtin_apply_args
PROTO
((
void
));
static
rtx
expand_builtin_apply_args_1
PROTO
((
void
));
static
rtx
expand_builtin_apply
PROTO
((
rtx
,
rtx
,
rtx
));
static
void
expand_builtin_return
PROTO
((
rtx
));
static
rtx
expand_builtin_classify_type
PROTO
((
tree
));
static
rtx
expand_builtin_mathfn
PROTO
((
tree
,
rtx
,
rtx
));
static
rtx
expand_builtin_constant_p
PROTO
((
tree
));
static
rtx
expand_builtin_saveregs
PROTO
((
tree
,
rtx
,
int
));
static
rtx
expand_builtin_args_info
PROTO
((
tree
));
static
rtx
expand_builtin_next_arg
PROTO
((
tree
));
static
rtx
expand_builtin_memcmp
PROTO
((
tree
,
tree
,
rtx
));
static
rtx
expand_builtin_strcmp
PROTO
((
tree
,
rtx
));
static
rtx
expand_builtin_memcpy
PROTO
((
tree
));
static
rtx
expand_builtin_strcpy
PROTO
((
tree
));
static
rtx
expand_builtin_memset
PROTO
((
tree
));
static
rtx
expand_builtin_strlen
PROTO
((
tree
,
rtx
,
enum
machine_mode
));
static
rtx
expand_builtin_alloca
PROTO
((
tree
,
rtx
));
static
rtx
expand_builtin_ffs
PROTO
((
tree
,
rtx
,
rtx
));
static
rtx
expand_builtin_frame_address
PROTO
((
tree
));
/* Return the alignment in bits of EXP, a pointer valued expression.
But don't return more than MAX_ALIGN no matter what.
The alignment returned is, by default, the alignment of the thing that
EXP points to (if it is not a POINTER_TYPE, 0 is returned).
Otherwise, look at the expression to see if we can do better, i.e., if the
expression is actually pointing at an object whose alignment is tighter. */
static
int
get_pointer_alignment
(
exp
,
max_align
)
tree
exp
;
unsigned
max_align
;
{
unsigned
align
,
inner
;
if
(
TREE_CODE
(
TREE_TYPE
(
exp
))
!=
POINTER_TYPE
)
return
0
;
align
=
TYPE_ALIGN
(
TREE_TYPE
(
TREE_TYPE
(
exp
)));
align
=
MIN
(
align
,
max_align
);
while
(
1
)
{
switch
(
TREE_CODE
(
exp
))
{
case
NOP_EXPR
:
case
CONVERT_EXPR
:
case
NON_LVALUE_EXPR
:
exp
=
TREE_OPERAND
(
exp
,
0
);
if
(
TREE_CODE
(
TREE_TYPE
(
exp
))
!=
POINTER_TYPE
)
return
align
;
inner
=
TYPE_ALIGN
(
TREE_TYPE
(
TREE_TYPE
(
exp
)));
align
=
MIN
(
inner
,
max_align
);
break
;
case
PLUS_EXPR
:
/* If sum of pointer + int, restrict our maximum alignment to that
imposed by the integer. If not, we can't do any better than
ALIGN. */
if
(
TREE_CODE
(
TREE_OPERAND
(
exp
,
1
))
!=
INTEGER_CST
)
return
align
;
while
(((
TREE_INT_CST_LOW
(
TREE_OPERAND
(
exp
,
1
))
*
BITS_PER_UNIT
)
&
(
max_align
-
1
))
!=
0
)
max_align
>>=
1
;
exp
=
TREE_OPERAND
(
exp
,
0
);
break
;
case
ADDR_EXPR
:
/* See what we are pointing at and look at its alignment. */
exp
=
TREE_OPERAND
(
exp
,
0
);
if
(
TREE_CODE
(
exp
)
==
FUNCTION_DECL
)
align
=
FUNCTION_BOUNDARY
;
else
if
(
TREE_CODE_CLASS
(
TREE_CODE
(
exp
))
==
'd'
)
align
=
DECL_ALIGN
(
exp
);
#ifdef CONSTANT_ALIGNMENT
else
if
(
TREE_CODE_CLASS
(
TREE_CODE
(
exp
))
==
'c'
)
align
=
CONSTANT_ALIGNMENT
(
exp
,
align
);
#endif
return
MIN
(
align
,
max_align
);
default
:
return
align
;
}
}
}
/* Compute the length of a C string. TREE_STRING_LENGTH is not the right
way, because it could contain a zero byte in the middle.
TREE_STRING_LENGTH is the size of the character array, not the string.
Unfortunately, string_constant can't access the values of const char
arrays with initializers, so neither can we do so here. */
static
tree
c_strlen
(
src
)
tree
src
;
{
tree
offset_node
;
int
offset
,
max
;
char
*
ptr
;
src
=
string_constant
(
src
,
&
offset_node
);
if
(
src
==
0
)
return
0
;
max
=
TREE_STRING_LENGTH
(
src
);
ptr
=
TREE_STRING_POINTER
(
src
);
if
(
offset_node
&&
TREE_CODE
(
offset_node
)
!=
INTEGER_CST
)
{
/* If the string has an internal zero byte (e.g., "foo\0bar"), we can't
compute the offset to the following null if we don't know where to
start searching for it. */
int
i
;
for
(
i
=
0
;
i
<
max
;
i
++
)
if
(
ptr
[
i
]
==
0
)
return
0
;
/* We don't know the starting offset, but we do know that the string
has no internal zero bytes. We can assume that the offset falls
within the bounds of the string; otherwise, the programmer deserves
what he gets. Subtract the offset from the length of the string,
and return that. */
/* This would perhaps not be valid if we were dealing with named
arrays in addition to literal string constants. */
return
size_binop
(
MINUS_EXPR
,
size_int
(
max
),
offset_node
);
}
/* We have a known offset into the string. Start searching there for
a null character. */
if
(
offset_node
==
0
)
offset
=
0
;
else
{
/* Did we get a long long offset? If so, punt. */
if
(
TREE_INT_CST_HIGH
(
offset_node
)
!=
0
)
return
0
;
offset
=
TREE_INT_CST_LOW
(
offset_node
);
}
/* If the offset is known to be out of bounds, warn, and call strlen at
runtime. */
if
(
offset
<
0
||
offset
>
max
)
{
warning
(
"offset outside bounds of constant string"
);
return
0
;
}
/* Use strlen to search for the first zero byte. Since any strings
constructed with build_string will have nulls appended, we win even
if we get handed something like (char[4])"abcd".
Since OFFSET is our starting index into the string, no further
calculation is needed. */
return
size_int
(
strlen
(
ptr
+
offset
));
}
/* Given TEM, a pointer to a stack frame, follow the dynamic chain COUNT
times to get the address of either a higher stack frame, or a return
address located within it (depending on FNDECL_CODE). */
rtx
expand_builtin_return_addr
(
fndecl_code
,
count
,
tem
)
enum
built_in_function
fndecl_code
;
int
count
;
rtx
tem
;
{
int
i
;
/* Some machines need special handling before we can access
arbitrary frames. For example, on the sparc, we must first flush
all register windows to the stack. */
#ifdef SETUP_FRAME_ADDRESSES
if
(
count
>
0
)
SETUP_FRAME_ADDRESSES
();
#endif
/* On the sparc, the return address is not in the frame, it is in a
register. There is no way to access it off of the current frame
pointer, but it can be accessed off the previous frame pointer by
reading the value from the register window save area. */
#ifdef RETURN_ADDR_IN_PREVIOUS_FRAME
if
(
fndecl_code
==
BUILT_IN_RETURN_ADDRESS
)
count
--
;
#endif
/* Scan back COUNT frames to the specified frame. */
for
(
i
=
0
;
i
<
count
;
i
++
)
{
/* Assume the dynamic chain pointer is in the word that the
frame address points to, unless otherwise specified. */
#ifdef DYNAMIC_CHAIN_ADDRESS
tem
=
DYNAMIC_CHAIN_ADDRESS
(
tem
);
#endif
tem
=
memory_address
(
Pmode
,
tem
);
tem
=
copy_to_reg
(
gen_rtx_MEM
(
Pmode
,
tem
));
}
/* For __builtin_frame_address, return what we've got. */
if
(
fndecl_code
==
BUILT_IN_FRAME_ADDRESS
)
return
tem
;
/* For __builtin_return_address, Get the return address from that
frame. */
#ifdef RETURN_ADDR_RTX
tem
=
RETURN_ADDR_RTX
(
count
,
tem
);
#else
tem
=
memory_address
(
Pmode
,
plus_constant
(
tem
,
GET_MODE_SIZE
(
Pmode
)));
tem
=
gen_rtx_MEM
(
Pmode
,
tem
);
#endif
return
tem
;
}
/* __builtin_setjmp is passed a pointer to an array of five words (not
all will be used on all machines). It operates similarly to the C
library function of the same name, but is more efficient. Much of
the code below (and for longjmp) is copied from the handling of
non-local gotos.
NOTE: This is intended for use by GNAT and the exception handling
scheme in the compiler and will only work in the method used by
them. */
rtx
expand_builtin_setjmp
(
buf_addr
,
target
,
first_label
,
next_label
)
rtx
buf_addr
;
rtx
target
;
rtx
first_label
,
next_label
;
{
rtx
lab1
=
gen_label_rtx
();
enum
machine_mode
sa_mode
=
STACK_SAVEAREA_MODE
(
SAVE_NONLOCAL
);
enum
machine_mode
value_mode
;
rtx
stack_save
;
value_mode
=
TYPE_MODE
(
integer_type_node
);
#ifdef POINTERS_EXTEND_UNSIGNED
buf_addr
=
convert_memory_address
(
Pmode
,
buf_addr
);
#endif
buf_addr
=
force_reg
(
Pmode
,
buf_addr
);
if
(
target
==
0
||
GET_CODE
(
target
)
!=
REG
||
REGNO
(
target
)
<
FIRST_PSEUDO_REGISTER
)
target
=
gen_reg_rtx
(
value_mode
);
emit_queue
();
/* We store the frame pointer and the address of lab1 in the buffer
and use the rest of it for the stack save area, which is
machine-dependent. */
#ifndef BUILTIN_SETJMP_FRAME_VALUE
#define BUILTIN_SETJMP_FRAME_VALUE virtual_stack_vars_rtx
#endif
emit_move_insn
(
gen_rtx_MEM
(
Pmode
,
buf_addr
),
BUILTIN_SETJMP_FRAME_VALUE
);
emit_move_insn
(
validize_mem
(
gen_rtx_MEM
(
Pmode
,
plus_constant
(
buf_addr
,
GET_MODE_SIZE
(
Pmode
)))),
force_reg
(
Pmode
,
gen_rtx_LABEL_REF
(
Pmode
,
lab1
)));
stack_save
=
gen_rtx_MEM
(
sa_mode
,
plus_constant
(
buf_addr
,
2
*
GET_MODE_SIZE
(
Pmode
)));
emit_stack_save
(
SAVE_NONLOCAL
,
&
stack_save
,
NULL_RTX
);
/* If there is further processing to do, do it. */
#ifdef HAVE_builtin_setjmp_setup
if
(
HAVE_builtin_setjmp_setup
)
emit_insn
(
gen_builtin_setjmp_setup
(
buf_addr
));
#endif
/* Set TARGET to zero and branch to the first-time-through label. */
emit_move_insn
(
target
,
const0_rtx
);
emit_jump_insn
(
gen_jump
(
first_label
));
emit_barrier
();
emit_label
(
lab1
);
/* Tell flow about the strange goings on. Putting `lab1' on
`nonlocal_goto_handler_labels' to indicates that function
calls may traverse the arc back to this label. */
current_function_has_nonlocal_label
=
1
;
nonlocal_goto_handler_labels
=
gen_rtx_EXPR_LIST
(
VOIDmode
,
lab1
,
nonlocal_goto_handler_labels
);
/* Clobber the FP when we get here, so we have to make sure it's
marked as used by this function. */
emit_insn
(
gen_rtx_USE
(
VOIDmode
,
hard_frame_pointer_rtx
));
/* Mark the static chain as clobbered here so life information
doesn't get messed up for it. */
emit_insn
(
gen_rtx_CLOBBER
(
VOIDmode
,
static_chain_rtx
));
/* Now put in the code to restore the frame pointer, and argument
pointer, if needed. The code below is from expand_end_bindings
in stmt.c; see detailed documentation there. */
#ifdef HAVE_nonlocal_goto
if
(
!
HAVE_nonlocal_goto
)
#endif
emit_move_insn
(
virtual_stack_vars_rtx
,
hard_frame_pointer_rtx
);
#if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
if
(
fixed_regs
[
ARG_POINTER_REGNUM
])
{
#ifdef ELIMINABLE_REGS
size_t
i
;
static
struct
elims
{
int
from
,
to
;}
elim_regs
[]
=
ELIMINABLE_REGS
;
for
(
i
=
0
;
i
<
sizeof
elim_regs
/
sizeof
elim_regs
[
0
];
i
++
)
if
(
elim_regs
[
i
].
from
==
ARG_POINTER_REGNUM
&&
elim_regs
[
i
].
to
==
HARD_FRAME_POINTER_REGNUM
)
break
;
if
(
i
==
sizeof
elim_regs
/
sizeof
elim_regs
[
0
])
#endif
{
/* Now restore our arg pointer from the address at which it
was saved in our stack frame.
If there hasn't be space allocated for it yet, make
some now. */
if
(
arg_pointer_save_area
==
0
)
arg_pointer_save_area
=
assign_stack_local
(
Pmode
,
GET_MODE_SIZE
(
Pmode
),
0
);
emit_move_insn
(
virtual_incoming_args_rtx
,
copy_to_reg
(
arg_pointer_save_area
));
}
}
#endif
#ifdef HAVE_builtin_setjmp_receiver
if
(
HAVE_builtin_setjmp_receiver
)
emit_insn
(
gen_builtin_setjmp_receiver
(
lab1
));
else
#endif
#ifdef HAVE_nonlocal_goto_receiver
if
(
HAVE_nonlocal_goto_receiver
)
emit_insn
(
gen_nonlocal_goto_receiver
());
else
#endif
{
;
/* Nothing */
}
/* Set TARGET, and branch to the next-time-through label. */
emit_move_insn
(
target
,
const1_rtx
);
emit_jump_insn
(
gen_jump
(
next_label
));
emit_barrier
();
return
target
;
}
/* __builtin_longjmp is passed a pointer to an array of five words (not
all will be used on all machines). It operates similarly to the C
library function of the same name, but is more efficient. Much of
the code below is copied from the handling of non-local gotos.
NOTE: This is intended for use by GNAT and the exception handling
scheme in the compiler and will only work in the method used by
them. */
void
expand_builtin_longjmp
(
buf_addr
,
value
)
rtx
buf_addr
,
value
;
{
rtx
fp
,
lab
,
stack
;
enum
machine_mode
sa_mode
=
STACK_SAVEAREA_MODE
(
SAVE_NONLOCAL
);
#ifdef POINTERS_EXTEND_UNSIGNED
buf_addr
=
convert_memory_address
(
Pmode
,
buf_addr
);
#endif
buf_addr
=
force_reg
(
Pmode
,
buf_addr
);
/* We used to store value in static_chain_rtx, but that fails if pointers
are smaller than integers. We instead require that the user must pass
a second argument of 1, because that is what builtin_setjmp will
return. This also makes EH slightly more efficient, since we are no
longer copying around a value that we don't care about. */
if
(
value
!=
const1_rtx
)
abort
();
#ifdef HAVE_builtin_longjmp
if
(
HAVE_builtin_longjmp
)
emit_insn
(
gen_builtin_longjmp
(
buf_addr
));
else
#endif
{
fp
=
gen_rtx_MEM
(
Pmode
,
buf_addr
);
lab
=
gen_rtx_MEM
(
Pmode
,
plus_constant
(
buf_addr
,
GET_MODE_SIZE
(
Pmode
)));
stack
=
gen_rtx_MEM
(
sa_mode
,
plus_constant
(
buf_addr
,
2
*
GET_MODE_SIZE
(
Pmode
)));
/* Pick up FP, label, and SP from the block and jump. This code is
from expand_goto in stmt.c; see there for detailed comments. */
#if HAVE_nonlocal_goto
if
(
HAVE_nonlocal_goto
)
/* We have to pass a value to the nonlocal_goto pattern that will
get copied into the static_chain pointer, but it does not matter
what that value is, because builtin_setjmp does not use it. */
emit_insn
(
gen_nonlocal_goto
(
value
,
fp
,
stack
,
lab
));
else
#endif
{
lab
=
copy_to_reg
(
lab
);
emit_move_insn
(
hard_frame_pointer_rtx
,
fp
);
emit_stack_restore
(
SAVE_NONLOCAL
,
stack
,
NULL_RTX
);
emit_insn
(
gen_rtx_USE
(
VOIDmode
,
hard_frame_pointer_rtx
));
emit_insn
(
gen_rtx_USE
(
VOIDmode
,
stack_pointer_rtx
));
emit_indirect_jump
(
lab
);
}
}
}
/* Get a MEM rtx for expression EXP which can be used in a string instruction
(cmpstrsi, movstrsi, ..). */
static
rtx
get_memory_rtx
(
exp
)
tree
exp
;
{
rtx
mem
;
int
is_aggregate
;
mem
=
gen_rtx_MEM
(
BLKmode
,
memory_address
(
BLKmode
,
expand_expr
(
exp
,
NULL_RTX
,
ptr_mode
,
EXPAND_SUM
)));
RTX_UNCHANGING_P
(
mem
)
=
TREE_READONLY
(
exp
);
/* Figure out the type of the object pointed to. Set MEM_IN_STRUCT_P
if the value is the address of a structure or if the expression is
cast to a pointer to structure type. */
is_aggregate
=
0
;
while
(
TREE_CODE
(
exp
)
==
NOP_EXPR
)
{
tree
cast_type
=
TREE_TYPE
(
exp
);
if
(
TREE_CODE
(
cast_type
)
==
POINTER_TYPE
&&
AGGREGATE_TYPE_P
(
TREE_TYPE
(
cast_type
)))
{
is_aggregate
=
1
;
break
;
}
exp
=
TREE_OPERAND
(
exp
,
0
);
}
if
(
is_aggregate
==
0
)
{
tree
type
;
if
(
TREE_CODE
(
exp
)
==
ADDR_EXPR
)
/* If this is the address of an object, check whether the
object is an array. */
type
=
TREE_TYPE
(
TREE_OPERAND
(
exp
,
0
));
else
type
=
TREE_TYPE
(
TREE_TYPE
(
exp
));
is_aggregate
=
AGGREGATE_TYPE_P
(
type
);
}
MEM_SET_IN_STRUCT_P
(
mem
,
is_aggregate
);
return
mem
;
}
/* Built-in functions to perform an untyped call and return. */
/* For each register that may be used for calling a function, this
gives a mode used to copy the register's value. VOIDmode indicates
the register is not used for calling a function. If the machine
has register windows, this gives only the outbound registers.
INCOMING_REGNO gives the corresponding inbound register. */
static
enum
machine_mode
apply_args_mode
[
FIRST_PSEUDO_REGISTER
];
/* For each register that may be used for returning values, this gives
a mode used to copy the register's value. VOIDmode indicates the
register is not used for returning values. If the machine has
register windows, this gives only the outbound registers.
INCOMING_REGNO gives the corresponding inbound register. */
static
enum
machine_mode
apply_result_mode
[
FIRST_PSEUDO_REGISTER
];
/* For each register that may be used for calling a function, this
gives the offset of that register into the block returned by
__builtin_apply_args. 0 indicates that the register is not
used for calling a function. */
static
int
apply_args_reg_offset
[
FIRST_PSEUDO_REGISTER
];
/* Return the offset of register REGNO into the block returned by
__builtin_apply_args. This is not declared static, since it is
needed in objc-act.c. */
int
apply_args_register_offset
(
regno
)
int
regno
;
{
apply_args_size
();
/* Arguments are always put in outgoing registers (in the argument
block) if such make sense. */
#ifdef OUTGOING_REGNO
regno
=
OUTGOING_REGNO
(
regno
);
#endif
return
apply_args_reg_offset
[
regno
];
}
/* Return the size required for the block returned by __builtin_apply_args,
and initialize apply_args_mode. */
static
int
apply_args_size
()
{
static
int
size
=
-
1
;
int
align
,
regno
;
enum
machine_mode
mode
;
/* The values computed by this function never change. */
if
(
size
<
0
)
{
/* The first value is the incoming arg-pointer. */
size
=
GET_MODE_SIZE
(
Pmode
);
/* The second value is the structure value address unless this is
passed as an "invisible" first argument. */
if
(
struct_value_rtx
)
size
+=
GET_MODE_SIZE
(
Pmode
);
for
(
regno
=
0
;
regno
<
FIRST_PSEUDO_REGISTER
;
regno
++
)
if
(
FUNCTION_ARG_REGNO_P
(
regno
))
{
/* Search for the proper mode for copying this register's
value. I'm not sure this is right, but it works so far. */
enum
machine_mode
best_mode
=
VOIDmode
;
for
(
mode
=
GET_CLASS_NARROWEST_MODE
(
MODE_INT
);
mode
!=
VOIDmode
;
mode
=
GET_MODE_WIDER_MODE
(
mode
))
if
(
HARD_REGNO_MODE_OK
(
regno
,
mode
)
&&
HARD_REGNO_NREGS
(
regno
,
mode
)
==
1
)
best_mode
=
mode
;
if
(
best_mode
==
VOIDmode
)
for
(
mode
=
GET_CLASS_NARROWEST_MODE
(
MODE_FLOAT
);
mode
!=
VOIDmode
;
mode
=
GET_MODE_WIDER_MODE
(
mode
))
if
(
HARD_REGNO_MODE_OK
(
regno
,
mode
)
&&
(
mov_optab
->
handlers
[(
int
)
mode
].
insn_code
!=
CODE_FOR_nothing
))
best_mode
=
mode
;
mode
=
best_mode
;
if
(
mode
==
VOIDmode
)
abort
();
align
=
GET_MODE_ALIGNMENT
(
mode
)
/
BITS_PER_UNIT
;
if
(
size
%
align
!=
0
)
size
=
CEIL
(
size
,
align
)
*
align
;
apply_args_reg_offset
[
regno
]
=
size
;
size
+=
GET_MODE_SIZE
(
mode
);
apply_args_mode
[
regno
]
=
mode
;
}
else
{
apply_args_mode
[
regno
]
=
VOIDmode
;
apply_args_reg_offset
[
regno
]
=
0
;
}
}
return
size
;
}
/* Return the size required for the block returned by __builtin_apply,
and initialize apply_result_mode. */
static
int
apply_result_size
()
{
static
int
size
=
-
1
;
int
align
,
regno
;
enum
machine_mode
mode
;
/* The values computed by this function never change. */
if
(
size
<
0
)
{
size
=
0
;
for
(
regno
=
0
;
regno
<
FIRST_PSEUDO_REGISTER
;
regno
++
)
if
(
FUNCTION_VALUE_REGNO_P
(
regno
))
{
/* Search for the proper mode for copying this register's
value. I'm not sure this is right, but it works so far. */
enum
machine_mode
best_mode
=
VOIDmode
;
for
(
mode
=
GET_CLASS_NARROWEST_MODE
(
MODE_INT
);
mode
!=
TImode
;
mode
=
GET_MODE_WIDER_MODE
(
mode
))
if
(
HARD_REGNO_MODE_OK
(
regno
,
mode
))
best_mode
=
mode
;
if
(
best_mode
==
VOIDmode
)
for
(
mode
=
GET_CLASS_NARROWEST_MODE
(
MODE_FLOAT
);
mode
!=
VOIDmode
;
mode
=
GET_MODE_WIDER_MODE
(
mode
))
if
(
HARD_REGNO_MODE_OK
(
regno
,
mode
)
&&
(
mov_optab
->
handlers
[(
int
)
mode
].
insn_code
!=
CODE_FOR_nothing
))
best_mode
=
mode
;
mode
=
best_mode
;
if
(
mode
==
VOIDmode
)
abort
();
align
=
GET_MODE_ALIGNMENT
(
mode
)
/
BITS_PER_UNIT
;
if
(
size
%
align
!=
0
)
size
=
CEIL
(
size
,
align
)
*
align
;
size
+=
GET_MODE_SIZE
(
mode
);
apply_result_mode
[
regno
]
=
mode
;
}
else
apply_result_mode
[
regno
]
=
VOIDmode
;
/* Allow targets that use untyped_call and untyped_return to override
the size so that machine-specific information can be stored here. */
#ifdef APPLY_RESULT_SIZE
size
=
APPLY_RESULT_SIZE
;
#endif
}
return
size
;
}
#if defined (HAVE_untyped_call) || defined (HAVE_untyped_return)
/* Create a vector describing the result block RESULT. If SAVEP is true,
the result block is used to save the values; otherwise it is used to
restore the values. */
static
rtx
result_vector
(
savep
,
result
)
int
savep
;
rtx
result
;
{
int
regno
,
size
,
align
,
nelts
;
enum
machine_mode
mode
;
rtx
reg
,
mem
;
rtx
*
savevec
=
(
rtx
*
)
alloca
(
FIRST_PSEUDO_REGISTER
*
sizeof
(
rtx
));
size
=
nelts
=
0
;
for
(
regno
=
0
;
regno
<
FIRST_PSEUDO_REGISTER
;
regno
++
)
if
((
mode
=
apply_result_mode
[
regno
])
!=
VOIDmode
)
{
align
=
GET_MODE_ALIGNMENT
(
mode
)
/
BITS_PER_UNIT
;
if
(
size
%
align
!=
0
)
size
=
CEIL
(
size
,
align
)
*
align
;
reg
=
gen_rtx_REG
(
mode
,
savep
?
regno
:
INCOMING_REGNO
(
regno
));
mem
=
change_address
(
result
,
mode
,
plus_constant
(
XEXP
(
result
,
0
),
size
));
savevec
[
nelts
++
]
=
(
savep
?
gen_rtx_SET
(
VOIDmode
,
mem
,
reg
)
:
gen_rtx_SET
(
VOIDmode
,
reg
,
mem
));
size
+=
GET_MODE_SIZE
(
mode
);
}
return
gen_rtx_PARALLEL
(
VOIDmode
,
gen_rtvec_v
(
nelts
,
savevec
));
}
#endif
/* HAVE_untyped_call or HAVE_untyped_return */
/* Save the state required to perform an untyped call with the same
arguments as were passed to the current function. */
static
rtx
expand_builtin_apply_args_1
()
{
rtx
registers
;
int
size
,
align
,
regno
;
enum
machine_mode
mode
;
/* Create a block where the arg-pointer, structure value address,
and argument registers can be saved. */
registers
=
assign_stack_local
(
BLKmode
,
apply_args_size
(),
-
1
);
/* Walk past the arg-pointer and structure value address. */
size
=
GET_MODE_SIZE
(
Pmode
);
if
(
struct_value_rtx
)
size
+=
GET_MODE_SIZE
(
Pmode
);
/* Save each register used in calling a function to the block. */
for
(
regno
=
0
;
regno
<
FIRST_PSEUDO_REGISTER
;
regno
++
)
if
((
mode
=
apply_args_mode
[
regno
])
!=
VOIDmode
)
{
rtx
tem
;
align
=
GET_MODE_ALIGNMENT
(
mode
)
/
BITS_PER_UNIT
;
if
(
size
%
align
!=
0
)
size
=
CEIL
(
size
,
align
)
*
align
;
tem
=
gen_rtx_REG
(
mode
,
INCOMING_REGNO
(
regno
));
#ifdef STACK_REGS
/* For reg-stack.c's stack register household.
Compare with a similar piece of code in function.c. */
emit_insn
(
gen_rtx_USE
(
mode
,
tem
));
#endif
emit_move_insn
(
change_address
(
registers
,
mode
,
plus_constant
(
XEXP
(
registers
,
0
),
size
)),
tem
);
size
+=
GET_MODE_SIZE
(
mode
);
}
/* Save the arg pointer to the block. */
emit_move_insn
(
change_address
(
registers
,
Pmode
,
XEXP
(
registers
,
0
)),
copy_to_reg
(
virtual_incoming_args_rtx
));
size
=
GET_MODE_SIZE
(
Pmode
);
/* Save the structure value address unless this is passed as an
"invisible" first argument. */
if
(
struct_value_incoming_rtx
)
{
emit_move_insn
(
change_address
(
registers
,
Pmode
,
plus_constant
(
XEXP
(
registers
,
0
),
size
)),
copy_to_reg
(
struct_value_incoming_rtx
));
size
+=
GET_MODE_SIZE
(
Pmode
);
}
/* Return the address of the block. */
return
copy_addr_to_reg
(
XEXP
(
registers
,
0
));
}
/* __builtin_apply_args returns block of memory allocated on
the stack into which is stored the arg pointer, structure
value address, static chain, and all the registers that might
possibly be used in performing a function call. The code is
moved to the start of the function so the incoming values are
saved. */
static
rtx
expand_builtin_apply_args
()
{
/* Don't do __builtin_apply_args more than once in a function.
Save the result of the first call and reuse it. */
if
(
apply_args_value
!=
0
)
return
apply_args_value
;
{
/* When this function is called, it means that registers must be
saved on entry to this function. So we migrate the
call to the first insn of this function. */
rtx
temp
;
rtx
seq
;
start_sequence
();
temp
=
expand_builtin_apply_args_1
();
seq
=
get_insns
();
end_sequence
();
apply_args_value
=
temp
;
/* Put the sequence after the NOTE that starts the function.
If this is inside a SEQUENCE, make the outer-level insn
chain current, so the code is placed at the start of the
function. */
push_topmost_sequence
();
emit_insns_before
(
seq
,
NEXT_INSN
(
get_insns
()));
pop_topmost_sequence
();
return
temp
;
}
}
/* Perform an untyped call and save the state required to perform an
untyped return of whatever value was returned by the given function. */
static
rtx
expand_builtin_apply
(
function
,
arguments
,
argsize
)
rtx
function
,
arguments
,
argsize
;
{
int
size
,
align
,
regno
;
enum
machine_mode
mode
;
rtx
incoming_args
,
result
,
reg
,
dest
,
call_insn
;
rtx
old_stack_level
=
0
;
rtx
call_fusage
=
0
;
/* Create a block where the return registers can be saved. */
result
=
assign_stack_local
(
BLKmode
,
apply_result_size
(),
-
1
);
/* ??? The argsize value should be adjusted here. */
/* Fetch the arg pointer from the ARGUMENTS block. */
incoming_args
=
gen_reg_rtx
(
Pmode
);
emit_move_insn
(
incoming_args
,
gen_rtx_MEM
(
Pmode
,
arguments
));
#ifndef STACK_GROWS_DOWNWARD
incoming_args
=
expand_binop
(
Pmode
,
sub_optab
,
incoming_args
,
argsize
,
incoming_args
,
0
,
OPTAB_LIB_WIDEN
);
#endif
/* Perform postincrements before actually calling the function. */
emit_queue
();
/* Push a new argument block and copy the arguments. */
do_pending_stack_adjust
();
/* Save the stack with nonlocal if available */
#ifdef HAVE_save_stack_nonlocal
if
(
HAVE_save_stack_nonlocal
)
emit_stack_save
(
SAVE_NONLOCAL
,
&
old_stack_level
,
NULL_RTX
);
else
#endif
emit_stack_save
(
SAVE_BLOCK
,
&
old_stack_level
,
NULL_RTX
);
/* Push a block of memory onto the stack to store the memory arguments.
Save the address in a register, and copy the memory arguments. ??? I
haven't figured out how the calling convention macros effect this,
but it's likely that the source and/or destination addresses in
the block copy will need updating in machine specific ways. */
dest
=
allocate_dynamic_stack_space
(
argsize
,
0
,
0
);
emit_block_move
(
gen_rtx_MEM
(
BLKmode
,
dest
),
gen_rtx_MEM
(
BLKmode
,
incoming_args
),
argsize
,
PARM_BOUNDARY
/
BITS_PER_UNIT
);
/* Refer to the argument block. */
apply_args_size
();
arguments
=
gen_rtx_MEM
(
BLKmode
,
arguments
);
/* Walk past the arg-pointer and structure value address. */
size
=
GET_MODE_SIZE
(
Pmode
);
if
(
struct_value_rtx
)
size
+=
GET_MODE_SIZE
(
Pmode
);
/* Restore each of the registers previously saved. Make USE insns
for each of these registers for use in making the call. */
for
(
regno
=
0
;
regno
<
FIRST_PSEUDO_REGISTER
;
regno
++
)
if
((
mode
=
apply_args_mode
[
regno
])
!=
VOIDmode
)
{
align
=
GET_MODE_ALIGNMENT
(
mode
)
/
BITS_PER_UNIT
;
if
(
size
%
align
!=
0
)
size
=
CEIL
(
size
,
align
)
*
align
;
reg
=
gen_rtx_REG
(
mode
,
regno
);
emit_move_insn
(
reg
,
change_address
(
arguments
,
mode
,
plus_constant
(
XEXP
(
arguments
,
0
),
size
)));
use_reg
(
&
call_fusage
,
reg
);
size
+=
GET_MODE_SIZE
(
mode
);
}
/* Restore the structure value address unless this is passed as an
"invisible" first argument. */
size
=
GET_MODE_SIZE
(
Pmode
);
if
(
struct_value_rtx
)
{
rtx
value
=
gen_reg_rtx
(
Pmode
);
emit_move_insn
(
value
,
change_address
(
arguments
,
Pmode
,
plus_constant
(
XEXP
(
arguments
,
0
),
size
)));
emit_move_insn
(
struct_value_rtx
,
value
);
if
(
GET_CODE
(
struct_value_rtx
)
==
REG
)
use_reg
(
&
call_fusage
,
struct_value_rtx
);
size
+=
GET_MODE_SIZE
(
Pmode
);
}
/* All arguments and registers used for the call are set up by now! */
function
=
prepare_call_address
(
function
,
NULL_TREE
,
&
call_fusage
,
0
);
/* Ensure address is valid. SYMBOL_REF is already valid, so no need,
and we don't want to load it into a register as an optimization,
because prepare_call_address already did it if it should be done. */
if
(
GET_CODE
(
function
)
!=
SYMBOL_REF
)
function
=
memory_address
(
FUNCTION_MODE
,
function
);
/* Generate the actual call instruction and save the return value. */
#ifdef HAVE_untyped_call
if
(
HAVE_untyped_call
)
emit_call_insn
(
gen_untyped_call
(
gen_rtx_MEM
(
FUNCTION_MODE
,
function
),
result
,
result_vector
(
1
,
result
)));
else
#endif
#ifdef HAVE_call_value
if
(
HAVE_call_value
)
{
rtx
valreg
=
0
;
/* Locate the unique return register. It is not possible to
express a call that sets more than one return register using
call_value; use untyped_call for that. In fact, untyped_call
only needs to save the return registers in the given block. */
for
(
regno
=
0
;
regno
<
FIRST_PSEUDO_REGISTER
;
regno
++
)
if
((
mode
=
apply_result_mode
[
regno
])
!=
VOIDmode
)
{
if
(
valreg
)
abort
();
/* HAVE_untyped_call required. */
valreg
=
gen_rtx_REG
(
mode
,
regno
);
}
emit_call_insn
(
gen_call_value
(
valreg
,
gen_rtx_MEM
(
FUNCTION_MODE
,
function
),
const0_rtx
,
NULL_RTX
,
const0_rtx
));
emit_move_insn
(
change_address
(
result
,
GET_MODE
(
valreg
),
XEXP
(
result
,
0
)),
valreg
);
}
else
#endif
abort
();
/* Find the CALL insn we just emitted. */
for
(
call_insn
=
get_last_insn
();
call_insn
&&
GET_CODE
(
call_insn
)
!=
CALL_INSN
;
call_insn
=
PREV_INSN
(
call_insn
))
;
if
(
!
call_insn
)
abort
();
/* Put the register usage information on the CALL. If there is already
some usage information, put ours at the end. */
if
(
CALL_INSN_FUNCTION_USAGE
(
call_insn
))
{
rtx
link
;
for
(
link
=
CALL_INSN_FUNCTION_USAGE
(
call_insn
);
XEXP
(
link
,
1
)
!=
0
;
link
=
XEXP
(
link
,
1
))
;
XEXP
(
link
,
1
)
=
call_fusage
;
}
else
CALL_INSN_FUNCTION_USAGE
(
call_insn
)
=
call_fusage
;
/* Restore the stack. */
#ifdef HAVE_save_stack_nonlocal
if
(
HAVE_save_stack_nonlocal
)
emit_stack_restore
(
SAVE_NONLOCAL
,
old_stack_level
,
NULL_RTX
);
else
#endif
emit_stack_restore
(
SAVE_BLOCK
,
old_stack_level
,
NULL_RTX
);
/* Return the address of the result block. */
return
copy_addr_to_reg
(
XEXP
(
result
,
0
));
}
/* Perform an untyped return. */
static
void
expand_builtin_return
(
result
)
rtx
result
;
{
int
size
,
align
,
regno
;
enum
machine_mode
mode
;
rtx
reg
;
rtx
call_fusage
=
0
;
apply_result_size
();
result
=
gen_rtx_MEM
(
BLKmode
,
result
);
#ifdef HAVE_untyped_return
if
(
HAVE_untyped_return
)
{
emit_jump_insn
(
gen_untyped_return
(
result
,
result_vector
(
0
,
result
)));
emit_barrier
();
return
;
}
#endif
/* Restore the return value and note that each value is used. */
size
=
0
;
for
(
regno
=
0
;
regno
<
FIRST_PSEUDO_REGISTER
;
regno
++
)
if
((
mode
=
apply_result_mode
[
regno
])
!=
VOIDmode
)
{
align
=
GET_MODE_ALIGNMENT
(
mode
)
/
BITS_PER_UNIT
;
if
(
size
%
align
!=
0
)
size
=
CEIL
(
size
,
align
)
*
align
;
reg
=
gen_rtx_REG
(
mode
,
INCOMING_REGNO
(
regno
));
emit_move_insn
(
reg
,
change_address
(
result
,
mode
,
plus_constant
(
XEXP
(
result
,
0
),
size
)));
push_to_sequence
(
call_fusage
);
emit_insn
(
gen_rtx_USE
(
VOIDmode
,
reg
));
call_fusage
=
get_insns
();
end_sequence
();
size
+=
GET_MODE_SIZE
(
mode
);
}
/* Put the USE insns before the return. */
emit_insns
(
call_fusage
);
/* Return whatever values was restored by jumping directly to the end
of the function. */
expand_null_return
();
}
/* Expand a call to __builtin_classify_type with arguments found in
ARGLIST. */
static
rtx
expand_builtin_classify_type
(
arglist
)
tree
arglist
;
{
if
(
arglist
!=
0
)
{
tree
type
=
TREE_TYPE
(
TREE_VALUE
(
arglist
));
enum
tree_code
code
=
TREE_CODE
(
type
);
if
(
code
==
VOID_TYPE
)
return
GEN_INT
(
void_type_class
);
if
(
code
==
INTEGER_TYPE
)
return
GEN_INT
(
integer_type_class
);
if
(
code
==
CHAR_TYPE
)
return
GEN_INT
(
char_type_class
);
if
(
code
==
ENUMERAL_TYPE
)
return
GEN_INT
(
enumeral_type_class
);
if
(
code
==
BOOLEAN_TYPE
)
return
GEN_INT
(
boolean_type_class
);
if
(
code
==
POINTER_TYPE
)
return
GEN_INT
(
pointer_type_class
);
if
(
code
==
REFERENCE_TYPE
)
return
GEN_INT
(
reference_type_class
);
if
(
code
==
OFFSET_TYPE
)
return
GEN_INT
(
offset_type_class
);
if
(
code
==
REAL_TYPE
)
return
GEN_INT
(
real_type_class
);
if
(
code
==
COMPLEX_TYPE
)
return
GEN_INT
(
complex_type_class
);
if
(
code
==
FUNCTION_TYPE
)
return
GEN_INT
(
function_type_class
);
if
(
code
==
METHOD_TYPE
)
return
GEN_INT
(
method_type_class
);
if
(
code
==
RECORD_TYPE
)
return
GEN_INT
(
record_type_class
);
if
(
code
==
UNION_TYPE
||
code
==
QUAL_UNION_TYPE
)
return
GEN_INT
(
union_type_class
);
if
(
code
==
ARRAY_TYPE
)
{
if
(
TYPE_STRING_FLAG
(
type
))
return
GEN_INT
(
string_type_class
);
else
return
GEN_INT
(
array_type_class
);
}
if
(
code
==
SET_TYPE
)
return
GEN_INT
(
set_type_class
);
if
(
code
==
FILE_TYPE
)
return
GEN_INT
(
file_type_class
);
if
(
code
==
LANG_TYPE
)
return
GEN_INT
(
lang_type_class
);
}
return
GEN_INT
(
no_type_class
);
}
/* Expand expression EXP, which is a call to __builtin_constant_p. */
static
rtx
expand_builtin_constant_p
(
exp
)
tree
exp
;
{
tree
arglist
=
TREE_OPERAND
(
exp
,
1
);
enum
machine_mode
value_mode
=
TYPE_MODE
(
TREE_TYPE
(
exp
));
if
(
arglist
==
0
)
return
const0_rtx
;
else
{
tree
arg
=
TREE_VALUE
(
arglist
);
rtx
tmp
;
/* We return 1 for a numeric type that's known to be a constant
value at compile-time or for an aggregate type that's a
literal constant. */
STRIP_NOPS
(
arg
);
/* If we know this is a constant, emit the constant of one. */
if
(
TREE_CODE_CLASS
(
TREE_CODE
(
arg
))
==
'c'
||
(
TREE_CODE
(
arg
)
==
CONSTRUCTOR
&&
TREE_CONSTANT
(
arg
))
||
(
TREE_CODE
(
arg
)
==
ADDR_EXPR
&&
TREE_CODE
(
TREE_OPERAND
(
arg
,
0
))
==
STRING_CST
))
return
const1_rtx
;
/* If we aren't going to be running CSE or this expression
has side effects, show we don't know it to be a constant.
Likewise if it's a pointer or aggregate type since in those
case we only want literals, since those are only optimized
when generating RTL, not later. */
if
(
TREE_SIDE_EFFECTS
(
arg
)
||
cse_not_expected
||
AGGREGATE_TYPE_P
(
TREE_TYPE
(
arg
))
||
POINTER_TYPE_P
(
TREE_TYPE
(
arg
)))
return
const0_rtx
;
/* Otherwise, emit (constant_p_rtx (ARG)) and let CSE get a
chance to see if it can deduce whether ARG is constant. */
tmp
=
expand_expr
(
arg
,
NULL_RTX
,
VOIDmode
,
0
);
tmp
=
gen_rtx_CONSTANT_P_RTX
(
value_mode
,
tmp
);
return
tmp
;
}
}
/* Expand a call to one of the builtin math functions (sin, cos, or sqrt).
Return 0 if a normal call should be emitted rather than expanding the
function in-line. EXP is the expression that is a call to the builtin
function; if convenient, the result should be placed in TARGET.
SUBTARGET may be used as the target for computing one of EXP's operands. */
static
rtx
expand_builtin_mathfn
(
exp
,
target
,
subtarget
)
tree
exp
;
rtx
target
,
subtarget
;
{
optab
builtin_optab
;
rtx
op0
,
insns
;
tree
fndecl
=
TREE_OPERAND
(
TREE_OPERAND
(
exp
,
0
),
0
);
tree
arglist
=
TREE_OPERAND
(
exp
,
1
);
if
(
arglist
==
0
/* Arg could be wrong type if user redeclared this fcn wrong. */
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
arglist
)))
!=
REAL_TYPE
)
return
0
;
/* Stabilize and compute the argument. */
if
(
TREE_CODE
(
TREE_VALUE
(
arglist
))
!=
VAR_DECL
&&
TREE_CODE
(
TREE_VALUE
(
arglist
))
!=
PARM_DECL
)
{
exp
=
copy_node
(
exp
);
arglist
=
copy_node
(
arglist
);
TREE_OPERAND
(
exp
,
1
)
=
arglist
;
TREE_VALUE
(
arglist
)
=
save_expr
(
TREE_VALUE
(
arglist
));
}
op0
=
expand_expr
(
TREE_VALUE
(
arglist
),
subtarget
,
VOIDmode
,
0
);
/* Make a suitable register to place result in. */
target
=
gen_reg_rtx
(
TYPE_MODE
(
TREE_TYPE
(
exp
)));
emit_queue
();
start_sequence
();
switch
(
DECL_FUNCTION_CODE
(
fndecl
))
{
case
BUILT_IN_SIN
:
builtin_optab
=
sin_optab
;
break
;
case
BUILT_IN_COS
:
builtin_optab
=
cos_optab
;
break
;
case
BUILT_IN_FSQRT
:
builtin_optab
=
sqrt_optab
;
break
;
default
:
abort
();
}
/* Compute into TARGET.
Set TARGET to wherever the result comes back. */
target
=
expand_unop
(
TYPE_MODE
(
TREE_TYPE
(
TREE_VALUE
(
arglist
))),
builtin_optab
,
op0
,
target
,
0
);
/* If we were unable to expand via the builtin, stop the
sequence (without outputting the insns) and return 0, causing
a call to the library function. */
if
(
target
==
0
)
{
end_sequence
();
return
0
;
}
/* Check the results by default. But if flag_fast_math is turned on,
then assume sqrt will always be called with valid arguments. */
if
(
flag_errno_math
&&
!
flag_fast_math
)
{
rtx
lab1
;
/* Don't define the builtin FP instructions
if your machine is not IEEE. */
if
(
TARGET_FLOAT_FORMAT
!=
IEEE_FLOAT_FORMAT
)
abort
();
lab1
=
gen_label_rtx
();
/* Test the result; if it is NaN, set errno=EDOM because
the argument was not in the domain. */
emit_cmp_and_jump_insns
(
target
,
target
,
EQ
,
0
,
GET_MODE
(
target
),
0
,
0
,
lab1
);
#ifdef TARGET_EDOM
{
#ifdef GEN_ERRNO_RTX
rtx
errno_rtx
=
GEN_ERRNO_RTX
;
#else
rtx
errno_rtx
=
gen_rtx_MEM
(
word_mode
,
gen_rtx_SYMBOL_REF
(
Pmode
,
"errno"
));
#endif
emit_move_insn
(
errno_rtx
,
GEN_INT
(
TARGET_EDOM
));
}
#else
/* We can't set errno=EDOM directly; let the library call do it.
Pop the arguments right away in case the call gets deleted. */
NO_DEFER_POP
;
expand_call
(
exp
,
target
,
0
);
OK_DEFER_POP
;
#endif
emit_label
(
lab1
);
}
/* Output the entire sequence. */
insns
=
get_insns
();
end_sequence
();
emit_insns
(
insns
);
return
target
;
}
/* Expand expression EXP which is a call to the strlen builtin. Return 0
if we failed the caller should emit a normal call, otherwise
try to get the result in TARGET, if convenient (and in mode MODE if that's
convenient). */
static
rtx
expand_builtin_strlen
(
exp
,
target
,
mode
)
tree
exp
;
rtx
target
;
enum
machine_mode
mode
;
{
tree
arglist
=
TREE_OPERAND
(
exp
,
1
);
enum
machine_mode
value_mode
=
TYPE_MODE
(
TREE_TYPE
(
exp
));
if
(
arglist
==
0
/* Arg could be non-pointer if user redeclared this fcn wrong. */
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
arglist
)))
!=
POINTER_TYPE
)
return
0
;
else
{
tree
src
=
TREE_VALUE
(
arglist
);
tree
len
=
c_strlen
(
src
);
int
align
=
get_pointer_alignment
(
src
,
BIGGEST_ALIGNMENT
)
/
BITS_PER_UNIT
;
rtx
result
,
src_rtx
,
char_rtx
;
enum
machine_mode
insn_mode
=
value_mode
,
char_mode
;
enum
insn_code
icode
;
/* If the length is known, just return it. */
if
(
len
!=
0
)
return
expand_expr
(
len
,
target
,
mode
,
EXPAND_MEMORY_USE_BAD
);
/* If SRC is not a pointer type, don't do this operation inline. */
if
(
align
==
0
)
return
0
;
/* Call a function if we can't compute strlen in the right mode. */
while
(
insn_mode
!=
VOIDmode
)
{
icode
=
strlen_optab
->
handlers
[(
int
)
insn_mode
].
insn_code
;
if
(
icode
!=
CODE_FOR_nothing
)
return
0
;
insn_mode
=
GET_MODE_WIDER_MODE
(
insn_mode
);
}
if
(
insn_mode
==
VOIDmode
)
return
0
;
/* Make a place to write the result of the instruction. */
result
=
target
;
if
(
!
(
result
!=
0
&&
GET_CODE
(
result
)
==
REG
&&
GET_MODE
(
result
)
==
insn_mode
&&
REGNO
(
result
)
>=
FIRST_PSEUDO_REGISTER
))
result
=
gen_reg_rtx
(
insn_mode
);
/* Make sure the operands are acceptable to the predicates. */
if
(
!
(
*
insn_operand_predicate
[(
int
)
icode
][
0
])
(
result
,
insn_mode
))
result
=
gen_reg_rtx
(
insn_mode
);
src_rtx
=
memory_address
(
BLKmode
,
expand_expr
(
src
,
NULL_RTX
,
ptr_mode
,
EXPAND_NORMAL
));
if
(
!
(
*
insn_operand_predicate
[(
int
)
icode
][
1
])
(
src_rtx
,
Pmode
))
src_rtx
=
copy_to_mode_reg
(
Pmode
,
src_rtx
);
/* Check the string is readable and has an end. */
if
(
current_function_check_memory_usage
)
emit_library_call
(
chkr_check_str_libfunc
,
1
,
VOIDmode
,
2
,
src_rtx
,
Pmode
,
GEN_INT
(
MEMORY_USE_RO
),
TYPE_MODE
(
integer_type_node
));
char_rtx
=
const0_rtx
;
char_mode
=
insn_operand_mode
[(
int
)
icode
][
2
];
if
(
!
(
*
insn_operand_predicate
[(
int
)
icode
][
2
])
(
char_rtx
,
char_mode
))
char_rtx
=
copy_to_mode_reg
(
char_mode
,
char_rtx
);
emit_insn
(
GEN_FCN
(
icode
)
(
result
,
gen_rtx_MEM
(
BLKmode
,
src_rtx
),
char_rtx
,
GEN_INT
(
align
)));
/* Return the value in the proper mode for this function. */
if
(
GET_MODE
(
result
)
==
value_mode
)
return
result
;
else
if
(
target
!=
0
)
{
convert_move
(
target
,
result
,
0
);
return
target
;
}
else
return
convert_to_mode
(
value_mode
,
result
,
0
);
}
}
/* Expand a call to the memcpy builtin, with arguments in ARGLIST. */
static
rtx
expand_builtin_memcpy
(
arglist
)
tree
arglist
;
{
if
(
arglist
==
0
/* Arg could be non-pointer if user redeclared this fcn wrong. */
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
arglist
)))
!=
POINTER_TYPE
||
TREE_CHAIN
(
arglist
)
==
0
||
(
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
TREE_CHAIN
(
arglist
))))
!=
POINTER_TYPE
)
||
TREE_CHAIN
(
TREE_CHAIN
(
arglist
))
==
0
||
(
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
TREE_CHAIN
(
TREE_CHAIN
(
arglist
)))))
!=
INTEGER_TYPE
))
return
0
;
else
{
tree
dest
=
TREE_VALUE
(
arglist
);
tree
src
=
TREE_VALUE
(
TREE_CHAIN
(
arglist
));
tree
len
=
TREE_VALUE
(
TREE_CHAIN
(
TREE_CHAIN
(
arglist
)));
int
src_align
=
get_pointer_alignment
(
src
,
BIGGEST_ALIGNMENT
)
/
BITS_PER_UNIT
;
int
dest_align
=
get_pointer_alignment
(
dest
,
BIGGEST_ALIGNMENT
)
/
BITS_PER_UNIT
;
rtx
dest_mem
,
src_mem
,
dest_addr
,
len_rtx
;
/* If either SRC or DEST is not a pointer type, don't do
this operation in-line. */
if
(
src_align
==
0
||
dest_align
==
0
)
return
0
;
dest_mem
=
get_memory_rtx
(
dest
);
src_mem
=
get_memory_rtx
(
src
);
len_rtx
=
expand_expr
(
len
,
NULL_RTX
,
VOIDmode
,
0
);
/* Just copy the rights of SRC to the rights of DEST. */
if
(
current_function_check_memory_usage
)
emit_library_call
(
chkr_copy_bitmap_libfunc
,
1
,
VOIDmode
,
3
,
XEXP
(
dest_mem
,
0
),
Pmode
,
XEXP
(
src_mem
,
0
),
Pmode
,
len_rtx
,
TYPE_MODE
(
sizetype
));
/* Copy word part most expediently. */
dest_addr
=
emit_block_move
(
dest_mem
,
src_mem
,
len_rtx
,
MIN
(
src_align
,
dest_align
));
if
(
dest_addr
==
0
)
dest_addr
=
force_operand
(
XEXP
(
dest_mem
,
0
),
NULL_RTX
);
return
dest_addr
;
}
}
/* Expand expression EXP, which is a call to the strcpy builtin. Return 0
if we failed the caller should emit a normal call. */
static
rtx
expand_builtin_strcpy
(
exp
)
tree
exp
;
{
tree
arglist
=
TREE_OPERAND
(
exp
,
1
);
rtx
result
;
if
(
arglist
==
0
/* Arg could be non-pointer if user redeclared this fcn wrong. */
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
arglist
)))
!=
POINTER_TYPE
||
TREE_CHAIN
(
arglist
)
==
0
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
TREE_CHAIN
(
arglist
))))
!=
POINTER_TYPE
)
return
0
;
else
{
tree
len
=
c_strlen
(
TREE_VALUE
(
TREE_CHAIN
(
arglist
)));
if
(
len
==
0
)
return
0
;
len
=
size_binop
(
PLUS_EXPR
,
len
,
integer_one_node
);
chainon
(
arglist
,
build_tree_list
(
NULL_TREE
,
len
));
}
result
=
expand_builtin_memcpy
(
arglist
);
if
(
!
result
)
TREE_CHAIN
(
TREE_CHAIN
(
arglist
))
=
0
;
return
result
;
}
/* Expand expression EXP, which is a call to the memset builtin. Return 0
if we failed the caller should emit a normal call. */
static
rtx
expand_builtin_memset
(
exp
)
tree
exp
;
{
tree
arglist
=
TREE_OPERAND
(
exp
,
1
);
if
(
arglist
==
0
/* Arg could be non-pointer if user redeclared this fcn wrong. */
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
arglist
)))
!=
POINTER_TYPE
||
TREE_CHAIN
(
arglist
)
==
0
||
(
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
TREE_CHAIN
(
arglist
))))
!=
INTEGER_TYPE
)
||
TREE_CHAIN
(
TREE_CHAIN
(
arglist
))
==
0
||
(
INTEGER_TYPE
!=
(
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
TREE_CHAIN
(
TREE_CHAIN
(
arglist
))))))))
return
0
;
else
{
tree
dest
=
TREE_VALUE
(
arglist
);
tree
val
=
TREE_VALUE
(
TREE_CHAIN
(
arglist
));
tree
len
=
TREE_VALUE
(
TREE_CHAIN
(
TREE_CHAIN
(
arglist
)));
int
dest_align
=
get_pointer_alignment
(
dest
,
BIGGEST_ALIGNMENT
)
/
BITS_PER_UNIT
;
rtx
dest_mem
,
dest_addr
,
len_rtx
;
/* If DEST is not a pointer type, don't do this
operation in-line. */
if
(
dest_align
==
0
)
return
0
;
/* If the arguments have side-effects, then we can only evaluate
them at most once. The following code evaluates them twice if
they are not constants because we break out to expand_call
in that case. They can't be constants if they have side-effects
so we can check for that first. Alternatively, we could call
save_expr to make multiple evaluation safe. */
if
(
TREE_SIDE_EFFECTS
(
val
)
||
TREE_SIDE_EFFECTS
(
len
))
return
0
;
/* If VAL is not 0, don't do this operation in-line. */
if
(
expand_expr
(
val
,
NULL_RTX
,
VOIDmode
,
0
)
!=
const0_rtx
)
return
0
;
/* If LEN does not expand to a constant, don't do this
operation in-line. */
len_rtx
=
expand_expr
(
len
,
NULL_RTX
,
VOIDmode
,
0
);
if
(
GET_CODE
(
len_rtx
)
!=
CONST_INT
)
return
0
;
dest_mem
=
get_memory_rtx
(
dest
);
/* Just check DST is writable and mark it as readable. */
if
(
current_function_check_memory_usage
)
emit_library_call
(
chkr_check_addr_libfunc
,
1
,
VOIDmode
,
3
,
XEXP
(
dest_mem
,
0
),
Pmode
,
len_rtx
,
TYPE_MODE
(
sizetype
),
GEN_INT
(
MEMORY_USE_WO
),
TYPE_MODE
(
integer_type_node
));
dest_addr
=
clear_storage
(
dest_mem
,
len_rtx
,
dest_align
);
if
(
dest_addr
==
0
)
dest_addr
=
force_operand
(
XEXP
(
dest_mem
,
0
),
NULL_RTX
);
return
dest_addr
;
}
}
#ifdef HAVE_cmpstrsi
/* Expand expression EXP, which is a call to the memcmp or the strcmp builtin.
ARGLIST is the argument list for this call. Return 0 if we failed and the
caller should emit a normal call, otherwise try to get the result in
TARGET, if convenient. */
static
rtx
expand_builtin_memcmp
(
exp
,
arglist
,
target
)
tree
exp
;
tree
arglist
;
rtx
target
;
{
/* If we need to check memory accesses, call the library function. */
if
(
current_function_check_memory_usage
)
return
0
;
if
(
arglist
==
0
/* Arg could be non-pointer if user redeclared this fcn wrong. */
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
arglist
)))
!=
POINTER_TYPE
||
TREE_CHAIN
(
arglist
)
==
0
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
TREE_CHAIN
(
arglist
))))
!=
POINTER_TYPE
||
TREE_CHAIN
(
TREE_CHAIN
(
arglist
))
==
0
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
TREE_CHAIN
(
TREE_CHAIN
(
arglist
)))))
!=
INTEGER_TYPE
)
return
0
;
else
if
(
!
HAVE_cmpstrsi
)
return
0
;
{
enum
machine_mode
mode
;
tree
arg1
=
TREE_VALUE
(
arglist
);
tree
arg2
=
TREE_VALUE
(
TREE_CHAIN
(
arglist
));
tree
len
=
TREE_VALUE
(
TREE_CHAIN
(
TREE_CHAIN
(
arglist
)));
rtx
result
;
int
arg1_align
=
get_pointer_alignment
(
arg1
,
BIGGEST_ALIGNMENT
)
/
BITS_PER_UNIT
;
int
arg2_align
=
get_pointer_alignment
(
arg2
,
BIGGEST_ALIGNMENT
)
/
BITS_PER_UNIT
;
enum
machine_mode
insn_mode
=
insn_operand_mode
[(
int
)
CODE_FOR_cmpstrsi
][
0
];
/* If we don't have POINTER_TYPE, call the function. */
if
(
arg1_align
==
0
||
arg2_align
==
0
)
return
0
;
/* Make a place to write the result of the instruction. */
result
=
target
;
if
(
!
(
result
!=
0
&&
GET_CODE
(
result
)
==
REG
&&
GET_MODE
(
result
)
==
insn_mode
&&
REGNO
(
result
)
>=
FIRST_PSEUDO_REGISTER
))
result
=
gen_reg_rtx
(
insn_mode
);
emit_insn
(
gen_cmpstrsi
(
result
,
get_memory_rtx
(
arg1
),
get_memory_rtx
(
arg2
),
expand_expr
(
len
,
NULL_RTX
,
VOIDmode
,
0
),
GEN_INT
(
MIN
(
arg1_align
,
arg2_align
))));
/* Return the value in the proper mode for this function. */
mode
=
TYPE_MODE
(
TREE_TYPE
(
exp
));
if
(
GET_MODE
(
result
)
==
mode
)
return
result
;
else
if
(
target
!=
0
)
{
convert_move
(
target
,
result
,
0
);
return
target
;
}
else
return
convert_to_mode
(
mode
,
result
,
0
);
}
}
/* Expand expression EXP, which is a call to the strcmp builtin. Return 0
if we failed the caller should emit a normal call, otherwise try to get
the result in TARGET, if convenient. */
static
rtx
expand_builtin_strcmp
(
exp
,
target
)
tree
exp
;
rtx
target
;
{
tree
arglist
=
TREE_OPERAND
(
exp
,
1
);
/* If we need to check memory accesses, call the library function. */
if
(
current_function_check_memory_usage
)
return
0
;
if
(
arglist
==
0
/* Arg could be non-pointer if user redeclared this fcn wrong. */
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
arglist
)))
!=
POINTER_TYPE
||
TREE_CHAIN
(
arglist
)
==
0
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
TREE_CHAIN
(
arglist
))))
!=
POINTER_TYPE
)
return
0
;
else
if
(
!
HAVE_cmpstrsi
)
return
0
;
{
tree
arg1
=
TREE_VALUE
(
arglist
);
tree
arg2
=
TREE_VALUE
(
TREE_CHAIN
(
arglist
));
tree
len
,
len2
;
rtx
result
;
len
=
c_strlen
(
arg1
);
if
(
len
)
len
=
size_binop
(
PLUS_EXPR
,
integer_one_node
,
len
);
len2
=
c_strlen
(
arg2
);
if
(
len2
)
len2
=
size_binop
(
PLUS_EXPR
,
integer_one_node
,
len2
);
/* If we don't have a constant length for the first, use the length
of the second, if we know it. We don't require a constant for
this case; some cost analysis could be done if both are available
but neither is constant. For now, assume they're equally cheap.
If both strings have constant lengths, use the smaller. This
could arise if optimization results in strcpy being called with
two fixed strings, or if the code was machine-generated. We should
add some code to the `memcmp' handler below to deal with such
situations, someday. */
if
(
!
len
||
TREE_CODE
(
len
)
!=
INTEGER_CST
)
{
if
(
len2
)
len
=
len2
;
else
if
(
len
==
0
)
return
0
;
}
else
if
(
len2
&&
TREE_CODE
(
len2
)
==
INTEGER_CST
)
{
if
(
tree_int_cst_lt
(
len2
,
len
))
len
=
len2
;
}
chainon
(
arglist
,
build_tree_list
(
NULL_TREE
,
len
));
result
=
expand_builtin_memcmp
(
exp
,
arglist
,
target
);
if
(
!
result
)
TREE_CHAIN
(
TREE_CHAIN
(
arglist
))
=
0
;
return
result
;
}
}
#endif
/* Expand expression EXP, which is a call to __builtin_saveregs,
generating the result in TARGET, if that's convenient.
IGNORE is nonzero if the value is to be ignored. */
static
rtx
expand_builtin_saveregs
(
exp
,
target
,
ignore
)
tree
exp
;
rtx
target
;
int
ignore
;
{
enum
machine_mode
value_mode
=
TYPE_MODE
(
TREE_TYPE
(
exp
));
/* Don't do __builtin_saveregs more than once in a function.
Save the result of the first call and reuse it. */
if
(
saveregs_value
!=
0
)
return
saveregs_value
;
{
/* When this function is called, it means that registers must be
saved on entry to this function. So we migrate the
call to the first insn of this function. */
rtx
temp
;
rtx
seq
;
/* Now really call the function. `expand_call' does not call
expand_builtin, so there is no danger of infinite recursion here. */
start_sequence
();
#ifdef EXPAND_BUILTIN_SAVEREGS
/* Do whatever the machine needs done in this case. */
temp
=
EXPAND_BUILTIN_SAVEREGS
(
arglist
);
#else
/* The register where the function returns its value
is likely to have something else in it, such as an argument.
So preserve that register around the call. */
if
(
value_mode
!=
VOIDmode
)
{
rtx
valreg
=
hard_libcall_value
(
value_mode
);
rtx
saved_valreg
=
gen_reg_rtx
(
value_mode
);
emit_move_insn
(
saved_valreg
,
valreg
);
temp
=
expand_call
(
exp
,
target
,
ignore
);
emit_move_insn
(
valreg
,
saved_valreg
);
}
else
/* Generate the call, putting the value in a pseudo. */
temp
=
expand_call
(
exp
,
target
,
ignore
);
#endif
seq
=
get_insns
();
end_sequence
();
saveregs_value
=
temp
;
/* Put the sequence after the NOTE that starts the function.
If this is inside a SEQUENCE, make the outer-level insn
chain current, so the code is placed at the start of the
function. */
push_topmost_sequence
();
emit_insns_before
(
seq
,
NEXT_INSN
(
get_insns
()));
pop_topmost_sequence
();
return
temp
;
}
}
/* __builtin_args_info (N) returns word N of the arg space info
for the current function. The number and meanings of words
is controlled by the definition of CUMULATIVE_ARGS. */
static
rtx
expand_builtin_args_info
(
exp
)
tree
exp
;
{
tree
arglist
=
TREE_OPERAND
(
exp
,
1
);
int
nwords
=
sizeof
(
CUMULATIVE_ARGS
)
/
sizeof
(
int
);
int
*
word_ptr
=
(
int
*
)
&
current_function_args_info
;
#if 0
/* These are used by the code below that is if 0'ed away */
int i;
tree type, elts, result;
#endif
if
(
sizeof
(
CUMULATIVE_ARGS
)
%
sizeof
(
int
)
!=
0
)
fatal
(
"CUMULATIVE_ARGS type defined badly; see %s, line %d"
,
__FILE__
,
__LINE__
);
if
(
arglist
!=
0
)
{
tree
arg
=
TREE_VALUE
(
arglist
);
if
(
TREE_CODE
(
arg
)
!=
INTEGER_CST
)
error
(
"argument of `__builtin_args_info' must be constant"
);
else
{
int
wordnum
=
TREE_INT_CST_LOW
(
arg
);
if
(
wordnum
<
0
||
wordnum
>=
nwords
||
TREE_INT_CST_HIGH
(
arg
))
error
(
"argument of `__builtin_args_info' out of range"
);
else
return
GEN_INT
(
word_ptr
[
wordnum
]);
}
}
else
error
(
"missing argument in `__builtin_args_info'"
);
return
const0_rtx
;
#if 0
for (i = 0; i < nwords; i++)
elts = tree_cons (NULL_TREE, build_int_2 (word_ptr[i], 0));
type = build_array_type (integer_type_node,
build_index_type (build_int_2 (nwords, 0)));
result = build (CONSTRUCTOR, type, NULL_TREE, nreverse (elts));
TREE_CONSTANT (result) = 1;
TREE_STATIC (result) = 1;
result = build (INDIRECT_REF, build_pointer_type (type), result);
TREE_CONSTANT (result) = 1;
return expand_expr (result, NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_BAD);
#endif
}
/* Expand expression EXP, which is a call to __builtin_next_arg. */
static
rtx
expand_builtin_next_arg
(
exp
)
tree
exp
;
{
tree
arglist
=
TREE_OPERAND
(
exp
,
1
);
tree
fntype
=
TREE_TYPE
(
current_function_decl
);
if
((
TYPE_ARG_TYPES
(
fntype
)
==
0
||
(
TREE_VALUE
(
tree_last
(
TYPE_ARG_TYPES
(
fntype
)))
==
void_type_node
))
&&
!
current_function_varargs
)
{
error
(
"`va_start' used in function with fixed args"
);
return
const0_rtx
;
}
if
(
arglist
)
{
tree
last_parm
=
tree_last
(
DECL_ARGUMENTS
(
current_function_decl
));
tree
arg
=
TREE_VALUE
(
arglist
);
/* Strip off all nops for the sake of the comparison. This
is not quite the same as STRIP_NOPS. It does more.
We must also strip off INDIRECT_EXPR for C++ reference
parameters. */
while
(
TREE_CODE
(
arg
)
==
NOP_EXPR
||
TREE_CODE
(
arg
)
==
CONVERT_EXPR
||
TREE_CODE
(
arg
)
==
NON_LVALUE_EXPR
||
TREE_CODE
(
arg
)
==
INDIRECT_REF
)
arg
=
TREE_OPERAND
(
arg
,
0
);
if
(
arg
!=
last_parm
)
warning
(
"second parameter of `va_start' not last named argument"
);
}
else
if
(
!
current_function_varargs
)
/* Evidently an out of date version of <stdarg.h>; can't validate
va_start's second argument, but can still work as intended. */
warning
(
"`__builtin_next_arg' called without an argument"
);
return
expand_binop
(
Pmode
,
add_optab
,
current_function_internal_arg_pointer
,
current_function_arg_offset_rtx
,
NULL_RTX
,
0
,
OPTAB_LIB_WIDEN
);
}
/* Expand a call to one of the builtin functions __builtin_frame_address or
__builtin_return_address. */
static
rtx
expand_builtin_frame_address
(
exp
)
tree
exp
;
{
tree
fndecl
=
TREE_OPERAND
(
TREE_OPERAND
(
exp
,
0
),
0
);
tree
arglist
=
TREE_OPERAND
(
exp
,
1
);
/* The argument must be a nonnegative integer constant.
It counts the number of frames to scan up the stack.
The value is the return address saved in that frame. */
if
(
arglist
==
0
)
/* Warning about missing arg was already issued. */
return
const0_rtx
;
else
if
(
TREE_CODE
(
TREE_VALUE
(
arglist
))
!=
INTEGER_CST
||
tree_int_cst_sgn
(
TREE_VALUE
(
arglist
))
<
0
)
{
if
(
DECL_FUNCTION_CODE
(
fndecl
)
==
BUILT_IN_FRAME_ADDRESS
)
error
(
"invalid arg to `__builtin_frame_address'"
);
else
error
(
"invalid arg to `__builtin_return_address'"
);
return
const0_rtx
;
}
else
{
rtx
tem
=
expand_builtin_return_addr
(
DECL_FUNCTION_CODE
(
fndecl
),
TREE_INT_CST_LOW
(
TREE_VALUE
(
arglist
)),
hard_frame_pointer_rtx
);
/* Some ports cannot access arbitrary stack frames. */
if
(
tem
==
NULL
)
{
if
(
DECL_FUNCTION_CODE
(
fndecl
)
==
BUILT_IN_FRAME_ADDRESS
)
warning
(
"unsupported arg to `__builtin_frame_address'"
);
else
warning
(
"unsupported arg to `__builtin_return_address'"
);
return
const0_rtx
;
}
/* For __builtin_frame_address, return what we've got. */
if
(
DECL_FUNCTION_CODE
(
fndecl
)
==
BUILT_IN_FRAME_ADDRESS
)
return
tem
;
if
(
GET_CODE
(
tem
)
!=
REG
&&
!
CONSTANT_P
(
tem
))
tem
=
copy_to_mode_reg
(
Pmode
,
tem
);
return
tem
;
}
}
/* Expand a call to the alloca builtin, with arguments ARGLIST. Return 0 if
we failed and the caller should emit a normal call, otherwise try to get
the result in TARGET, if convenient. */
static
rtx
expand_builtin_alloca
(
arglist
,
target
)
tree
arglist
;
rtx
target
;
{
rtx
op0
;
if
(
arglist
==
0
/* Arg could be non-integer if user redeclared this fcn wrong. */
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
arglist
)))
!=
INTEGER_TYPE
)
return
0
;
/* Compute the argument. */
op0
=
expand_expr
(
TREE_VALUE
(
arglist
),
NULL_RTX
,
VOIDmode
,
0
);
/* Allocate the desired space. */
return
allocate_dynamic_stack_space
(
op0
,
target
,
BITS_PER_UNIT
);
}
/* Expand a call to the ffs builtin. The arguments are in ARGLIST.
Return 0 if a normal call should be emitted rather than expanding the
function in-line. If convenient, the result should be placed in TARGET.
SUBTARGET may be used as the target for computing one of EXP's operands. */
static
rtx
expand_builtin_ffs
(
arglist
,
target
,
subtarget
)
tree
arglist
;
rtx
target
,
subtarget
;
{
rtx
op0
;
if
(
arglist
==
0
/* Arg could be non-integer if user redeclared this fcn wrong. */
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
arglist
)))
!=
INTEGER_TYPE
)
return
0
;
/* Compute the argument. */
op0
=
expand_expr
(
TREE_VALUE
(
arglist
),
subtarget
,
VOIDmode
,
0
);
/* Compute ffs, into TARGET if possible.
Set TARGET to wherever the result comes back. */
target
=
expand_unop
(
TYPE_MODE
(
TREE_TYPE
(
TREE_VALUE
(
arglist
))),
ffs_optab
,
op0
,
target
,
1
);
if
(
target
==
0
)
abort
();
return
target
;
}
/* Expand an expression EXP that calls a built-in function,
with result going to TARGET if that's convenient
(and in mode MODE if that's convenient).
SUBTARGET may be used as the target for computing one of EXP's operands.
IGNORE is nonzero if the value is to be ignored. */
rtx
expand_builtin
(
exp
,
target
,
subtarget
,
mode
,
ignore
)
tree
exp
;
rtx
target
;
rtx
subtarget
;
enum
machine_mode
mode
;
int
ignore
;
{
tree
fndecl
=
TREE_OPERAND
(
TREE_OPERAND
(
exp
,
0
),
0
);
tree
arglist
=
TREE_OPERAND
(
exp
,
1
);
enum
built_in_function
fcode
=
DECL_FUNCTION_CODE
(
fndecl
);
/* When not optimizing, generate calls to library functions for a certain
set of builtins. */
if
(
!
optimize
&&
!
CALLED_AS_BUILT_IN
(
fndecl
)
&&
(
fcode
==
BUILT_IN_SIN
||
fcode
==
BUILT_IN_COS
||
fcode
==
BUILT_IN_FSQRT
||
fcode
==
BUILT_IN_MEMSET
||
fcode
==
BUILT_IN_MEMCPY
||
fcode
==
BUILT_IN_MEMCMP
||
fcode
==
BUILT_IN_STRLEN
||
fcode
==
BUILT_IN_STRCPY
||
fcode
==
BUILT_IN_STRCMP
||
fcode
==
BUILT_IN_FFS
))
return
expand_call
(
exp
,
target
,
ignore
);
switch
(
fcode
)
{
case
BUILT_IN_ABS
:
case
BUILT_IN_LABS
:
case
BUILT_IN_FABS
:
/* build_function_call changes these into ABS_EXPR. */
abort
();
case
BUILT_IN_SIN
:
case
BUILT_IN_COS
:
/* Treat these like sqrt, but only if the user asks for them. */
if
(
!
flag_fast_math
)
break
;
case
BUILT_IN_FSQRT
:
target
=
expand_builtin_mathfn
(
exp
,
target
,
subtarget
);
if
(
target
)
return
target
;
break
;
case
BUILT_IN_FMOD
:
break
;
case
BUILT_IN_APPLY_ARGS
:
return
expand_builtin_apply_args
();
/* __builtin_apply (FUNCTION, ARGUMENTS, ARGSIZE) invokes
FUNCTION with a copy of the parameters described by
ARGUMENTS, and ARGSIZE. It returns a block of memory
allocated on the stack into which is stored all the registers
that might possibly be used for returning the result of a
function. ARGUMENTS is the value returned by
__builtin_apply_args. ARGSIZE is the number of bytes of
arguments that must be copied. ??? How should this value be
computed? We'll also need a safe worst case value for varargs
functions. */
case
BUILT_IN_APPLY
:
if
(
arglist
==
0
/* Arg could be non-pointer if user redeclared this fcn wrong. */
||
!
POINTER_TYPE_P
(
TREE_TYPE
(
TREE_VALUE
(
arglist
)))
||
TREE_CHAIN
(
arglist
)
==
0
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
TREE_CHAIN
(
arglist
))))
!=
POINTER_TYPE
||
TREE_CHAIN
(
TREE_CHAIN
(
arglist
))
==
0
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
TREE_CHAIN
(
TREE_CHAIN
(
arglist
)))))
!=
INTEGER_TYPE
)
return
const0_rtx
;
else
{
int
i
;
tree
t
;
rtx
ops
[
3
];
for
(
t
=
arglist
,
i
=
0
;
t
;
t
=
TREE_CHAIN
(
t
),
i
++
)
ops
[
i
]
=
expand_expr
(
TREE_VALUE
(
t
),
NULL_RTX
,
VOIDmode
,
0
);
return
expand_builtin_apply
(
ops
[
0
],
ops
[
1
],
ops
[
2
]);
}
/* __builtin_return (RESULT) causes the function to return the
value described by RESULT. RESULT is address of the block of
memory returned by __builtin_apply. */
case
BUILT_IN_RETURN
:
if
(
arglist
/* Arg could be non-pointer if user redeclared this fcn wrong. */
&&
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
arglist
)))
==
POINTER_TYPE
)
expand_builtin_return
(
expand_expr
(
TREE_VALUE
(
arglist
),
NULL_RTX
,
VOIDmode
,
0
));
return
const0_rtx
;
case
BUILT_IN_SAVEREGS
:
return
expand_builtin_saveregs
(
exp
,
target
,
ignore
);
case
BUILT_IN_ARGS_INFO
:
return
expand_builtin_args_info
(
exp
);
/* Return the address of the first anonymous stack arg. */
case
BUILT_IN_NEXT_ARG
:
return
expand_builtin_next_arg
(
exp
);
case
BUILT_IN_CLASSIFY_TYPE
:
return
expand_builtin_classify_type
(
arglist
);
case
BUILT_IN_CONSTANT_P
:
return
expand_builtin_constant_p
(
exp
);
case
BUILT_IN_FRAME_ADDRESS
:
case
BUILT_IN_RETURN_ADDRESS
:
return
expand_builtin_frame_address
(
exp
);
/* Returns the address of the area where the structure is returned.
0 otherwise. */
case
BUILT_IN_AGGREGATE_INCOMING_ADDRESS
:
if
(
arglist
!=
0
||
!
AGGREGATE_TYPE_P
(
TREE_TYPE
(
TREE_TYPE
(
current_function_decl
)))
||
GET_CODE
(
DECL_RTL
(
DECL_RESULT
(
current_function_decl
)))
!=
MEM
)
return
const0_rtx
;
else
return
XEXP
(
DECL_RTL
(
DECL_RESULT
(
current_function_decl
)),
0
);
case
BUILT_IN_ALLOCA
:
target
=
expand_builtin_alloca
(
arglist
,
target
);
if
(
target
)
return
target
;
break
;
case
BUILT_IN_FFS
:
target
=
expand_builtin_ffs
(
exp
,
target
,
subtarget
);
if
(
target
)
return
target
;
break
;
case
BUILT_IN_STRLEN
:
target
=
expand_builtin_strlen
(
exp
,
target
,
mode
);
if
(
target
)
return
target
;
break
;
case
BUILT_IN_STRCPY
:
target
=
expand_builtin_strcpy
(
exp
);
if
(
target
)
return
target
;
break
;
case
BUILT_IN_MEMCPY
:
target
=
expand_builtin_memcpy
(
arglist
);
if
(
target
)
return
target
;
break
;
case
BUILT_IN_MEMSET
:
target
=
expand_builtin_memset
(
exp
);
if
(
target
)
return
target
;
break
;
/* These comparison functions need an instruction that returns an actual
index. An ordinary compare that just sets the condition codes
is not enough. */
#ifdef HAVE_cmpstrsi
case
BUILT_IN_STRCMP
:
target
=
expand_builtin_strcmp
(
exp
,
target
);
if
(
target
)
return
target
;
break
;
case
BUILT_IN_MEMCMP
:
target
=
expand_builtin_memcmp
(
exp
,
arglist
,
target
);
if
(
target
)
return
target
;
break
;
#else
case
BUILT_IN_STRCMP
:
case
BUILT_IN_MEMCMP
:
break
;
#endif
case
BUILT_IN_SETJMP
:
if
(
arglist
==
0
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
arglist
)))
!=
POINTER_TYPE
)
break
;
else
{
rtx
buf_addr
=
expand_expr
(
TREE_VALUE
(
arglist
),
subtarget
,
VOIDmode
,
0
);
rtx
lab
=
gen_label_rtx
();
rtx
ret
=
expand_builtin_setjmp
(
buf_addr
,
target
,
lab
,
lab
);
emit_label
(
lab
);
return
ret
;
}
/* __builtin_longjmp is passed a pointer to an array of five words.
It's similar to the C library longjmp function but works with
__builtin_setjmp above. */
case
BUILT_IN_LONGJMP
:
if
(
arglist
==
0
||
TREE_CHAIN
(
arglist
)
==
0
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
arglist
)))
!=
POINTER_TYPE
)
break
;
else
{
rtx
buf_addr
=
expand_expr
(
TREE_VALUE
(
arglist
),
subtarget
,
VOIDmode
,
0
);
rtx
value
=
expand_expr
(
TREE_VALUE
(
TREE_CHAIN
(
arglist
)),
NULL_RTX
,
VOIDmode
,
0
);
if
(
value
!=
const1_rtx
)
{
error
(
"__builtin_longjmp second argument must be 1"
);
return
const0_rtx
;
}
expand_builtin_longjmp
(
buf_addr
,
value
);
return
const0_rtx
;
}
case
BUILT_IN_TRAP
:
#ifdef HAVE_trap
if
(
HAVE_trap
)
emit_insn
(
gen_trap
());
else
#endif
error
(
"__builtin_trap not supported by this target"
);
emit_barrier
();
return
const0_rtx
;
/* Various hooks for the DWARF 2 __throw routine. */
case
BUILT_IN_UNWIND_INIT
:
expand_builtin_unwind_init
();
return
const0_rtx
;
case
BUILT_IN_DWARF_CFA
:
return
virtual_cfa_rtx
;
#ifdef DWARF2_UNWIND_INFO
case
BUILT_IN_DWARF_FP_REGNUM
:
return
expand_builtin_dwarf_fp_regnum
();
case
BUILT_IN_DWARF_REG_SIZE
:
return
expand_builtin_dwarf_reg_size
(
TREE_VALUE
(
arglist
),
target
);
#endif
case
BUILT_IN_FROB_RETURN_ADDR
:
return
expand_builtin_frob_return_addr
(
TREE_VALUE
(
arglist
));
case
BUILT_IN_EXTRACT_RETURN_ADDR
:
return
expand_builtin_extract_return_addr
(
TREE_VALUE
(
arglist
));
case
BUILT_IN_EH_RETURN
:
expand_builtin_eh_return
(
TREE_VALUE
(
arglist
),
TREE_VALUE
(
TREE_CHAIN
(
arglist
)),
TREE_VALUE
(
TREE_CHAIN
(
TREE_CHAIN
(
arglist
))));
return
const0_rtx
;
default
:
/* just do library call, if unknown builtin */
error
(
"built-in function `%s' not currently supported"
,
IDENTIFIER_POINTER
(
DECL_NAME
(
fndecl
)));
}
/* The switch statement above can drop through to cause the function
to be called normally. */
return
expand_call
(
exp
,
target
,
ignore
);
}
gcc/expr.c
View file @
28f4ec01
...
...
@@ -104,14 +104,6 @@ int pending_stack_adjust;
NO_DEFER_POP and OK_DEFER_POP. */
int
inhibit_defer_pop
;
/* Nonzero means __builtin_saveregs has already been done in this function.
The value is the pseudoreg containing the value __builtin_saveregs
returned. */
static
rtx
saveregs_value
;
/* Similarly for __builtin_apply_args. */
static
rtx
apply_args_value
;
/* Don't check memory usage, since code is being emitted to check a memory
usage. Used when current_function_check_memory_usage is true, to avoid
infinite recursion. */
...
...
@@ -182,18 +174,6 @@ static tree init_noncopied_parts PROTO((tree, tree));
static
int
safe_from_p
PROTO
((
rtx
,
tree
,
int
));
static
int
fixed_type_p
PROTO
((
tree
));
static
rtx
var_rtx
PROTO
((
tree
));
static
int
get_pointer_alignment
PROTO
((
tree
,
unsigned
));
static
tree
string_constant
PROTO
((
tree
,
tree
*
));
static
tree
c_strlen
PROTO
((
tree
));
static
rtx
get_memory_rtx
PROTO
((
tree
));
static
rtx
expand_builtin
PROTO
((
tree
,
rtx
,
rtx
,
enum
machine_mode
,
int
));
static
int
apply_args_size
PROTO
((
void
));
static
int
apply_result_size
PROTO
((
void
));
static
rtx
result_vector
PROTO
((
int
,
rtx
));
static
rtx
expand_builtin_apply_args
PROTO
((
void
));
static
rtx
expand_builtin_apply
PROTO
((
rtx
,
rtx
,
rtx
));
static
void
expand_builtin_return
PROTO
((
rtx
));
static
rtx
expand_increment
PROTO
((
tree
,
int
,
int
));
static
void
preexpand_calls
PROTO
((
tree
));
static
void
do_jump_by_parts_greater
PROTO
((
tree
,
int
,
rtx
,
rtx
));
...
...
@@ -239,14 +219,6 @@ enum insn_code clrstr_optab[NUM_MACHINE_MODES];
#ifndef SLOW_UNALIGNED_ACCESS
#define SLOW_UNALIGNED_ACCESS STRICT_ALIGNMENT
#endif
/* Register mappings for target machines without register windows. */
#ifndef INCOMING_REGNO
#define INCOMING_REGNO(OUT) (OUT)
#endif
#ifndef OUTGOING_REGNO
#define OUTGOING_REGNO(IN) (IN)
#endif
/* This is run once per compilation to set up which modes can be used
directly in memory and to initialize the block move optab. */
...
...
@@ -8287,82 +8259,11 @@ expand_expr (exp, target, tmode, modifier)
abort
();
return
temp
;
}
/* Return the alignment in bits of EXP, a pointer valued expression.
But don't return more than MAX_ALIGN no matter what.
The alignment returned is, by default, the alignment of the thing that
EXP points to (if it is not a POINTER_TYPE, 0 is returned).
Otherwise, look at the expression to see if we can do better, i.e., if the
expression is actually pointing at an object whose alignment is tighter. */
static
int
get_pointer_alignment
(
exp
,
max_align
)
tree
exp
;
unsigned
max_align
;
{
unsigned
align
,
inner
;
if
(
TREE_CODE
(
TREE_TYPE
(
exp
))
!=
POINTER_TYPE
)
return
0
;
align
=
TYPE_ALIGN
(
TREE_TYPE
(
TREE_TYPE
(
exp
)));
align
=
MIN
(
align
,
max_align
);
while
(
1
)
{
switch
(
TREE_CODE
(
exp
))
{
case
NOP_EXPR
:
case
CONVERT_EXPR
:
case
NON_LVALUE_EXPR
:
exp
=
TREE_OPERAND
(
exp
,
0
);
if
(
TREE_CODE
(
TREE_TYPE
(
exp
))
!=
POINTER_TYPE
)
return
align
;
inner
=
TYPE_ALIGN
(
TREE_TYPE
(
TREE_TYPE
(
exp
)));
align
=
MIN
(
inner
,
max_align
);
break
;
case
PLUS_EXPR
:
/* If sum of pointer + int, restrict our maximum alignment to that
imposed by the integer. If not, we can't do any better than
ALIGN. */
if
(
TREE_CODE
(
TREE_OPERAND
(
exp
,
1
))
!=
INTEGER_CST
)
return
align
;
while
(((
TREE_INT_CST_LOW
(
TREE_OPERAND
(
exp
,
1
))
*
BITS_PER_UNIT
)
&
(
max_align
-
1
))
!=
0
)
max_align
>>=
1
;
exp
=
TREE_OPERAND
(
exp
,
0
);
break
;
case
ADDR_EXPR
:
/* See what we are pointing at and look at its alignment. */
exp
=
TREE_OPERAND
(
exp
,
0
);
if
(
TREE_CODE
(
exp
)
==
FUNCTION_DECL
)
align
=
FUNCTION_BOUNDARY
;
else
if
(
TREE_CODE_CLASS
(
TREE_CODE
(
exp
))
==
'd'
)
align
=
DECL_ALIGN
(
exp
);
#ifdef CONSTANT_ALIGNMENT
else
if
(
TREE_CODE_CLASS
(
TREE_CODE
(
exp
))
==
'c'
)
align
=
CONSTANT_ALIGNMENT
(
exp
,
align
);
#endif
return
MIN
(
align
,
max_align
);
default
:
return
align
;
}
}
}
/* Return the tree node and offset if a given argument corresponds to
a string constant. */
static
tree
tree
string_constant
(
arg
,
ptr_offset
)
tree
arg
;
tree
*
ptr_offset
;
...
...
@@ -8399,1854 +8300,6 @@ string_constant (arg, ptr_offset)
return
0
;
}
/* Compute the length of a C string. TREE_STRING_LENGTH is not the right
way, because it could contain a zero byte in the middle.
TREE_STRING_LENGTH is the size of the character array, not the string.
Unfortunately, string_constant can't access the values of const char
arrays with initializers, so neither can we do so here. */
static
tree
c_strlen
(
src
)
tree
src
;
{
tree
offset_node
;
int
offset
,
max
;
char
*
ptr
;
src
=
string_constant
(
src
,
&
offset_node
);
if
(
src
==
0
)
return
0
;
max
=
TREE_STRING_LENGTH
(
src
);
ptr
=
TREE_STRING_POINTER
(
src
);
if
(
offset_node
&&
TREE_CODE
(
offset_node
)
!=
INTEGER_CST
)
{
/* If the string has an internal zero byte (e.g., "foo\0bar"), we can't
compute the offset to the following null if we don't know where to
start searching for it. */
int
i
;
for
(
i
=
0
;
i
<
max
;
i
++
)
if
(
ptr
[
i
]
==
0
)
return
0
;
/* We don't know the starting offset, but we do know that the string
has no internal zero bytes. We can assume that the offset falls
within the bounds of the string; otherwise, the programmer deserves
what he gets. Subtract the offset from the length of the string,
and return that. */
/* This would perhaps not be valid if we were dealing with named
arrays in addition to literal string constants. */
return
size_binop
(
MINUS_EXPR
,
size_int
(
max
),
offset_node
);
}
/* We have a known offset into the string. Start searching there for
a null character. */
if
(
offset_node
==
0
)
offset
=
0
;
else
{
/* Did we get a long long offset? If so, punt. */
if
(
TREE_INT_CST_HIGH
(
offset_node
)
!=
0
)
return
0
;
offset
=
TREE_INT_CST_LOW
(
offset_node
);
}
/* If the offset is known to be out of bounds, warn, and call strlen at
runtime. */
if
(
offset
<
0
||
offset
>
max
)
{
warning
(
"offset outside bounds of constant string"
);
return
0
;
}
/* Use strlen to search for the first zero byte. Since any strings
constructed with build_string will have nulls appended, we win even
if we get handed something like (char[4])"abcd".
Since OFFSET is our starting index into the string, no further
calculation is needed. */
return
size_int
(
strlen
(
ptr
+
offset
));
}
rtx
expand_builtin_return_addr
(
fndecl_code
,
count
,
tem
)
enum
built_in_function
fndecl_code
;
int
count
;
rtx
tem
;
{
int
i
;
/* Some machines need special handling before we can access
arbitrary frames. For example, on the sparc, we must first flush
all register windows to the stack. */
#ifdef SETUP_FRAME_ADDRESSES
if
(
count
>
0
)
SETUP_FRAME_ADDRESSES
();
#endif
/* On the sparc, the return address is not in the frame, it is in a
register. There is no way to access it off of the current frame
pointer, but it can be accessed off the previous frame pointer by
reading the value from the register window save area. */
#ifdef RETURN_ADDR_IN_PREVIOUS_FRAME
if
(
fndecl_code
==
BUILT_IN_RETURN_ADDRESS
)
count
--
;
#endif
/* Scan back COUNT frames to the specified frame. */
for
(
i
=
0
;
i
<
count
;
i
++
)
{
/* Assume the dynamic chain pointer is in the word that the
frame address points to, unless otherwise specified. */
#ifdef DYNAMIC_CHAIN_ADDRESS
tem
=
DYNAMIC_CHAIN_ADDRESS
(
tem
);
#endif
tem
=
memory_address
(
Pmode
,
tem
);
tem
=
copy_to_reg
(
gen_rtx_MEM
(
Pmode
,
tem
));
}
/* For __builtin_frame_address, return what we've got. */
if
(
fndecl_code
==
BUILT_IN_FRAME_ADDRESS
)
return
tem
;
/* For __builtin_return_address, Get the return address from that
frame. */
#ifdef RETURN_ADDR_RTX
tem
=
RETURN_ADDR_RTX
(
count
,
tem
);
#else
tem
=
memory_address
(
Pmode
,
plus_constant
(
tem
,
GET_MODE_SIZE
(
Pmode
)));
tem
=
gen_rtx_MEM
(
Pmode
,
tem
);
#endif
return
tem
;
}
/* __builtin_setjmp is passed a pointer to an array of five words (not
all will be used on all machines). It operates similarly to the C
library function of the same name, but is more efficient. Much of
the code below (and for longjmp) is copied from the handling of
non-local gotos.
NOTE: This is intended for use by GNAT and the exception handling
scheme in the compiler and will only work in the method used by
them. */
rtx
expand_builtin_setjmp
(
buf_addr
,
target
,
first_label
,
next_label
)
rtx
buf_addr
;
rtx
target
;
rtx
first_label
,
next_label
;
{
rtx
lab1
=
gen_label_rtx
();
enum
machine_mode
sa_mode
=
STACK_SAVEAREA_MODE
(
SAVE_NONLOCAL
);
enum
machine_mode
value_mode
;
rtx
stack_save
;
value_mode
=
TYPE_MODE
(
integer_type_node
);
#ifdef POINTERS_EXTEND_UNSIGNED
buf_addr
=
convert_memory_address
(
Pmode
,
buf_addr
);
#endif
buf_addr
=
force_reg
(
Pmode
,
buf_addr
);
if
(
target
==
0
||
GET_CODE
(
target
)
!=
REG
||
REGNO
(
target
)
<
FIRST_PSEUDO_REGISTER
)
target
=
gen_reg_rtx
(
value_mode
);
emit_queue
();
/* We store the frame pointer and the address of lab1 in the buffer
and use the rest of it for the stack save area, which is
machine-dependent. */
#ifndef BUILTIN_SETJMP_FRAME_VALUE
#define BUILTIN_SETJMP_FRAME_VALUE virtual_stack_vars_rtx
#endif
emit_move_insn
(
gen_rtx_MEM
(
Pmode
,
buf_addr
),
BUILTIN_SETJMP_FRAME_VALUE
);
emit_move_insn
(
validize_mem
(
gen_rtx_MEM
(
Pmode
,
plus_constant
(
buf_addr
,
GET_MODE_SIZE
(
Pmode
)))),
force_reg
(
Pmode
,
gen_rtx_LABEL_REF
(
Pmode
,
lab1
)));
stack_save
=
gen_rtx_MEM
(
sa_mode
,
plus_constant
(
buf_addr
,
2
*
GET_MODE_SIZE
(
Pmode
)));
emit_stack_save
(
SAVE_NONLOCAL
,
&
stack_save
,
NULL_RTX
);
/* If there is further processing to do, do it. */
#ifdef HAVE_builtin_setjmp_setup
if
(
HAVE_builtin_setjmp_setup
)
emit_insn
(
gen_builtin_setjmp_setup
(
buf_addr
));
#endif
/* Set TARGET to zero and branch to the first-time-through label. */
emit_move_insn
(
target
,
const0_rtx
);
emit_jump_insn
(
gen_jump
(
first_label
));
emit_barrier
();
emit_label
(
lab1
);
/* Tell flow about the strange goings on. Putting `lab1' on
`nonlocal_goto_handler_labels' to indicates that function
calls may traverse the arc back to this label. */
current_function_has_nonlocal_label
=
1
;
nonlocal_goto_handler_labels
=
gen_rtx_EXPR_LIST
(
VOIDmode
,
lab1
,
nonlocal_goto_handler_labels
);
/* Clobber the FP when we get here, so we have to make sure it's
marked as used by this function. */
emit_insn
(
gen_rtx_USE
(
VOIDmode
,
hard_frame_pointer_rtx
));
/* Mark the static chain as clobbered here so life information
doesn't get messed up for it. */
emit_insn
(
gen_rtx_CLOBBER
(
VOIDmode
,
static_chain_rtx
));
/* Now put in the code to restore the frame pointer, and argument
pointer, if needed. The code below is from expand_end_bindings
in stmt.c; see detailed documentation there. */
#ifdef HAVE_nonlocal_goto
if
(
!
HAVE_nonlocal_goto
)
#endif
emit_move_insn
(
virtual_stack_vars_rtx
,
hard_frame_pointer_rtx
);
#if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
if
(
fixed_regs
[
ARG_POINTER_REGNUM
])
{
#ifdef ELIMINABLE_REGS
size_t
i
;
static
struct
elims
{
int
from
,
to
;}
elim_regs
[]
=
ELIMINABLE_REGS
;
for
(
i
=
0
;
i
<
sizeof
elim_regs
/
sizeof
elim_regs
[
0
];
i
++
)
if
(
elim_regs
[
i
].
from
==
ARG_POINTER_REGNUM
&&
elim_regs
[
i
].
to
==
HARD_FRAME_POINTER_REGNUM
)
break
;
if
(
i
==
sizeof
elim_regs
/
sizeof
elim_regs
[
0
])
#endif
{
/* Now restore our arg pointer from the address at which it
was saved in our stack frame.
If there hasn't be space allocated for it yet, make
some now. */
if
(
arg_pointer_save_area
==
0
)
arg_pointer_save_area
=
assign_stack_local
(
Pmode
,
GET_MODE_SIZE
(
Pmode
),
0
);
emit_move_insn
(
virtual_incoming_args_rtx
,
copy_to_reg
(
arg_pointer_save_area
));
}
}
#endif
#ifdef HAVE_builtin_setjmp_receiver
if
(
HAVE_builtin_setjmp_receiver
)
emit_insn
(
gen_builtin_setjmp_receiver
(
lab1
));
else
#endif
#ifdef HAVE_nonlocal_goto_receiver
if
(
HAVE_nonlocal_goto_receiver
)
emit_insn
(
gen_nonlocal_goto_receiver
());
else
#endif
{
;
/* Nothing */
}
/* Set TARGET, and branch to the next-time-through label. */
emit_move_insn
(
target
,
const1_rtx
);
emit_jump_insn
(
gen_jump
(
next_label
));
emit_barrier
();
return
target
;
}
void
expand_builtin_longjmp
(
buf_addr
,
value
)
rtx
buf_addr
,
value
;
{
rtx
fp
,
lab
,
stack
;
enum
machine_mode
sa_mode
=
STACK_SAVEAREA_MODE
(
SAVE_NONLOCAL
);
#ifdef POINTERS_EXTEND_UNSIGNED
buf_addr
=
convert_memory_address
(
Pmode
,
buf_addr
);
#endif
buf_addr
=
force_reg
(
Pmode
,
buf_addr
);
/* We used to store value in static_chain_rtx, but that fails if pointers
are smaller than integers. We instead require that the user must pass
a second argument of 1, because that is what builtin_setjmp will
return. This also makes EH slightly more efficient, since we are no
longer copying around a value that we don't care about. */
if
(
value
!=
const1_rtx
)
abort
();
#ifdef HAVE_builtin_longjmp
if
(
HAVE_builtin_longjmp
)
emit_insn
(
gen_builtin_longjmp
(
buf_addr
));
else
#endif
{
fp
=
gen_rtx_MEM
(
Pmode
,
buf_addr
);
lab
=
gen_rtx_MEM
(
Pmode
,
plus_constant
(
buf_addr
,
GET_MODE_SIZE
(
Pmode
)));
stack
=
gen_rtx_MEM
(
sa_mode
,
plus_constant
(
buf_addr
,
2
*
GET_MODE_SIZE
(
Pmode
)));
/* Pick up FP, label, and SP from the block and jump. This code is
from expand_goto in stmt.c; see there for detailed comments. */
#if HAVE_nonlocal_goto
if
(
HAVE_nonlocal_goto
)
/* We have to pass a value to the nonlocal_goto pattern that will
get copied into the static_chain pointer, but it does not matter
what that value is, because builtin_setjmp does not use it. */
emit_insn
(
gen_nonlocal_goto
(
value
,
fp
,
stack
,
lab
));
else
#endif
{
lab
=
copy_to_reg
(
lab
);
emit_move_insn
(
hard_frame_pointer_rtx
,
fp
);
emit_stack_restore
(
SAVE_NONLOCAL
,
stack
,
NULL_RTX
);
emit_insn
(
gen_rtx_USE
(
VOIDmode
,
hard_frame_pointer_rtx
));
emit_insn
(
gen_rtx_USE
(
VOIDmode
,
stack_pointer_rtx
));
emit_indirect_jump
(
lab
);
}
}
}
static
rtx
get_memory_rtx
(
exp
)
tree
exp
;
{
rtx
mem
;
int
is_aggregate
;
mem
=
gen_rtx_MEM
(
BLKmode
,
memory_address
(
BLKmode
,
expand_expr
(
exp
,
NULL_RTX
,
ptr_mode
,
EXPAND_SUM
)));
RTX_UNCHANGING_P
(
mem
)
=
TREE_READONLY
(
exp
);
/* Figure out the type of the object pointed to. Set MEM_IN_STRUCT_P
if the value is the address of a structure or if the expression is
cast to a pointer to structure type. */
is_aggregate
=
0
;
while
(
TREE_CODE
(
exp
)
==
NOP_EXPR
)
{
tree
cast_type
=
TREE_TYPE
(
exp
);
if
(
TREE_CODE
(
cast_type
)
==
POINTER_TYPE
&&
AGGREGATE_TYPE_P
(
TREE_TYPE
(
cast_type
)))
{
is_aggregate
=
1
;
break
;
}
exp
=
TREE_OPERAND
(
exp
,
0
);
}
if
(
is_aggregate
==
0
)
{
tree
type
;
if
(
TREE_CODE
(
exp
)
==
ADDR_EXPR
)
/* If this is the address of an object, check whether the
object is an array. */
type
=
TREE_TYPE
(
TREE_OPERAND
(
exp
,
0
));
else
type
=
TREE_TYPE
(
TREE_TYPE
(
exp
));
is_aggregate
=
AGGREGATE_TYPE_P
(
type
);
}
MEM_SET_IN_STRUCT_P
(
mem
,
is_aggregate
);
return
mem
;
}
/* Expand an expression EXP that calls a built-in function,
with result going to TARGET if that's convenient
(and in mode MODE if that's convenient).
SUBTARGET may be used as the target for computing one of EXP's operands.
IGNORE is nonzero if the value is to be ignored. */
#define CALLED_AS_BUILT_IN(NODE) \
(!strncmp (IDENTIFIER_POINTER (DECL_NAME (NODE)), "__builtin_", 10))
static
rtx
expand_builtin
(
exp
,
target
,
subtarget
,
mode
,
ignore
)
tree
exp
;
rtx
target
;
rtx
subtarget
;
enum
machine_mode
mode
;
int
ignore
;
{
tree
fndecl
=
TREE_OPERAND
(
TREE_OPERAND
(
exp
,
0
),
0
);
tree
arglist
=
TREE_OPERAND
(
exp
,
1
);
rtx
op0
;
rtx
lab1
,
insns
;
enum
machine_mode
value_mode
=
TYPE_MODE
(
TREE_TYPE
(
exp
));
optab
builtin_optab
;
switch
(
DECL_FUNCTION_CODE
(
fndecl
))
{
case
BUILT_IN_ABS
:
case
BUILT_IN_LABS
:
case
BUILT_IN_FABS
:
/* build_function_call changes these into ABS_EXPR. */
abort
();
case
BUILT_IN_SIN
:
case
BUILT_IN_COS
:
/* Treat these like sqrt, but only if the user asks for them. */
if
(
!
flag_fast_math
)
break
;
case
BUILT_IN_FSQRT
:
/* If not optimizing, call the library function. */
if
(
!
optimize
)
break
;
if
(
arglist
==
0
/* Arg could be wrong type if user redeclared this fcn wrong. */
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
arglist
)))
!=
REAL_TYPE
)
break
;
/* Stabilize and compute the argument. */
if
(
TREE_CODE
(
TREE_VALUE
(
arglist
))
!=
VAR_DECL
&&
TREE_CODE
(
TREE_VALUE
(
arglist
))
!=
PARM_DECL
)
{
exp
=
copy_node
(
exp
);
arglist
=
copy_node
(
arglist
);
TREE_OPERAND
(
exp
,
1
)
=
arglist
;
TREE_VALUE
(
arglist
)
=
save_expr
(
TREE_VALUE
(
arglist
));
}
op0
=
expand_expr
(
TREE_VALUE
(
arglist
),
subtarget
,
VOIDmode
,
0
);
/* Make a suitable register to place result in. */
target
=
gen_reg_rtx
(
TYPE_MODE
(
TREE_TYPE
(
exp
)));
emit_queue
();
start_sequence
();
switch
(
DECL_FUNCTION_CODE
(
fndecl
))
{
case
BUILT_IN_SIN
:
builtin_optab
=
sin_optab
;
break
;
case
BUILT_IN_COS
:
builtin_optab
=
cos_optab
;
break
;
case
BUILT_IN_FSQRT
:
builtin_optab
=
sqrt_optab
;
break
;
default
:
abort
();
}
/* Compute into TARGET.
Set TARGET to wherever the result comes back. */
target
=
expand_unop
(
TYPE_MODE
(
TREE_TYPE
(
TREE_VALUE
(
arglist
))),
builtin_optab
,
op0
,
target
,
0
);
/* If we were unable to expand via the builtin, stop the
sequence (without outputting the insns) and break, causing
a call to the library function. */
if
(
target
==
0
)
{
end_sequence
();
break
;
}
/* Check the results by default. But if flag_fast_math is turned on,
then assume sqrt will always be called with valid arguments. */
if
(
flag_errno_math
&&
!
flag_fast_math
)
{
/* Don't define the builtin FP instructions
if your machine is not IEEE. */
if
(
TARGET_FLOAT_FORMAT
!=
IEEE_FLOAT_FORMAT
)
abort
();
lab1
=
gen_label_rtx
();
/* Test the result; if it is NaN, set errno=EDOM because
the argument was not in the domain. */
emit_cmp_and_jump_insns
(
target
,
target
,
EQ
,
0
,
GET_MODE
(
target
),
0
,
0
,
lab1
);
#ifdef TARGET_EDOM
{
#ifdef GEN_ERRNO_RTX
rtx
errno_rtx
=
GEN_ERRNO_RTX
;
#else
rtx
errno_rtx
=
gen_rtx_MEM
(
word_mode
,
gen_rtx_SYMBOL_REF
(
Pmode
,
"errno"
));
#endif
emit_move_insn
(
errno_rtx
,
GEN_INT
(
TARGET_EDOM
));
}
#else
/* We can't set errno=EDOM directly; let the library call do it.
Pop the arguments right away in case the call gets deleted. */
NO_DEFER_POP
;
expand_call
(
exp
,
target
,
0
);
OK_DEFER_POP
;
#endif
emit_label
(
lab1
);
}
/* Output the entire sequence. */
insns
=
get_insns
();
end_sequence
();
emit_insns
(
insns
);
return
target
;
case
BUILT_IN_FMOD
:
break
;
/* __builtin_apply_args returns block of memory allocated on
the stack into which is stored the arg pointer, structure
value address, static chain, and all the registers that might
possibly be used in performing a function call. The code is
moved to the start of the function so the incoming values are
saved. */
case
BUILT_IN_APPLY_ARGS
:
/* Don't do __builtin_apply_args more than once in a function.
Save the result of the first call and reuse it. */
if
(
apply_args_value
!=
0
)
return
apply_args_value
;
{
/* When this function is called, it means that registers must be
saved on entry to this function. So we migrate the
call to the first insn of this function. */
rtx
temp
;
rtx
seq
;
start_sequence
();
temp
=
expand_builtin_apply_args
();
seq
=
get_insns
();
end_sequence
();
apply_args_value
=
temp
;
/* Put the sequence after the NOTE that starts the function.
If this is inside a SEQUENCE, make the outer-level insn
chain current, so the code is placed at the start of the
function. */
push_topmost_sequence
();
emit_insns_before
(
seq
,
NEXT_INSN
(
get_insns
()));
pop_topmost_sequence
();
return
temp
;
}
/* __builtin_apply (FUNCTION, ARGUMENTS, ARGSIZE) invokes
FUNCTION with a copy of the parameters described by
ARGUMENTS, and ARGSIZE. It returns a block of memory
allocated on the stack into which is stored all the registers
that might possibly be used for returning the result of a
function. ARGUMENTS is the value returned by
__builtin_apply_args. ARGSIZE is the number of bytes of
arguments that must be copied. ??? How should this value be
computed? We'll also need a safe worst case value for varargs
functions. */
case
BUILT_IN_APPLY
:
if
(
arglist
==
0
/* Arg could be non-pointer if user redeclared this fcn wrong. */
||
!
POINTER_TYPE_P
(
TREE_TYPE
(
TREE_VALUE
(
arglist
)))
||
TREE_CHAIN
(
arglist
)
==
0
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
TREE_CHAIN
(
arglist
))))
!=
POINTER_TYPE
||
TREE_CHAIN
(
TREE_CHAIN
(
arglist
))
==
0
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
TREE_CHAIN
(
TREE_CHAIN
(
arglist
)))))
!=
INTEGER_TYPE
)
return
const0_rtx
;
else
{
int
i
;
tree
t
;
rtx
ops
[
3
];
for
(
t
=
arglist
,
i
=
0
;
t
;
t
=
TREE_CHAIN
(
t
),
i
++
)
ops
[
i
]
=
expand_expr
(
TREE_VALUE
(
t
),
NULL_RTX
,
VOIDmode
,
0
);
return
expand_builtin_apply
(
ops
[
0
],
ops
[
1
],
ops
[
2
]);
}
/* __builtin_return (RESULT) causes the function to return the
value described by RESULT. RESULT is address of the block of
memory returned by __builtin_apply. */
case
BUILT_IN_RETURN
:
if
(
arglist
/* Arg could be non-pointer if user redeclared this fcn wrong. */
&&
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
arglist
)))
==
POINTER_TYPE
)
expand_builtin_return
(
expand_expr
(
TREE_VALUE
(
arglist
),
NULL_RTX
,
VOIDmode
,
0
));
return
const0_rtx
;
case
BUILT_IN_SAVEREGS
:
/* Don't do __builtin_saveregs more than once in a function.
Save the result of the first call and reuse it. */
if
(
saveregs_value
!=
0
)
return
saveregs_value
;
{
/* When this function is called, it means that registers must be
saved on entry to this function. So we migrate the
call to the first insn of this function. */
rtx
temp
;
rtx
seq
;
/* Now really call the function. `expand_call' does not call
expand_builtin, so there is no danger of infinite recursion here. */
start_sequence
();
#ifdef EXPAND_BUILTIN_SAVEREGS
/* Do whatever the machine needs done in this case. */
temp
=
EXPAND_BUILTIN_SAVEREGS
(
arglist
);
#else
/* The register where the function returns its value
is likely to have something else in it, such as an argument.
So preserve that register around the call. */
if
(
value_mode
!=
VOIDmode
)
{
rtx
valreg
=
hard_libcall_value
(
value_mode
);
rtx
saved_valreg
=
gen_reg_rtx
(
value_mode
);
emit_move_insn
(
saved_valreg
,
valreg
);
temp
=
expand_call
(
exp
,
target
,
ignore
);
emit_move_insn
(
valreg
,
saved_valreg
);
}
else
/* Generate the call, putting the value in a pseudo. */
temp
=
expand_call
(
exp
,
target
,
ignore
);
#endif
seq
=
get_insns
();
end_sequence
();
saveregs_value
=
temp
;
/* Put the sequence after the NOTE that starts the function.
If this is inside a SEQUENCE, make the outer-level insn
chain current, so the code is placed at the start of the
function. */
push_topmost_sequence
();
emit_insns_before
(
seq
,
NEXT_INSN
(
get_insns
()));
pop_topmost_sequence
();
return
temp
;
}
/* __builtin_args_info (N) returns word N of the arg space info
for the current function. The number and meanings of words
is controlled by the definition of CUMULATIVE_ARGS. */
case
BUILT_IN_ARGS_INFO
:
{
int
nwords
=
sizeof
(
CUMULATIVE_ARGS
)
/
sizeof
(
int
);
int
*
word_ptr
=
(
int
*
)
&
current_function_args_info
;
#if 0
/* These are used by the code below that is if 0'ed away */
int i;
tree type, elts, result;
#endif
if
(
sizeof
(
CUMULATIVE_ARGS
)
%
sizeof
(
int
)
!=
0
)
fatal
(
"CUMULATIVE_ARGS type defined badly; see %s, line %d"
,
__FILE__
,
__LINE__
);
if
(
arglist
!=
0
)
{
tree
arg
=
TREE_VALUE
(
arglist
);
if
(
TREE_CODE
(
arg
)
!=
INTEGER_CST
)
error
(
"argument of `__builtin_args_info' must be constant"
);
else
{
int
wordnum
=
TREE_INT_CST_LOW
(
arg
);
if
(
wordnum
<
0
||
wordnum
>=
nwords
||
TREE_INT_CST_HIGH
(
arg
))
error
(
"argument of `__builtin_args_info' out of range"
);
else
return
GEN_INT
(
word_ptr
[
wordnum
]);
}
}
else
error
(
"missing argument in `__builtin_args_info'"
);
return
const0_rtx
;
#if 0
for (i = 0; i < nwords; i++)
elts = tree_cons (NULL_TREE, build_int_2 (word_ptr[i], 0));
type = build_array_type (integer_type_node,
build_index_type (build_int_2 (nwords, 0)));
result = build (CONSTRUCTOR, type, NULL_TREE, nreverse (elts));
TREE_CONSTANT (result) = 1;
TREE_STATIC (result) = 1;
result = build (INDIRECT_REF, build_pointer_type (type), result);
TREE_CONSTANT (result) = 1;
return expand_expr (result, NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_BAD);
#endif
}
/* Return the address of the first anonymous stack arg. */
case
BUILT_IN_NEXT_ARG
:
{
tree
fntype
=
TREE_TYPE
(
current_function_decl
);
if
((
TYPE_ARG_TYPES
(
fntype
)
==
0
||
(
TREE_VALUE
(
tree_last
(
TYPE_ARG_TYPES
(
fntype
)))
==
void_type_node
))
&&
!
current_function_varargs
)
{
error
(
"`va_start' used in function with fixed args"
);
return
const0_rtx
;
}
if
(
arglist
)
{
tree
last_parm
=
tree_last
(
DECL_ARGUMENTS
(
current_function_decl
));
tree
arg
=
TREE_VALUE
(
arglist
);
/* Strip off all nops for the sake of the comparison. This
is not quite the same as STRIP_NOPS. It does more.
We must also strip off INDIRECT_EXPR for C++ reference
parameters. */
while
(
TREE_CODE
(
arg
)
==
NOP_EXPR
||
TREE_CODE
(
arg
)
==
CONVERT_EXPR
||
TREE_CODE
(
arg
)
==
NON_LVALUE_EXPR
||
TREE_CODE
(
arg
)
==
INDIRECT_REF
)
arg
=
TREE_OPERAND
(
arg
,
0
);
if
(
arg
!=
last_parm
)
warning
(
"second parameter of `va_start' not last named argument"
);
}
else
if
(
!
current_function_varargs
)
/* Evidently an out of date version of <stdarg.h>; can't validate
va_start's second argument, but can still work as intended. */
warning
(
"`__builtin_next_arg' called without an argument"
);
}
return
expand_binop
(
Pmode
,
add_optab
,
current_function_internal_arg_pointer
,
current_function_arg_offset_rtx
,
NULL_RTX
,
0
,
OPTAB_LIB_WIDEN
);
case
BUILT_IN_CLASSIFY_TYPE
:
if
(
arglist
!=
0
)
{
tree
type
=
TREE_TYPE
(
TREE_VALUE
(
arglist
));
enum
tree_code
code
=
TREE_CODE
(
type
);
if
(
code
==
VOID_TYPE
)
return
GEN_INT
(
void_type_class
);
if
(
code
==
INTEGER_TYPE
)
return
GEN_INT
(
integer_type_class
);
if
(
code
==
CHAR_TYPE
)
return
GEN_INT
(
char_type_class
);
if
(
code
==
ENUMERAL_TYPE
)
return
GEN_INT
(
enumeral_type_class
);
if
(
code
==
BOOLEAN_TYPE
)
return
GEN_INT
(
boolean_type_class
);
if
(
code
==
POINTER_TYPE
)
return
GEN_INT
(
pointer_type_class
);
if
(
code
==
REFERENCE_TYPE
)
return
GEN_INT
(
reference_type_class
);
if
(
code
==
OFFSET_TYPE
)
return
GEN_INT
(
offset_type_class
);
if
(
code
==
REAL_TYPE
)
return
GEN_INT
(
real_type_class
);
if
(
code
==
COMPLEX_TYPE
)
return
GEN_INT
(
complex_type_class
);
if
(
code
==
FUNCTION_TYPE
)
return
GEN_INT
(
function_type_class
);
if
(
code
==
METHOD_TYPE
)
return
GEN_INT
(
method_type_class
);
if
(
code
==
RECORD_TYPE
)
return
GEN_INT
(
record_type_class
);
if
(
code
==
UNION_TYPE
||
code
==
QUAL_UNION_TYPE
)
return
GEN_INT
(
union_type_class
);
if
(
code
==
ARRAY_TYPE
)
{
if
(
TYPE_STRING_FLAG
(
type
))
return
GEN_INT
(
string_type_class
);
else
return
GEN_INT
(
array_type_class
);
}
if
(
code
==
SET_TYPE
)
return
GEN_INT
(
set_type_class
);
if
(
code
==
FILE_TYPE
)
return
GEN_INT
(
file_type_class
);
if
(
code
==
LANG_TYPE
)
return
GEN_INT
(
lang_type_class
);
}
return
GEN_INT
(
no_type_class
);
case
BUILT_IN_CONSTANT_P
:
if
(
arglist
==
0
)
return
const0_rtx
;
else
{
tree
arg
=
TREE_VALUE
(
arglist
);
rtx
tmp
;
/* We return 1 for a numeric type that's known to be a constant
value at compile-time or for an aggregate type that's a
literal constant. */
STRIP_NOPS
(
arg
);
/* If we know this is a constant, emit the constant of one. */
if
(
TREE_CODE_CLASS
(
TREE_CODE
(
arg
))
==
'c'
||
(
TREE_CODE
(
arg
)
==
CONSTRUCTOR
&&
TREE_CONSTANT
(
arg
))
||
(
TREE_CODE
(
arg
)
==
ADDR_EXPR
&&
TREE_CODE
(
TREE_OPERAND
(
arg
,
0
))
==
STRING_CST
))
return
const1_rtx
;
/* If we aren't going to be running CSE or this expression
has side effects, show we don't know it to be a constant.
Likewise if it's a pointer or aggregate type since in those
case we only want literals, since those are only optimized
when generating RTL, not later. */
if
(
TREE_SIDE_EFFECTS
(
arg
)
||
cse_not_expected
||
AGGREGATE_TYPE_P
(
TREE_TYPE
(
arg
))
||
POINTER_TYPE_P
(
TREE_TYPE
(
arg
)))
return
const0_rtx
;
/* Otherwise, emit (constant_p_rtx (ARG)) and let CSE get a
chance to see if it can deduce whether ARG is constant. */
tmp
=
expand_expr
(
arg
,
NULL_RTX
,
VOIDmode
,
0
);
tmp
=
gen_rtx_CONSTANT_P_RTX
(
value_mode
,
tmp
);
return
tmp
;
}
case
BUILT_IN_FRAME_ADDRESS
:
/* The argument must be a nonnegative integer constant.
It counts the number of frames to scan up the stack.
The value is the address of that frame. */
case
BUILT_IN_RETURN_ADDRESS
:
/* The argument must be a nonnegative integer constant.
It counts the number of frames to scan up the stack.
The value is the return address saved in that frame. */
if
(
arglist
==
0
)
/* Warning about missing arg was already issued. */
return
const0_rtx
;
else
if
(
TREE_CODE
(
TREE_VALUE
(
arglist
))
!=
INTEGER_CST
||
tree_int_cst_sgn
(
TREE_VALUE
(
arglist
))
<
0
)
{
if
(
DECL_FUNCTION_CODE
(
fndecl
)
==
BUILT_IN_FRAME_ADDRESS
)
error
(
"invalid arg to `__builtin_frame_address'"
);
else
error
(
"invalid arg to `__builtin_return_address'"
);
return
const0_rtx
;
}
else
{
rtx
tem
=
expand_builtin_return_addr
(
DECL_FUNCTION_CODE
(
fndecl
),
TREE_INT_CST_LOW
(
TREE_VALUE
(
arglist
)),
hard_frame_pointer_rtx
);
/* Some ports cannot access arbitrary stack frames. */
if
(
tem
==
NULL
)
{
if
(
DECL_FUNCTION_CODE
(
fndecl
)
==
BUILT_IN_FRAME_ADDRESS
)
warning
(
"unsupported arg to `__builtin_frame_address'"
);
else
warning
(
"unsupported arg to `__builtin_return_address'"
);
return
const0_rtx
;
}
/* For __builtin_frame_address, return what we've got. */
if
(
DECL_FUNCTION_CODE
(
fndecl
)
==
BUILT_IN_FRAME_ADDRESS
)
return
tem
;
if
(
GET_CODE
(
tem
)
!=
REG
&&
!
CONSTANT_P
(
tem
))
tem
=
copy_to_mode_reg
(
Pmode
,
tem
);
return
tem
;
}
/* Returns the address of the area where the structure is returned.
0 otherwise. */
case
BUILT_IN_AGGREGATE_INCOMING_ADDRESS
:
if
(
arglist
!=
0
||
!
AGGREGATE_TYPE_P
(
TREE_TYPE
(
TREE_TYPE
(
current_function_decl
)))
||
GET_CODE
(
DECL_RTL
(
DECL_RESULT
(
current_function_decl
)))
!=
MEM
)
return
const0_rtx
;
else
return
XEXP
(
DECL_RTL
(
DECL_RESULT
(
current_function_decl
)),
0
);
case
BUILT_IN_ALLOCA
:
if
(
arglist
==
0
/* Arg could be non-integer if user redeclared this fcn wrong. */
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
arglist
)))
!=
INTEGER_TYPE
)
break
;
/* Compute the argument. */
op0
=
expand_expr
(
TREE_VALUE
(
arglist
),
NULL_RTX
,
VOIDmode
,
0
);
/* Allocate the desired space. */
return
allocate_dynamic_stack_space
(
op0
,
target
,
BITS_PER_UNIT
);
case
BUILT_IN_FFS
:
/* If not optimizing, call the library function. */
if
(
!
optimize
&&
!
CALLED_AS_BUILT_IN
(
fndecl
))
break
;
if
(
arglist
==
0
/* Arg could be non-integer if user redeclared this fcn wrong. */
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
arglist
)))
!=
INTEGER_TYPE
)
break
;
/* Compute the argument. */
op0
=
expand_expr
(
TREE_VALUE
(
arglist
),
subtarget
,
VOIDmode
,
0
);
/* Compute ffs, into TARGET if possible.
Set TARGET to wherever the result comes back. */
target
=
expand_unop
(
TYPE_MODE
(
TREE_TYPE
(
TREE_VALUE
(
arglist
))),
ffs_optab
,
op0
,
target
,
1
);
if
(
target
==
0
)
abort
();
return
target
;
case
BUILT_IN_STRLEN
:
/* If not optimizing, call the library function. */
if
(
!
optimize
&&
!
CALLED_AS_BUILT_IN
(
fndecl
))
break
;
if
(
arglist
==
0
/* Arg could be non-pointer if user redeclared this fcn wrong. */
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
arglist
)))
!=
POINTER_TYPE
)
break
;
else
{
tree
src
=
TREE_VALUE
(
arglist
);
tree
len
=
c_strlen
(
src
);
int
align
=
get_pointer_alignment
(
src
,
BIGGEST_ALIGNMENT
)
/
BITS_PER_UNIT
;
rtx
result
,
src_rtx
,
char_rtx
;
enum
machine_mode
insn_mode
=
value_mode
,
char_mode
;
enum
insn_code
icode
;
/* If the length is known, just return it. */
if
(
len
!=
0
)
return
expand_expr
(
len
,
target
,
mode
,
EXPAND_MEMORY_USE_BAD
);
/* If SRC is not a pointer type, don't do this operation inline. */
if
(
align
==
0
)
break
;
/* Call a function if we can't compute strlen in the right mode. */
while
(
insn_mode
!=
VOIDmode
)
{
icode
=
strlen_optab
->
handlers
[(
int
)
insn_mode
].
insn_code
;
if
(
icode
!=
CODE_FOR_nothing
)
break
;
insn_mode
=
GET_MODE_WIDER_MODE
(
insn_mode
);
}
if
(
insn_mode
==
VOIDmode
)
break
;
/* Make a place to write the result of the instruction. */
result
=
target
;
if
(
!
(
result
!=
0
&&
GET_CODE
(
result
)
==
REG
&&
GET_MODE
(
result
)
==
insn_mode
&&
REGNO
(
result
)
>=
FIRST_PSEUDO_REGISTER
))
result
=
gen_reg_rtx
(
insn_mode
);
/* Make sure the operands are acceptable to the predicates. */
if
(
!
(
*
insn_operand_predicate
[(
int
)
icode
][
0
])
(
result
,
insn_mode
))
result
=
gen_reg_rtx
(
insn_mode
);
src_rtx
=
memory_address
(
BLKmode
,
expand_expr
(
src
,
NULL_RTX
,
ptr_mode
,
EXPAND_NORMAL
));
if
(
!
(
*
insn_operand_predicate
[(
int
)
icode
][
1
])
(
src_rtx
,
Pmode
))
src_rtx
=
copy_to_mode_reg
(
Pmode
,
src_rtx
);
/* Check the string is readable and has an end. */
if
(
current_function_check_memory_usage
)
emit_library_call
(
chkr_check_str_libfunc
,
1
,
VOIDmode
,
2
,
src_rtx
,
Pmode
,
GEN_INT
(
MEMORY_USE_RO
),
TYPE_MODE
(
integer_type_node
));
char_rtx
=
const0_rtx
;
char_mode
=
insn_operand_mode
[(
int
)
icode
][
2
];
if
(
!
(
*
insn_operand_predicate
[(
int
)
icode
][
2
])
(
char_rtx
,
char_mode
))
char_rtx
=
copy_to_mode_reg
(
char_mode
,
char_rtx
);
emit_insn
(
GEN_FCN
(
icode
)
(
result
,
gen_rtx_MEM
(
BLKmode
,
src_rtx
),
char_rtx
,
GEN_INT
(
align
)));
/* Return the value in the proper mode for this function. */
if
(
GET_MODE
(
result
)
==
value_mode
)
return
result
;
else
if
(
target
!=
0
)
{
convert_move
(
target
,
result
,
0
);
return
target
;
}
else
return
convert_to_mode
(
value_mode
,
result
,
0
);
}
case
BUILT_IN_STRCPY
:
/* If not optimizing, call the library function. */
if
(
!
optimize
&&
!
CALLED_AS_BUILT_IN
(
fndecl
))
break
;
if
(
arglist
==
0
/* Arg could be non-pointer if user redeclared this fcn wrong. */
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
arglist
)))
!=
POINTER_TYPE
||
TREE_CHAIN
(
arglist
)
==
0
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
TREE_CHAIN
(
arglist
))))
!=
POINTER_TYPE
)
break
;
else
{
tree
len
=
c_strlen
(
TREE_VALUE
(
TREE_CHAIN
(
arglist
)));
if
(
len
==
0
)
break
;
len
=
size_binop
(
PLUS_EXPR
,
len
,
integer_one_node
);
chainon
(
arglist
,
build_tree_list
(
NULL_TREE
,
len
));
}
/* Drops in. */
case
BUILT_IN_MEMCPY
:
/* If not optimizing, call the library function. */
if
(
!
optimize
&&
!
CALLED_AS_BUILT_IN
(
fndecl
))
break
;
if
(
arglist
==
0
/* Arg could be non-pointer if user redeclared this fcn wrong. */
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
arglist
)))
!=
POINTER_TYPE
||
TREE_CHAIN
(
arglist
)
==
0
||
(
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
TREE_CHAIN
(
arglist
))))
!=
POINTER_TYPE
)
||
TREE_CHAIN
(
TREE_CHAIN
(
arglist
))
==
0
||
(
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
TREE_CHAIN
(
TREE_CHAIN
(
arglist
)))))
!=
INTEGER_TYPE
))
break
;
else
{
tree
dest
=
TREE_VALUE
(
arglist
);
tree
src
=
TREE_VALUE
(
TREE_CHAIN
(
arglist
));
tree
len
=
TREE_VALUE
(
TREE_CHAIN
(
TREE_CHAIN
(
arglist
)));
int
src_align
=
get_pointer_alignment
(
src
,
BIGGEST_ALIGNMENT
)
/
BITS_PER_UNIT
;
int
dest_align
=
get_pointer_alignment
(
dest
,
BIGGEST_ALIGNMENT
)
/
BITS_PER_UNIT
;
rtx
dest_mem
,
src_mem
,
dest_addr
,
len_rtx
;
/* If either SRC or DEST is not a pointer type, don't do
this operation in-line. */
if
(
src_align
==
0
||
dest_align
==
0
)
{
if
(
DECL_FUNCTION_CODE
(
fndecl
)
==
BUILT_IN_STRCPY
)
TREE_CHAIN
(
TREE_CHAIN
(
arglist
))
=
0
;
break
;
}
dest_mem
=
get_memory_rtx
(
dest
);
src_mem
=
get_memory_rtx
(
src
);
len_rtx
=
expand_expr
(
len
,
NULL_RTX
,
VOIDmode
,
0
);
/* Just copy the rights of SRC to the rights of DEST. */
if
(
current_function_check_memory_usage
)
emit_library_call
(
chkr_copy_bitmap_libfunc
,
1
,
VOIDmode
,
3
,
XEXP
(
dest_mem
,
0
),
Pmode
,
XEXP
(
src_mem
,
0
),
Pmode
,
len_rtx
,
TYPE_MODE
(
sizetype
));
/* Copy word part most expediently. */
dest_addr
=
emit_block_move
(
dest_mem
,
src_mem
,
len_rtx
,
MIN
(
src_align
,
dest_align
));
if
(
dest_addr
==
0
)
dest_addr
=
force_operand
(
XEXP
(
dest_mem
,
0
),
NULL_RTX
);
return
dest_addr
;
}
case
BUILT_IN_MEMSET
:
/* If not optimizing, call the library function. */
if
(
!
optimize
&&
!
CALLED_AS_BUILT_IN
(
fndecl
))
break
;
if
(
arglist
==
0
/* Arg could be non-pointer if user redeclared this fcn wrong. */
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
arglist
)))
!=
POINTER_TYPE
||
TREE_CHAIN
(
arglist
)
==
0
||
(
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
TREE_CHAIN
(
arglist
))))
!=
INTEGER_TYPE
)
||
TREE_CHAIN
(
TREE_CHAIN
(
arglist
))
==
0
||
(
INTEGER_TYPE
!=
(
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
TREE_CHAIN
(
TREE_CHAIN
(
arglist
))))))))
break
;
else
{
tree
dest
=
TREE_VALUE
(
arglist
);
tree
val
=
TREE_VALUE
(
TREE_CHAIN
(
arglist
));
tree
len
=
TREE_VALUE
(
TREE_CHAIN
(
TREE_CHAIN
(
arglist
)));
int
dest_align
=
get_pointer_alignment
(
dest
,
BIGGEST_ALIGNMENT
)
/
BITS_PER_UNIT
;
rtx
dest_mem
,
dest_addr
,
len_rtx
;
/* If DEST is not a pointer type, don't do this
operation in-line. */
if
(
dest_align
==
0
)
break
;
/* If the arguments have side-effects, then we can only evaluate
them at most once. The following code evaluates them twice if
they are not constants because we break out to expand_call
in that case. They can't be constants if they have side-effects
so we can check for that first. Alternatively, we could call
save_expr to make multiple evaluation safe. */
if
(
TREE_SIDE_EFFECTS
(
val
)
||
TREE_SIDE_EFFECTS
(
len
))
break
;
/* If VAL is not 0, don't do this operation in-line. */
if
(
expand_expr
(
val
,
NULL_RTX
,
VOIDmode
,
0
)
!=
const0_rtx
)
break
;
/* If LEN does not expand to a constant, don't do this
operation in-line. */
len_rtx
=
expand_expr
(
len
,
NULL_RTX
,
VOIDmode
,
0
);
if
(
GET_CODE
(
len_rtx
)
!=
CONST_INT
)
break
;
dest_mem
=
get_memory_rtx
(
dest
);
/* Just check DST is writable and mark it as readable. */
if
(
current_function_check_memory_usage
)
emit_library_call
(
chkr_check_addr_libfunc
,
1
,
VOIDmode
,
3
,
XEXP
(
dest_mem
,
0
),
Pmode
,
len_rtx
,
TYPE_MODE
(
sizetype
),
GEN_INT
(
MEMORY_USE_WO
),
TYPE_MODE
(
integer_type_node
));
dest_addr
=
clear_storage
(
dest_mem
,
len_rtx
,
dest_align
);
if
(
dest_addr
==
0
)
dest_addr
=
force_operand
(
XEXP
(
dest_mem
,
0
),
NULL_RTX
);
return
dest_addr
;
}
/* These comparison functions need an instruction that returns an actual
index. An ordinary compare that just sets the condition codes
is not enough. */
#ifdef HAVE_cmpstrsi
case
BUILT_IN_STRCMP
:
/* If not optimizing, call the library function. */
if
(
!
optimize
&&
!
CALLED_AS_BUILT_IN
(
fndecl
))
break
;
/* If we need to check memory accesses, call the library function. */
if
(
current_function_check_memory_usage
)
break
;
if
(
arglist
==
0
/* Arg could be non-pointer if user redeclared this fcn wrong. */
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
arglist
)))
!=
POINTER_TYPE
||
TREE_CHAIN
(
arglist
)
==
0
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
TREE_CHAIN
(
arglist
))))
!=
POINTER_TYPE
)
break
;
else
if
(
!
HAVE_cmpstrsi
)
break
;
{
tree
arg1
=
TREE_VALUE
(
arglist
);
tree
arg2
=
TREE_VALUE
(
TREE_CHAIN
(
arglist
));
tree
len
,
len2
;
len
=
c_strlen
(
arg1
);
if
(
len
)
len
=
size_binop
(
PLUS_EXPR
,
integer_one_node
,
len
);
len2
=
c_strlen
(
arg2
);
if
(
len2
)
len2
=
size_binop
(
PLUS_EXPR
,
integer_one_node
,
len2
);
/* If we don't have a constant length for the first, use the length
of the second, if we know it. We don't require a constant for
this case; some cost analysis could be done if both are available
but neither is constant. For now, assume they're equally cheap.
If both strings have constant lengths, use the smaller. This
could arise if optimization results in strcpy being called with
two fixed strings, or if the code was machine-generated. We should
add some code to the `memcmp' handler below to deal with such
situations, someday. */
if
(
!
len
||
TREE_CODE
(
len
)
!=
INTEGER_CST
)
{
if
(
len2
)
len
=
len2
;
else
if
(
len
==
0
)
break
;
}
else
if
(
len2
&&
TREE_CODE
(
len2
)
==
INTEGER_CST
)
{
if
(
tree_int_cst_lt
(
len2
,
len
))
len
=
len2
;
}
chainon
(
arglist
,
build_tree_list
(
NULL_TREE
,
len
));
}
/* Drops in. */
case
BUILT_IN_MEMCMP
:
/* If not optimizing, call the library function. */
if
(
!
optimize
&&
!
CALLED_AS_BUILT_IN
(
fndecl
))
break
;
/* If we need to check memory accesses, call the library function. */
if
(
current_function_check_memory_usage
)
break
;
if
(
arglist
==
0
/* Arg could be non-pointer if user redeclared this fcn wrong. */
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
arglist
)))
!=
POINTER_TYPE
||
TREE_CHAIN
(
arglist
)
==
0
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
TREE_CHAIN
(
arglist
))))
!=
POINTER_TYPE
||
TREE_CHAIN
(
TREE_CHAIN
(
arglist
))
==
0
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
TREE_CHAIN
(
TREE_CHAIN
(
arglist
)))))
!=
INTEGER_TYPE
)
break
;
else
if
(
!
HAVE_cmpstrsi
)
break
;
{
tree
arg1
=
TREE_VALUE
(
arglist
);
tree
arg2
=
TREE_VALUE
(
TREE_CHAIN
(
arglist
));
tree
len
=
TREE_VALUE
(
TREE_CHAIN
(
TREE_CHAIN
(
arglist
)));
rtx
result
;
int
arg1_align
=
get_pointer_alignment
(
arg1
,
BIGGEST_ALIGNMENT
)
/
BITS_PER_UNIT
;
int
arg2_align
=
get_pointer_alignment
(
arg2
,
BIGGEST_ALIGNMENT
)
/
BITS_PER_UNIT
;
enum
machine_mode
insn_mode
=
insn_operand_mode
[(
int
)
CODE_FOR_cmpstrsi
][
0
];
/* If we don't have POINTER_TYPE, call the function. */
if
(
arg1_align
==
0
||
arg2_align
==
0
)
{
if
(
DECL_FUNCTION_CODE
(
fndecl
)
==
BUILT_IN_STRCMP
)
TREE_CHAIN
(
TREE_CHAIN
(
arglist
))
=
0
;
break
;
}
/* Make a place to write the result of the instruction. */
result
=
target
;
if
(
!
(
result
!=
0
&&
GET_CODE
(
result
)
==
REG
&&
GET_MODE
(
result
)
==
insn_mode
&&
REGNO
(
result
)
>=
FIRST_PSEUDO_REGISTER
))
result
=
gen_reg_rtx
(
insn_mode
);
emit_insn
(
gen_cmpstrsi
(
result
,
get_memory_rtx
(
arg1
),
get_memory_rtx
(
arg2
),
expand_expr
(
len
,
NULL_RTX
,
VOIDmode
,
0
),
GEN_INT
(
MIN
(
arg1_align
,
arg2_align
))));
/* Return the value in the proper mode for this function. */
mode
=
TYPE_MODE
(
TREE_TYPE
(
exp
));
if
(
GET_MODE
(
result
)
==
mode
)
return
result
;
else
if
(
target
!=
0
)
{
convert_move
(
target
,
result
,
0
);
return
target
;
}
else
return
convert_to_mode
(
mode
,
result
,
0
);
}
#else
case
BUILT_IN_STRCMP
:
case
BUILT_IN_MEMCMP
:
break
;
#endif
case
BUILT_IN_SETJMP
:
if
(
arglist
==
0
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
arglist
)))
!=
POINTER_TYPE
)
break
;
else
{
rtx
buf_addr
=
expand_expr
(
TREE_VALUE
(
arglist
),
subtarget
,
VOIDmode
,
0
);
rtx
lab
=
gen_label_rtx
();
rtx
ret
=
expand_builtin_setjmp
(
buf_addr
,
target
,
lab
,
lab
);
emit_label
(
lab
);
return
ret
;
}
/* __builtin_longjmp is passed a pointer to an array of five words.
It's similar to the C library longjmp function but works with
__builtin_setjmp above. */
case
BUILT_IN_LONGJMP
:
if
(
arglist
==
0
||
TREE_CHAIN
(
arglist
)
==
0
||
TREE_CODE
(
TREE_TYPE
(
TREE_VALUE
(
arglist
)))
!=
POINTER_TYPE
)
break
;
else
{
rtx
buf_addr
=
expand_expr
(
TREE_VALUE
(
arglist
),
subtarget
,
VOIDmode
,
0
);
rtx
value
=
expand_expr
(
TREE_VALUE
(
TREE_CHAIN
(
arglist
)),
NULL_RTX
,
VOIDmode
,
0
);
if
(
value
!=
const1_rtx
)
{
error
(
"__builtin_longjmp second argument must be 1"
);
return
const0_rtx
;
}
expand_builtin_longjmp
(
buf_addr
,
value
);
return
const0_rtx
;
}
case
BUILT_IN_TRAP
:
#ifdef HAVE_trap
if
(
HAVE_trap
)
emit_insn
(
gen_trap
());
else
#endif
error
(
"__builtin_trap not supported by this target"
);
emit_barrier
();
return
const0_rtx
;
/* Various hooks for the DWARF 2 __throw routine. */
case
BUILT_IN_UNWIND_INIT
:
expand_builtin_unwind_init
();
return
const0_rtx
;
case
BUILT_IN_DWARF_CFA
:
return
virtual_cfa_rtx
;
#ifdef DWARF2_UNWIND_INFO
case
BUILT_IN_DWARF_FP_REGNUM
:
return
expand_builtin_dwarf_fp_regnum
();
case
BUILT_IN_DWARF_REG_SIZE
:
return
expand_builtin_dwarf_reg_size
(
TREE_VALUE
(
arglist
),
target
);
#endif
case
BUILT_IN_FROB_RETURN_ADDR
:
return
expand_builtin_frob_return_addr
(
TREE_VALUE
(
arglist
));
case
BUILT_IN_EXTRACT_RETURN_ADDR
:
return
expand_builtin_extract_return_addr
(
TREE_VALUE
(
arglist
));
case
BUILT_IN_EH_RETURN
:
expand_builtin_eh_return
(
TREE_VALUE
(
arglist
),
TREE_VALUE
(
TREE_CHAIN
(
arglist
)),
TREE_VALUE
(
TREE_CHAIN
(
TREE_CHAIN
(
arglist
))));
return
const0_rtx
;
default
:
/* just do library call, if unknown builtin */
error
(
"built-in function `%s' not currently supported"
,
IDENTIFIER_POINTER
(
DECL_NAME
(
fndecl
)));
}
/* The switch statement above can drop through to cause the function
to be called normally. */
return
expand_call
(
exp
,
target
,
ignore
);
}
/* Built-in functions to perform an untyped call and return. */
/* For each register that may be used for calling a function, this
gives a mode used to copy the register's value. VOIDmode indicates
the register is not used for calling a function. If the machine
has register windows, this gives only the outbound registers.
INCOMING_REGNO gives the corresponding inbound register. */
static
enum
machine_mode
apply_args_mode
[
FIRST_PSEUDO_REGISTER
];
/* For each register that may be used for returning values, this gives
a mode used to copy the register's value. VOIDmode indicates the
register is not used for returning values. If the machine has
register windows, this gives only the outbound registers.
INCOMING_REGNO gives the corresponding inbound register. */
static
enum
machine_mode
apply_result_mode
[
FIRST_PSEUDO_REGISTER
];
/* For each register that may be used for calling a function, this
gives the offset of that register into the block returned by
__builtin_apply_args. 0 indicates that the register is not
used for calling a function. */
static
int
apply_args_reg_offset
[
FIRST_PSEUDO_REGISTER
];
/* Return the offset of register REGNO into the block returned by
__builtin_apply_args. This is not declared static, since it is
needed in objc-act.c. */
int
apply_args_register_offset
(
regno
)
int
regno
;
{
apply_args_size
();
/* Arguments are always put in outgoing registers (in the argument
block) if such make sense. */
#ifdef OUTGOING_REGNO
regno
=
OUTGOING_REGNO
(
regno
);
#endif
return
apply_args_reg_offset
[
regno
];
}
/* Return the size required for the block returned by __builtin_apply_args,
and initialize apply_args_mode. */
static
int
apply_args_size
()
{
static
int
size
=
-
1
;
int
align
,
regno
;
enum
machine_mode
mode
;
/* The values computed by this function never change. */
if
(
size
<
0
)
{
/* The first value is the incoming arg-pointer. */
size
=
GET_MODE_SIZE
(
Pmode
);
/* The second value is the structure value address unless this is
passed as an "invisible" first argument. */
if
(
struct_value_rtx
)
size
+=
GET_MODE_SIZE
(
Pmode
);
for
(
regno
=
0
;
regno
<
FIRST_PSEUDO_REGISTER
;
regno
++
)
if
(
FUNCTION_ARG_REGNO_P
(
regno
))
{
/* Search for the proper mode for copying this register's
value. I'm not sure this is right, but it works so far. */
enum
machine_mode
best_mode
=
VOIDmode
;
for
(
mode
=
GET_CLASS_NARROWEST_MODE
(
MODE_INT
);
mode
!=
VOIDmode
;
mode
=
GET_MODE_WIDER_MODE
(
mode
))
if
(
HARD_REGNO_MODE_OK
(
regno
,
mode
)
&&
HARD_REGNO_NREGS
(
regno
,
mode
)
==
1
)
best_mode
=
mode
;
if
(
best_mode
==
VOIDmode
)
for
(
mode
=
GET_CLASS_NARROWEST_MODE
(
MODE_FLOAT
);
mode
!=
VOIDmode
;
mode
=
GET_MODE_WIDER_MODE
(
mode
))
if
(
HARD_REGNO_MODE_OK
(
regno
,
mode
)
&&
(
mov_optab
->
handlers
[(
int
)
mode
].
insn_code
!=
CODE_FOR_nothing
))
best_mode
=
mode
;
mode
=
best_mode
;
if
(
mode
==
VOIDmode
)
abort
();
align
=
GET_MODE_ALIGNMENT
(
mode
)
/
BITS_PER_UNIT
;
if
(
size
%
align
!=
0
)
size
=
CEIL
(
size
,
align
)
*
align
;
apply_args_reg_offset
[
regno
]
=
size
;
size
+=
GET_MODE_SIZE
(
mode
);
apply_args_mode
[
regno
]
=
mode
;
}
else
{
apply_args_mode
[
regno
]
=
VOIDmode
;
apply_args_reg_offset
[
regno
]
=
0
;
}
}
return
size
;
}
/* Return the size required for the block returned by __builtin_apply,
and initialize apply_result_mode. */
static
int
apply_result_size
()
{
static
int
size
=
-
1
;
int
align
,
regno
;
enum
machine_mode
mode
;
/* The values computed by this function never change. */
if
(
size
<
0
)
{
size
=
0
;
for
(
regno
=
0
;
regno
<
FIRST_PSEUDO_REGISTER
;
regno
++
)
if
(
FUNCTION_VALUE_REGNO_P
(
regno
))
{
/* Search for the proper mode for copying this register's
value. I'm not sure this is right, but it works so far. */
enum
machine_mode
best_mode
=
VOIDmode
;
for
(
mode
=
GET_CLASS_NARROWEST_MODE
(
MODE_INT
);
mode
!=
TImode
;
mode
=
GET_MODE_WIDER_MODE
(
mode
))
if
(
HARD_REGNO_MODE_OK
(
regno
,
mode
))
best_mode
=
mode
;
if
(
best_mode
==
VOIDmode
)
for
(
mode
=
GET_CLASS_NARROWEST_MODE
(
MODE_FLOAT
);
mode
!=
VOIDmode
;
mode
=
GET_MODE_WIDER_MODE
(
mode
))
if
(
HARD_REGNO_MODE_OK
(
regno
,
mode
)
&&
(
mov_optab
->
handlers
[(
int
)
mode
].
insn_code
!=
CODE_FOR_nothing
))
best_mode
=
mode
;
mode
=
best_mode
;
if
(
mode
==
VOIDmode
)
abort
();
align
=
GET_MODE_ALIGNMENT
(
mode
)
/
BITS_PER_UNIT
;
if
(
size
%
align
!=
0
)
size
=
CEIL
(
size
,
align
)
*
align
;
size
+=
GET_MODE_SIZE
(
mode
);
apply_result_mode
[
regno
]
=
mode
;
}
else
apply_result_mode
[
regno
]
=
VOIDmode
;
/* Allow targets that use untyped_call and untyped_return to override
the size so that machine-specific information can be stored here. */
#ifdef APPLY_RESULT_SIZE
size
=
APPLY_RESULT_SIZE
;
#endif
}
return
size
;
}
#if defined (HAVE_untyped_call) || defined (HAVE_untyped_return)
/* Create a vector describing the result block RESULT. If SAVEP is true,
the result block is used to save the values; otherwise it is used to
restore the values. */
static
rtx
result_vector
(
savep
,
result
)
int
savep
;
rtx
result
;
{
int
regno
,
size
,
align
,
nelts
;
enum
machine_mode
mode
;
rtx
reg
,
mem
;
rtx
*
savevec
=
(
rtx
*
)
alloca
(
FIRST_PSEUDO_REGISTER
*
sizeof
(
rtx
));
size
=
nelts
=
0
;
for
(
regno
=
0
;
regno
<
FIRST_PSEUDO_REGISTER
;
regno
++
)
if
((
mode
=
apply_result_mode
[
regno
])
!=
VOIDmode
)
{
align
=
GET_MODE_ALIGNMENT
(
mode
)
/
BITS_PER_UNIT
;
if
(
size
%
align
!=
0
)
size
=
CEIL
(
size
,
align
)
*
align
;
reg
=
gen_rtx_REG
(
mode
,
savep
?
regno
:
INCOMING_REGNO
(
regno
));
mem
=
change_address
(
result
,
mode
,
plus_constant
(
XEXP
(
result
,
0
),
size
));
savevec
[
nelts
++
]
=
(
savep
?
gen_rtx_SET
(
VOIDmode
,
mem
,
reg
)
:
gen_rtx_SET
(
VOIDmode
,
reg
,
mem
));
size
+=
GET_MODE_SIZE
(
mode
);
}
return
gen_rtx_PARALLEL
(
VOIDmode
,
gen_rtvec_v
(
nelts
,
savevec
));
}
#endif
/* HAVE_untyped_call or HAVE_untyped_return */
/* Save the state required to perform an untyped call with the same
arguments as were passed to the current function. */
static
rtx
expand_builtin_apply_args
()
{
rtx
registers
;
int
size
,
align
,
regno
;
enum
machine_mode
mode
;
/* Create a block where the arg-pointer, structure value address,
and argument registers can be saved. */
registers
=
assign_stack_local
(
BLKmode
,
apply_args_size
(),
-
1
);
/* Walk past the arg-pointer and structure value address. */
size
=
GET_MODE_SIZE
(
Pmode
);
if
(
struct_value_rtx
)
size
+=
GET_MODE_SIZE
(
Pmode
);
/* Save each register used in calling a function to the block. */
for
(
regno
=
0
;
regno
<
FIRST_PSEUDO_REGISTER
;
regno
++
)
if
((
mode
=
apply_args_mode
[
regno
])
!=
VOIDmode
)
{
rtx
tem
;
align
=
GET_MODE_ALIGNMENT
(
mode
)
/
BITS_PER_UNIT
;
if
(
size
%
align
!=
0
)
size
=
CEIL
(
size
,
align
)
*
align
;
tem
=
gen_rtx_REG
(
mode
,
INCOMING_REGNO
(
regno
));
#ifdef STACK_REGS
/* For reg-stack.c's stack register household.
Compare with a similar piece of code in function.c. */
emit_insn
(
gen_rtx_USE
(
mode
,
tem
));
#endif
emit_move_insn
(
change_address
(
registers
,
mode
,
plus_constant
(
XEXP
(
registers
,
0
),
size
)),
tem
);
size
+=
GET_MODE_SIZE
(
mode
);
}
/* Save the arg pointer to the block. */
emit_move_insn
(
change_address
(
registers
,
Pmode
,
XEXP
(
registers
,
0
)),
copy_to_reg
(
virtual_incoming_args_rtx
));
size
=
GET_MODE_SIZE
(
Pmode
);
/* Save the structure value address unless this is passed as an
"invisible" first argument. */
if
(
struct_value_incoming_rtx
)
{
emit_move_insn
(
change_address
(
registers
,
Pmode
,
plus_constant
(
XEXP
(
registers
,
0
),
size
)),
copy_to_reg
(
struct_value_incoming_rtx
));
size
+=
GET_MODE_SIZE
(
Pmode
);
}
/* Return the address of the block. */
return
copy_addr_to_reg
(
XEXP
(
registers
,
0
));
}
/* Perform an untyped call and save the state required to perform an
untyped return of whatever value was returned by the given function. */
static
rtx
expand_builtin_apply
(
function
,
arguments
,
argsize
)
rtx
function
,
arguments
,
argsize
;
{
int
size
,
align
,
regno
;
enum
machine_mode
mode
;
rtx
incoming_args
,
result
,
reg
,
dest
,
call_insn
;
rtx
old_stack_level
=
0
;
rtx
call_fusage
=
0
;
/* Create a block where the return registers can be saved. */
result
=
assign_stack_local
(
BLKmode
,
apply_result_size
(),
-
1
);
/* ??? The argsize value should be adjusted here. */
/* Fetch the arg pointer from the ARGUMENTS block. */
incoming_args
=
gen_reg_rtx
(
Pmode
);
emit_move_insn
(
incoming_args
,
gen_rtx_MEM
(
Pmode
,
arguments
));
#ifndef STACK_GROWS_DOWNWARD
incoming_args
=
expand_binop
(
Pmode
,
sub_optab
,
incoming_args
,
argsize
,
incoming_args
,
0
,
OPTAB_LIB_WIDEN
);
#endif
/* Perform postincrements before actually calling the function. */
emit_queue
();
/* Push a new argument block and copy the arguments. */
do_pending_stack_adjust
();
/* Save the stack with nonlocal if available */
#ifdef HAVE_save_stack_nonlocal
if
(
HAVE_save_stack_nonlocal
)
emit_stack_save
(
SAVE_NONLOCAL
,
&
old_stack_level
,
NULL_RTX
);
else
#endif
emit_stack_save
(
SAVE_BLOCK
,
&
old_stack_level
,
NULL_RTX
);
/* Push a block of memory onto the stack to store the memory arguments.
Save the address in a register, and copy the memory arguments. ??? I
haven't figured out how the calling convention macros effect this,
but it's likely that the source and/or destination addresses in
the block copy will need updating in machine specific ways. */
dest
=
allocate_dynamic_stack_space
(
argsize
,
0
,
0
);
emit_block_move
(
gen_rtx_MEM
(
BLKmode
,
dest
),
gen_rtx_MEM
(
BLKmode
,
incoming_args
),
argsize
,
PARM_BOUNDARY
/
BITS_PER_UNIT
);
/* Refer to the argument block. */
apply_args_size
();
arguments
=
gen_rtx_MEM
(
BLKmode
,
arguments
);
/* Walk past the arg-pointer and structure value address. */
size
=
GET_MODE_SIZE
(
Pmode
);
if
(
struct_value_rtx
)
size
+=
GET_MODE_SIZE
(
Pmode
);
/* Restore each of the registers previously saved. Make USE insns
for each of these registers for use in making the call. */
for
(
regno
=
0
;
regno
<
FIRST_PSEUDO_REGISTER
;
regno
++
)
if
((
mode
=
apply_args_mode
[
regno
])
!=
VOIDmode
)
{
align
=
GET_MODE_ALIGNMENT
(
mode
)
/
BITS_PER_UNIT
;
if
(
size
%
align
!=
0
)
size
=
CEIL
(
size
,
align
)
*
align
;
reg
=
gen_rtx_REG
(
mode
,
regno
);
emit_move_insn
(
reg
,
change_address
(
arguments
,
mode
,
plus_constant
(
XEXP
(
arguments
,
0
),
size
)));
use_reg
(
&
call_fusage
,
reg
);
size
+=
GET_MODE_SIZE
(
mode
);
}
/* Restore the structure value address unless this is passed as an
"invisible" first argument. */
size
=
GET_MODE_SIZE
(
Pmode
);
if
(
struct_value_rtx
)
{
rtx
value
=
gen_reg_rtx
(
Pmode
);
emit_move_insn
(
value
,
change_address
(
arguments
,
Pmode
,
plus_constant
(
XEXP
(
arguments
,
0
),
size
)));
emit_move_insn
(
struct_value_rtx
,
value
);
if
(
GET_CODE
(
struct_value_rtx
)
==
REG
)
use_reg
(
&
call_fusage
,
struct_value_rtx
);
size
+=
GET_MODE_SIZE
(
Pmode
);
}
/* All arguments and registers used for the call are set up by now! */
function
=
prepare_call_address
(
function
,
NULL_TREE
,
&
call_fusage
,
0
);
/* Ensure address is valid. SYMBOL_REF is already valid, so no need,
and we don't want to load it into a register as an optimization,
because prepare_call_address already did it if it should be done. */
if
(
GET_CODE
(
function
)
!=
SYMBOL_REF
)
function
=
memory_address
(
FUNCTION_MODE
,
function
);
/* Generate the actual call instruction and save the return value. */
#ifdef HAVE_untyped_call
if
(
HAVE_untyped_call
)
emit_call_insn
(
gen_untyped_call
(
gen_rtx_MEM
(
FUNCTION_MODE
,
function
),
result
,
result_vector
(
1
,
result
)));
else
#endif
#ifdef HAVE_call_value
if
(
HAVE_call_value
)
{
rtx
valreg
=
0
;
/* Locate the unique return register. It is not possible to
express a call that sets more than one return register using
call_value; use untyped_call for that. In fact, untyped_call
only needs to save the return registers in the given block. */
for
(
regno
=
0
;
regno
<
FIRST_PSEUDO_REGISTER
;
regno
++
)
if
((
mode
=
apply_result_mode
[
regno
])
!=
VOIDmode
)
{
if
(
valreg
)
abort
();
/* HAVE_untyped_call required. */
valreg
=
gen_rtx_REG
(
mode
,
regno
);
}
emit_call_insn
(
gen_call_value
(
valreg
,
gen_rtx_MEM
(
FUNCTION_MODE
,
function
),
const0_rtx
,
NULL_RTX
,
const0_rtx
));
emit_move_insn
(
change_address
(
result
,
GET_MODE
(
valreg
),
XEXP
(
result
,
0
)),
valreg
);
}
else
#endif
abort
();
/* Find the CALL insn we just emitted. */
for
(
call_insn
=
get_last_insn
();
call_insn
&&
GET_CODE
(
call_insn
)
!=
CALL_INSN
;
call_insn
=
PREV_INSN
(
call_insn
))
;
if
(
!
call_insn
)
abort
();
/* Put the register usage information on the CALL. If there is already
some usage information, put ours at the end. */
if
(
CALL_INSN_FUNCTION_USAGE
(
call_insn
))
{
rtx
link
;
for
(
link
=
CALL_INSN_FUNCTION_USAGE
(
call_insn
);
XEXP
(
link
,
1
)
!=
0
;
link
=
XEXP
(
link
,
1
))
;
XEXP
(
link
,
1
)
=
call_fusage
;
}
else
CALL_INSN_FUNCTION_USAGE
(
call_insn
)
=
call_fusage
;
/* Restore the stack. */
#ifdef HAVE_save_stack_nonlocal
if
(
HAVE_save_stack_nonlocal
)
emit_stack_restore
(
SAVE_NONLOCAL
,
old_stack_level
,
NULL_RTX
);
else
#endif
emit_stack_restore
(
SAVE_BLOCK
,
old_stack_level
,
NULL_RTX
);
/* Return the address of the result block. */
return
copy_addr_to_reg
(
XEXP
(
result
,
0
));
}
/* Perform an untyped return. */
static
void
expand_builtin_return
(
result
)
rtx
result
;
{
int
size
,
align
,
regno
;
enum
machine_mode
mode
;
rtx
reg
;
rtx
call_fusage
=
0
;
apply_result_size
();
result
=
gen_rtx_MEM
(
BLKmode
,
result
);
#ifdef HAVE_untyped_return
if
(
HAVE_untyped_return
)
{
emit_jump_insn
(
gen_untyped_return
(
result
,
result_vector
(
0
,
result
)));
emit_barrier
();
return
;
}
#endif
/* Restore the return value and note that each value is used. */
size
=
0
;
for
(
regno
=
0
;
regno
<
FIRST_PSEUDO_REGISTER
;
regno
++
)
if
((
mode
=
apply_result_mode
[
regno
])
!=
VOIDmode
)
{
align
=
GET_MODE_ALIGNMENT
(
mode
)
/
BITS_PER_UNIT
;
if
(
size
%
align
!=
0
)
size
=
CEIL
(
size
,
align
)
*
align
;
reg
=
gen_rtx_REG
(
mode
,
INCOMING_REGNO
(
regno
));
emit_move_insn
(
reg
,
change_address
(
result
,
mode
,
plus_constant
(
XEXP
(
result
,
0
),
size
)));
push_to_sequence
(
call_fusage
);
emit_insn
(
gen_rtx_USE
(
VOIDmode
,
reg
));
call_fusage
=
get_insns
();
end_sequence
();
size
+=
GET_MODE_SIZE
(
mode
);
}
/* Put the USE insns before the return. */
emit_insns
(
call_fusage
);
/* Return whatever values was restored by jumping directly to the end
of the function. */
expand_null_return
();
}
/* Expand code for a post- or pre- increment or decrement
and return the RTX for the result.
...
...
gcc/expr.h
View file @
28f4ec01
...
...
@@ -75,6 +75,14 @@ extern rtx forced_labels;
So we can mark them all live at the end of the function, if stupid. */
extern
rtx
save_expr_regs
;
/* Nonzero means __builtin_saveregs has already been done in this function.
The value is the pseudoreg containing the value __builtin_saveregs
returned. */
extern
rtx
saveregs_value
;
/* Similarly for __builtin_apply_args. */
extern
rtx
apply_args_value
;
extern
int
current_function_calls_alloca
;
extern
int
current_function_outgoing_args_size
;
...
...
@@ -727,6 +735,13 @@ extern rtx get_condition PROTO((rtx, rtx *));
/* Generate a conditional trap instruction. */
extern
rtx
gen_cond_trap
PROTO
((
enum
rtx_code
,
rtx
,
rtx
,
rtx
));
/* Functions from builtins.c: */
#ifdef TREE_CODE
extern
rtx
expand_builtin
PROTO
((
tree
,
rtx
,
rtx
,
enum
machine_mode
,
int
));
#endif
extern
rtx
expand_builtin_setjmp
PROTO
((
rtx
,
rtx
,
rtx
,
rtx
));
/* Functions from expr.c: */
/* This is run once per compilation to set up which modes can be used
...
...
@@ -831,8 +846,6 @@ extern rtx store_expr PROTO((tree, rtx, int));
Useful after calling expand_expr with 1 as sum_ok. */
extern
rtx
force_operand
PROTO
((
rtx
,
rtx
));
extern
rtx
expand_builtin_setjmp
PROTO
((
rtx
,
rtx
,
rtx
,
rtx
));
#ifdef TREE_CODE
/* Generate code for computing expression EXP.
An rtx for the computed value is returned. The value is never null.
...
...
@@ -853,6 +866,10 @@ extern void clear_pending_stack_adjust PROTO((void));
extern
void
do_pending_stack_adjust
PROTO
((
void
));
#ifdef TREE_CODE
/* Return the tree node and offset if a given argument corresponds to
a string constant. */
extern
tree
string_constant
PROTO
((
tree
,
tree
*
));
/* Generate code to evaluate EXP and jump to LABEL if the value is zero. */
extern
void
jumpifnot
PROTO
((
tree
,
rtx
));
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment